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Tuesday, 8/27/2024
Introduction and Motivation: Fermat’s Last Theorem

THEOREM 0.1 (Wiles, Taylor-Wiles, 1995). Let x,y,z and n be positive integers and n > 3 then

While the method of Taylor-Wiles has been refined and extended greatly since its inception, there
is no proof of this theorem known which is of a substantially different nature.

THEOREM 0.2. Let p > 3 be a prime, ¢, = €2>7/? € C, and suppose R = Z[(,] = {Zf;OQ aiC; |
a; € Z} is a UFD. Then FLT is true for n = p and consequently for any n divisible by p.

This is far easier to prove!

Sketch of Proof when p > 5 and p { zyz:

Set ¢ = (p

Key idea 1: 2P + yP = f;ol(x + Cly)

Key observation 2 (HW1): for 0 <i < j <p—1, z + 'y and x + (/y are coprime in R

Now assume zP + y? = 2P. We want to obtain a contradiction.

Since R is a UFD, we see that x + (y = € - aP for some unit ¢ and « € R

Taking complex conjugate, x + "'y = &(@)?

Key lemma 3: 1. p = ([} 11%%1)(1 — )Pt

2. For all unit € we can find unit €; that is both unit and real and integer r so that e = €; - ("
3. There exists integer ¢ so that a? = ¢ (mod p) which means of — ¢ € pR

End of Proof: (~"(x + (y) = (" "ea? = e1aP = e¢;¢ mod p

Since €;c is real, taking complex conjugates on both sides, we get,

¢"(x+¢'y) = e1c mod p

So, their difference is 0 mod p

Therefore, x + Cy + (" + ¢** 1y =0 (mod p)

Since R is a free Z-module with basis {1,(,(?,..., (P72},

We have p |z or p |y

So we have contradiction!

Remarks: 1. For the case p | zyz : Washington, Intro to Cyclotomic Fieldes, Ch 9.

2. In 1985, Adleman and Heath-Brown showed that the first case p t zyz of FLT is true for
infinitely many primes

The proof of FLT being true just outlined requires R to be UFD. But it also works under the
assumption that:

If I is an ideal of R and I? is a principal ideal, then I is a principal ideal (x)

This is good, because UFD is a very strong assumption, and (x) is significantly weaker.

(*) is equivalent to saying: the class number hq,) is not divisible by p

THEOREM 0.3 (Kummer, 1847). i. FLT is true for exponent n = p if p{ hg(c,) [the class number]
ii. pt hqge,) <= p does not divide the numerator of the Bernoulli numbers Bg, By, ..., By_3

where £ =377 Bk””k—l?
This would be very useful if we knew more about Bernoulli numbers.

DEFINITION. A prime p is called regular if p { hg(c,)

It is known that there are infinitely many irregular primes. So, we can’t prove Fermat’s Last
Theorem with this approach for all primes.

It is not known whether there are infinitely many regular primes. If we assume Bernoulli numbers
are random mod p then probability of none being divisible by p is (1 — %)%3 ~e 2~ 0.61

So, Heuristically, 61% primes are regular.
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CHAPTER 1

The ring of integers Oy

DEFINITION. i. A number field is a finite field extension of Q.

Its elements are called algebraic numbers

ii. If K/Q is a number field, then a € K is called an algebraic integer (or integral over Z), if 3
monic polynomial f(z) € Z[z] such that f(a) =0

Ok ={a € K | « is integral over Z} C K

Example: 1. K = Q(v/-1) = Ok =Z[/-1]
2. K =Q(/5) = oK:Z[%}
Key questions: Is Ok a ring? Why are sums and products of algebraic integers algebraic?

DEFINITION. Let B be a ring (always commutative with 1), and A C B a subring. Then b € B is
called integral over A if there exists a monic polynomial f(z) € A[z] such that f(b) = 0.

Set of integral elements is called A, the integral closure of A.

Note that integral closure of A depends on B.

B is called integral over A if B = A. So every element b € B is integral over A.

PRrROPOSITION 1.1. Finitely many elements bq,...,b, € B are all integral over A if and only if the
subring A[by,...,b,] of B of B (:= the smallest subring of B containing A and by,...,b,) is a
finitely generated (f.g.) A-module.

LEMMA 1.2. Let S = (a;j)1<i,j<r € M,(B) be a matrix and let S* = (S;‘j)lgingr € M, (B) be its
adjugate matrix, ie S7; = (—1)*7 det(S;;) where Sj; is obtained from S by removing the j’th row
and ¢’th column.

Then S - S* = 8*- S =det(9)I

Proor. HW1 0

PROOF OF PROPOSITION 1.1. let b € A, f € A[x] monic, f(b) =0 and deg f =n
Let g € Alz] be any poly. Long division implies g(z) = g(z) f(x) + r(z) with degr <n —1
So, g(b) = q(b)f(b) +r(b) € i) A
So, A[b] € S Abt C A[b] is a finitely generated A-module.
The case of several elements is proved by induction on n.
For the other direction, suppose R := A[b1,...,b,] is a finitely generated A-module. We want to
prove that by,...,b, are integral over A.
Let b € R be any element.
R= Z;:l Ac;j for some ¢1,...,¢, € R
= be; = Z;Zl a;jcj with a;; € A where a;; € A
This gives us a linear equation:

C1 0
C2 0
(oL, —(aig)) | . | =
S——— . :
=5
Cr 0

So S¢=0

So, §*S¢=0 = det(S)I¢=0 = det(S)c; = 0 for all j.
Therefore, det(S) =0

det S is of the form " + Ab" "t + ... =0

So, b is integral / A
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COROLLARY 1.3. A is a subring of B [meaning integral elements are closed under addition and
product)

PROOF. Suppose by, by € A.
By 1.1, A[by,bs] is a f.g. A-module.
Thus, A[by,be, by + bo,b1bs] is a f.g. A-module.
Again, by 1.1, by £ by, biby are in A a

So, Ok is a ring!

Thursday, 8/29/2024

Recap: Given rings A C B we define the integral closure of A in B as

A ={be B|bis integral over A}.
Corollary 1.3: A is a subring of B

ProPOSITION 1.4. If A C B are subrings of C, then C is integral over A iff C is integral over B
and B is integral over A.

PrROOF. HW (one direction is trivial). O

Remarks: Let K be a number field [finite field extension of Q]
i. Ok is aring by 1.3
ii. {o € K | « is integral over Og} = Ok by 1.4

DEFINITION. An integral domain A with field of fractions Frac(A) = K is called integrally closed
if it is equal to its integral closure in K
Meaning {« € K | « is integral over A} = A

2
Examples: Z[i] is integrally closed since Z[i] = Ogqy,)

Counterexample from geometry: Clz,y]/(z® — y?) is an integral domain. Is it integrally closed?
No! Denote 7 to be the class of y in the quotient ring. Then £ is in the field of fractions of the
quotient.

Now, (Q)z =@/ =27 =7

Counterexample: Z[V/5] C Z [1.4_\/5] = Oy (v 50 Z[V/5] is not integrally closed.

xr
So, 7/ is the solution to t> — 7 so /7 is integral over R but not in R
Morally, a ring not being integrally closed correspond to some singularity.

y

= x32
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PROPOSITION 1.5. Let A be an integrally closed domain and K = Frac(A). Let a € K (= algebraic
closure of K. We can take the closure in any finite extension). We have A C K C K. Consider
a€cK.

Then, « is integral over A iff the minimal polynomial p,(z) € K[z] of a over K

Note that minimal polynomial often depends on base field. For example, v/2 has min poly z* — 2

over Q and z2 — /2 over Q(\/ﬁ)

PROOF. <= by definition.
= : we have « is integral.
So, we have monic g(z) € Alz] which is monic and g(«) = 0.
Can we write g(z) = h(2)p(z) in K[z]?
Note that every root 8 € K of p,(z) is a root of g. So, all roots of p,(z) are integral over A.
Note that coefficients of p,(z) are generated by the roots of the polynomial. The coefficients are
the elementary symmetric polynomials.
Thus, coefficients of p,, lie in B := {a € K | « is integral over A}
They also lie in K
So, the coefficients are integral over A and in K, hence in A.

Proposition 1.5 can be used to find Ok for quadratic extension, [K : Q] =2 (HW)

Preliminaries from the theory of fields. In the following L/K will be a finite extension
of fields.
L/K is called simple if 30 € L such that L = K(6)
L/K is called separable if every o € L has a separable minimal polynomial over K [separable
polynomial meaning no double roots in any extension field.]
For example, in K = F,(t) and L = K({/t). Then pyi(r) =aP —t = (v — {/t)P so not separable

THEOREM 1.6 (Theorem of the Primitive Element). If L/K is a finite separable extension, it is
simple.

DEFINITION. The trace Try, /i : L — K and norm N /i : L — K are defined by:
TrL/K(x) = Tr(Tz)
NL/L((E) = det(Tx)
Where T, : L — L is defined by T,(y) = xy considered as an element of Endg (L)

If n=[L: K] and f,(t) = det(tidy —T}) = t" + a1t 1 + ...

Then T'rp /i (xz) = —a and Ny /g (z) = (=1)"an

Since Tty = Ty + Ty and Ty = T - T}y we have:

Trp g (x+y) = Tr(Teyy) = Te(Ty + T,) = Te(Ty) + Te(T,) = Trp g (x) + Trp x (y)

Npr(zy) = det(Tyy) = det(T,Ty) = det(T;) det(Ty) = Np/x (2)Nr/x (y)-

So, Trz,/k : L — K is a homomorphism of vector spaces and Ny, /g : L* — K* is a homomorphism
of the (product) group.

DEFINITION. Fix an algebraic closure L of L. A K-embedding of L into F is a field homomorphism

o:L— L so tat o(x) =z forall z € K.
In other words, o : L — L so that o is K-linear.
Y(L/K) is the set of all such embeddings.

Suppose L/K is simple and L = K(0). Let pp(t) € K[t] be the minimal polynomial of 6 over K.
Then, the map from 3(L/K) to the set of roots of the minimal polynomial a € L | pg(a) = 0 given
by o+ o(6) is a bijection.

In particular if L/K separable, then: |X(L/K)| = deg(pg) = [L : K].

LEMMA 1.7. Let L be finite and K C M C L an intermediate field. Then the restriction map
res: X(L/K) — X(M/K) given by res(c) = o |y is surjective.

Now suppose that ¥(M/K) — X(L/K), given by T + 7, is any right inverse of res [meaning,
7 |m= 7]. Then, for each 7 € X(M/K), the map res™'(7) : £(L/K) — X(7(L)/7(M)) given by
o+ [F(y) = o(y)] is bijective.!

Here we consider L as an algebraic closure of 7(L) C L.
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PRrROOF. Lorenz, Algebra, Volume 1, chapter 7, section 1, Lemma. O

PROPOSITION 1.8. Let L/K be finite separable and x € L. Then,
1) fo(t) =det(tidy —T%) = [[,ex(r/m) (t — 0(@))
ii) Trp/r(7) = Zoenn/x)o(2)

iii) Npjg(r) = ngz(L/K) o(x)
iV) If K C M C L, then TrL/K = T‘I'M/KO’I\I‘L/M and NL/K = NM/K ONL/JW'

ProoF. Neukirch, ch I, 2.6 and 2.7 |
DEFINITION. Let L/K be finite separable extension and «j,...,q, be basis of L as a K vector
space.

Then the discriminant of aq, ..., a, is defined by:

dlag,...,an) = det(ai(ozj))2 where X(L/K) = {o1,...,0n}

Remark: d(aq,...,a,) does not depend on the ordering of ag,...,a, and not on the chosen
ordering of the elements in ¥(L/K)
We now show that the d(aq,...,a,) is in K. Let S be the matrix.

d(ay, ... o) = det(S)? = det(S) det (ST) = det(S"'S)

= det lz or(as)or(ay)
k

k

= det [Z Ok (aiaj)]

= det [(TrL/K(aiaj))ij]

Since the trace is in K, we see that the determinant must also be in K.

Tuesday, 9/3/2024

The Discriminant. Let L/K be a finite separable field extension, and (ay,...,a,) a basis
of L/K. Then,

d(as, ..., an) = det[(0i(a;))1<ij<n]’

Where X(L/K) = {o1,...,0,}. Note that this is independent of order.
We have seen,

d(al, ey O[n) = det [(TrL/K(aiaj))ij] e K
In fact this is an alternate definition.

PROPOSITION 1.9. Let L/K be any (possibly inseparable) finite field extension. Then the K-
bilinear form

LxL— Ka (.I‘,y) = TrL/K(xy)

is non-degenrate if and only if L/K is separable. In this case, d(aq,...,a,) # 0 for any basis
(a1,...,0p) of L/K.

PROOF. Sketch <= : Let L = K(6). It can be proven [HW2] that

d(1,0,6,....0" )= [ (6:i—0;)

1<i#j<n

where 6; are the conjugates of # in L.
This finishes the proof. O
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General Setting: Let A be an integral domain, K = Frac(A). Suppose L/K is a finite separable
extension.

B = integral closure of A in L. Let C be the integral closure of A in L.

Assume in the following that A is integrally closed.

Observation: If x € B C C then Vo € X(L/K),o(x) € C.

Therefore, Trr, /i () = Xoex(n/k)0(x) € CNK = A [since A is integrally closed.]

Similarly, Np/r(2) = [l,en/m0(@) € CNK = A.

So, the norm and trace of elements of B are contained in A.

Remark: If 2 € B, then x € B* <= Ny g(r) € A~

PROOF. Suppose zy = 1 for some y € B = Ny /x(2y) =1 = Np/k()Np/k(y) = 1.

For the other direction, Ny /i (z) = H o(xz) = xb. Note that be CNL = B.
o#id

b

Since the norm is a unit, there exists a € A C B such that axb = 1. Therefore, z(ab) =1 =
x € B*.
O

LEMMA 1.10. Let (a1, ...,a,) be a basis of L/K such that o; € B. Then,

d(ai,...,0n)B C Aay +--- + Aay,

PROOF. By 1.9, we may assume L/K is separable. Write an arbitrary element @ € B as
a=ajaq + -+ a0, with a; € K.

ai
Then, Tr(a;a) = Z?Zl Tr(oaj)a; = [Tr(ozioq) Tr(oziozn)] . | . Therefore,
2%
Tr(cya)] €A ai
: = [Tr(cia)hi<ij<n
Tr(ona) | x5 an,
Multiplying on the left by S* [the adjugate matrix of S],
[a, Tr(a )
SS||=8" :
Lan Tr(a, )
a; Tr(aa)
det(S) | :| = é; : € A"
d(mn) an all entries are in A | Tr(a,, cr)
Therefore, d(aq,...,an)a = (d(ag, -+ ,an)ar)og + - + (d(ag, -+, an)ar)ay
R — —

Example: Let K = Q,L = Q(v/5),00 = 1,00 = V5
_ _ 715 _ 1 V5]
ThenA_Z,B_Z[ 2 } and d(1,v/5) = det L g =20
Then, 20 - Z [%ﬂ C Z+ZV5 = Z|\/5]
Remarks:
1) Va € L,3a € A\ {0} such that aa € B.
PROOF. Suppose minimal polynomial of a over K is p,(z) = 2% +a 2% ' +---+ay €
K[z] = 3Ja € A\ {0} such that aa; € A,1 <1i<d.
Thus, (az)? 4+ aya(az)?' + - + (alay).
€A cA
Thus, ac is integral. Therefore, aa € B ]
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2) spang(B) =1L
3) Frac(B) =1L

DEFINITION. An n-tuple (w1, ,w,) € B™is called an integral basis of B over Aif B = @, Aw;
Remark: If (wq,...,w,) is an integral basis of B over A, then it is a basis of L/K and hence
n=I[L:K].

Note that integral basis is not guaranteed to exist.

ProposITION 1.11. If L/K is finite separable and A is a PID, then every finitely generated B-
submodule M # 0 of L is a free A-module of rank [L : K].
In particular, B has an integral basis over A. [Apply the proposition to M = B].

PRrROOF. Write M = )_, Ba; with o;; € L*. By the remark 1 above, we can find a € A\ {0}
such that aa; € B for 1 <17 < s.
Therefore, a - M C B. Since aM = M [as A-module], we may assume M C B.

ar<—x

Therefore, ey B = Bay C M C B. (1)
#0

Fact (from M502): Let A be a PID. Then every submodule N of a finitely generated free A-module
F is free, and rank 4 (N) < rank 4 (F).

Applying the fact to (1), it suffices to show that B is free of rank n over A.

Choose a basis (aq,--+ ,a,) of L/K with all «; € B.

By 1.10, d(ay, ..., an)B - Ay + -+ Aay, 5"

Since (a1, -+, ) is a basis of L/K, Aaj + - -+ + Aa, is finitely generated free A-module of rank
n.

(2) and fact together imply that d(aq,--- ,a,)B is free of rank < n over A, and it is nonzero by
1.9.
But B = d(a1,--+ ,ap)B, x — d(aq, - ,a,)z, is an isomorphism of A-modules.

(3) and fact together imply that B has rank > n.
Therefore, rank 4 (B) = n.

Remark: If L = K(a) and p(x) = po(z) € K|[z] is the minimal polynomial of a over K.
Let a = aq,- -, ay, be the roots of p, in L, counted with multiplicity.

Then, d(1,a,a?,--- ,a" 1) = Hi<j(oz,; — aj)? = disc(pa())

Recall that disc(p) = resultant(p, p’).

DEFINITION. Let K be a number field and n = [K : Q).

1) f 0 # I C K is a finitely generated Og-module and (ay,---,a,) a basis of I as a
Z-module (exists by 1.11), then d(I) := d(aq,- - ,,) is called the discriminant of I.
2) dx = d(Ok) is called the discriminant of K.

Remarks:
1) Z is a PID L every I as in (1) is indeed free of rank n = [K : Q] over Z.
2) d(I) doesn’t depend on the choice of a basis. If (81, ,S,) is another basis I over Z,
ai B
then we can find a matrix M € M, (Z) such that M | : | = | ! |. Note that M must
n 61
be invertible in M,,(Z) since we can also express the elements of the first basis as linear
combination of the elements of the second basis with integral coefficients. Therefore,
det(M) € {£1}.
Therefore, det(B1, -+, fn) = det(M)2d(a1, ceap) =dlag, o ag).

Thursday, 9/5/2024

92
Example: K = Qi) = Ox =Z+ Zi = dg = det B _ZJ = —4.
Note: K = Q(v/dk). If [K : Q] = 2 then K = Q(v/dk ) [Exercise]
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CHAPTER 1. THE RING OF INTEGERS Og M 601, Fall 2024, by M. Strauch

PROPOSITION 1.12. Let 0 # I C J be finitely generated Og-submodules of K. Then,

d(I) = [J : 1)%d(J)

PROOF. Let [ =Zay @+ B Zay, and J =21 @ -+ ® ZS,. Then, there exists M C M, (Z)
B aq
such that M | : | = | :
Bn 79
Then, d(I) = d(ax, -+, ap) = det(M)*d(By, - - , B,) = det(M)*d(J).
To finish the proof, note that J/I = Z"/M(Z") = Z/(m1) ® - @ Z/(my) = |m1---my| =
|det(M)| = [J : I].
(]

COROLLARY 1.13. If 0 # I C Ok is an ideal and d(I) is square-free, then I = Ok. If § € Ok and
K =Q(0), then d(1,0,62,--- 6"~ 1) is square-free, then Z[¢] = Ok.

PRrROOF. d(I) is square free.
1.12 = d(I) = [Ok : I]?d(Ok), which is only possible when [Of : I] = 1.

oq 1
Suppose O = Zoy ® - - ® Za,, and M € My, (Z) such that M | | = :
o, gn—1
It follows that d(1,6,---,6m1) = det(M)*d(ay,-- - ,a,), implying det(M)®> =1 = det(M) =
+1. o .
Therefore | @ | =M1 | = Z[0] = Ok. O
ay, g1
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CHAPTER 2

Ideals

Suppose K is a number field, and O = O.

DEFINITION. An element o € O\ {0} is called irreducible if v is not a unit [a ¢ O*] and whenever
a = By with 8,7 € O then either 8 € O* or v € O*

This is not the same as the definition of a prime element. In general, irreducible elements may not
be prime elements (which are those non-zero elements which generate prime ideals).
Observation: Every 0 # a € O\ O can be expressed as a product of irreducible elements.

PROOF. If « is irreducible, there’s nothing to do.
If it is not irreducible, then o = B with 8,~ both non-units.
Using the remark before 1.10, [Nk q(8)| > 1 and [Ng,q(v)| > 1.
Moreover, [Nk /q(a)| > [Nk o(B); [Nk /gy -
By applying strong induction on [Nk q(a)|, we see that § and vy can be written as products of
irreducibles. Thus, « can be written as a product of irreducibles. O

Example: K = Q(v/-5), 0k = Z[\/=5]. Here,

21=3-7=(142v-5)(1—-2v-5H)
HW2: 3,7,1+ 2y/—5,1 — 2+/—5 are all irreducibles and are pairwise non-associates.
— factorization into irreducibles is not unique.
[This is equivalent to the fact that not every irreducible element is a prime element.]
Conclusion: Ok is not a UFD in general!

THEOREM 2.1. The ring Ok is noetherian, integrally closed and every non-zero prime ideal is
maximal [ <= Krull dimension of Ok is 1].

PrOOF. O is noetherian: if 0 # I C Ok is an ideal U Tisa finitely generated as a
Z-module = I is finitely generated as an Og-module.
Ok is integrally closed: remark after 1.4.

Non-zero prime ideals are maximal: Suppose 0 # P C Ok is a non-zero prime ideal.

L2 [0k : P] is finite. In fact, d(P) = [Ox : P]2d(Ok).

Hence, Ok /P is a finite integral domain. But finite integral domains are fields.
Thus, Ok /P is a field, and thus P is maximal.

This gives us the inspiration to define Dedekind domain.

DEFINITION. An integral domain A is called Dedekind domain if:

1) A is noetherian.
2) A is integrally closed.
3) Every non-zero prime ideal P of A is maximal.

By Theorem 2.1, Ok is a Dedekind domain.
Moreover, we have:
1) k[z] when k is a field is a Dedekind domain.
2) Clz,y]/(y* — 2?) is not a Dedekind domain. It fails the integrally closed condition, as we
saw earlier.

From now on, O denotes a Dedekind domain.

13
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DEFINITION. Id(O) = set of ideals of O.

1d*(0) =1d(0) \ {(0)}-

Max(O) = set of maximal ideals of O.
LEMMA 2.2. VI € Id*(O), there exists primes P, --- , P, € Max(O) such that P, --- P, C I.

