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Today:
History
Modular
Quotients
Matrices
Lang XVII, Section 1

(Fake) History

History of Groups
Most notions (let’s say what is a vector spce, what is a group) were vague.
Originally, groups were seen as:

• Symmetry Groups Sn

• GLn(R) aka n× n invertible matrices

• Subgroups of the above

• Representations of the above

For representation, consider G and a homomorphism G→ Sn [which is a group action
G↷ {1, 2, . . . , n} ] or a homomorphism G→ GLn [which is a group action on vector
space].
Part I of this course will be Ring Theory.

Part I: Ring Theory

Module

Convention: R = Ring with unity

Definition (Left Module). Left Module is an abelian group M with a function R×
M →M so that (r,m) 7→ rm such that R×M →M is Z-billinear.
Meaning, we have:
(r + r′)m = rm+ r′m
r(m+m′) = rm+ rm′

Also (rr′)m = r(r′m)
And finally 1m = m

By default, module = left module (since Jim doesn’t want Trump to get reelected, he
prefers left module)
module / field [module over field] = vector space
We can have submodules M ′ ◁ M
We have quotients M/M ′

We have the short exact sequence:
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0→M ′ →M →M/M ′ → 0

which means in each homomorphism, im = ker
So, M ′ →M is injective and M →M/M ′ is surjective.
Also, kernel of M →M/M ′ is M ′

Remark. Note that R is itself an R-module.
Convention: Submodule M of R = left ideal of R.
Left ideals are not enough to take quotients (like how we need normal subgroup for
group quotients).

So we need two sided ideals.

Definition (Two Sided Ideals). I ⊂ R is 2-sided ideal if I is abelian subgroup and
ri ∈ I, ir ∈ I aka “closed”.

Example. Consider a homomoprhism f : R → R′. Then ker f is a 2-sided ideal of
R.

For ring homomorphism we need:
f(r + r′) = f(r) + f(r′)
f(rr′) = f(r)f(r′)
f(1) = 1
If I ⊂ R is 2-sided then R/I is a quotient ring.
For example, M2(R) has no proper 2-sided ideal. But there exists left ideals!(
∗ 0
∗ 0

)
is a left ideal

Matrices are a good ‘source’ of non-commutative rings.
Given any ring R we can consider ring Mn(R) of n× n matrices.
Given R-module M we can get EndR(M) = {f :M →M,f is R-module map}
We have (f + g)m = f(m) + g(m), (fg)m = f(g(m)).
This is a ‘coordinate free approach’ to matrices.

Remark. Mn(R) and EndR(R
n) often looks the same, but in general Mn(R) ≁=

EndR(R
n).

Let’s first take n = 1. Let r0 ∈ R.
Consider R→ R map r 7→ r0r
We don’t like this because this is not a left module map!!!
So this is not even in EndR(R)
What if we consider r 7→ rr0?
This is a left module map, aka ∈ EndR(R)
But R→ EndR(R) is not a ring homomorphism.
So we are going to take the opposite ring.
Fix 1:
Given ring R, we can look into the mirror and find opposite ring Rop

Elements of Rop = elements of R.
0, 1,+ remain the same
But multiplication is reversed: define r ·op r′ = r′r
Alternate notation, we write op on elements.
Then rop(r′)op = (r′r)op

Then we have isomorphism Rop ∼= EndR(R) which is a ring homomoprhism!

Exercise. 1) R ∼= Rop ⇐⇒ ∃ antiautomorphism α : R→ R

Antiautomorphism means α preserves 0, 1,+ but reverses mutliplication

2) R commutative, then (MnR) ∼= (MnR)
op

3) Real quaternions H ∼= Hop

Remark. If you take right modules, you don’t need op.
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There is a contravariant endofunctor in the category of rings which takes objects of
rings to their opposite.
Ringop → Ring [opposite category, not the same thing]
R 7→ Rop

Fix 2: [From Lang]
Suppose we have module homomorphism ϕ : E = E1⊕· · ·⊕En → F1⊕· · ·⊕Fm = F

Then we have Ej → E
ϕ→ F → Fi which we define to be Ej

ϕij→ Fi

Then we have a matrix M(ϕ) so that M(ϕ) = (ϕ)ij

Then for

x1...
xn

 ∈ E1 ⊕ · · · ⊕ En

Then ϕ(x) = (ϕij)

x1...
xn


So, if we have En = E ⊕ · · · ⊕ E [n times]
Lang says, there is a ring isomorphism

EndR(E
n)
∼=→Mn(EndRE)

ϕ 7→ (ϕij)

If E = R as left module, then EndRR ∼= Rop

By combining these, EndR(R
n) ∼=Mn(R

op)

Wednesday, 8/28/2024

Today:
Group ring
Category
Simple modules
Question: The course is about ‘group representations’. So why study rings?
Answer: A group representation [homomorphism G → GLn(R)] is exactly the same
as a module over the ring RG.
So knowing everything about modules would tell us everything about representation.
Abelian Category!
Suppose we have a ring R and a group G. We can get a ring out of G

Definition (Group Ring RG). As an abelian group, this is the free R-module with
basis the elements of G.
Elements are symbols of the form r1g1 + · · ·+ rngn [finite linear combination].
0 is the trivial linear combination. So 0 = 0
1 = 1e = 1ReG
Multiplication is defined in the obvious way.
(
∑

i rigi)(
∑

j r
′
jg
′
j) =

∑
i,j rir

′
jgig

′
j

Suppose V is a R-module.
Then a homomorphism ρ : G→ AutR(V )↔ V is RG-module.
ρ 7→ (

∑
i rigi)v :=

∑
i riρ(gi)v

g 7→ (v → gv)← V RG module.