PROOF. Suppose X = {J € Id*(O) | J does not contain a product of maximal ideals}
Note that X does not contain @ = (1) since it X contains all the prime ideals.
Goal: We want to show that X = @. Suppose X is non-empty. Since O is noetherian, we cannot
have infinite ascending chains.
Using the fact that X is partially ordered by C, X contains maximal elements. Let I € X be a
maximal element.
Since I € X, I is not a prime. Which means, we can find z,y ¢ I such that zy € I.
Set I; == (x) + [ and I == (y) + I.
Then, I; and I contain I. Since I is maximal, I;,Is ¢ X.
This means we can find Py, -+, P, and Qq,- -+, @y such that [[", P, C I; and H;Zl Qj C L.
Then, []; Pi[[; Q; C il = ((z) + I)((y) + 1), since zy € I we have I1I5 C I.
O

LEMMA 2.3. Suppose P € Max(O) and P~ = {x € FK(O) | P C (9} [this is an O-submodule

of K, containing O]
Then, VI € 1d%(0),IP~' D I.

PROOF. Step 1: We sow P~ D O. Suppose ¢ € P\ {0}.
22 = 3P, -+ ,P. € Max(O) such that P, --- P, C (¢) =¢-O C P
Assume that r is minimal with this property.
Recall that, if ideal product IJ € P then I C P or J C P.
Therefore, there exists ¢ such that P; C P. Since P; is also a maximal ideal, P, = P.
This means the chain of subsets are all equalities. By reordering the prime ideals, we may assume
i=1.
Since r is minimal, PoPs -+ - P.  (c).

b

This implies there exists b € Py, -+, P\ (¢) such that - ¢ O. However,
c
€K

b 1 1
*CP1C*P2"'PTP1C*(C):O
C & &

| S

- P

c
Therefore, £ € P71\ O = P12 0.

Step 2: We'll show: 1P~ D I where I # (0).

Write I = )" | Oy where o # 0.

Suppose IP7' =] = if x € P71, then zo; = Z;nzl aijo;.

aq 0
Set A := [20;; — aij]lgi,jgm' Then, A | : | = |:|. Multiplying on the left by A* we see that,
Qm 0
o 0
det(A) | 1 | = || = Vi,det(A)a; =0 = det(4) =0
fo7 0

Since det(A) is a monic polynomial, we deduce that z is integral over O, which means z € O.
Therefore, P~' C ©. This is a contradiction.
Therefore, IP~1 D I. ]

THEOREM 2.4 (Unique Factorization in Dedekind Domain). Every I € Id*(O) can be written as:
I=PP,---P,

with Pp, .-, P. € Max(Q), and this factorization is unique upto ordering.
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Tuesday, 9/10/2024

PRrROOF. Step 1, Existence:
Let X = {J € Id*(O) | J does not have a factorization into prime ideals}. We want to show that
X =0.
Assume X # @. O is a dedekind domain, and thus it is noetherian. Therefore, X has a maximal
element I.
I # O [since O ¢ X].
Thus, there is a maximal ideal P containing I.
Since I € X, I # P. Therefore, P D I.
By lemma 2.3, IP~1 D I.
Again, by lemma 2.3, P~'P D P, P~1P is an ideal C O. Therefore, by the maximality of P, we
see that P~'P = O.
Now, suppose O = IP~!. Multiplying both sides by P = IP~!P = I, which is a contradiction.
Thus, I CIP~' C O.
Now, since I is a maximal element of X, IP~! ¢ X.
Thus, we can find maximal ideals P;,--- , P. so that I[P~ = P, --- P,.
Multiplying both sides by P, we see that,
I=IP'P =P ... P.P which is a contradiction.
Thus, X must be empty. This shows existence.
Uniqueness: HW.
|

THEOREM 2.5 (Chinese Remainder Theorem). Let Iy,---, I, be ideals of a ring R which are
pairwise co-prime [i.e. I; +I; = R Vi # j|. Then,
i) ]1...]T:m;:1]j
ii) The canonical map R/ ﬂ;:1 I; — H;Zl R/I; sending a + ﬂ§:1 Ij = (a+1;)i_, is aring
isomorphism.

ProOF. Neukirch 3.6, Atiyah-MacDonald ]

DEFINITION. Let O be a Dedekind domain, and K = Frac(O). Then, a fractional ideal of K is a
non-zero finitely generated O-submodule of K.

For any a € K*, we call a - O a principal fractional ideal.

The non-zero ideals of O are called integral ideals.

We denote by Jx the set of fractional ideals of K, and by Px the set of principal fractional ideals.

EXAMPLE. %Z is a fractional ideal for O = Z.

Observation: Let I C K be a non-zero O-submodule.
Then I is fractional of K <= Jc € O\ {0} such that ¢- I C O.

PrOOF. If it is a fractional ideal of K, it is finitely generated as an O-module. Suppose it
is generated by %, ce ‘i—: for nonzero sy,---,s, € O. We can set ¢ = s1---s, which gives us
c-I=0.

For the other direction, suppose ¢ -1 C O. Since O is noetherian, it is finitely generated as an
O-module.
Therefore, I = %(CI ) is also finitely generated as an O-module. Thus, I satisfies all the conditions
of being a fractional ideal, and thus is a fractional ideal by definition.

|

PROPOSITION 2.6 (Definition of Ideal Group). The fractional ideals of K form an abelian group
w.r.t. multiplication, which is called the ideal group of K.

The identity element is (1) = O.

Inverse is given by "' = {z € K | 2I C O}

PROOF. First we prove that the product of two fractional ideals are fractional ideals.
I,JCJx = cI C O,dJ C O. Therefore, (cd)IJ = (cI)(dJ) C O. Therefore, IJ C Jk.
Commutatitivty and associativity follows from O itself being a commutative ring.

We need to prove the existence of inverses. Idea: (P, ---P,)~' = P '... P71
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Given I C Jk,3c € O\ {0} such that ¢I C O.

We can factor ¢l into primes. Thus, ¢ = P; --- P,.

For any J € Jk, we define J = {x € K | zJ C O}.

Note that, if d € J \ {0}, we have dJ C O.

Furthermore, d.J is finitely generatd implies J = 4 = 1(dJ) is finitely generated as a O-module.
Thus, J € Jk.

Going back to I, we see that (¢)P,---P.I = P, ---P.(cI) = (PyP)---(P.P,)=0---0 = 0.
Thus, V.J € Jg,3J ' € Jk such that J~1-J=J-J"1 =0.

COROLLARY 2.7. Every I € Jk has a factorization:

I:Plel ...Pf"
where Pp,---, P, are pairwise distinct prime/maximal ideals and ej,--- e, are uniquely deter-

miend integers.
As usual, if e < 0 then J¢ := (J~1)~¢ for any J € Jk.

PROOF. Choose ¢ € O\ {0} so that ¢ C O = ¢l = P --- P with a; > 0.
Also write cO = Plb1 - Pbr with b; > 0.
Exponent of 0 are allowed to make sure the primes are the same.
Therefore, I = (¢)~!(el) = P70 ... par=br
Uniqueness is HW.

Note that, in the group of (fractional) ideals, the principal ideals form a subgroup.

DEFINITION. The ideal class group of K is defined as Jx/Pxk and denoted by Clx. We call
hx = | Clk | the class number of K.

We have the exact sequences:

1=Pr = Jxk = Clg =1

120" > K" =P —1
C ?—)CO

Remark: O is a PID <= Clg = {1}

PROOF. Suppose [ is a fractional ideal. Then, cI is an ideal for some c. Since O is a PID, we
see that ¢l is a principal ideal, so ¢I = (d). Therefore, I = %(9. Thus, Jx = Pk = Clg = {1}.
For the other direction, suppose Clg = {1}. Then, Jx = Px. Given I € Id*(O) there exists
¢ € K* such that I = ¢O. Since ¢ € I we see that I is a principal ideal. O

Note that Cli being trivial is also equivalent to O being a UFD.
The main results of the first part of the course are: if K is a number field,

e The finiteness of the class number
e Dirichlet’s Theorem on Units.
Ox 2771 & {roots of unity in K}
Where r is the number of real embeddings
r=[{K < R}|.
And 2s is the number of complex embeddings which do not factor through R
2s ={K 6) C does not factor through R}|.

Decomposition of primes in Og. c.f. Neuker, ch I
Here, K = number field, O = Og,n = [K : Q].

DEFINITION. Given a prime number p € Zso we write p- Og = P;*--- P (%) with pairwise
distinct maximal ideals P;. p is called:

i) unramified (in K) ife; =---=e¢, = 1.

ii) ramified (in K) if 31 <i<r:e; > 1.
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iii) completely split (totally split, totally demomposed) if it is unramified and r = n.
iv) inert if r =1,e; = 1.

EXAMPLE. Suppose K = Q(i), then O = Z[i] and 2 - Z[i] = (1 + i)? so 2 ramified.

If p =1 (mod 4) then pZ[i] = P, P, with P; # P, maximal ideals, so p is completely split [and
also unramified].

If p =3 (mod 4) then pZ[i] is a maximal ideal, therefore p is inert.

Fundamental Questions: Given K, how can we characterize

Splx = {p € Z~¢ is prime | p is totally split in K} ?
In Q(i) we have a rule: p =1 (mod 4) if and only if p is totally split. For quadratic extensions we
have similar rules. More generally, if the Galois closure of K over Q has an abelian Galois group
over QQ, then Sply can be described using congruence conditions.
If the Galois group of (the normal closure of) K over Q is not abelian, one can sometimes use
modular forms or Maass forms to describe Sply. In general, the Langlands Program predicts that
one can use automorphic representations to describe Sply-.

Thursday, 9/12/2024
Recall that,

Spl = {p € Z<o | p is totally split in K}

EXAMPLE. Splg,/=3) = {p prime [p=1 (mod 3)}
SplQ(\s/i) = {pprime |3z, y EZxZ:p=1x>+27Ty?}

We can write:

pOx = P -« Pir with pairwise distinct P; € Max(Og),e; >0 (%)

T

Question: How does one find a decomposition (x)?

DEFINITION (Conductor). Let § € O = O such that K = Q(6).Then,

C={aec0|a0O CZf}
C is called the conductor of Z[f)].
This is an ideal in O.
Note: 1.10 implies, d(1,60,--- ,0"1)- O CZ+Z0 + --- + Z0" ! = Z[f] where n = [K : Q]. Thus,
d(1,0,---,0" Y eC = C#0
Note: @ € Max(Z[0]) so that @ is not invertible in Z[f] <= C C Q. C is the largest ideal of O
such that: if @ € Max(Z[6]) is not invertible in Z[f] < C C Q.

DEFINITION (Norm of an Ideal). If I € Id*(O) then N(I) = [O : I] is called the norm of I [finite
by 1.12].
LEMMA 2.8. For I,J € Id*(0), N(I-J) = N(I)N(J).

ProOF. Write I = Py --- P by 2.4. By 2.5, O/I 2 [[\_, O/Pf" = N(I) =[[;_, N(P{").
So, the norm is multiplicative in distinct prime factors.

It suffices to show that for non-zero prime ideals P, we have N (P¢) = N(P)®.
We consider the following filtration of P¢:

pPecpPlcp2c...cPCcO

e—1
— Jo/P| = [T 1P/P
i=0
With P% = O.
Claim: Since O/P is a vector space, P'/P"t! is a vector space. Then, dimp,p P*/P"*! =1
Proof of Claim: Homework 4.
From the claims, we deduce that N(P¢) = N(P)e. O
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THEOREM 2.9 (Dedekind). Let 8 € Ok be such that K = Q(0) and pg(x) € Z[x] be the minimal
polynomial of 6 over Q.

Let p be a prime such that p- O 4+ C = O where C is the conductor of Z[6#]. [p is relatively prime
to the conductor. This is always true for Z[#] = O] [This condition only excludes at most finitely
many primes.

Let ¢ mod p € Z[z]/pZlx] = Fp(z). Since F,[z] is a UFD, we can write,

AR

where fiq,- - - , &, are pairwise distinct monic irreduible polynomials over F,[x].
Let p;(x) € Z]x] be any polynomial such that p; mod p =,

Then, P; = (p, 1i(0)) € Max(O) for 1 <i <r and pO = P --. Pér

Note that, pO + C' = O implies Z[0]/pZ[0] = O/pO.

Proor. Claim: pZ+ (CNZ)=7Z
Proof of Claim: If not, since pZ is a maximal ideal, we have CNZ C pZ. Also, C NZ is non-empty
since the discriminant is in it.
Therefore, Z/(C N 7Z) — 7 /pZ [surjectve]
Thus, p | N(ZNC)=[Z:CNZ).
On the other hand, Z/(ZNC) — O/C.
Therefore, p | [O : C] = N(C).
Write C' = Q{l -~ Qfs prime factorization.
28 = N(C) =[], N(@;)h = 31<j<s:P|NQ) =0/Q,l
Therefore, p = char(0/Q;) = p-lojo, =0 = p € Q.
But then, since C C @, p- O+ C Cp-O+ Q; C Q;, which is a contradiction. This proves the
claim.
Therefore, pZ + (ZN C) = Z.
Recall that C ={a € O |a-O C Z[A]} C Z[4].

= O0=pO0+CCpO+7Z[A] CO
= O =pO + Z[d)
= Z[0]/pZ[f] — O/pO is a surjection (1). Furthermore,
ZI]NpO = (2i6) NpO)pZ+ (ZNC)) < pZI6) + pO(ZN C) € pZif] +pO - C  pf
Upshot: Z[0]/pZ[0] = O/pO is an isomorphism. (2)
This gives us an isomorphism of rings:

Fpz]/(a(z)) = Z[0]/pZ]0] = O/pO
First isomorphism is given by f(z) + (z(x)) — f(0) + pZ[0]
Let ¢ be the map from F,[z]/(G(x)) — O/pP.
Chinese remainder theorem gives us:

Fpl2)/ (7)) = ] Fple]/ (mi(2)*)
i=1
Then, the prime ideals of O/pP are precisely o(f;(z)) = ui(0) + pO € O/pO — O.
—7,
Therefore, prime ideals of O containing O are precisely the ideals P; := (u;(6),p). Also,

e\ CRT
FE(2)™) "= (s, ol aten)

- ﬂ’Plel = (Oo/p@) — HPZEI C pO
i=1 i=1
o= [K:Q thenp = N (p0) < [T (P) = TIN(R)" = [0 s PI = pse) =
i op
OTZe @ pla;

p".
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T
Therefore, p" = [[;_, N(P{') = H Pfi = pO
i=1

O
ExAMPLE. Let K = Q(v/D) for D € 7\ {0,1}, D square-free, and D = 1 (mod 4) ﬁ Ok =
7, |:1+§/5:| .
Recall that minimal polyonomial of % is given by:

1-D
M(x)ZJ?Q—x—T

If p # 2 then p(z) (mod p) is equivalent to the factorization of 4u(z) (mod p).

du(z) =4a® —4do+(1-D)= (22— 1)* - D
Tt splits into two distinct factors of degree 1 if and only if D is a quadratic residue (mod p).
This gives us the cases:
p| D then 4> — D = y? (mod p) and therefore p ramifies in K
D is not a square (mod p) then y? — D is irreducible (mod p) and therefore p is inert in K.
D is a square (mod p) then y? — D has two distinct roots and therefore p is totally split in K.
For which primes p is D a square?
Answer: We use Quadratic Reciprocity. This gives us,

N . : Py _
SplQ(\/ﬁ) = {p prime |p4{ D and the Jacobi symbol (D) = 1}

= means “up to at most finitely many exceptions”.
If D = ¢ a prime number, then we have,

If D =[];_, ¢; we have,

-
2) — r
(D ,1;[1 (%‘)
Consequence: There exists finitely many congruence classes @y, .., as € Z/DZ such that,

pESPly < 1 <i<s:p=a; (mod D)
Tuesday, 9/17/2024
D=1 (mod 4), K = Q(v/D) implies:

Sply = {p prime | p{D and (%) = 1}.
If D =2,3 (mod 4) then there s a similar description of Sply in terms of congruences mod 4D.

COROLLARY 2.10. For a number field K there are only finitely many primes p which ramify in K.

PROOF. Suppose K = Q(60) so that § € Ok. Set C to be the conductor of Z[6)].
Note: Only finitely many primes p do not satisfy pOx + C' = Og.
If p has this property [pOx +C = Ok] then p ramifies in O if and only if the minimal polynomial
of 0: pgo(z) (mod p) has prime factors in F,(x) with multiplicity > 1 [by theorem 2.9, Dedekind-
Kummer]
<= pup(z) (mod p) has multiple roots
<= disc(ue(z) (mod p)) € F,, vanishes
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<= disc(py) is divisible by p. [since discriminant of ug is a polynomial in coefficients]
Since pyp is separable, disc(ug) # 0 and so only finitely many primes p divide disc(pg). a

Consequences of proof of 2.10: If Ok = Z[f] then the primes that ramify in K are exactly those
that divide disc(ug) = d(1,0,---,0" 1) = dg.

EXAMPLE (Splitting primes in cyclotomic fields). Suppose K = Q((,). Then, Ok = Z[(,]. [Will
be proved later].
Minimal polynomial ¢, () = ®,(z) = n’th cylotomic polynomial. Fix a prime p. Then,

p € Splg T @, (xz) (mod p) has d = ¢(n) distinct roots in F,, [HW]
—= z" — 1 has n distinct roots in F,,
n#Z2 (mod 4)

<= T, has a subgroup of order n

< n|p—1<+<= p=1 (modn)
So, we have the theorem:
If n # 2 (mod 4) then Sply, ) = {p prime |p=1 (mod n)}

COROLLARY 2.11. Let K, L be number fields which are Galois over Q and M = K.L [composite
extension, smallest subfield of algebraic extension containing both] Then,

Splys = Splg NSply,
[up to finitely many exceptions|
EXAMPLE.

Splo(va+va) = SpPlg(vz) MSPly(vs)
To find SplQ( V) and SplQ( V3) We need the Quadratic Reciprocity Law.

The Quadratic Reciprocity Law (QRL):.
DEFINITION (Legendre Symbol). Let p be an odd prime. The Legendre symbol is defined by:

(p) FX = {1,-1}

a\ |1, ifa:b2f0rsomeb€IE‘;;
p) | -1, if otherwise

)- (222

We also define for a € Z \ pZ : <

e

Euler proved that,

In particular,

a
DEFINITION (Gauss Sum). Suppose ¢, = Z () ¢y where ¢, is a primitive p’th root of unity.
p

a€Fy
This is called the Gauss Sum.

Then we have the following lemma:

LEMMA 2.12.
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PrOOF. HW 5. U
Note: |ep|c = /P [by 2.12].
THEOREM 2.13 (Quadratic Reciprocity Law / QRL). For two distinct odd primes p and [ we have:

p ! p—1 1-1
() ()

and (*71) = (~1)%".
PROOF. Set ¢ = (;, and the Gauss sum € = ¢,
For all z,y € Z[¢] we have:

2 1

Moreover, (%) =(-1)"3

(z+y) =a'+y (modIZ[())

Therefore, using the fact (5) is a homomorphism,

=X @ R0 R (F)e - (5) - G) memo o

p b p

— e (D2 (D) ()p tmoarz) @

Combining 2 and 3 we get:

N i o - I i It
(p)(p)pz( D (J(p)p (mod IZ[(])

<l> = (*1)%1%1 (‘2;) (mod IZ[¢]) 22 Statement

Cancelling,

O

COROLLARY 2.14. Let D € Z\ {0, 1} be square free and K = Q(v/D). Let dy be the discriminant
of K. Then there exists a group homomorphismism:

x: (Z/dpZ2)* — {—1,1} s.t.

Sply = {p prime | ptdx and x(p (mod dg)) =1}
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Lattices

DEFINITION. Let V' be an n-dimensional R-vector space. A subgroup I' C V is called a lattice if:

T =7Zv 4+ Zop

where (v1,-++ , vy, ) is a linearly independent set of vectors. (vq,--- ,v,,) is called a basis for T'. T
is called complete if m = dim V. The set

@:{Zmivi|‘v’1§i§m:xi€[0,l)}

i=1

is called the fundamental mesh associated to the basis (v, -+, vm)

EXAMPLE. Suppose V=C =R -1® Ri. Then, Z = Z + Z: is a lattice.

i Im

-----------------------------------------------

PROPOSITION 3.1. A subgroup I' of V' [a finite dimensional R-vector space] is a lattice <= it is
discrete [i.e. 3 open neighborhood U of Oy in V so that U NT = {0}]

PRrROOF. = : If it is a lattice, we can write I' = Zvy + - - - Zv,, where (vy,- -+ ,vy,) is part of
a basis (v1,- - ,v,) with n = dimg V. Then,

- 11
U = ZJE@’U@ | T; € <—, >}
{¢_1 2°2

is open in V and U NT = {0}. Thus, I must be discrete.

Thursday, 9/19/2024

<= Assume I is descrete.

Claim: I' is closed.

Proof of Claim: Fix a norm ||| on V. Assume I is not closed.

Then, for vg € V' \ T" we can find a sequence (7;);>1 in I' such that v; # v,4+1 and lim;_,o v; = vo.
Thus, 0 < ||vit1 — Vil| = 0 as i — occ.

Thus, in any neighborhood of 0, there are infinitely many distinct elements in I". Then I is not
discrete. This is a contradiction.

Therefore, I" is closed.

Now we resume the main proof.

Set U = Spang I' C and set m := dimg(U) Let vy, -+ , v, be a basis of U contained in T'.

®y = fundamental mesh associated to this basis.

Set FO Z:Z’U1+"'+Z’U7n S I.

Claim: [I": I'g] < oo.

Proof of Claim: Given v € T" write v = p(y) + vo(y) where vo(v) € To and u(y) € Py.

Note that u(y) € T. Hence S = {u(y) |y € T} CT' N ®y.
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As T is closed and ® is compact, I' N @ is closed in a compact set and hence compact. But it is
also discrete (as I' is discrete), so it is finite. Therefore, S must also be finite.

Thus, [T : Tg] is finite.

Now, set ¢ :== [[" : T'¢].

Then, qI' C 7. Therefore,

1 1 1
rcir=z(in)e- oz (im)
q q q

Thus, I' is contained in a finitely generated abelian group of rank m which is generated by an
R-linearly independent set of vectors. This implies that I' itself is generated by an R-linearly
independent set of vectors.
Thus I is a lattice.

|

PROPOSITION 3.2 (Complete Lattices). A lattice I' C V' is complete <= there exists a bounded
[with respect to a fixed but arbitrary norm] set M C V' so that V =, p v+ M.

ProoF. = : If I' = Zvy + - - - + Zv,, is a complete lattice where (v1,--- ,v,) is a basis of V'
then we can take for M the fundamental mesh associated to this basis.
<= Fixanorm || in V and suppose there exists a bounded set M such that V' = J, cp(y+M).
Set Vo = Spang(I'). For v € V and j € Z>( we can choose v; € I and m; € M such that:

j‘UGV:’Yj+Uj
1 1

— v==v+ -=m;
J J

o gm0

Then, Vj 3 %'Yj — v and since Vj is closed in V', v € V. Therefore, Vo = V and I' contains a basis
inV. O

Now suppose (-,-) : V x V — R is an inner product, in which case we have the associated norm:

o]l = v/{v, v)
Let €1, -+ ,&, be an ONB [orthonormal basis of (V (-, -))].
Then, we have an isometry

vi (Vi) = (R (5 )st)
where (-, )5 is the standard inner product. Then,

n n
L E xj{':j = E xjej
j=1 j=1

Then Vo, w €'V, <L('U), L(w)>st = <'U, w>
We use ¢ to transfar the Lebesgue measure on R™ to V:

VOl(J(\]/WJ) = VOlLCb(L(M))
cv
Then, the volume of the fundamental w.r.t. any orthonormal basis €1, , &, mesh is:

V01<7> (@) = VOlLeb(L(CI))) = VOlLeb ([0, 1)n) =1

More generally: if v = (vy,--- ,v,) is any basis of V' and A is the change-of-basis matrix from
€1y s Ent
aip -0 Qin n
A= — vj; = E aij€;
L2270 I Ann =1
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Then, if &, = {d"z;v; | z; € [0,1)} is the fundamental mesh associated to v we have:

‘VOI(J = |det A| ‘

Notation: If I' C V is a complete lattice with fundamental mesh @ [for some basis of I'| we set

V01<’>(F) = V01<’>((I>)
and it does not depend on the basis of I', since the transformation matrix has determinant +1.

DEFINITION (Centrally Symmetric Set, Convex Set). A subset X C V is called centrally symmetric
ifVoe X, —veX.

Tt is called convex if Vt € [0,1] and Vv, w € X, tv 4+ (1 — t)w € X. Meaning, all points in the line
between v and w are in X.

THEOREM 3.3 (Lattice Point Theorem). Let I' C (V,(-,-)) be a complete lattice and X C V
a centrally symmetric and convex measurable subset. Then if vol;y(X) > 2" vol(T') where n =
dimg (V) then,

XN (C\{0}) # 2

Meaning X must contain a non-zero lattice point.

EXAMPLE. Suppose V = R? with the standard inner product, and ' = Z @ Z. Take X =
(=1,1) x (=1,1) So vol(X) = 4. It does not contain any non-zero lattice point, but that is not a
contradiction since vol(X) is not strictly bigger than 4.

If we take any convex symmetric set even a little bit bigger, we must have one lattice point.

PROOF. Suppose 71,72 € I', 71 # 2 and (71 + %X) N (72 + %X) #* g

2 2
| S
{o} X
Now, we use contradiction. Assume that the intersection is empty. Then, for any distinct v1,v2 € T’

we must have (v1 + 1X) N (2 +1X) = 2.
Note that v + %X is measurable. All these are distinct.
Let ® be a fundamental mesh for I'. Then,

vol(®) > ) " vol ((’y + ;X> N <I>>

Then, 32,y € X such that v1 + 1z =2+ 1y = v — 72 = —y + =(—2) so we're done.
——

yel’

Note that,
1 1
(<7+2X> ﬂ@) —y= ((I>f'y)O§X
Therefore,
vol(®) > ) " vol ((<I> —y)N 1x)
- 2

~yel

Furthermore,

vol (;X> = ol ((@ —9)N ;X) < vol(®) = vol(I)

yel’

= 2% vol(X) < vol(T")

= vol(X) < 2" vol(I)
Which contradicts our assumption. So we're done.

24 Written by Thanic Nur Samin



CHAPTER 4

Geometry of Numbers

Goal: We want to find find an embedding j : K — Kg, a Q-linear map where Ky is a certain
inner product space such that VI € 1d*(Ok), j(I) is a complete lattice in Kg.

EXAMPLE. Suppose K = Q(v/—1). Then Kg = C = R & Ri, the embedding j is the obvious map
and j(Z[i]) = Z & Zi is a complete lattice.

Set ¥x = {0 : K — C| o is a field homomorphism}.

If K =Q(9) and pgo(z) =[], (z —6;) where 6; € C then the map Xx — {01, ,0,},0 — o(0)
is bijective.

We call 7 € ¥k real (respectively complex) if 7(K) C R (respectively 7(K) ¢ R).

Tuesday, 9/24/2024

T real, — TCR;
Suppose ¥ = {7 : K — C}, T complex, <= T(K)¢ZR

K =Q(0) and 0y, -- ,6,, € C are conjugates of § [=roots of minimal polynomial of 6/Q].

Xk — {61, 0.}, 7 — 7(0)
bijection

Let p1,--- ,pr : K — R real embeddings and o1,--- ,0,,01, - ,05 : K = C complex embed-
dings [(@) = o ()]
Then n=[K : Q] =r+2s
K¢ = C*¥% = set of maps Xx — C = {(2;)rexy | 2 € C}
KR:{(.Tl,"' s Lpy 21yt 3Ry B1y """ ,ZS) € K¢ |V1 <i<r:z; R V1 <j<s:2 E(C}
Ti < Teys 25 £ 2o, , 25 &> Z5;
dimg Kr =r+2s=n
Let {,) be the restriction of the standard inner product (,)x. on K¢ to Kg

<(ZT)T7 (wT)T>KC = Z ZrWr

TEX K

1] _xll_

Ty x

!

21 21 r s r s

. . / —=/ = = / /
A = g X + E [2,Z; +Z;Z;] = E Ty + E 2Re(z;2}) €R
Zs Z; =1 Jj=1 =1 J=1

Z1 z]

= =/
_ZS_ _Zs_

Define j : K — Kg,j(a) = (7(®))rexn, € Kr because 7(a) = o(a)
Define Orthonormal Basis of Kr by:

Ek:(o,"'70, R 1 , 707"'70)71Sj<r
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1
87“-0-/6:7(0)"'30307"'3 1 aov"'a(), 1 30730)71§k§5
N , ~— ~—
\/§ r r+k r+s+k
1
- (0. e g i < k<
Ertk \/ﬁ(oa 3030’ PR ,a07 507 1 307 30>71_k_5
r r+k r+s+k
Now, vol. .y (fundamental mesh associated to (e1,--- ,e,)) =1

PROPOSITION 4.1. For any ideal I € Id*(Ok) th set j(I) is a complete lattice in Kg with
vol..y (j(1)) = V/ldxk |- N(I)

PROOF. We can write I = Zoy @ - - - ® Za,, where n = [K : Q]. Consider the matrix:

A= |j(@) ja) - jam)| € My(C)
[p1(c1) p1(an)]
pr(an) pr(am)
o1(aq) o1(an)
oy(an) os(n)
51(051) El(an)
as(ay) Ts(an)
2
= det(A)” =det | (r;(e;)) | =d(ar, -, )
o
cK

Where Y = {11, -+, T}

Proposition 1.12 = d(ay, -+ ,a,) =dgN(I)? (1).

Proposition 1.9 = d(aq, - ,an) #0 = (j(a1), -+ ,j(an)) is a linearly independent set of
vectors, hence a basis.

= j(I) =Zj(a1)+ - Zj(ay,) is a complete lattice in Kg.

(4(a), 1) (4(an), 1)
(j(a1),en) (J(om), en)
B is the change-of-basis matrix from the orthonormal basis (g1, ,&p) to (j(a1), -+ ,j(an))

= voliy(j(1)) =|det B| (2) B
By the definition of (,)x, we have: BB = ({j(a;),j(a;))) = ATA (3)
Thus, we have

VIdxIN(I) £ |det Alc 2 | det Blc 2 vol (§(I))

LEMMA 4.2. The map f : Kg — R"™ given by

(T1, Xy 21, 5 25y 21,7+ 3 2s) = (X1, , @, Re(21), -+ ,Re(zs), Im(21), - -+, Im(zs))
——— ——
€R eC
Is an isometry of R-vector spaces and for any measurable X C Kr we have:

V01<,,.> (X) = 2° VOlLCb(f(X))
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PROOF. Let (g1, ,&p,) be the orthonormal basis of Ky as defined above and

(v,e1)
t: Kgp = R"(v) = :
(v, en)

£hen vol(. .y (X) = volpen(¢(X)) = volren((t 0 f1)(f(X))) — |det(co f71)| volLen (f (X))

) e, ifl1<i<wr
tof )(e) =
(o /7 )e) V2, ifr+1<i<n
This is an exercise.

Also, |det(vo f71)]| = (v2)% = 2. O

THEOREM 4.3. Let I € Id*(Ok) and let (c;)rex, be positive real numbers such that ¢ = ¢, for
all 7 € ¥ k. Suppose:

I e > (2) vidan

TEX K

Then, Ja € I\ {0} such that V7 € Zk : |7(a)|c < ¢r

PROOF. X = {(2;); € Kg | VT € Xk : |2.| < c;}
Note that 0 € X trivially. Also, if v € X then —v € X. Thus X must be centrally symmetric.
Also, Vt € [0,1] we have: [tz + (1 — t)zL| < t|z-| + (1 — t)|2| < ¢ when |z;],]2}| < ¢r so X is
conve.
Now,

vol( (X) & 2*volep (F(X) = 2° ] (2¢,) 11 e

T real 7 complex
modulo complex conjugation

QTHWS(?) VIdgIN(I) = 2 /[dx [N (1) & 2" voly, ((I))
: ,

Lattice Point Theorem implies Jo € T\ {0} : j(«) € X. Thus it must also satisfies the inequality.
|

=25.2" . 1% HC—,—

b, assum tion
TEX K Y P

LEMMA 4.4. For all t > 0 the set Xy = {(27)r € Kr | Zrexg|z-] < t}. This set is centrally
symmetric and convex, and

T\ t"

(X0 =2"(3) 5
vo <’>( 2 4/ n!
Proor. HW5 U
The following claim is instrumental in proving the finiteness of the class number.
THEOREM 4.5. VI € Id Ok, 3 € T\ {0} such that | Ny /()| < My - N(I) where

n! (4\°
MK:(W> \/|dK|

nTL
is called the Minkowski Constant.

PROOF. Let € >0 and set t =t =n{/MgN(I)+ €

Then, applying Lemma 4.4 we see that:

volyy(X,) & on (4) %_ o (%) n L (MiN(I) + ¢)
> on ( s :; :n ( > 1) 27 vol  (j(1))

Written by Thanic Nur Samin
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Lattice Point Theorem = Ja € I\ {0} : j(«) € X; therefore Y |7(a)| < ¢
Using the AM-GM inequality,

< Tllicz

= |N(a |_H|T |<—_MKN(I)

Choose € to be small enough so that LMKN(I) €| = |MgN)]
Thus, we have |Ng /q(a)| < Mg N(I). O
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CHAPTER 5

The Class Number

Thursday, 9/26/2024

Suppose K is a number field, O = Ok and n = [K : Q]. Suppose Jk is the group of fractional
ideals.
Suppose I € Jk. Choose oo € O\ {0} such that ol C O.

DEFINITION. Norm of the fractional ideal I is given by:

Lemma 2.8 implies it is well defined.
This gives us a homomorphism Jx — Q*.

LEMMA 5.1. Va € K* : |[Ng/g(a)| = N(a - O).

PrROOF. HW 4 problem 6 for a € O \ {0}, from which the general case follows by the multi-
plicativity of the norm function. |

THEOREM 5.2. Let Mk be the Minkowski constant. Then any class I - Pk [Pk is the subgroup of
principal fractional ideals] contains an ideal I; € Id* (O) such that N(I;) < Mk.

PROOF. Let I be a fractional ideal and o € I\ {0}. Set J := aI~! where I"' = { € K |
g-1cO}.
Theorem 4.5 implies 35 € J \ {0} such that [N(8)| < MgN(J) (1).
Now set I} :=8J 1 =Ba~T €I Pgk.

Then, N(I;) = N(83- ON(J) 2 [Nieyo(BIN() " £ My, O

THEOREM 5.3 (Definition and Finiteness of the Class Number). The idea class group Clg =
Jk /Px is finite. Its cardinality hx = | Clk | is called the class number of K.

PROOF. Theorem 5.2 = it suffices to show [{I € Id*(O) | N(I) < Mk}| < oco.
Write I € 1d*(0) as I = P{t-.-Per 28 N(I) = N(P)e --- N(P,)e = ¢{ - q° where ¢; =

N(FP) = plf for some prime p; € Z.
Therefore, it suffices to show that [{P € Max(O) | p | N(P)}| < oo for any given prime p.

Note that, p | N(P) <= char(O/P)=p < pe P — p'OCPH<W:4>P2Pis one of the

prime ideals of O in the factorization of pQO.

This prives that |[{P € Max(O) |p | N(P)}| < o0 O
Remarks:
1) Proof of 5.3 shows that for any z > 0: nx(x) = {P € Max(O) | N(P) < z}| is well
defined.
The Prime Number Theorem for K says that:
x
(@) ~ log x
In other words:
Tk (T) _

r00 T /logx
This was proved first by Hadamard, De la Vallée-Poisson
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2) For imaginary quadratic number fields K = Q(v/—D), D > 0 square-free it is known that
the only such K for which hx = 1 are given by: D = 1,2,3,7,11,19,43,67,163. This
was proved by A. Baker, H. Stark (1969), Heegner (1950s).

COROLLARY 5.4. Clk is generated by the classes P - Px with prime ideals P € Max(Q) such that
N(P) < Mkg.

Proor. Let C; = I1Pk,---C, = I)Pk be the elements of Clx,h = hx with ideals I; €
Id*(O) such that N(I;) < Mk by 5.2. Suppose, for each j,
I, = P;J'IJ . P;':j;j where each Pjj, is a prime ideal.
— N(Pj’k) < MK
In the subgroup of Clx generated by all the classes of Pj,1 < j < h,1 < k < r; we have the

classes of Iy, --- , I,. Hence that subgroup is the whole group.
|

EXAMPLE. K = Q(y/—17) TIELLped ) 68— My = Z (2) ]dk| = 268 <6

SO, MK < 5.

Note that O = Z[f] where § = /=17 so u(z) = 22 + 17.

By corollary 5.3 we need to check the prime factorization of p - O with p < 5. So we need to
check 2,3,5

p mod 2 = (z—1)2 24 2.0k = (2,v/=17-1)2. Writingw = /—17—1 we see that 2-Ox = (2,w)?
where (2,w) is a prime.

pmod3=a2-1=(z+1)(z—1) 22 3.0k = (3, V=17 - 1)3,vV=17+1) = (3,w)(3,m).

i mod 5 = 22 4 2 and since —2 is not a quadratic residue we see that 5 - O is a prime ideal.
Note: There does not exist P € Max(Ok) so that N(P) = 4 since that would imply 2 € P —>
P =(2,w) and N((2,w)) =2.

It follows that Clg is generated by (2,w) and (3,w):

Clg = ((2,w), (3,w))
Claim: (2,w)(3,w)? = (w)
Proof of Claim is in HW 6.
Note: (2,w) is not principal = ord( [2,w] )=2.

class in Clg

Claim implies ord([3,w]) = 4 since [2,w] 4 2[3,w] = Oc1, . Therefore,

Cly = 7/4Z
a-[3w] ¥ a+4z

30 Written by Thanic Nur Samin



CHAPTER 6

Dirichlet’s Theorem on Units

We have:

Jji K — KRvj(a) = (T(a))TEEK = (p1(0£),~~ 7pr(01),0'1(04),~~' ,O’S(Oé),ﬁl(a),'-' aEs(O‘))

real embeddings

K]g = {(ZT)TEEK7Z?=Z | VT € EK L Zr ;é O}

It is a multiplicative group w.r.t. componentwise multiplication.
Define I : K — R""* so that:

g((l’l,"' s Lpy 21y 0" 7Z85217"' 7}8)) = (10g|$1|, alog‘xT|’210g|Z1|7'” 7210g|25|)

Suppose Tr : R™"* — R given by Tr(x1, -+ &, Y1, -+ 5 Ys) = iy Ti + Dy Yj-
Set X :==1loj|gx : K* — Ky - R"*$ is a group homomorphism.
j

€€ O;; = |NK/Q(8)‘ =1 = H‘r real |T(E)| ]._[{T complex} /(conjugation) |T(€)|2 =1
= Tr(A(e)) = Tr(4(j(e))) = 0.

apply log

Thus, A(e) € ker(Tr) = H which is the trace zero hyperplane. dimg(H) =7+ s — 1.

Set I' = A\(Of) C H. This is a complete lattice in H, which we will prove later.

Denote by g the group of roots of unity in K. ug is finite.

THEOREM 6.1. We have the following exact sequence:

1o pux = 0L 3T 50

Tuesday, 10/1/2024

PROOF. (€ g, (" =1 = |7(Q)|" =1 = |7({)|=1 = A([)=0.
Conversely: set U = ker(A |le{)
eelU = Vr €3k :|r(e)|=1— 3 compact C C Kg such that j(U) C C N j(Ok).

J(O)k is a lattice in Kg = |CNj(KRr)| < oo = [j(U)| < = Ul <00 = U C pk.
J injective
(|

LEMMA 6.2. For all a € Zx¢ the set {a € Ok | Nk g(a) = +a}/Of is finite.

PrOOF. If a = 0 then a =0, if a = 1 then « is a unit. These cases are trivial.
Claim: VY € Ok: {a € f+aOk | N(a) = £a}/ ~| <1 where a ~ o/ <= a€d -Of.
Proof: Suppose N(a) = +a and o = S + av is another such element (N(a') = +a) for some
v € Ok. Write a = 8+ ay. Then,

a Btay _Btay +aly—7) a
PV o =1+ (=7
Since K 5 & = iN((ff,) =+ [l € Sx7(a') = £[ren, 7(a) € Ok

Thus, = € Ok.

Similarly, % € Og.

Therefore, & € Oy. This finishes the claim.
Note:
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{a € Ok | N(a) = :ta}/@;(( — (OK/CLOK)/OIX(
a-0x +— (a+aOk)- O
Claim = the image is finite.
O

THEOREM 6.3. The group I' = A\(Oj) is a complete lattice in H = ker(Tr) [the trace zero hyper-
plane].

PROOF. Step 1: We want to show that I" is a discrete subgroup of H.
For ¢ > 0, set Q == [—c,c]" ™% C R™* “hypercube”. It suffices to show that |I' N Q| < co.

Note: I71(Q) = {(ZT)T € Ky | eJe*C§|zT\gec for xeal 7 } is a compact subset of K.

2 S‘ZT|S€7% for complex T

Thus, |I71(Q) Nj(Ok)| < oo since j(Ok) is a lattice in Kg.

= [I7HQ)Nj(Of)| < o0

= |@NT|=[e(~(Q) Nj(OK))] < o0

Since () = (I o j)(e).

= T is a discrete subgroup of R"*¢ and also of H 2L T'is a lattice in H.

Step 2: We want to show that I" is complete.

Proposition 3.2 = it suffices to show that 3 bounded subset M C H : H = J, .p v+ M.

Put S = {(z;), € K§ | [], |z-| =1} = {7'(H) [the norm-1 hypersurface].

We will construct T C S such that £(T") is bounded in H and | S = U j(e)T (1) |and then take
€Oy

M =(T).
V7 € Xk choose ¢; € Ry such that ¢z = ¢, and C =[] ¢, > (%)S V0dk|.
Consider X = {(2:)r € Kg | V7 : |2-|c < ¢r} C Kg.

Fory=(y:)r € S = yX ={(z;): | V7 : |27| < ¢;v} where .

Write z, = y-w,.

We have ¢, and [[_c. =1L |y-|I], ¢ = C as before.

Theorem 4.3 = Ja € Ox \ {0} : V7 : |7(a)| < (= j(a) e yX) (2).

Lemma 6.2 = Jai, - ,qm € Ok \ {0} such that V8 € Og : 0 < |[N(f)| £ C = fis
associated to one of ay, -+, .

Claim: T := SN (UL, j(ei) ' X) satisfies (1).

Proof of Claim: X is bounded in K = J;~, j(e;) "' X is bonded in Kg = 3§ > 0 such that

SN Jie) ' X C{(zr)r € K [Vr: 6 < |2 < 67"}
i=1

We get the lower bound since []|z;| =1 on S.

i=1
Let y € S be arbitrary. Then, by (2), Ja € O \ {0} so that j(a) € yX = y € j(a) 1 X.
Moreover, |N(@)] = I1, [r(a)| < T, ¢ = [[ Iy L, r = C

=1
— 1 < i< msuch that « = eq; forsomeae(’)lx(
Hence, y € SNjla™ )X = Snjle) jla) ' X = j(e)! (j(e)SNjlas) ' X) = j(e1)(SN
J(e) ' X) Cj(e™) - (SNUL, jlai) 1 X)
If we define T':= SN J;~, j(a;) "' X, then

=/ <S N Uj(ai)_1X> is bounded in H

S=J ier
66(9;2

This implies (1).
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O

THEOREM 6.4 (Dirichlet’s Theorem on Units). O is the direct product of ux (= group of roots
of unity in K) and a free abelian group of rank r + s — 1. Meaning, O = ug x Z" 571,
In other words, O /K = gr+s—1

PROOF. 6.1 = 1 — pux — O — T =XOf) — 0 is exact.
6.2 = I is a complete lattice in H 2 R"t71 — T x> 7zr+s-1
Hence the sequence above splits and O = g x I O

Note: There’s no canonical way to express Ojc as the direct product.

Remark: Equip R""* with the standard inner product (-, -) and let (-, ) g be the restriction of (-, -)
to H.

Then, (H, (-,-)g) is an inner product space. Hence, the concept of volume is available!

Natural Question: What is the volume vol,. .y, (I')? Recall that I' = A\(Ox)*.

Thursday, 10/3/2024
Recall that O = g x (free abelian group of rank r + s — 1).

>\|o;< PO —— K —— R (s )st

U

H (g, dm=r+s—1
At 1
— I IO VIS _ . : t+1 _
ti=r+s—1and \ = LID | A = : beabasmofH,son:l)\i,j—O
AL+l A\
41
1
Set Ag = —A= |:| e R+ — R™5 = HER) and |\ = 1
et do= g |1 € = H ®R)o and || Ao]| = 1.
1

Set ® = {22:1 TiN\i | x; € [0,1)} is a fundamental mesh in the lattice Zle ZX; and ®g =

{ZE:O x| x; € [0, 1)} is a fundamental mesh for >'_ Z\;
Thus, voly,, (®) = vol_, (Po) [exercise].

D T VT
Ch3 = vol, , = |det : :

A0ji41 T Abitl
THEOREM 6.5 (Definition). Put ¢ = r + s — 1 and let &1,--- ,&;, € OF be such that O =
pr X (€1, ,&¢). Then, every ¢ € O can be written uniquely as:

cm Gy

with unique ¢ € px and unique (ag,--- ,a;) € Z*.
Set )\i:/\(&)EH. Then, V01<7>H( H ):\/t—|—1~RK
=A(0%)

where Ry is the abslute value of any ¢ x ¢t minor of the matrix:

ALl o Asa : :
: = A - N ()
A1 0 Anttl :
R is called the regulator of K and (eq,--- ,&;) is called the fundamental system of units of Oj;.
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: : 1
PrROOF. Put A= |Xyg -+ N\ ,)\0:\/;71 i]. Fix1<¢<t+1 and add all rows of A to
. ) 1
the i’th row. We get:
[ \/151T1 A1 o A |
Vil 0 - 0
i ﬁ A4l e )\t,t+1_

t X t -minor obtained by
removing the ith row from (x)

— |det(A)| = Vi+1
=t + 1Rg.

Examples:

1) Rg:r=1,s=0,t =0,Z* = {£1} = Rg =1.

2) K =Q(v/—-D),D > 0square free = r=0,s=1 = t=0 = Rg = 1.

3) K = Q(vVD),D > 1 square free = r = 2,5 = 0,t = L,ux = {1} = OF =

{£1} x (¢) with some ¢ € O} of infinite order. We have N(g) = eo(e) = 1.
WLOG, we take € > 1. This specifies € uniquely!
log [¢|

log |0(€)]
The smallest unit ¢ € Oy which is > 1 is called the fundamental unit of K.

= Rk = ’1 x 1-minor of [ = log(e)

D] 2 | 3 | 5 7| 1w | B | 1|
e [14+v2]2+vB| 258 [ 8+3v7 | 104+3VIT | 14+ 155 |44 V5 |

TABLE 1. Fundamental Units of Quadratic Fields

A general result is the following: if D # 1 (mod 4) and vD = [ag; @1, a]

1 1
=aqag + and if the reduced fraction f]i =aqag +

a1 + a1 +

1 aj-1

1
(11+7

ap +

then the fundamental unit of Q(v/D) is p + ¢v/D. See [Borerich-Shafarevich, Ch2, sec 7, Problem
5].
A general result of Hecke states:

2" (2m)*
ress—1 Cx ($) = (27) hxRj (class number formula)

- |MK\\/\dK|

This formula assembles all invariants of K we have considered so far:

Number of real embeddings
Number of complex embeddings
Number of roots of unity

The discriminant
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e The class number
e The regulator
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CHAPTER 7

Extensions of Dedekind Domains

The most fundmanetal case is something we have done: Z C Og. We generalize the concept.

THEOREM 7.1. Let Ok be a Dedekind domain with K = Frac(O). Let L/K be a finite extension,
and deinfe Op, to be the integral closure of Ok in L.

Then, Oy, is a Dedekind domain and Frac(Op) = L.

Moreover, If L/K is separable, Oy, is finitely generated as Og-module.

Note: If L/K is not separable, O might not be a finitely generated Og-modle. An example of
this kind has been given by Emil Artin in “Questions de base minimale dans la theorie des nombres
algebriques”, Colloque internationale du CNRS (Paris, 1950), 19-20. Independently, Oscar Zariski
has also found such examples.

PROOF. We only prove it here under the assumption that L/K is separable.
Proposition 1.4 = O, is integrally closed.
To see that Frac(Or) = L, since L/K is a finite extension, we write it as a linear combination. By
multiplying by an appropriate integral number a, we can make sure every coefficient is integral.

af™ 4+ aa B+ +aa, =0

— (aB)" +aai(aB)"t +---+a"a, =0

b
— af €0 = B:a,bGOL,aGOK.

Let 0 # Q C Op bea prime ideal. Suppose a € Q \ {0} and Ja;,---,a, € Ok such that
a +a "+ -a, =0(1).
WLOG we may assume a,, 20 = a, € QN Ok = P\ {0} and P is a prime ideal in Og. Ok
is a Dedekind domain, thus P € Max(Ok).

Consider O /P —  OL/Q

~—— —
field integral domain
Since Oy, is integral over Ok, it follows that O /Q is integral over Ok /P by taking modulo on
equation (1).
= VB € 0,/Q : (Ox/P)[F] is a finite dimensonal vector space over the field Ok /P. Since
(Ok/P)[B] € OL/Q, an integral domain, multiplication is injective and thus bijective. Thus
(Ok /P)[5] must be a field. This implies that Or/Q is a field.
Thus, Q € Max(L).
It shows that all nonzero prime ideals are maximal. Now we need to show that Op is noetherian.
We use the separable condition here.
L/K separable L4 d(ay, - ,ap) # 0 for any basis (a1, ,a,) of L/K.
Let (g, -+, ) be such a basis with elements «; € Op.
Lemma 1.10 = d(a1,--- ,ap) -0 C Ogay + -+ Okay,
#£0

= O, C (f.g. Og-module). Since O is noetherian, Oy, is finitely generated as Ox-module.
= Oy is finitely generated as Og-algebra. Thus, Of, is noetherian. |

LEMMA 7.2. VP € Max(Ok) we have:
i) P-0Op COr.
11) P-O,NOg =P.
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PROOF. i) Theorem 2.4 = P # P? = 3r € P\ P?2. Wewritem-Oxg = P-1 =
ICP = P+I=0kgwithb+s=1withbe P,sel.
Then, s ¢ P and sP C IP = n0k.
— 5O = S(POL) = (SP)OL c n0rp.
— dz e OrNK=0g;s=1mx — se€n0Okg CP.
This is a contradiction. So, POy, = Of, condition cannot be true. Hence, PO, C Op.

Tuesday, 10/8/2024

ii) We have P C P- O, N Ok.
If PC P -OgN0Ok then PO, NOk = (1) = 1€ POy, which contradicts i.
O

In the following, consider P € Max(Ok) and write PO = Q' --- Q¢ with pairwise distinct
Q; € Max(Or) and e; > 0. Define:

e; =: ramification index of @); over P

fi =[0L/Q; : Ok /P](< ocby 7.1) =: residue class degree

THEOREM 7.3. If L/K is separable then the fundamental equation holds:

Zeifi =N = [L : K]
i=1
PROOF. Chinese Remainder Theorem implies O /POy, = [[;_, O/QF". Consider the field
It suffices to show that dimg (Or/POr) =n and V1 <14 <r:dimg(Or/Q5") = e; fi.
Consider wy, -+ ,w, € Of such that wy = PO, - @y, = wn, + PO, € O /POy, are a k-basis
of OL/POL

Suppose (w1, - ,wpm,) was K-linearly dependent. Then, Jaq,--- ,a,, € K not all zero such that

iaiwi =0 (1)
i=1

Consider the nonzero fractional ideal I =", Ok -a; C K.
97 = 3ae I '\I"'.P = al ¢ P — 3i:aq; ¢ P(2).
Since a € I Y, a; € I,aa; € Ok.

m

1) = aa;) w; =0
(1) ;( )
€0k €0

Thus, in Or/POk:

m

ZTai w; =00,/p0,
=1 basis

Therefore, aa; = 0 = aa; € P which is a contradiction to (2).
Now consider M := Ogw; + -+ + Ogwy, € Op and set N == O /M.

W1, W, generate O /POp as a k-vector space. Consider arbitrary 8 € Op, then there is
m

B =+ PO, = Z;’;la@i where a; € Ok,a; = a; + P. Then g — Zaiwi +PO;, = OOL/POL'

i=1
——
eM

Thus,
O, =M+ POy,
Apply Nakayama’s Lemma:
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= PN = (POp+ M)/M =0,/M =N
Also, M =Y | Okw; therefore m < dimg (KM) < m.
Let aq,- -+, as be generators of N as Ox-module.

PN=N = ai:Zaijaj (3)
j=1

Set A = IS - (aij)lgings. Then,

Qi 0

Let B = A2 be the adjugate matrix of A. Multiplying on both sides, we see:

851 aq 0
det(A) | 1 | =BA| : | =
Qg Qg 0
Thus, det(A)Or C M.
However, A =I; — (a;; ) so A=1I (mod P).
~

ep
Therefore, det(A) (mod P) = det(A (mod P)) = 1.

Thus det(A) # 0 in K.
Thus, KM =K -Ox =L = m=n=[L:K].
Therefore, m =n = [L : K|. Then,

T T T

[L:K]=n=m=dim(Ok/POL) = > (0L/Q5) =3 D IOL/Qic k] ei=> eifi
i=1 =1 1=1

O

THEOREM 7.4 (Dedekind). Let L/K be a finite separable extension and # € Op be such that
L =K(@0) and let C = {a € O | a- O C Og[0]} be the conductor of Okl[f]. Let p(x) =
po. i (z) € Oklx] be the minimal polynomial of 6 over K. Choose P € Max(Ok) such that
P-0Op+C =0p. Then, if

u() mod P =Ry (2)* - B (2)*
with pairwise distinct monic irreducible polynomials @, (x) € (O /P)[z] then:

P-Op=Q% ---Q
with pairwise distinct maximal ideals and:

Q=P -0Or+p1(0)-Or
where p1;(z) € Ok () is any lift of Ti;.
PROOF. Same as the proof of theorem 2.9. O

Again suppose P - Of, = Q' - - - Q¢ be the prime factorization of P - Op, for P € Max(Ok).
Q; is called:

e unramified over K if e¢; = 1 and if residue field extension O, /Q; of Ok /P is separable.

e ramified otherwise.

e purely ramified if e; > 1 and [O,/Q; : O /P = f; = 1.
P is called unramified in L if all @); are unramified. L/K is called unramified if all P € Max(Ok)
are unramified in L.

THEOREM 7.5. Let L/K be finite separable. Then there are only at most finitely many P €
Max(Og) which ramify in L.
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SKETCH. Suppose 6 € Op is a primitive element, then C = conductor of Ok[0]. The discrim-
inant argument implies this is a non-zero ideal, thus it can be written as a product of prime ideals.
Therefore, it is contained in only finitely many maximal ideals @ € Max(Oy,).

There are only finitely many maximal ideals in O that is contained in some (). Eliminating these,
we reduce to the ideals P € Max(Of) such that P- O + C = Oy,

Whether they ramify or not is then determined by theorem 7.4. That is dependant on the
discriminant of the minimal polynomial vanishing. So we eliminate P € Max(O) such that
disc(po,x () € P. O
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CHAPTER 8

Ramification Theory

In this chapter, Ok is a dedekind domain, K = Frac(Ok) and L/K is a finite Galois (thus
separable) extension and Ok = integral closure of Ok in L.
Let G = Gal(L|K). Then,
1) G actson Oy,. If 8 € Of, then f is a root of some monic polynomial, and o(8)must be a
root of the same polynomial!
2) I Q € Max(Op) then Vo € G : 0(Q) € Max(Or). It is an ideal by checking the definition,
and it is maximal since Or/Q é) Or/o(Q).

a

o(a)

fP=QN0x = U(Q)QOK:U(QQOK):U(P):P.
Thus, G acts on the sets of @ € Max(Or) which lie over P € Max(O). These are exactly the
maximal ideals in the prime factorization of P - Oy,.

Thursday, 10/10/2024
If P € Max(Oxk), then we set
Max(Op, | P) ={Q € Max(Or) | QN Ok = P}

Q € Max(OL|P) is said to “lie over” (or divide) P: @ | P.
G acts on Max(Op, | P): Q € Max(Op, | P) = 0(Q)NOx =QN0Ok = P.

THEOREM 8.1. G acts transitively on Max(Or, | P).
PROOF. Suppose Q' € Max(Or | P)\ G - Q for some Q € Max(Oy | P).
Chinese Remainder Theorem = Iz € O : (x =0 (mod Q') and Vo € G: z =1 (mod o(Q))).

= Npyk(r) = Ho(z):xHa(x)GQ'Q(KQOL):Q’QOK:P(D

ceG o’i%
Thus, Vo €e G2 ¢ 07 1(Q) = o(2) ¢ Q = Npx(x) ¢ Q. This contradicts (1) since P C Q.

O

DEFINITION. Given @ € Max(Op,) we call

Go={0eGla(@)=Q}
the decomposition group of @. The fixed field

Zog=Lf ={recL|Gg z=u1}
is called the decomposition field of Q.
Z comes from the German word ‘Zerlegung’ roughly meaning decomposition.

Note: Gal(L/ZQ) = GQ.
Remark:
1) The groups Gq for Q € Max(Oy, | P) are all conjugate in G.
2) VQ € Max(Oy, | P),[G : Gg] = |Max(Or, | P)| = r if P = Q7' --- Q¢ with pairwise
distinct Q; € Max(Op).
3) Go ={1} < |G| =|Max(O | P)| = e1=-=e=1=fi=--=
=[L:K] fundamental eqn
fr <= P is totally split.
4) Go =G < |Max(Or | P)|=1.
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PROPOSITION 8.2. If P € Max(Ok) and POy, = Q5" - -- Q¢ with pairwise distinct Q; € Max(Op,),
thene; =---=e,and fi =--- = f,.

Proor.
= POL=Q7" - Qr =0(POr) =Qj'0(Q2)" -+ 0(Qr)"
This happens since 0(Q°¢) = o(Q)°.
This implies that e; = e;.
Moreover, Or,/Q1 = Or/o(Q1) = Or/Q; is an isomorphism of O /P vector spaces.

= f1=[0L/Q1:0k/P]=[0L/Qi: Ok/P|=f;
O

PROPOSITION 8.3. Let @Q € Max(Op) and Z = Zg = LEe. Set Qz = Q N Oy where Oy is the
integral closure of Ok in Z and P = Q N Ok. Then,
i) @ is the only prime ideal lying over Q.
i) QzO0r = Q° where e = eg x = ramification index of @ over K and fg z = [Or/Q :
0z/Qz] = fo.x(=[0L/Q : Ok /P])
i) fo,x=1=eq, K.

0 L
eQ.x |1
Qr T
e 1| fo,Kx f
QZ Za
1‘1
P K
PROOF. i) Galois theory: Gal(L/Z) = Gg.

Theorem 8.1 = Gg acts transitively on Max(Op, | Qz)(3 Q) = Max(Oy, |
Qz) = Gq - Q ={Q}, hence (i).
ii) By the fundamental equation 7.3: [L: Kleq i - fo,x [G - Gg]
= [L: K] =|G| =[G:Gq]|Gg| =[G : Gg][L : Z].
- [L : Z] = eQ’KfQ’K.
Further: P- 0Oy = SZQZ’K ()

— PO; = (PO,)-O; = O7)Rz K () = €Q,2)\€Qz . K
L=(P0Oz)-0L=(Qz-0Or) ( )(i)(Q ) (oo

Q does not

appear here

)

= eqk = €Q,z6Q, K (2)
Also:

fox =[01/Q: Ok /Pl =[0L/Q:0z/Qz][0z2/Qz : Ok /P| = fq.zfq,.x (3)

Now:

i ©)
6Q,ZfQ,Z%[L : Z] o Q. fQ.K 50Q.2¢Q2 kK fQ.2fqz K

= 1= eQZ¢KfQZ7K
Qz0L=Q° = eg,k=1=fq, K

Thus proving (ii) and (iii).
O
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> C

THEOREM 8.4. 1) The residue field extension O,/Q/Ok /P is normal.
2) The homomorphism:

Gq — Aw(0L/Q|Ok/P)
o = 0

with 7(a + Q) = o(a) + Q is surjective.
PROOF. 1) Proposition 8.3 = k = k(P) = Og/P = 03/Qz (fo,.x = 1). WLOG
we may assume that K = Z and G = Gg
Let 0 = 0+ Q € k(Q) = O1/Q be any element, let u(x) = pg () be the minimal
polynomial of § over K. Set fi(z) = pu(z) mod P.
Let yiz(x) € k[z] be the minimal polynomial of 6 over k

AB) =0 — 1z |7
L/K is Galois, so pt = g decomposes into linear polynomials in Oy [z].
= T decomposes into monic linear polynomials in k(Q)[z]
= gy decomposes into monic linear polynomials in k(Q)[x]
= all roots of iz are in k(Q) = k(Q) is normal over k.
2) Now let 0 be a primitive element for the maximal seperable subextension k(Q)sep over k.

Thus, k(Q)sep = k(6)
Given T € Aut(k(Q) | k) = Gal(k(9) | k) = 7(0) is a root of uz(z) € k[z].
py | e = Ja € Op: (nola) =0and @ = a+ Q = 7(0)).
e is irreducible, thus 3o € G : 0(6) = .

Then, 5(9) = 7'(9) — O =T
O

DEFINITION. I = ker(Gg — Aut(k(9) | k(P))) is called the intertia group of (or at) @ and

Tg = L@ is called the intertia field of (or at) Q.
In other words: Ig = {0 € Gg | Yoo € Op,0() = o (mod Q)}.

We have a tower of fields:

L Q

T |Ge Qr
GQ/IQ<

Z Qz

K P

Gq/lg = Aut(k(Q)/k(P))
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Tuesday, 10/15,/2024

Suppose Q | P.

G¢ = decomposition group = {o € G | 0(Q) = Q} = Stab(Q).
G = Aut(k(Q)/k(P))

I = ker(Gg — Aut(k(Q)/k(P))), Tg = L'e D LCe = Z,

1o = inertial subgroup at @

Tq = inertia field

Zg = decomposotion field

Gal(L/Zg) =

1—Ig— Gg — Aut(k(Q)/k(P)) — 1
Go

Gal(L/TQ) = IQ
Gal(Tq/Zq) = Gg/lq

THEOREM &.5. i) The extention T /Zg is Galois.

Gal(To/Zq) = Go/lqg = Aut(k(Q)/k(P)).

ii) If the extention k(Q)/k(P) is separable, then:
a) fox =[Gq: gl = [To : Z]
b) eq.x =|lg| = [L: Tq)

We have for the prime ideal Q7 = Or N Q:

c) eqr =eqk and for1, =1
d) eqrx =1and fo, k = fo k(= for.z)

Note; fo.x = fo,r - for,z - fo, k-
Since [k(Q) : k[P]] = [k(Q) : K(QD)][k(Q7) : K(Q2)|[k(Qz) : k(P)].
for.x = for.zfq,.x, @k = P.

PROOF.

i) we already have this.

ii) Set k = k(P),T = To, Z = Zg. Then fo.x = [k(Q) : k] = | Gal(k(Q) | k)| = [Gq : Io] =

[T:

Z] which proves part a.

8.3 7.3
Moreover, o x fo.x = eozfor S [L:2)=[L:TIT:2) Y [L: T)fox (1)

= eg,x = |[L:T]=|Ig|, hence (b) is proved.
Consider L/T and note: Qz C Qr C Q = Max(Or | Qr) = {Q}.
Again, —2% [L:T)=eqrfor (2).

I = Gal(L | T) = Gal(L | T)g ™ Aut(k(Q) | k(@r)) =  Gal(k(Q) | K(Qr))

assumption

acts trivially on k(Q) over k(Qr).

Ig = Gal(L|T) = Gal(L | T)q —3*—— Aut(k(Q) | H(Qr)) = Gal(k(Q) | K(Qr))
Gal(L | Z) = Go — Aut(k(Q)| K)
CGal(L|K)

Then, k(Q) = K(Qr).
= for=1 2 e r = [L:T] = eq k. hence c is proved.

Proof of 8.3 = eg,x = egreqr,x and fo x = forfor k. Since for = 1 we have fg x =
for, K, and since eg x = eg,r we have eg, g = 1.

]
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CHAPTER 9

Absolute Values on Fields

Reference: Lorenz, Algebra II, sec. 23 [TUCAT].
Notation: In this chapter, K, L, M will always denote fields.

DEFINITION. A map |-|: K — Rx¢ is called an absolute value if:
1) |z|=0 <= z=0
2) Va,y € K oyl = |z[ - [y
3) Vz,y € K : |z +y| < |z| + |y| [triangle inequality].

The set |[K*| = {n|z| | x € K*} is called the value group of | - |.

Remark: [1x| =1 and |27} = |z|7}
Example:
1) Let K = Q, then |a + ib|oo = |a + ib|c = Va? + b? is an absolute value.
We also write |- | = |- |°°|R and |- |00 = |- |Oo|@.

2) Let K be any field, then:

0, ifx=0;
|x_{1, if 2 # 0.

is an absolute value on K called the trivial absolute value.
3) if | - | is an absolute value and p € (0, 1] there we have for s,r € Ry q:

sP+rP (s p+ r p>s+r>1
(s4+7)r  \s+r s+r) T s+r s+r

= sP+1r°>(s+r)’ alsotrueifr=0o0rs=0

= fe+yl” < (Ja] + y)” < 2] + |yl?
It follows that | - |? is again an absolute value.
4) Let D > 1 be square-free integer. On K = Q(vD) the maps |a + bv/D|; = |a +
bV D|wo, |a + bV D]y i= |a — bv/D|o are absolute values.
5) Let p be a prime. Write z € Q* as x = p™§ with ged(p,a) = ged(p,b) = 1 and set
vp(x) = m and v,(0) = oco.
Exercise (HW9): Vz,y € Q : we have:
a) vp(zy) = vp(x) + vp(y)
b) vp(x,y) = min(vy(x), vp(y))
vy is called the p-adic valuation.
Then one obtains from the p-adic valuation an absolute value on Q :

Cpr it a0 .
||, = called the p-adic absolute value.

0, ifx=0.
Property (b) implies the strong triangle inequality: |z + y|, < max{|z|,,|ylp} <
|zlp + [yl

Topology. Let | - | be an absolute value on K. Then, d(z,y) := |« — y| is a metric on K and
(K, d) is a metric space.
The associated metric topology on K is the one which has the discs:
B (a,e) ={x € K| |x —a| <¢}
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as a basis of the topology, where a runs through K and € € Ry .

The maps K x K & K, K x K -+ K and K* mﬂl K> are the continuous maps under this
topology.

A sequence (z,,)n>0 in K converges to a € K if lim,,_, |z, — a| = 0.

A null sequence is a sequence which converges to Og.

DEFINITION. Two absolute values |- |1, |- |2 are said to be equivalent if every null sequence for |- |;
is a null sequence for | - |3 and vice versa.

Remark: |-|; and |- |3 are equivalent <= the topologies on K associated to |-|; and |- |2 are the
same (HW9).

Example: We give example of absolute values that are not equivalent.

Suppose p is a prime. Then, (p™),>1 is a null sequence for |- |,, but unbounded for |- |5, and thus
not a null sequene. It is not a null sequence for any other l-adic absolute value | - |; with a prime
l #p.

= the set of {| - |, | p is a prime} U {| - |} containsonly inequivalent absolute values.

LEMMA 9.1. Suppose | -|; and | - |2 are two non-trivial absolute values on K. Then TFAE:

i) |- |1 and | - |2 are equivalent.
ii) 3p € Rog such that |- | =[]
ili) Va€ K : |al; <1 < |a|2 < L.

PROOF. ii = i is clear from the zero sequence condition.
i = iil: if [a}s <1 = (a@")n>1 is a null sequence for |- |1 = (a”),>1 is a null sequence for
||z = |a"2 = 0 = Jal2 < 1 and vice versa.

Thursday, 10/17/2024
iii = ii: |- [, non-trivial = Je€ K* :|c) >1 = |c71 <1 = |ca2<1 = Tp>0:

lcla = lely
Given a € K* and write |a|; = |c[{ for some a € R. For m,n € Z,n # 0 and * > « we have:

m n
lay = le|i" <dly”

C

<l =

iii
1

an
— —_—
Cm

<1 = lalz < |elg
2

Similarly, if 7 < a we find:

lala > el5"

Choose a sequence of rational numbers “* converging to o. Then,

lalz = [e|5 = |e[p™ = laly

O

Remark: 9.1 = equivalent absolute values induce the same topology on K. The converse is also
true: if the topology defined on K by two absolute values is the same, then they’re equivalent.

DEFINITION. An absolute value |-| on K is called archimedean if {|n-1x| | n € Z>(} is unbounded.
It is called non-archimedean otherwise.

Remark: “Archimedean” means Vz € R3n € Z : n > z. We could also say |z| < |n| instead, and
this is where the concept comes from.

LEMMA 9.2. Let |- | be an absolute value on K. Then TFAE:

i) |- | is non-archimedean.

11) Vn € ZZI : |’I’L| <1.

iii) Va,b € K : |a+ b| < max(|al,|b])

iv) Vp € Ryg :|-|? is an absolute value.
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PrOOF. Ommitted. Key idea: for i = ii, in non-archimedean fields, we have:

(:)<e

for some constant C. |

THEOREM 9.3. Every non-trivial absolute value on the field of rational numbers is equivalent to
| - |p for a unique prime p, or it is equivalent to | - |5

PRrROOF. Case 1: Suppose | - | is non-archimedean. 9.2 = Vm € Z>q,|m| < 1. In fact,
VYm € Z#O, \m\ < 1.
Since | - | is non-trivial, there must exist some m € Z¢ so that |m| < 1.

= I ={meZ]||m| <1} is anon-zero ideal in Z by using 9.2.

Furthermore, I is a prime ideal: |ab| <1 = |a||b| <1 = Ja| <1 or |b] < 1.
Thus, 3 prime p such that I = (p).

Consider a € Z \ {0} and write a = p™b where p{b. Then b ¢ I and thus |b| = 1.
Therefore, |a| = |p|™ = [p[;** for some p > O[|p|, = ]

Thus [a| = |alf).
Therefore, |z| = |z|5 for all z € Q.
Case 2: | -| is archimedean. Suppose | - | is not equivalent to | - |-

Lemma 9.1 = Iz € Q: |z| < 1,|z|ew > 1.

WLOG assume x > 0. So z > 1 but |z| < 1.

Write 2 = ¢ with a, s € Z~o with ged(a,s) = 1,a > s.
Claim: Every n € Z>( can be written as:

n=cy+cx+--+ca withe; € ZN[0,a — 1]

Proof of the claim is HW.
Using this, we have:

T i oo a

ol <Y leillal’ <a- Yl <a) faf = ——
: : : 1— x|
=0 =0 1=0

This contradicts the fact that | - | is archimedean.

O
Exercise: If | - | is non-archimedean and |a| # |b| then |a + b] = max(|al, |b]).
PROPOSITION 9.4 (Valuation Ring and Valuation ideal). Let |- | be a non-archimedean absolute

value on K. Then,
i) R={a € K | |a] <1} is a subring of K called the valuation ring of | - |.
ii) K = Frac(R).
iii) P = {a € K | |a] < 1} is the unique maximal ideal of R called the valuation ideal.
iv) R* =R\ P.
v) R/P is a field called the residue field of | - | (or of K, or of R).
i)

vi) Va,be R: alb <~ |b| < lal
<= Jc€R:b=ac
PROOF. i) a,be R = |a+ b < max{|a|, |b]} <1 and |ab| = |a||b| < 1.

ii) re K\R = |9:|>1:> |z~ 1|<1:>x leR

iii) See next
iv) Note: P C R. Same argument as in the proof by 9.3: P is a prime ideal. Given
r€R\P = |z|=1 = |z7}=1 = 271€eR = 2€ R* = R*=R\Pso
P is maximal.
v) Immediate
vi) a|b = Je€ R:b=ac = |b|] = lallc] <]al.
<1

b <la] #0 = ’bygl S bER,b:(b)~aza|b
a

a a

O
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Example: For |- |, on Q we have:
i)
a a
R= {:v: Z€Q| o]y < 1} - {5 €Q|a,beZ ged(a,b) = 1,b¢pZ} = Z)
The localization of Z at (p), (Z\ (p))~'Z.
ii) P = pZ(p)
iii) Residue field Z,)/pZ,) — Z/pZ = F, where $ mod pZ) — (a mod p)(b mod p)~*.
DEFINITION. A function w: K — R U {oo} is called a valuation if it has the following properties:
i) wx)=00 <= =0
i) w(z +y) = minfw(z), wy)}
iii) w(zy) = w(z) + w(y)
w(K ™) is called the value group of w.

Valuations w and v are called equivalent if Vo € K : (w(z) >0 < v(z) > 0).
Given a valuation w we define an absolute value | - |, as follows

e @ if g £0;
|:C‘w = . A
0, if x =0;

Then | - |, is a non-archimedean absolute value on K.

This gives rise to a commutative diagram:

valuations W] non-archimedean
_—
on K abs. values on K

| |

equivalence classes equivalence classes
of valuations on K of non-arch. abs. values on K

w t |‘w

Completions. Fix an absolute value on K.

DEFINITION. A sequence (a,)n>0 in K is called a Cauchy sequence w.r.t. | - | if Ve > 03ngVn, m >

no : |an — am| < €.
We call K complete if every Cauchy sequence converges (in K) in which case we also call |- | a
complete absolute value on K.

Remark:

i) Every convergent sequence is a Cauchy sequence.
) If (an)n is Cauchy in K, then (|a,|), is a Cauchy sequence in R.
iii) If (an)n is Cauchy then it is bounded: 3C > 0Vn > 0 : |a,| < C.
) If (ay,)n is Cauchy and if a subsequence (a,, )r>o is a null sequence, then (ay), is a null
sequence.
v) The set of all Cauchy sequences:

C = {(an)n>0 | (an)n>0 is Cauchy in K w.r.t. |- |}

is a unital ring w.r.t. componentwise addition and multiplication.

vi) The set A C C of null sequences is an ideal in C.

DEFINITION. A completion of K w.r.t. |-| is a pair K", |-|" consisting of a field extension K — K"
- Tr xr

and an absolute value | - | such that:

i) Ve € K : |z|" = |z|

ii) K is dense in K".

iii) K" is complete w.r.t. | - |
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Tuesday, 10/22/2024

THEOREM 9.5. i) 3 a completion K", |-|" of (K,|-|)
ii) If (K1,|-|1) and Ko, |- |2 are completions of (K, |-|) then there is a unique isomorphism
o : K1 — Ky over K such that Vo € K : |o(2)]2 = |2|1.

ProoOF. LEt C be the set of cauchy equences in K, N' = set of null sequences in K. Set
KN =C/N.
Claim: K" is a field.
Proof of Claim:
1=(1,1,---)eC/N = N CC. Let (an)n €C/N = 36 > 03ng¥n > ng : |a,| > 9.
1, if n < ng;

Set b, =< 1 ) = VYn,m >ng: |by — bn| = lam —an| ‘a"é}aml — 0 as m,n — oo
—, ifn>ng. lanllam]

Qn
= (by) € Cand (by)n(an), — 1 €N
Therefore, (an)n, + N € (C/N)* = C/N is a field.
Define: ¢ : K — K” by u(a) = (a,---,a) + M. This is a homomorphism of fields. Given
[(an)n] = (an)n + N € K" we set:

[(an)n]|" = HILII;O |an|n (converges)

Cauchy in R

This extends the absolute value | - | in K.

Density of K in K":

Let [(an)n] € K" then the sequence (t(ay))n converges to:
~——

(0%
| — t(an)|” = lim |a, — am|x — 0
n—oo
as m — 0o.
K" is complete: Let (a,), be a Cauchy sequence in K. By density of K in K” there is for any
n > 03a, € K : |ay, — t(ay)|" < *.

n

= |an — am|Kx = [t(an) — L(am)|/\ < |u(an) — an|/\ + o = am‘A + | — L(am)|/\ —0

<1l/n —0 <1l/m
as min{m,n} — oo.
= a=|[(an),] € K"
Check: (au,)n converges to «. This shows (i). (ii) follows from the next statement.
O

PROPOSITION 9.6. Let (K1,|-|1) be a completion of K = (K,|-|) and let (K2,| - |2) be another
completely valued field.

Every homomorphism of fields 7 : K — K such that Va € K : |7(a)|2 = |a|(= |¢(a)|1) extends
uniquely to a homomorphism ¢ : K1 — K such that Va € K; : |o(a)|2 = |al1.

PROOF. Given a € K; choose a sequence (a, ), in K converging to a.
= (7(an))n is a Cauchy sequence in Ks. Since K3 is complete, lim,,_,~ 7(a,) =: o(a) exists in
K.
Check: o(a) is independent of the chosen sequence (a,, ), and o is a ring homomoprhism satisfying:

Va € K : |o(a)|2 = |als
O

EXAMPLE. 1) (Q,]-]p) =: Qp called the field of p-adic numbers. We also have an evaluation
ring: Z, = {x € Q, | x|y < 1} is the ring of p-adic integers.

EXERCISE. Z,/pZ, =T,
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2) Let k be any field. Define an evaluation w; : k(t) — ZU{oo} given by w(f) = vanishing
order at t = 0 of f(t) € k[t] = min{n > 0| f € t"k[t]}, w:(0) = oo, w; (5) = w(f) —
we(g). Let | - |; be the t-adic absolute value on k(t) associated to w.
The completion of (k(t),|-|;)" is the field of formal Laurent series k((t)) == k[[t]] [1].
LEMMA 9.7. Let K be a completion of K. Then if | - | is non-archimedean, K and K" have the
same value group.
PRrROOF. Clearly: |[K*| = |K*|" C |(K")*|".
Given a € K™* choose (ay,), in K converging to a = IngVn > ng : la — an| < |an]|.
-
40
= la|=]a—a,+ an |Hvzvgmax{|a—an|,|an|}:|an|€|KX| O
N—— ~~
small not so small
PROPOSITION 9.8. Suppose | - | is a non-archimedean absolute value on K. Then,
i) A series Y7 a, converges <= (ay), is a null sequence
ii) A power series >~ a,z™ € R[[z]] [the valuation ring] has the property that Va € Ps (=
valuation ideal) : > 7  a,a™ converges in R.
PROOF. (ii) follows from (i).
(i): If (an)n is a null sequence then,

i 2 i non-arch
Zan—Zan = Z an < max{|ay| | m2 <n <mi}
n=0 n=0 n=mo+1

for my > mo > 0. RHS — 0 as mo — oo so partial sums ZT:O a, form a Cauchy sequnce, which
converges since K is complete w.r.t. |- |. O

REMARK. i) For every a € Q, there exists a unique “power series expansion”

oo
a= E anp"
n=m

with a, € {0, -+ ,p — 1} and a,, # 0. This is called the p-adic expansion of a.
ii) a € Q < this expansion is eventually periodic.
We have the following unintuive fact:

9 1
l14+p+p “r"':ﬂ

This makes complete sense because |p|, < 1.
We also have:

pn O, w.r.t. ‘ . |p7
—
14 pn 1, wrt |-

Extension of Absolute Values. Let (K, |-|) be a (not necessarily completely) valued field.
DEFINITION. Let V' be a K-vector space. Then a map ||-|| : V' — Rxq is called a | - |-norm if:
i) [[v]]| =0 <= v=0
i) Yo € VVa € K : ||av|| = |al||v]]
iil) Yo,w € Vi |l +w| < v + ||Jw]|
Given V with a norm ||-|| we get a metric d(v,w) = ||v — w| which gives us a topological space
with open balls given by this norm.

One has concepts of Cauchy sequence, null sequence, convergence and completeness.

REMARK. 1) If dimg (V) = n(< o0) and (ey,--- ,e,) is a K-basis of V, then

n
E ;€4
i=1

= léz_agxn{|ai|} isa|-|-normon V.
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2) If E/K is a field extension and |- |g extends the absolute value | - | on K then |- |g is a
| - |-norm on K.
3) On K[z] we get a | - |-norm by:

n
Z a;z’|| = max{|a;|}
=0
Suppose |-| is non-archimedean. Then this norm is multiplicative: ||fg| = || fll|lgll- It

also satisfies the strong triangle inequality: ||f + g|| < max{]|f]],|g||} and one can extend
to K(x) = Frac(z) by
|21,
gl gl

This is called the Gauss norm on K[z] associated to | - |.

THEOREM 9.9. Let ||-||o be a | - |-norm on V" and suppose that dimg (V) < oo and K is complete
w.r.t. | -|. Then, if |-}y is another | - |-norm on V' then 30 < ¢; < ¢z such that Vv € V:

cil|vllo < [lvlly < eaffvflo-
Furthermore, V' is complete w.r.t. ||-||o and |-||1.
PROOF. Idea: use induction on dimg (V). If dimg (V) = 1 it is straightforward. Induction

step: HW.
Warning: do not assume that K is locally compact. (]

PROPOSITION 9.10. Let E be a field extension of K, and let |- |; and | - |2 be absolute values on
E extending |- | = - | k.
i) If | - | is non-trivial then |- |3 = |- |2 if | - |1 and | - |2 are equivalent.
ii) If F/K is finite and K is complete w.r.t. | -|, then |- |; = |- |2 and E is complete w.r.t.
RS

Thursday, 10/24/2024

PROOF. i) If | - |; and |- |, are equivalent then == 3p>0:|-|p=]-|f.
Assumption = Ja € KX :|a| #1 = |a|=|aja =|a]f = |a|f = p=1 =
=12
ii) We consider E as a finite dimensional K vector space. Then we can |- |; and |- |2 as
| - |-norm on E.

Theorem 9.9 implies 30 < ¢; < cVa € E :

calali < lale < calaly

Therefore, null sequence for | - |; are null seqeunces for | - |5 and vice-versa.

Therefore, | - |; and | - |2 are equivalent as absolute values.

If | - | is nontrivial then == |-|; = |- |

Now assume | - | is trivial. Choose a basis (a1); of E/K and define a vector space
norm ||> . a;a; || == max{|a;|}.

9.9 . .

= ||-|| is equivalent as norm to |- |; and | - |2.

Theorem 9.9 = |- |; and | - |2 are both bounded above [| - |; < ¢||-|| < ¢].

Therefore, they are both trivial and hence equal.
O

THEOREM 9.11 (Ostrowski, 1918). A field K that is complete w.r.t. an archemdean absolute value
| -] is either isomorphic to R or C by an isomorphism which makes |- | equivalent to (the pull-back)
of |+ |oo-

PROOF. See Lorenz, appendix 23.9, 23.10, 23.11. ]
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Notation: For the following lemma, let | - | be a non-archimedean absolute value on K, let R C K
be the valuation ring (elements of absolute value < 1), let P C R the valuation ideal (element of
absolute value < 1) and R = R/P the residue field. Define |- : R — R| by @ := a + P. Extend
this map to the polynomial rings Rz] — R[z], f = >, a;2° — f = >, @z’. We also write for
f,geRzlandce R: f=g(c) <= f—g€Ec- Rzl

THEOREM 9.12 (Hensel’s Lemma). Let K be complete w.r.t. |-|. Given f € R[z] and a factorization
f = ¢ with coprime polynomials ¢, € R[z]\ {0}:

We can ‘lift’ this factorization back to R: there exists g, h € R[z] such that f = ghand g = ¢,h =
and deg(g) = deg(¢).

REMARK. We don’t necessarily add the condition deg(h) = deg(v)) since we allow f to have degree
smaller than f. If they do have the same degree, then we have deg(h) = deg(v)).

PROOF. Set m = deg(f),r = deg(¢).
390, ho € R[z] : go = ¢, ho = ¢, deg(go) = r,deg(hg) < m —r and f = gohg mod P[ < f =
Gohol. L
Since ¢, are coprime, 3 polynomials a,b € R[z] : ahg + bgo =1 mod P[ <= ay + b = 1].
f — goho and ahg + bgg — 1 have all coeflicients in P.
Let m € P be such that 7 > max{||f — gohol|, ||aho + bgo — 1||} where ||}, a;z*|| = max{|a;|}.
= [ = goho (mod 7) and ahg + bgo =1 (mod 7).
Induction Hypothesis: Jaq, -+, an, b1, , b, € R[z] such that deg(a;) < r,deg(b;) < m — r and
f = gnhn, mod 7", where g, = go > g @i, hy = ho + Y1y bi.
Case n = 0 we have just completed.
For n — 1 ~» n: Assume the induction hypothesis is true for n — 1 Then, f = g,_1h,_1 mod 7.
Then, 3d,, € R[x] such that f = g,_1hn—1 + d,7", deg(d,,) < m = deg(f).
Set g, = gn—1 + a7 and h, = hy,_1 + b, 7™ with polynomials a,,, b, which we need to find.
= Gnhn = gn—1hn—1 + anhom™ + bygom™ mod mt
= f+ (—=dp + apho + bpgo) ™ mod 7"
Hence we need to show Ja,, b, € R[z] so that deg(a,) < r,deg(b,) < m—r and anho + brgo = d,
mod 7.
The existence of a,, and b,, follows from the fact that ahg + bgo =1 mod =.
It follows after some work that it also satisfies the degree condition. O

EXAMPLE. Let K = Q) hence R =27, = {a € Q, | |al, <1}.
1) Set f(z) =aP~! —1 = f(x) = f(z) mod pZ, = Hz;i(x —a) =x — ag Y(x).
é(z)
= 3g(z),h(z) € Zy[a] : g(z)h(z) = 2P~ — 1,deg(g(z)) = deg(¢) =1 =
WLOG: g(z) =z — ¢ for some ( € Z, CQ, = ("' =1.
We can keep doing this with h. Again, h(z) = [T1<,<p 1 40, (* — @) and we can
split another factor. Therefore,

p—1
et 1= H(ZC - Ca)
a=1
with (o =a mod pZ,.
Therefore, Q, contains all roots of unity of order dividing p — 1.
2) flx)=a"+ (1 +pm),ptn,meZ (orméeZ,).
p=2n=5m=3 = f(z)=2°—-T.
= f=f mod pZ, =2" — 1= (z — 1)1(x) with (1) # 0 over the residue field
F,[x] since p{n.
Then there is some lift g(z) € Z,[x] of degree 1 such that g(z) = x — 1 and f(z) =
g(z)h(x) for some h(z) = (z).
WLOG g(z) = x — A\, A = 1 for some \ € Z,,.
= A" =1+pm.
Therefore, 1 4 pm has n’th root in Z,.

A= YTH+pm
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For example, /7 € Qs.

REMARK. The proof of Hensel’s lemma is not purely algebraic.

oo
9= 9 Zgo-i-zanﬁn
n=1
so there is some non-archimedean analysis going on.
We can use this fact to ‘calculate’ roots in Z,:

YT pm = (14 pm)" = i (3) oy

If ptn then 1 € Z, since ’%‘ = 1. The binomial coefficients are in fact p-adic integer. (pm)’ has
small p-adic absolute value so the sum converges in Q.

Tuesday, 10/29/2024

COROLLARY 9.13. Let (K, |-|) be a complete non-archemedean field. If

f=apx" +a12" '+ +a, € K[z]
with n > 0,49 # 0 and ag < ||f]| = max{|a;| | 0 < i < n}, where maximum is achieved not only
for the constant term. then f is reducible.

PrROOF. WLOG assume ||f|| =1 = f € R[z]. Let P be the valuation ideal. Then,
f=f mod P has degree < n and is not constant.
Write f = f-1. Set ¢ = f and ¢ = 1 € R[z] where R = R/P.
Trivially, ¢, are coprime.
Since K is complete, Hensel’s Lemma implies that 3¢, h € R[x] so that f = gh, § = ¢,h = v and
degg = deg¢p = deg(h) = deg(f) — deg(g) > 0.
Thus we have found a nontrivial decomposition. O

EXAMPLE. In Q, the polynomial px™ + x + 1 has a root in Z,,.

THEOREM 9.14. Let (K |-|) bea completely valued field [we allow || ]. If E/K is a finite extension
then | - | extends uniquely to an absolute value | - |5 which is given by:

1
Va€e E:|alg = ’NE/K(CY)’}}, where n = [E: K] (%)
Moreover, E is complete w.r.t. |- |g.

PrROOF. 9.10 implies uniqueness and completeness.
If | - | is archimedean then Ostrowski’s Theorem (9.11) says that (K, | | = (R,||)) or (K,]|-|) =
(C,] - |oo) upto equivalent absolute values. This takes care of the archimedean case. We are
interested about the non-archimedean case.
|OZ‘E =0 <<= a=0
lafle = |olelfle
Thus it suffices to show that it satisfies the strong triangle inequality.
Tt suffices to show, given |y| > |z| that:

Suppose | - | is non-archimedean. (x) defines a function satisfying {

’x + 1’ <1
Y

Since WLOG assuming |z| < |y|,

|z +y| <max{|z], [y} <= [z +y[ <[yl —

This is equivalent to:

T+ 1‘ <1 when |y| # 0. The 0 case is trivial.

VO&EE:|O¢|E§1 - |Oz+1‘E§1

1.8
Npix(a) = Nk (o) x (NE| K (a)(@))
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= Nk (o i (@) = N ¢ () )]

Thus, WLOG we may assume F = K(«a). Let o € E be such that |a|g < 1 and let p(z) =
" + a1z" ! + - + a, € K[z] be the minimal polynomial of a/K.

an = £Ng (o) k(@) = |ay|x <1 by assumption.

IfIo<i<n:|a]>1 = o () is reducible.

Thus, ||pa ()|l < 1. Note that p(z) = pa(x — 1) is the minimal polynomial of o + 1 with constant
coefficient p(0) = pq(—1) € R and thus it is £Ng (o) k(o +1).

= |Ng(@x(a+1)[, <1
0

COROLLARY 9.15. Let (K, |- |) be complete and | - | be non-archimedean. Let C' be an algebraic
closure of K. Then,

i) |- | has a unique extension |- |¢ to C given by |a|c = \NK(Q)|K(Q)|%[K(Q):K].
ii) Let R be the valuation ring of | - |. For o € C' TFAE:
a) |aje < 1.
b) fa,x () € R[z].
¢) o is integral /R.
PRrOOF. 9.14 = isince C =Ugcpee pxjcc E-
For ii:
(@) = (b): |naxc(0)|x = [Ny (@)(@)|, = laler @ <1 [by assumption].

Peo, i () is irreducible and leading term has absolute value = 1 = all coeffiients of p,(z) are in
R. ’

(b) = (c) by definition.

() = (a): Ja; e R: "+ a;a" +---+a, =0.

If |o|c > 1 then [a”|c = |[—aja™ ™t — - — a”’c < max{|a;a" ! [i=1---n} < |a|i .
which is a contradiction. g
REMARK. 1) Consider the unique extension of | - |, to Q,, then (Qp,| - |,) is not complete

[HW11]. However:

(Cpy |+ 1p) = (Qp, | - [,)" is complete and algebraically closed
2) A valuation ring is an integral domain R such that Vo € Frac(R)\ R: 2! € R.

A valuation ring R is called Henselian if Hensel’s Lemma holds for R.
Hensel’s Lemma, as we have proved it, says: the valuation ring of a complete non-archimedean
field is Henselian.

EXAMPLE (Henselian Valuation Ring, not complete).
Z?p) = {a € Q, | a is inegral over Z, }
h
We have Z C Z(p) C Zp.
The following follows from Proposition 9.10 and Theorem 9.14 given a non-archimedean absolute
value | - | on K (K not necessarily complete w.r.t. | - |). Then,
| - | has a unique extension to any finite extension E/K <= R = R(|-|) is Henselian

THEOREM 9.16. Let E/K be a finite extension of degree n and let | - | be an absolute value on K.
Then:

i) |- | can be extended to an absolute value on E.
ii) There are at most n extensions of | - | to distinct absolute values on FE.
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iii) Let | |1,---,|- |~ be the set of all distinct extensions of || to E. For each 1 < j < r let
E} = (E,|-|;)" and K" = (K, |-])", which embeds canonically into E. This canonical

homomorphism of K”-algebras:

Eok K" = [[ E} ()

j=1

a®ars (15(a)a)j_,
where v : E — EJ/\ is the canonical map, is surjective and hence

S B} : KM < n(= dimga (E @k K"))
j=1
If E/K is separable, then (x) is an isomorphism and hence ), [} KM =n.

Thursday, 10/31/2024

PROOF. Proof has four pats.

a) Set C = K/ [algebraic closure]. Corollary 9.15 = |-| on K" extends uniquely to an
absolute value | - |c on C [since K" is complete].

Let 01, -+ ,0m : E — C be all K-embeddings into C. Then m < n[= deg[E/K]],
and if F/K is separable, we can write E as being generated by primitive element whose
minimal polynomial has degree n, and we get embeddings by permuting the roots and
therefore m = n.

Define [not necessarily distinct] absolute values | - |; on E by |a;| = |o;(a)|c, these
extend |- | on K.

Let | - | be any extension of |- | on K to E. We show that this is one of | - |;.

Let E' = (E,|-|)" and K’ = (K, | - |)" which is just the closure of K in E’.

Then, the composite field E.K’/K’ is a finite extension and since it is a finite ex-

tension of a completely valued field, 29 pK'is complete (w.r.t. the unique extension

of | -|). Since E maps canonically into E’ and K’ is a subfield of E’, E.K’ canonically
embeds into E’

Therefore, since E is dense in E/, EK' = E'.

Proposition 9.6 = 3 isometric isomorphism K’ 7 K” such that Va € K’ :

lp(a)lc = |al'.
C is algebraically closed, thus p extends to a field homomorphism o : B/ — C.

K —— K' —’— K"

L]

E——E %5 C

Set another absolute value on E’ by |a|” = |o(a)|c. |- |” restricts to | -|" on K.
9.10 = Va € E' we have fmajo(a)|c = |o| = |o|” = |a.
Thus, Va € E : |a| = |o(a)|lc = |oj(a)|c = |a|; if the map E  — E' — C'is

canonical o

. |//

equal to o;.
Upshot: every extension of |- | to E is one of | - |; = [o;(-)].
This shows (i) and (ii).
b) Let (ED, |- |1), -, (EX,|-]|-) be the completions w.r.t. |- |1, ||
We know by part a that r < m < n. IK6A — EJA and the diagonal map

canonical
E— H;zl B}, a = (1j(a))i-; extends uniquely to a homomorphism of K” algebras:

Eox K" =[] B}
j=1
a®ans (@), (1)
We have seen in (a) that image of E.K” in E} is E7.
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Thus, composition of (1) with projection onto E7' is surjective.
If E/K is purely inseparable then m =1 = r =1 = (1) is surjective. Hence
(iii) in this case.
c) Let F/K be the maximal separable subextension of E/K = E/F is purely inseparable.
Note: F QK K/\ =F RF (F RK KA)
————

?
o~ A
=17 Fy

A[(B@rFP)—E)
Thus, it suffices to show that (iii) is true for F//K separable. We thus assume E/K
is separable.
Then, E = K(a) for some « € E and let pi(x) = pia,x () be the minimal polynomial
of a over K. We can decompose into distinct [since separable] irreducible factors p;(z) €
KM a):

p(@) = pa(x) - ps()

eg 2 + 1 is irreducible over Q but 2 + 1= (z — a)(x — 3) in Q, if p=1 mod 4

Choose for 1 < j < s aroot a; of pj in C' = K”.

The map o — «; induces a K embedding E — C equal to ¢; [renumbering if needed).

For k > s, ox(a) is a root of pu(x) and thus must be a root of sone u;(x). Hence
ok () is a conjugate to a; over K.

= Ir € Awt(C/K") : 7(o(a)) = aj = 0j(a).

= |oj(a)|lc = |T(or(®))|c o4 |ok(a)] = r = number of distinct extensions of
|-[<s.

For 1 <i < s defined Vy € E: |y|; == |o:(7)|c-

K"(a;) is complete == the K-homomorphism F = K(a) — K" (a;) given by

a s oi(a) = a; extends to B = (K(a),|- )" & KNa).
If |- | = |- |; for some 1 <k < j < s then B} is isometric isomorphic to Ef.
Therefore, &3, o &;1 : K™a;) — K™(ag) isomorphism over K. Thus, «; and ay,
have the same minimal polynomial. Thus, k£ = j.
d) CRT = the top horizontal map

KM /pa(w) —— [1K" 2]/ (ni(x))

1 |

E®x KN ———— [ E}

[Since Rla]/(f) ©r A= Ala]/fAla] and E = K[z]/(sa(2))].
Thus, the bottom map is an isomorphism.

|
EXAMPLE. Let K = Q, E = number field, || = ||, let p1,- -+ ,pr : E = R,01,+++ ,05,01, -+ ,05 :
E — C be real and complex embeddings.
Then, | - | has precisely r + s distinct extensions to E, namely

‘Oé|¢ = |¢(Oé)|(c for ¢ € {plv' s Pry01, 0 508}

If £ = Q(a) then fiq,0(x) = (@) -+ o (@)rs1 (2) - - trs(a).
1, if1<i<nr

Here deg(i(z)) = {2 fr+l<i<r-+s.

wi(z) = ¢ — a; a;inR

pi(z) = (z — o) (z —a;) a € C\R
Hence s = r.
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ExAMPLE (Inseparable). Suppose char(K) =p > 0,FE = K(/t),t ¢ KP [not a p’'th power].

Then, 2P — t is irreducble and inseparable = (z — ¢/t)P.

Two cases: P — t splits over K. Then {/t € K" = E®y K" = K[z]/(2? — t) ®x K" =
KMz]/(2P — t) = K"z]/((x — /t)P) which has nilpotent elements. If we divide by the ideal
consisting of the nilpotent element, we get — K" back.

In characteristic p we have unique p’th root in the algebraic closure.

E— C=K"
{/t —— some root of
Sine there is only one root, there is only one embedding]!
(B,|]c)" = K"
2nd Case: aP — t stays irreducible over K”.

Then we get K" [x]/(xP — t) which will remain a field. Thus,

KMa)/(a? —t) = E@g KN 5 E
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CHAPTER 10

Residue Class Degree and Ramification Index

Tuesday, 11/5/2024

In this chapter: F/K will be a field extension, and | - | a non-archimedean absolute value on E.
Og = valuation of K w.r.t. |-| D Pg = valuation ideal.
Op = valuation of E' w.r.t. |- | D Pg = valuation ideal.

K = residue field of K = OK/PK, = Og/Pg.
The canonical injection K — E is called the residue field extension.

DEFINITION. f = f(E | K) := [E : K|, called the residue class degree.
e=e(E | K)=[E*|:|K*|, called the ramification index.

REMARK. ) Foe KCFCEwehave KCFCE = f(E|K)=f(E|F)f(F|K).
[KX| C |[FX| C |BX| = e(EIK)—E(EIF) (F | K).
2) BN = (B,|-|)" "= E S B and |[BX| 2 [(BY)X.
= f(E|K) f(EN| KM and e(E | K) = e(E™ | KM).
3) E/K finite 22 [E": KN < [E: K].
[E" : K| = local degree of E/K w.r.t. |-

B
LEMMA 10.1. If [F: K] =n < oo then e(E | K)f(E | K) <

PROOF. Let ay, -+ ,a, € Op be such that @y, --- ,@.(@; == a; + Pg € E) are linearly inde-
pendent over K.
Claim: For all aq,--- ,a, € K : |aja1 + - - - + ara,| = max{|a;|}

Proof: WLOG we may assume max{|a;|} = 1.
Strong Triangle inequality = |Y_, a;a;| < max{|a;0;]} <1 = max{|a;|}.
Assume by contradiction that |>", a;a;| < 1. Then, 0 = 05 = >, a;a; = >, @;0, linear indepen-
dence = |a;| =0 < qa; € Pk Vi. Contradition!
Now choose 71, -+ ,ms € EX s.t. Vi # j @ |m||K*| # |7;||K*| (different elements in |[E*|/|K*|).
Suppose 0 = Y 1<i<, ajja;m; with a;; € K. Set b; = >1_ a;jo; = 0 W >y by
1<j<s
WLOG: |bym| = max{|b;m;| | 1 <j <s}>0.
(1) = [bml =[S bim).
= 32 < j < s such that |bymi| = |b;my].

(2) b
= |m| = |g| 7]

As we’ve seen before. |bj| = max{|a;;| |1 <i<r}e|K*|
(2) contradicts the previous assumption on the |r;|.
= r-s<n = e-f<n

]
REMARK. 1) f[EF:K]=n<ooand ||, --,]| |- are pairwise distinct extensions of a
given absolute value |- | on K. Then,
T Prev10u:> Remark A A A
Y eE K| )f(E]K]]) Ze VKM FE, 1" KD).
i=1 i=1
10.1 &

< SE ) KN S (B K] =,
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2) Even if K is complete and E/K is finite, it can happen that e(E | K)f(E | K) < [E : K].
However, this cannot happen if | - | is a discrete absolute value.

DEFINITION. An absolute value |- | on a field K is called discrete, if | K*| is a non-trivial discrete
subgroup of R+q.

REMARK. 1) If | - | is discrete then |- | is non-archimedean (otherwise Q — K and |- || 0
is non-trivial and archimedean = |- || o 18 equivalent to | - |oo whose value group is
dense.)

2) Some authors allow the trivial absolute value to be discrete.
3) | -] is discrete == Jc € Rsq such that |K*| = 2.
Set w(z) = —log.(|z]) = |z| = ¢¥®) and w is a normalized valuation K —»
Z U {o0}.
Any m € K with w(mr) = 1 = C~! is called a prime element or funiformizer of K
w.r.t. | -]
Then, Vo € K*3n € Z3w € K7 : (Ju] =1 and n = w(z)).
(lul=1) and z = 7" - v.
4) If E/K is an extension and | - | is an absolute value on F with e(E/K) < oo,
| | is discrete <= ||| 1is discrete.
K
THEOREM 10.2. Suppose that K is complete w.r.t. a discrete absolute value |- |, and let w be the

associated normalized variation. Let S C Of be any fixed set of representatives of K = O /Pk.
Asume O € S.

Let 7 be a uniformizer of K. Then every z € K* can be written as x = Z;’iw(w
determined a; = S and w(z) :=min{i € Z | a; # 0 }.

LEMMA 10.3. Let E/K and | -| be as above. Let m € K be such that 0 < |7| < 1, and assume K
is complete w.r.t. | -|. If 81, -+, B, € Op are represantatives of a generating set of O /7Of as a
Ok /mOk-module. Then fy,--- , 3, generate

mathcalOg over O.

) a; 7" with uniquely

PROOF. Let M ="', Ok f3; C Og. By assumption, Og ) M + 7Op.

For any = € O we get from (1) sequences (mgn))le in Ok such that:

Yn>1: sz(-")ﬂi =z mod "
i=1
$§n+1) = xgn) mod 7Tn+1OK

() exists in K [and is an element of Ok, and Y., 2,6, = x O

THEOREM 10.4. Let E/K and |- | be as before, and [E : K] < oo, and | - | is discrete, and K is
complete w.r.t. | - |. Then,

— z; =lim, oo &

e(E|K)f(E|K)=[E: K]
PROOF. Let 7 be a uniformizer of K and w a uniformizer of E. Then Im > 1: |7| = |w|™ =
|EX| = |w|”.
— K| = [l = ol C ol = |EX].
= m=e(E|K)=e = m=u-w" for some u € E,|u| =1.
Let oy, -+ ,ay € O be representatives of a basis of FE over K.
Claim:

M = E OKOQ‘WJ == OE
1<i<f
0<j<e

Proof of Claim: Let N = Z{Zl Oka;.
The composition N < Op — E = Op/wOp is surjective.
Therefore, Op = N +wOg (1).
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Thursday, 11/7/2024
Claim: M := Zj;é WwIN =3 1<i<f OKozjwj = 0Og.

0<j<e-1
Proof of Claim:
1) @) _ 2
Op = N4+ wOg = N+ w(N+wOg)=N+wN +wOg

= =N+wN+- -+ N4+ wOp =M+ 710
——
7wOg
Lemma 10.3 — M = Og.
Theref E=0g[1] = i K aquw = e-f>[E:K].
erefore, E[w] Z(léjéﬁa l]aw e-f>] ]
|7

10.1 = e - f<[E:K].

O
REMARK. The elements o;w;,1 <7 < f,0 < j < e form a basis of E over K.
THEOREM 10.5. Let E/K be a finite separable extension, let | - |1,---,| - |, be pairwise distinct
extensions of the given absolute value | - | on K.
Let e; = ramification inde of E/K w.r.t. |- |;.
fi = residue class degree of E/K w.r.t. |- ;.
Then,
i=1
PrOOF. Recall that £ @x K" = [[\_, E].
B+ K] = dimgn (B @ K") "2 YO[B}« KNS e(B) KN FE] K
i=1 i=1
9.7 and Residue field doesn’t change upon completition implies:
= Z ei fi
i=1
O

DEFINITION. Assume FE/K is finite. Then E/K is unramified w.r.t. the non archimedean absolute
value | - | on E, if:

i) E/K is separable.

ii) [E": K" = [E : K].

10.1

REMARK. 1) Since e(E/K,| - f(E/K,|-|) < [E" : K"]. If E/K is unramified then
e(B/K,|-]) = 1.

2) If | - | is discrete and separable, then E/K is unramified £4 e(B/K,|- | =1 «—

THEOREM 10.6. Let | - | be non-arch and K complete w.r.t. | - | . Extend |- | uniquely to the

algebraic closure C of K. Then,

i) C (=residue field) is an algebraic closure of K.
ii) For every finite subextension F'/K C C/K 3 subextension L/K C C/K such that L = F
and [L: K] =[F: K|.
iii) The map from finite subextension of C'/K to finite subetensions of C'/K induces an
inclusion preserving bijection between the unramified subextensions L/K C C/K and
the finite separale subextensions L/K C C/K and the finite separable subextensions

F/K C C/K. Every unramified extension of K is separable.
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iv) Every finite subextensions E/K C C/K has a largest unramified subextension L/K. If
E/K is separable, then this maximal unramified subextension L satisfies L = E and
[L:K]=[L:K].

v) If L/K is unramified, then it is Galois <= L/K is Galois, and in this case there is a
canonical isomorphism Gal(L/K) — Gal(L/K).

PROOF. i) Corollary 9.15 = C is algebraic over K.
f(z) € K[z] monic = 3 monic g(z) € Ok|z] with g = f [reduction modulo Pg].
C is algebraically closed, so g(z) = [[;(x — ;) € Clx] 21 o] <1 = a; € O¢.
= f(z) =7(z) =[];,(z —@;) € Clz] = C is an algebraic closure of K.
ii) Given 8 € C and F = K () and minimal polynomial 1sw € K[z] = min. poly of 8/K.
3 monic g(z) € Okl[z] : g(z) = pg z(z).
9.15 (same as before) = g(z) =[[;(x — o) with o € O = Fi: a5 = .
Set L =K(a;) = [L: K] 1%1 [L: K] =" degg = deg(ps %) < [L: K]
The general case of a finitely generated field extension F/K C C/K is reduced to
the case of a monogenic extension by replacing K by K(f3).
iii) L/K finite unramified = L/K is finite (by 10.1) and separable (by definition of
“unramified”).
Conversely, suppose F/K is finite separable and L/K C C/K is a finite extension
such that L = F and [L : K] = [L : K| = [F : K| [exists by ii]. Then, L/K is unramified.
It suffices to show that this map is injective on the set of finite unramified extensions.
Suppose E; and F, are unramified subextensions of C/K and B, = Ey = K(3) for
some 3 € C.
Thus, 3 is separable over K = ug  is separable. Let g(x) = Og[z] be monic and
5= iy (@) (%)
Theorem 9.1 (Hensel) = 3 factorization g(z) = (x—ay)hi(z) in Og,, (r—az2)ha(x)
is in OEg with @y =as = .
Roots of g in C lie on O¢ and they reduce to pairwise distinct elements in C since
Hs R s separable g(ag,as) =0 = a3 = as.
K(a) C E,K(B) C E2
— (B : K] "B K] = [K(8) : K] = deg(uy ) = deg(g) = [K(a1) :
K| <[E;: K] = K(oay1) = E;. Similarly, K(as3) = F»
Since a1 = ao we have Ey = FEs.
iv) Let E/K C C/K be any finite subextension, and Es C F be the maximal separable over
K subextension of E/K = 3B € E,: E, = K(j3).
Choose a € O as in (ii) [@ = 8 and g(a) = 0 for a monic lift of yi5 7 to Ok [z]].
ii = L:= K(a) C E is unramified /K and L = E.
If LC L C E and L/K unramified,

— LCLCE, = f:fandsinee[f:[(]:[E:i]:[fti]:[L:K] —

Tuesday, 11/12/2024

subextensions E/K C C/K| _ [subextensions F/K cC/K
[E: K] <o BB [E: K] < oo

U U

{unramified E/K} - {separable F/K}

Ew— E,[E:K|=[E:K].
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v) Let L/K be unframified, o € Aut(L/K).
9.14 (uniqueness of extending absolute values) = Va € L,|o(a)| = |al.
= 0(0) C Op,0(Py) C P, = o induces 5 : L — L over K.
This gives us a group hoomorphism ¢ : Aut(L/K) — Aut(L/K).
Write L = K(8). Let g(x) € Ok[z] be a monic lift of 1 () € Klz].
9.12 (Hensel’s Lemma) = Ja € Of, such that g(z) = (x — a)h(x) in Oglx] with
a=g0.
By part iii: K(«) = L (consider residue fields).
Claim: ¢ is injective.
Proof of Claim: Suppose ¢ =idy = [ =7(8) =d(@) = o(a).
g(a) =0 = g(o(a)) = 0 and o(«) has the same reduction mod Pp, as « [namely

Al

{15 7 separable = o(a) = a = o =idg. This proves the claim.

- _ ___ Claim alois

Now suppose L/K is Galois. Then [L : K| > |Aut(Z/K)| > |Aut(L/K)| %
[L: K].

= [L: K] = Aiut(f/fﬂ = L/K is Galois.

Conversely, if L/K is Galois —> g 7 splits into distinct linear monic factors in
Llz]

9.12 (Hensel’s Lemma) = g(x) splits into distinct linear factors in L[z] = L is
obtained by adjoining all roots of g(x) to K.

= L/K is normal and since g(z) is separable ( <= pug; z(z) is separable) we have
L/K is Galois.
]

THEOREM 10.7. Suppose K is complete w.r.t. a non-archimedean absolute value || and the residue
field K is finite with ¢ elements. Let the notation be as in the previous theorem. Then,

i) Vn € Z>;3! unramified subextension of C'/K which is of degree n over K. This subex-
tension is generated by a primitive root of unity (4»_; of order ¢" — 1.

ii) Suppose m € Z> is not divisible by p := char(K). Let (,, € C be a primitive m’th root
of unity. Then K((,,)/K is unramified and [K(¢,,) : K] is equal to the order of ¢ modulo

m in (Z/mZ)*. In particular,

wP(K) ={¢ € J| ¢ is root of unity of order prime to p}

is cyclic of order ¢ — 1 and is a set of representatives of K"
iii) Every unramified extension of L/K is Galois and Gal(L/K) is cyclic and is generated
by a unique element ¢,k which induces the map x — z¢ on L. op /i is called the
Frobenius of L/K.

PrOOF. F,. = splitting field of 29" —z over F,, = Haqun (x—a). [Fr] =q"—1. Fr = (Cgn_1).

i) [K| =q = Vn € Z>,3'K,/K C C/K such that [K, : K] =n and K, = K({n_,)
where an_l is a primitive root of unity of orer q™ — 1.
g(x) = x7"~1 — 1 splits into distinct linear factors over K,,.
9.12 (Hensel’s Lemma) f(z) = 29" ~' — 1 € Or, [x] splits into distinct linear factors
where L,, C C/K is the unique unramified extension with L,, = K.
Let ¢ € Oy, be aroot of f(z) with { = (4n_1.
f(QO)=0 = ¢"'=1 = ord(¢) | ¢" — 1 but ¢" — 1 = ord({) | ord(¢).
Therefore, ¢ is a primitive root of unity of order ¢ — 1.
= K(¢) =Ln (Cq"—l €EK({Q)CLy=Kn= K(Cq"—l))'
= L, is the unique unramified extension with residue field K, and it is generated
by a root of unity of order ¢ — 1.
ii) Suppose p{m and let ¢,,, € C be a primitive m’th root of 1. Set n := min{l € Z~¢ | ¢* =
1(m)}.
- Cm S <<q"—1>'
= K(Gm) C K(CGpr1).

61 Written by Thanic Nur Samin



CHAPTER 10. RESIDUE CLASS DEGREE AND RAMIFICAMGN1]INBEX)24, by M. Strauch

and (= (git_; where r = qr;n—_l and ged(a,m) = 1.
Therefore, ¢, = C;g,l = ord((,,) = m.
IfZZ: =<, forkgnthenzqk_1 =1 = m|¢* -1 = ¢* =1 (mod m) for
some k > 1. o o
= k>n = K(,,) =K.
= [K(Cm) : K] =]
iii) <= Theorem 10.6 v and i.

O

PROPOSITION 10.8. Let | - | be discrete absolute value on K with normalized valuation w : K —
Z U {oo} (we do not assume K is complete).

i) Let f(z) = 2™ + a1z ' + -+ + a, € Ok[z] be an Eisenstein polynomial (w(a;) >

1,w(a,) = 1) and let 7 be a root of f. Then |- | has unique extension |- |; to E := K ()

and E/K is purely ramified ( = e(E/K,|-|1) =[F: K]), and fmf is ireudcible, and 7

is a prime element of F w.r.t. |- |;.
ii) Conversely any purely ramified extension E/K w.r.t. an extension |- |y of | - | to E is of
the form E = K (), where 7 is a prime element of E w.r.t. | -|;.

The minimal polynomial of 7 is an Eisenstein polynomial.

PROOF. i) Let |-|; be some extension of |-| to E. We have 7" = —ay7" 1t —---—a, (1).
If |7|; > 1 then |x|p > |77™% > |a;7" |y b y strong triangle inequality. This is a
contradiction to (1).
Thus, |7y < 1 and |7|} = |a,| = |K*| C |an|? = |7|32 C |EX];.
Therefore, e(E/K,| - |1) > n = deg(f) > [E : K] %‘1; Soi_iefi > e1=elE/K,]|-
[1) (2) [same notation as in 9.16].
Then, e(E/K,|-|1) =[F : K] = f is the minimal polynomial of m,7 =1 = |- |;
is the only extension of |- | to E.
ii) By assumption [E : K] = e(E/K,]|-|1).
(2) = |1 is the unique extension of | - | to E. Recall that |E*| = |r|%.
Let 7 be a prime element of E. Then [K(7) : K] 1021 e(K(m)/K,|h) =e(E/K,|]1) =

[E: K] = E=K(n).
Let f(z) = apz™ + a12" ! + -+ -+ a, € K|[z] be the minimal polynomial of 7/K with

a0:1.
a()w"—|—~-~—|—an,17r+an =0 = 30 <7< ] <n: |(L7;7Tn7i|1 = \ajﬂ"*jh =
—k i i . . -
max{|apm" ’1|O§k:§n}7é0=>|7T|Jl—‘3—:‘€|KX|:>]—Z—nzj—
n,t=0.

= [n|" = lan| = |an|® = [K*| = |x["2.
Thus, a,, is a uniformizer of K and |a;| < |a,| for 1 <1i < n.

Thursday, 11/14/2024

Recall: we hat E = K (m), m = root of Eisenstein polynomial ((X, |-|) discretely valued) = E/K
purely ramified and | - | has a unique extension to E.
Example: K = Q,p = prime, n > 1 : p’th cyclotomic polynomial:

n n—1 p
Pt P14 1P —1 1 - ,
p(r)= 2 —L & —1rrol DY@~y
P xP -1 xP -1 xP —1+“ 7
j=1
p p 1 )
= f@)=Tp(z+1) =) <j)((x+1)p — 1)/
j=1

= f(x) modp= 2?1 anq f(0)y=p
Therefore, f is Eisenstein for the p-adic absolute value on Q.
10.8 = |- |p has a unique extension to Q({,» — 1) and {» — 1 is a uniformizer of Q({yn).
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It also follows that p- Og(c,.) = P**") where P is generated by (¢ — 1).
———

=Z[pn]
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CHAPTER 11

Local Fields

DEFINITION. A field K with absolute value |- | is called a local field if the topology on K induced
by |- | is locally compact but not discrete.

REMARK. 1) The topology on K induced by |- | is discrete <= |- | is the trivial absolute
value.

2) K is locally compact <= Vc¢ € Ry, the closed disk D(0,< ¢) ={x € K | |z|] < ¢} is
compact (= every a € K has a compact neighborhood a + D(0, < ¢)).

<= Jee R0 : D(0,< ¢) is compact.

3) if K is localy compact then K is complete: given a cauchy sequence (z,,)n>0, 3¢ > 0 such
that Vn > 0, |z, | < c.

Since K is locally compact, D(0,< c¢) is compact. Thus, (z,) has a convergent
subsequence. But it is also a Cauchy sequence, so it is indeed convergent.

4) K is complete and | - | is archimedean implies (by Ostrowksi) that (K,]|-|) @ R,| | or
> (C,] - |so). So we have local completeness automatically.

5) If K is complete and | - | is non-archimedean, then Px = {z € K | |z| < 1} is open. If
K is also locally compact then Ok = | [0, cp, (@ + Pg) where @ is a lift of @ to Ok-.
Thus, since K is locally compact, Ok is compact. The cosets are also open.

Therefore, residue field O /Px must be finite.
6) Claim: if K is locally compact and | - | is non-archimedean then | - | is discrete.

PROOF. Suppose (x,,)n>1 sequence in K with |z;| # |z;| and lim,, o |z, = ¢ > 0.
Then (|z,|) is bounded, and since K is locally compact we have z,,, — a € K*.
Then, | a | =lim; e |Tn,| =c> 0.

€KX

= |z, — a+a| = |a] for all ¢ > 0 which is a contradiction.
——

—0

PROPOSITION 11.1. Let | - | be a non-archimedean absolute value on K. Then TFAE:

i) (K,]|-]) is a local field.
ii) a) (K,[-]) is complete.

b) K = Ok /P is finite.
¢) | -] is discrete.

PROOF. i = ii we have already completed.
ii = 1i: Suppose 3 open covering (U;);er of Ok which does not hve a finite subcovering.
Let 7 be uniformizer of (K, |-|) and Z of (K, |-|) and Og D % complete system of representatives
of K which contains 0.
— Ok = I—Iae%(a + PK).
|K| < o0 = 3ag € Z: ao + Pk = ap + () is not contained in a finite union of U;’s.
(7) = Upeg a7 + (7?) = Jay € Z such that ag + a;m + (7)? is not contained in a finite union
of U;’s.
Continuing in this way we find a sequence (a;);>0 in % such that Vn > 0: ap+a17+-- -+ a,7" +
(7™*1) is not contained in a finite union of U;’s.
K complete so ag + a1 + asm? 4 - - - converges in K to some a € Ok
Jiel:a€U;,U; open = U, contains neighborhood of @ = U, contains a subset of the
form a + (7™) for some m > 0. Then U; contains ag + a1m + « -+ + @p_17™ 1 + (7™) which is a
contradiction.

O
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DEFINITION. A non-archimedean local field is a local field whose absolute value (uniquely deter-
mined by the topology up to equivalence) is non-archimedean.

THEOREM 11.2. Let (K, |- |) be a non-archimedean local field.

i) char(K) =0 = K is a finite extension of Q, for a unique prime p.
ii) char(K) = p > 0 = K is isomorphic to F,(())(= Frac(F,[[t]])) where ¢ = |K| is a

power of p by an isomorphism which makes | - | equivalent to:
oo
Z aiti _ q*v(f)
1>>—00
where v(f) = min{i € Z | a; # 0}.
PROOF. i) Note Q C K. If |- HQ is trivial = @Q < K, since K is finite it is not

possible. Thus, the restriction cannot be trivial.
Theorem 9.3 = |- ||Q is equivalent to | - |, for a unique prime p.
Proposition 9.6 = 1 unique extension:

Q—————K

\ Atinuous
Qp

K| = | > [pf” £ {11,

Therefore, [[K*[:[Q, ] is finite.

K finite = f(K/Q,) =[K : F,] < c0.

K complete and | - | is discrete. This along with theorem 10.4 (e - f = n) implies

K :Qp] < 0.
ii) HW 13.
O

REMARK. Every non-trivial absolute value |- | on k(z) which is trivial on k is of one of the following
form:
i) || where |g|; = e %/(9) where f(z) € k[z] is irreducible and v (g) = m if f™ || g.
ii) |- |deg Where |g|aeq = e°8(9).

COROLLARY 11.3. The local fields (up to isomorphism) are:
i) Rand C
ii) The finite extensions of Q, where p is any prime.
iii) The fields F,((¢)).
DEFINITION. The following are called global fields:
i) The finite extensions of Q (ie number fields)
ii) The finite extensions of F,(t) = Frac(F,[t])

PRrROPOSITION 11.4. The local fields are precisely the completions of global fields w.r.t. a non-trivial
absolute value.

SKETCH. 1) We have seen: any completion of a global field is a local field (HW9, Prob-
lem 8 for F,(t) and HW11, Problem 2 for number field).
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2) Furthermore, F,((¢)) is the t-adic completion of F(t).
3) Remaining case: for any finite extension K of Q, 3 number field E/Q and a non-
archimedean absolute value | - | on E so that (E,| - |)" & K.
This will be proved in 11.7.
O

Note: we can have fields that are abstractly is?morphic but still extensions: Fq((t%)) and Fy((1))

are isomorphic but F,((t))[z]/(z" —t) =F4((t+))
Tuesday, 11/19/2024

THEOREM 11.5 (Krasner’s Lemma). Let K be complete w.r.t. a non-archimedean absolute value
|- |, and let C be an algeraic closure of K. Suppose o € C has a separable min. poly. p. x(z) =
[T} (z — a;) with a; = a.

Then, whenever 8 € C satisfies |5 —a| < |o;j —«a, for all 2 < j <n.

Then, K(a) C K(5).

PROOF. Suppose K(a) ¢ K(8). Then a ¢ K(f) = L = K(f)(«a) is a proper extension of

K(B).
Mo,k (8) | Mo,k == « is separable over K (). Thus, L/K () is separable and non-trivial.
Thus, Jo : L KT/;) C3j > 1:0(a) = a; extend o to ¢ € Aut(C/K(S)), since K is complete, | - |

extends uniquely to C.

Thus, & preserves the absolute value on C since |Y|pew = [0(7)] = [V|new = |7]-

Therefore, |f—a| = |0(B—a)| = |f—0d(a)| = |B—a;| = |F—a+a—aj| = max{|f—qa|,|a—q;|} =
| — ay.

This is a contradiction to our assumption. Thus, K(a) C K(8). O
THEOREM 11.6. Let K be complete w.r.t. a non-archimedean absolute value | - | and let f(z) =

> ayz” be a monic separable polynomial over K of degree n. Then 36 = §(f) > 0 such that if
g= Z::O byx” is another monic irreducible polynomial of degree n for which

|f — gl =max{|]a, —b,| | 0<v<n}<§
Then g is irreducible and separable, and then for any root « of f,3 unique root 8 of g such that:

I8 — a] < max{|a’ —a|| f(a/) =0,a’ € C}
Where C is algebraic closure of K. Moreover, K (a) = K(5).

PrROOF. Write f(z) = H?Zl(x — o) in Cfz] with o # «a; for i # j.

Let o := «; be any root of f.

Claim: |f]| = max{|a, |} > |a.

Proof of Claim: Suppose |a| > |f|.f monic = |f|>1 = |a| > 1.

— W< <n-Ls ol = fallal > [flla" 2 lasllal" > lagad
al>1

= 0=|f(a)] = |a" + X7 g e

Choose § small eough so that V/5|f| < min{|e; — o | i # j} = M.

Now assume |f — g| < 0. Write g(z) = [[}_, (z — 5;).

Fix 1 <4 < n. Then, |[]}_(c; — Bj)’ = lg(@)| = lg(ai) = fla)| = |Xp2g(by — av)at| <

|f = glmax{feu|"} < d|f|" < M™.

Then, 3 at least one j = j(¢) so that |a; — 5;| < M.

Theorem 11.5 (Krasner’s Lemma) with 8 = 5, = K(a;) C K(f;). But we know [K (o) : K] =

deg(f) = deg(g) > [K(8;) : K] = K(as) = K(5;).

We show that the map a; — 3; = B,y = B(a;) is injective, since for i # k we have:

= |a|™ > 1 which is a contradiction.

|B(ei) = Blaw)| = | flai) — i + i — o +ax — Bla) | = |ai — ax| # 0
—— — ——_—,—
<M >M <M

= B(ay) # B(ax) so the map is injective. We also have g is separable.
O
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COROLLARY 11.7. V finite extension K/Q,3 subfield F' C K such that:
i) F/Q is finite (hence F' is a number field) and [F': Q] = [K : Q).
ii) F is closure of K w.r.t. the unique extension of the p-adic absolute value on Q, to K,
hence (F, |- ||)" = K.

PROOF. It is a finite extension over characteristic 0, so this is a separable extenson. We write
K = Qy(a) for some a € K and we have minimal polynomial yi.,q,(z) € Qp[z] is irreducible and
separable. Choose ¢ from previous theorem. Choose g(z) € Q[x] monic of degree n such that
|f—g| <.
Theorem 11.6 = 38 € Q, = ¢(B) = 0 and Q,(8) = Qy(a) = K. Also, g is irreducible over
Q, and thus Q.
Set F'=Q(8) C K. Then [F: Q] =deg(g) =n=[K : Q).
F' contains Q and since Q is dense in Q, we can deduce that closure of F' in K contains Q, and S.

Therefore, 3 is dense in K. O
We have the following diagram:
(Fa | : HF)/\
F
\ !
COROLLARY 11.8. i) The algebraic closure of Q, is not complete w.r.t. |- |, [HW11/5].

ii) The completion C, = (Qa', |- |,)" is algebraically closed [HW13].

ProprosITION 11.9. In a fixed algebraic closure of a local field K of characteristic 0, there are only
finitely many finite extensions of a fixed degree.

PROOF. Application of Krasner’s Lemma [Theorem 11.6]. HW13. |

DEFINITION. Let E/K be a finite extension and |-| a discrete nontrivial absolute value on E. E/K
is tamely ramified if char(F) { e(E/K,|-|) We consider unramified extensions to be also tamely
ramified. Otherwise it is called wildly ramified.

ExXAMPLE. K = Q,, E = Q,({p~) where (,» = primitive p” th root of 1.

Then [E, : Q] = ¢(p") = deg(®pn) = (p — Vp" ™! = e(En/Qp, | - [)-
E,/Q, is purely ramified, and totally ramified <= n = 1.

E,/E; is wildly ramified.

——

p'n.fl
Thursday, 11/21/2024

Recall:
i) E/K purely ramified: e(E/K,|-|) = [E: K].
ii) E/K tamely ramified: char(K)te(E/K,||)

PROPOSITION 11.10. Let K be complete w.r.t. non-archimedean discrete absolute value | - | and
let E/K be a finite, purely and tamely ramified extension.
i) 3 uniformizer 7 of K such that £ = K(¢/7Tk) where e = [E : K].
il) F/K is Galois <= K contains a primitive eth root of unity, in which case Gal(E/K)
is isomorphic to e = group of eth roots of unity (& Z/eZ).

ExAMPLE. Only roots of unity contained in Q,, ae the (p — 1) th roots of unity, if p > 2; then the
only roots of unity in Q, are £1

Only tamely ramified and purely ramified Galois extensions of Q, are Q,(y/up) where u € Z, e |
p—1.

If Qpnr = Qp7 [Qp" = maximal unramified extension] then Q, ,,(/up | [u| =1,e € Z>1,pte) =
Qp,tamc~
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Gal(@p,tame/@p,nr) = lgll He = . I I ZZ
1 non. canonical :
€z £ prime
pte L#p

11— Gal(@p,tame/@p,nr) —— AUt(Qp,tame/Qp) —— AUt(Qp,nr/Qp) —1

1% 1%
limT e lim« Gal(F,» /F,)
pre n
1%
Z
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CHAPTER 12

Lubin-Tate Theory

Lubin, Tate (1965) Formal complex multiplication in local fields.

Serre: Local Class Field Theory in Cassels-Frohlich.

Neukirch: ch V, section 4-5.

Goal: Generalize the tower of fields (Qp(¢pn))n and Gal(Qp(Gon)/Qp) = Aut(ppn) =

canonical canonical
(z/p")*

Formal Groups

DEFINITION. A 1-dimensional commutative formal group (law) over a commutative ring O is a
formal power sries F(x,y) € O[[z,y]] satisfying:

1) F(z,y) =z +y mod deg 2

2) F(x,y) = Fy,z)

3) F(z,F(y,2)) = F(F(z,y), 2)

Intuitively, z + y == F(z,y)
F

REMARK. It can be shown that 3 unique power series ¢ € O[[z]],¢(z) = —x mod deg 2 and
F(u(z),z) = F(x,(x)) = 0.

Convention: From now on, “formal group” means “l-dimensional commutative formal group”.

EXAMPLE. 1) Additive Formal Group: @a(x, y)=x+y.

2) Multiplicative Formal Group: @;(x, y=z+y+tay=>01+z)(1+y) -1

3) E = elliptic curve over a field k ~» we can express addition on E as a power series in
and ,.

4) If f(;) = a1+ axz?+- -+ € Ofx] with a; € O* then 3 f~1(z) = by +bex® +- - - € O[[]]
such that by = a7 ' and f(f~'(z)) = f~'(f(z)) = .

Then, Fr(z,y) = f1(f(z) + f(y)) € Olz,y] and Fs(z,y) is a formal group over O.
—_——

const. term=0

N
For existence of f~! compute Y o, a; (Z;’il bjxj) and set this = z.
aby =1 = b1:a1_1.
We work modulo some ™ inductively ~ b, X (unit) = polynomial involving a; and
by, +b,_1, we can solve for b,.

DEFINITION. Let F,G e formal groups over G. A homomorphism from F' to G is a powerseries

f(z) € 2O[[z]] such that f(F(z,y)) = G(f(z), f(y)).
A homomorphism f : FF — G is an isomorphism if 3 a homomorphism g : G — F such that

flg(@)) = g(f(2)) = .
EXERCISE. f(z) =Y ;-, a;z" is an isomorphism iff a; € O*.

If O'/O is a ring extension and f(z) = 20’'[[z]] and f(F(z,y)) = G(f(z), f(y)) then we say f is a
homomorphism from F to G defined over O’

PROPOSITION 12.1. Let F'/O be formal group. Then, the set:

Endp(F,F)={f:F — F| f is a homomorphism defined over O}

equipped with the addition (f 4 g)(x) = F(f(x), g(z)) and multiplication (f - g)(z) = f(g(x)) [not
necessarily equal to g(f(x))] is an associative ring with unit 1(= 1(z) = z)
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EXAMPLE. Let f(z) = a1z + azx? + - -+ with a; € 0% and f~! defined as before, and Fy(z,y) =
FHf @)+ fy).
—_—

Ga(f (@) () _
Then, f: Fy — G, is an isomorphism, called a logarithm of F'y.

We also have f~1 : G, — Fy an isomorphism (exponential).

EXERCISE. If O is a field of characteristic 0 then every formal group has a logarithm, i.e. is
isomorphic to G,

EXAMPLE. If O =F,2 and I' = G, over F,: = VA€ O:[)(z) = Az is an endomorphism of
Gyg:
Ga(Az, \y) = Az + Ay = AGal(,y)

and [x](z) := 2 is an endomorphism of G : Go (2P, y?) = 2P + yP = (z + y)? = G(x, y)P.
Thus, if A ¢ F, then (7] - [A] # [A] - [7].
——

(AP]-[m]
Therefore, Endygp2 (G,) is not commutative.

Let K be a non-archimedean local field with ring of integers O = Ok with maximal ideal Pk and
residue field k = O/ Pk of char p and |k| = q.

DEFINITION. A formal O-module is a formal group F over O together with a ring homomorphism
[]F : O — Endo(F) such that Va € O : [a]p(x) = az mod deg 2.

Tuesday, 12/3/2024

DEFINITION. A Lubin-Tate module over O for the fixed uniformizer © of K. is a 1-dimensional
commutative formal O-module over O such that:

[7]p(z) =27 mod «
where ¢ = |K|, K = residue field of K
Any power series e(x) € O[[z]] such that e(x) = 7z mod deg2 and e(x) = z? mod 7 is called a
Lubin-Tate series for 7.

EXAMPLE. 1) K= Qp,Tr—p,F( y) = Gm(2,y) =2 +y+ 2y, [p)(z) = (1 +2)P — 1,
[]:Z, — Endzp(Gm) = fa(x) = T+a)*—1 =37, (5% (5 € Zp for all
2 € Ly and d € Z>g.
2) K =Qp,m=p,e(z) = pr+a?Pisa LT series for p. But for p > 2 it is not an endomorphism
of @m!
Fact: There is a Lubin-Tate module F, over Z, such that e(z) = [p]r, ().
3) If K is a proper extension of Q,, then @m does not admit a homomorphism Og —
Endo, (@m) So: is there a LT module for K (and some uniformizer)?

Let K" C K®# (= algebraic closure of K) be the maximal unramified extension of K (K" =
Uchar(f)fn K(Iu’n))

Set Ky, = K™ the completion of K™ (w.r.t. the unique absolute value on K% which extends the
absolute value on K).

Let ¢ € Gal(K™/K) be the unique Galois automorphism which induces « — a? on K = residue
field of K™*. -

o extends by continuity uniquely to K, = K.

For any power series F(zy, -+ ,2n) € Knl[z1, -, @n]] we set F? = Y ¢(a;)z’ where 2 =
oyl
THEOREM 12.2. Let 7,7’ be uniformizers of K and e(x), €’ (x) LT series for 7 and 7’ respectively.
Let L(x1, -+ ,y) = Yoiy @iz € Ok, [1,- - , ) be such that 7L(z) = 7' L¥(z).

?

Then there is a unique F(z) € Ok, [[z]] such that:
i) F(z) = L(z) mod deg?2.
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ii) e(F(z)) = F?(e(z)) = F?(e (x1),- -, €' (xn)).
If the coefficients for L, e, e’ are in a subring O’ C Ok, which is a complete PID with uniformizer
7 then F has coefficients in O’.

PROOF. Set z = (x1, -+ ,2p),e(x) = (e(x1), - ,e(xy)).
Set F(z) =Y ..2, F,(z) where F,(z) is a homogeneous polynomial of degree v.
Set F<, = ., F,. We need to determine the F), such that (i) and (ii) hold.
If (i) holds, then F(z) = L(z).
So, (ii) <= Vr > 1l,e(F<,(z)) = FZ (¢/(z)) mod degr+1 (1).
We finish by inducting on 7. -
For r = 1 we have (1) since e(F<1(z)) = nFi(z) +--- =nFi(z) = nLl(z) = n'L¥(z) = L¥(n'z) =
L?(e'(z)) mod deg2=1+1.
Now suppose r > 1 and statement (1) is true for r and F<, is unique with this property.
Since F<,11 = F<, + Fryq and e(z) = Y 00| aiw ‘ay =),
LHS: = e(F<ry1(2)) = mF<r(z) + mFrqa(2) + 3550 ai( Fer + Fri1)’
=nF<,(z) + mF41(z) + > ;50 ai(F<r)" mod degr + 2
= (Fer(z) + 7Fr 41 (2).
RHS: FZ, 1 (€/(x)) = F, (¢/ (@) +1Fy (¢/(2)) = FE, (¢/(@) + FEy (', - w') mod degr+
2

ﬁence, (1) <= 7Fq(z) — (") T FEY (z) = FZ.(e'(2)) — e(F<r(z)) mod degr +2 (2).

G(z)
By induction hypothesis, G(z) = 0 mod degr + 1 and G(z) = FZ (z9) — F<,(z)? mod 7 = 0
mod T, a
Thus we have: Fy1(z) = (77 1)(x") "' FE,  (2) + 2 G().
Let 2 = m’f -+~ xin be a monomial of degree w.r.t. coefficient of z° inG(z) is of the form 73, 3 € O'.
Let a = coefficient of 2* in F,, ().

LHS = RHS: we compare. 7a — (1')p(a) =18 <= a— (7~ 1) (x/)".
— ——
=y

= o= Fte(a) =198 +r¢(e)) = F+7e(6) + v0(7)¢* ().
Check: Z;io YP(v) - 71 (v)p? (B) is a convergent series in O’
= B4+ vp(B) +vp(7)p?(B) + - - - and is a solution to (3).
Suppose ¢ is another solution to (3).
Then € = B+ yp(e), a = B+ yp(a) therefore £ —a = v(p(e) — p(a)) =yp(e —a) = e —a| =
7| [e—a] = e—a=0
—~—

<1

Thursday, 12/5/2024

THEOREM 12.3. i) For every uniformizer m of K and every LT series e(x) for 7 there is a
unique LT formal O-module F,(z,y) over O such that [r]r (z) = e(z).
ii) If e and ¢’ are both LT series for the same uniformizer, then there is a unique isomorphism
over O given by fer ¢ : Fe = F,: of formal O-modules.
iii) If e and e’ are LT series for uniformizers = and 7’ then 3 an isomorphism F, — F. of
formal O-modules over Ok, .

PROOF. i) In theorem 12.2 take n = 2 and L(x,y) = ¢ +y and 7’ = 7 Then, O’ = O.
12.2 = JF.(x,y) € O[[z,y]] such that F.(z,y) =z +y mod deg?2.
e(Fe(x,y)) = Fe(e(z),e(y)) [Note: F¥ = F, since F, has coefficients in O.]
For a € O let Ly(z) = ax 22 Aa)e(x) € O[[z]] such that [a].(z) = ax mod deg2
and e([ale(z)) = [a]e(e(2)).
Now we need to show:
1) Fe(z,y) = Fe(y, )
2) Fo(z, Fe(y, 2)) = Fe(Fe(2,y), 2
3) Va € O :[ale(Fe(z,y)) = Fe([ale(), [a]e(y))
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ii)

iii)

4) Va{,(% (6 )O :0 la + ble(z) = Fe([ale(z), [ble(2)), [a - ble(z) = [ale([ble(2)), [Le(z) =
Tl’lesee pro;ert.ies follow from applying 12.2 in a suitable way.

1) Set G(z,y) = F(y,z) = Fe(y,z) Set L(z,y) = x+y = G(z,y) = L(z,y)
mod deg?2 and e(G(x,y)) = e(F(y,z)) = F(e(y),e(z)) = G(e(x),e(y)). Uniqueness
(12.2) = F=0G.

2) We apply 12.2 with n = 3 and L(z,y,2) = z +y + 2. We set G(z,y,2) =
F(z,F(y,2)),H(z,y,2) = F(F(z,y),2) and have G(z,y,2) =z +y+ 2 = H(z,y, 2)
mod deg 2.

e(G(x,y,2)) = e(F(z,F(y,2))) = Fle(z),e(F(y,2))) = Fle(z), Fe(y),e(2))) =
Gle(x), e(y), )

e(z

Similarly, e(H(z,y,2)) = H(e(x),e(y),e(z)). By uniqueness (12.2) we deduce that
F=aG.

3) Similar. We apply 12.2.

4) Similar. We apply 12.2 to the functions on the LHS and RHS of the identity in
question.
Multiplication by 7 satisfies e([7]e(x)) = [7]e(e(x)) and [7].(z) = 72 mod deg 2.
e(x) itself has both of these properties: e(e(x)) = e(e(x)) and e(z) = 7z mod deg 2
Therefore, Uniqueness (12.2) < [n].(z) = e(x).

REMARK. If K = Qp, 7 = p then e(z) = (1 4+ 2)? — 1 is a Lubin-Tate series and in
this case F, = G,, is the formal multiplicative group by uniqueness with multiplication
[a]ém(m):(1+m)a—1~

But we can also take €'(z)pz + 2P = there is a formal Z,-module F¢(z,y) such
that [p]r, (z) = px + 2P.

Let e, e’ be LT series for the same uniformizer 7. In 12.2, take n = 1, L(z) = 2,0’ = O.
12.2 = 3lf(x) € O[[z]] : f(z) =2z mod deg2,e(f(z)) = f(e'(x)).

We want to'show: f(Fur(2,)) = Fo(f(x), (1)),
Set G(z,y) = f(Fe (z,y)) and H(z,y) = Fe(f(2), f(y)), L(z,y) =2 +y,0" = O
G(z,y)=x+y=H(z,y) mod deg2.
e(G(,9)) = ([ (F (2, 9))) = 1€ (For(1,9))) = F(Fr (€' (2), €'(9))) = G(e'(2),¢' 1)
e(H{w,y)) = e(Fu(f(@), f() = Fule(F(@),e(f) = Flf(e'(@)), f(n) =
H(e'(2),€¢'(y))
122 = G=H.
f =2 mod deg2 = f is invertible. Thus, it is an isomorphism of formal groups.
We also need to show that Va € O, f([aler(x)) = [a]e(f(z)). This is done similarly.
First we need a definition.

DEFINITION (Deformation Space). Def ( —dlg)
REMARK. Def(Frus) = {*} <= over Of,, all LT formal O modules are isomor-

phic. F, =2 F,.

Now we start the proof.

Set v = (')~ '7 € O} hence (1)

Fact: The map Oy~ — Ok e p(e)e™ " is surjective (exercise).

Choose ¢ € Of  such that M(Q) Set L.(x) = ex = wl.(x) = mex =

ey 2 'o(e)x = 7' LP(x).

"12.2 = J10(z) € Ok, (x) such that §(z) = ex mod deg2,e(f(x)) = 6%(e'(x)).
Claim: 0¥ = 6 o [u].s (3).
Proof of Claim: Set 6; = 6% o [ule = O1(x) = o (e)uxr = p L (cu)z Zer.
coby =eb? [ule = (eBlule)?
coby =0eule = (69 ' [ule)Pe =6 oc
——

:[71'/] ’

e
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12.2 uniqueness = 61 =0 — |fOouls = 6¥|
apply ¢

Thus we haave proven the claim.
Back to the main proof, set ¢ = 0¥e’07t = fo[ule o € o' = flur'].07! =
3) ~~

O] 01 (4).
Therefore, €¥ = 0?[r]o (071)? = Ou]er [7]e (09) 7 = Ofu]er [7] e (O[] er) 1

= Olule [l [ul;} 071 = [B)[n]o6 " = &

(e

= ¢é(z) € Ok|[z]] and €e(z) (f eme”

and ¢(z) mod ' = 0% o [1']e 0071 mod 7' = 6¥(71)7 = 09((6%)"L(x9)) = a9
N~

lz = 7z mod deg?2

=

=x4
mod 7.
Therefore, € is a LT series for the uniformizer.
Let f: Fz = F. be the isomorphism over Ok from (ii).
Set 6 := f o0 as a power series.
Check: 0 : F., — F, is an isomorphism of LT formal O-modules over Ok,

Tuesday, 12/10,/2024

Suppose we have two different Lubin-Tate series e, ¢’ for different 7, 7’. Then,

eofl=0%0¢
e=[r]p., e = [m]g,
A homomorphism ¥ : For — F, must satisfy 9 o 7] = [7]e 0 9.
Important: This is not ¥ o [7']er = [7]. 0 9.
So, in the work of the last class, we in fact have e’ = e. It was overcomplicated for this reason.

Local Complex Multiplication. This ‘generalizes’ the construction of field extensions using
roots of unity (group = G,,,) and division points on elliptic curves.
Let C' = K& = algebraic closure of K D O¢ = valuation ring D Pc = maximal ideal =(a € C'|
laf < 1).

PROPOSITION 12.4. Let F(z,y) be a formal O-module over O. Then Pr becomes an O-module
by setting Vo, 8 € PcVa € O :a+ = F(a, ) and a La= [a]F ().
F

PROOF. Straightforward once we observe that F'(a, 8) and [a](«) converges since in Pe, |o| <
1. O

Let m € K be a uniformizer, e = Lubin-Tate series for m, F = F, = assoc. formal O-module by
12.3.

Set F[n] = Fe[n] ={a € Pe | [7"]r(a) = 0}.

Note that [7"]p(a) = 7" 2

EXAMPLE. K =Qp,e(z) =(1+2)? —1=[p/(z) = F = G, [p"](x) = (1 + z)P" —1.
Finl]={a€Pc|(1+a) —1=9}=pm —1
— l1+a€ ppn.
Note: F[n] is an O-module.
[7"](la] () = [[[7"] ()] = [a](0) = 0.
LEMMA 12.5. Set f(z) = 7a + 24.

i) fu(x) = fo---1o f(x) has all its roots C are in Pc.

—_—

ii) f](z) has all rooots (in C' \ Pg).

iti) f,(z) is separable and monic of degree ¢” and f,,(z) = 29" mod 7
)

fn (@)
fno1

iv is an Eisenstein polynomial for the PID O with coefficients in O.
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PRrOOF. By induction. If n =1 Then,
i) fla) =0 = 0= la(r+a? )| =|a|lr+ a9 = a=0o0r]|al= |7r|ﬁ < 1.
ii) f/(r) = 7+ qz? L. If char(K) = p then f'(z) = 7 so we're ddone. If char(K) = 0 then

plasog=pf = T ="1=75(%) = |7| =L
1

jus
q

q—1

> 1.

flla)=0 = |a| = >
iii) <= iandii.
iv) @ =7+ 297! is Eisenstein.

s
q

Now assume i to iv are true for n > 1.

) Fua(2) = F(Fa (@) = 7Fal@) + ful@)? = ful@) (7 + fula)t).
fn(z) = 29 + terms divisible by 7 and of degree < ¢".
la| >1 = |fu(a)] =|al?" >1 = |7+ fu(a)?"!| > 1. Thus all roots of f, are

in Pc.

) [l (@) = 70 () + afa (@) @) = F1(0) (7 + afale) ).
lo| <1 = |fu(a)] <1 = |gfa(x)?"!| < |m| hence f},,;(z) has no roots in Pc.

iii) <= iand ii.

iv) fomn@) oy fn(2)T" = 7 4 (29" + lower degree terms divisible by 72)?~! which is

fn(2)
Eisenstein.

O

PROPOSITION 12.6. ¥n > 1: Fn] is a free (O/7™)-module of rank 1.

PROOF. Note: u € O* : [u](x) = ux + x?(power series in z with coeff. in O).
= 2(u + z(power series in z with coeff. in O)) has only =0 as a root in Pc.

[ ([u)(2)) = =.

12.2(ii)) = all LT formal O-modules for the same uniformizer 7 are isomorphic over O.

= WLOG we may assume e = f hence [7]p(x) = 7a + 2.

12.5(ii) = | F[n] | = ¢" = 3\ € F[n]\ F[n—1] so that the map O = F[n],a ~ [a]()\)
:roo;g;/fn(.r)

has kernel (7™).

T factors as,

T

O — 0/(n") —— F[n]

injective

Both O/(7™) and F[n] has size ¢". So T is an isomorphism of O-modules.

COROLLARY 12.7. The maps O/(7") — Endg /(=) (F[n]) given by @ — (a + [a](r)) and
O*/(1+7"0) — Autp () (F[n]) given by @+ (a + [a](«)) are isomorphisms.

PROOF. End@/(wn)(F[n]) 1;6 Endo/(ﬂn)((,)/(ﬂ'n)) = O/(ﬂ'n)
Auto/(ﬂn)(F[nD :Aut@/(,rn)(O/(ﬂ'”)) = (O/(ﬂ'n))x = OX/(l—‘rW"O). O

exercise

DEFINITION. Let F' = F, be a LT formal O-module over O. The field L,, = L., = K(F[n]) is
called the field of 7™-torsion points (of F,).

It only depends on the uniformizer 7 and not on the LT series e.

Proof: 0 : F.. — F, isomorphism of formal O-modules [same 7] over O = O : F.[n] = F./[n]
isomorphism of O/(7")-modules. L., > a+ 0(a) =, c;a’ € L, .

The tower of fields K = Ly C L1 C Ly C --- is called the Lubin-Tate tower attached to .

THEOREM 12.8. i) L, is the splitting field of the polynomial f,(z) with f(z) = 7a + z? as
in 12.5.
i) VA€ F[n]\ Fln—1]: L, = K()\).
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iii) L, /K is Galois of degree (¢ — 1)¢"~! and the map:

G(Ln/K) = Gal(L,/K) = Autop /(zn)(F[n]) = O*/(1+7"0)(= (O/7"))

o (a— o))
is an isomorphism. Hence, Vo € G(L,/K)3la € O*/(1+7"0O) such that Yo € F[n] :
o(a) = [a](@).
iv) Any A € Fy[n]\ Fy[n — 1] is a prime element of L,,, and g,(z) = f: i(ji) is the minimal

polynomial of .
N, /k(=A) = and L, /K is purely ramified of degree (¢ — 1)¢"*.

PROOF. i) Since Le,, = L./, for two LT series e and ¢’ attached to 7 we may assume
e=f=mx+z9.
Then by definition L = K (F'[n]) is obtained by adjoining all roots of f,(z). Hence it
is the splitting field of f,.
ii) Follows from the fact that the set of 7™ torsion points is a module of rank 1, so 12.6 and
F[n] 3 [a](\) = power series in A with coefficients in O € K(\) = K(\) = K(F[n]).

ili) f, is separable by 12.5 = L, /K is Galois. g,(z) = ff_(lﬁ) is Eisenstein (hence

irreducible) and has A as a root.
= gn(z) is the minimal polynomial of A\ = [L,, : K| = [K()) : K] = deg(gn) =
(q— g
Thus we have the injective map G(L,/K) — Auto/(zn)(F[n]) by 0 = (a = o(a)).
Attt (o (Fln)) = OF /(1 + 770) = (O/(x"))
Size of 0% /(1 + 7"0) is (¢ — 1)g" 1.
Size of G(L,/K) = [L, : K] = (¢ — 1)¢" %
Thus the map is an isomorphism.
iv) Everything else has been shown. Last statement is 10.8.

Upshot: max abelian extension K* = K" . L. oo, L oo = o L.

If we take I?"\T'.Lﬂ,oo and take a different uniformizer 7’ then we have,
K" Ly oo = K" Ly o C K2

Thursday, 12/12/2024

Lubin-Tate theory and the maximal abelian extension. R. Gold, Local Class Field
Theory (LCFT) via Lubin-Tate groups, IUMJ, vol. 30 (1981).
M. Hazewinkel, LCFT is easy.
T. Yoshida, LCFT via LT theory
K = local non-arch. field, p = char(K) = 0,q = |K| = p’.
Fix a uniformizer 7 of K.
U=Ug =050 =147 Og,m>1[UO =1].
e = LT series for 7, e(x) = 7z mod deg2,e(x) =29 mod 7.
F = F, = LT formal O-module associated to e: [7]p(z) = e(x).
L,, = K(F[m]).
We have seen: L,,/K is a purely ramified Galois extension and the map:

¢:G(Ln/K)=Gal(L,/K)— U/U(m) ~ (Og/(7™))*

o u mod U™ if Yo € Flm] : o(a) = [u]p() is an isomorphism

We set L, = U$=1 L,,. Let as before K™ be the maximal unramified extension of K inside some
fixed algebraic closure C of K.

THEOREM 12.9. The maximal abelian extension of K is (in C) is the composite field K™". L.
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Ramification Groups. Let G = G(L/K) where L/K any finite Galois extension. vy, : L™ —»
Z is the normalized valuation of L [so it sends the uniformizer to 1].
Fori>—-1,G; =G(L/K); ={c € G(L/K) |Ya € O :vr(0(a) —a) > i+ 1}.
G_1=G=G(L/K).
Gy = inertia subgroup = ker(G(L/K) — G(L/K)) [since we want o(a) — a € (71) so we want
o(a) = a+ bl
This is called the ramification filtration of G. It’s separated: ;2 _; G; = {1}.

LEMMA 12.10. Identify G(L,,/K) with U/U™ via ¢ as above. Then,
Do<n<mueUM\U™MY = 1€ G(Ln/K)g-1\GLn/K)gm.
2) YO < n < m: G(Ly/K)gn—1/G(Ln/K)gn = U™ /UMD and this group is isomorphic
to K ifn =0 and isomorphic to K if 0 < n < m.
Note that, (1+ (7))/(1+ (7"+1)) 5 K by T+ ar” — a mod Pk.

PROOF. 1) Let u = 1+an™,|a| = 1, A\, € F[m]\F[m—1]. 12.8 = \,, is a uniformizer
of L,,.

[l (Am) = 1+ a7"]p(Am) = [Ur(Am) + [am" [ (Am) = Am + [a]F (Am—n)

n

= A +bA\p_n b€ OF
: m—

¢ AT =\, + AL + (divisible by A+ m - cAZ )
c|=1

Am +
F

excr

Note: F(z,y) =x+y+xy(---).
Reason: we want to have F(z,0) = z and F(0,y) = y.
Then [u](Am) — A = A% + (smaller).
UL, ([u)(Am) = Am) = vi,, (/\g:) =q¢"=(¢"—-1)+1
= u € G(Ly/K)gn_1\ G(Lim/K)gn.
2) is a consequence.
O

Upper ramification numbering. “Annoying” problem with the lower ramification num-
bering [the one introduced before] is: if K C L’ ¢ L, L'/K Galois, then the canonical map
G(L/K) - G(L'/K) does not map G(L/K); onto G(L'/K);.

However, it is possible to ‘renumber’ the filtration. Under the renumbering, this will be true.

We can define G(L/K), for any real x > —1 : G(L/K), = {0 € G(L/K) | Va € Or,vr(c(a)—a) >
x4+ 1}

Then, G(L/K), = G(L/K)[4.

DEFINITION (Herbrand Function). The Herbrand function 7y, x : [~1,00) — [~1,00) given by:

s dz
Ny (@) = /O Go: Gl

Note that:

-1 dz 0 dx
nL/K(*l):/O M/l[GoiGw]l

This is a strictly increasing function. It is also continuous.
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FIGURE 1. Herbrand Function

DEFINITION. The upper numbering of ramification groups is defined by:

G(L/K)® = G(L/K) =

We call t € [~1,00) a break of upper ramification filtration if G(L/K)® 2 G(L/K)**) for all
€ > 0.

PROPOSITION 12.11. The breaks of the upper ramification filtration of G(L,,/K) are the non-
negative integers:

G(Lm/K)(”) % U(n)/U(m) forn=0,---,m—1

In particular: G(L,/K)™ =1lim.  G(L,/K)™ =lim,_ U™ /U™ EUM™ =1+ (x")
Upper ramification numbering: If L D L’ D K are Galois extensions of K, then Vt > 1:
G(L/K)) —— G(L'/K)®
1— G(L/L') —— G(L/K) — G(L'/K)
Equivalently, G(L/K)YG(L/L")/G(L/L') = G(L'/K)®.

LEMMA 12.12. Let M/K be an abelian and purely ramified extension of K but not necessarily
finite. Then the maximal unramified extnesion of M is M.K™".

PROOF. It is an immediate consequence of 10.6. O
LEMMA 12.13. If L/K is a purely ramified abelian extension, then the breaks of the upper rami-
fication numbering are integers, and

Vn > —1:|G(L/K)™/G(L/K)" | < q
PROOF. Hasse-Arf theorem. O

PROPOSITION 12.14. Suppose L/K is abelian, L, C L and L/L, is purely ramified.
Then, L = L.

PROOF. Set G = G(L/K),H = Gal(L/L,) [which we want to prove is trivial].
Claim (easy): The upper ramification filtration:

() ¢ ={1}

t>—1
Then we take n > 0. Then,
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[G™: G"TY = [(G/H)" : (G/H)"TH[G" N H : G"™' N H]
12,13 = <gq >q—1,=q when n>0

So, if n > 1 we must have G» N H = G""'NH. But G =G D H.

In the case ¢ # 2 we have it for n > 0.

By induction we have H C G™ for all n > 0.
Then H C (,,5_, G = {1} so H is trivial and thus L = L.

From 12.14 one can deduce a proof of 12.9.
Tate: p-divisible groups.

T(G) =lim Gn)(K8) A g = Gal(K™8/K)
Suppose (P = 1.

lime ppn (Q,) =2 Z, © Y,
X8,
= N W
W
Zp(l) chc(g) 0o
Where:
Xeye - %@ e ZZ;
Cr——u Ve o(Q) = ¢t =g e
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