Example. C2 = {1, t}
Then we have ZC2 = {a+ bt | a, b ∈ Z, t2 = 0} = Z[t]/(t2)
Note that (1 + t)(1− t) = 1− t2 = 0 so we have zero divisors.
Take C∞ = ⟨t⟩
Then ZC∞ = Z[t, t−1] the laurent polynomial ring.
QC∞ = Q[t, t−1] is a PID [since it is a euclidean ring]
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Now we see categories.
If we fix R then we have a functor Group→ Ring given by G 7→ RG
Or we could say we have a functor Ring×Group→ Ring given by (R,G)→ RG

Definition. A category C consists of:

• objects Ob C

• morphism C(X,Y ) for X,Y ∈ Ob C

• compositions C(X,Y )× C(Y, Z)→ C(X,Z) given by (g, f) 7→ f ◦ g

• identity IdX ∈ C(X,X)∀X ∈ ObC

Such that we have:

• associativity: (f ◦ g) ◦ h = f ◦ (g ◦ h)

• composition with identity: IdY ◦ f = f = f ◦ IdX for f ∈ C(X,Y )

For example in the cateogry of groups, we have objects groups and morphisms homo-
morphism.

Morphism notations: f : X → Y or X
f→ Y for f ∈ C(X,Y )

Definition. f : X → Y is isomorphism if ∃g : Y → X such that f ◦g = Id, g◦f = Id.
Thehen we say X and Y are isomorphic and write X ∼= Y .

Example. Example of Categories:

• Set

• Ring

• Group

• Ab (Abelian Groups)

• R-modules (objects are modules, morphisms are homomorphisms h(rm) =
rh(m) )

• Given a group G we can get a category BG such that:

Ob BG = {∗} and BG(∗, ∗) = G

In this category, there is only one object ∗. The elements of the group are
morphisms.

Definition. Functor F : C → D is F : Ob C → Ob D given by X 7→ F (X)
And F : C(X,Y )→ D(F (X), F (Y )) such that

X
f→ Y gives us F (X)

F (f)→ F (Y )
such that F (f ◦ g) = F (f) ◦ F (g) and F (IdX) = IdF (X)

Example. Unit Functor Ring → Group given by R 7→ R× = {r ∈ R | ∃s ∈ R, rs =
1 = sr}
For example, Q× ∼= C2 ⊕ Z∞[= ±pe11 p

e2
2 · · · ]

Z× ∼= {±1} = C2

(ZC2)
× ∼= {±1,±t} ∼= C2 × C2

Definition. R is a division ring (= skew field) if 1 ̸= 0 and R× = R− 0.

Definition. Quaternions
H = {a+ bi+ cj + dh | a, b, c, d,∈ R}
Where i2 = j2 = k2 = −1
ij = k, jk = i, ki = j, ji = −k, kj = −i, ik = −j
This is a division ring since we can write down inverses.
α = a+ bi+ cj + dk gives us α = a− bi− cj − dk
So, norm(α) = αα = a2 + b2 + c2 + d2

So, α−1 = α
norm(α)
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Remark. Note that the quaternion group Q8 = {±1,±i,±j,±k} is a subgroup of
H× = GL1(H).
So, H is a RQ8 module.

Theorem 1 (Weddenburn’s Little Theorem). a. A finite commutative domain is a
field [easy]
b. A finite skew field is a field [aka commutative]

a is easy: suppose F is finite commutative domain. For 0 ̸= f ∈ F, consider multipli-
cation by f as a map F → F . It is injective, and finiteness implies surjective. So, it
is bijective, and there exsits inverse.
eg Z/p is a field.

Simple Modules

These are like primes. We also have some analogue of prime factorization.

Definition. R-module E is simple if:
E ̸= 0
No proper submodules, aka M ◁ E =⇒ M = 0 or E
In other words, E is a simple module if it only has two submodules: 0 and E.

eg simple R-modules are 1 dim vector spaces, aka R

Exercise. a) R2 is a simple M2(R)-module

b) Express M2(R) as direct sum of simple modules.

Friday, 8/30/2024

Exercise. Suppose finite G ̸= 1 and R ̸= 0 Prove that RG has zero divisors.

Definition. Direct product of rings R×S, addition and multiplication is done com-
ponentwise.
It is a product in the category of rings. aka:

T

R R× S S

f1
f

f2

π1 π2

for any pair of ring homomorphisms T
f1→ R and T

f2→ S we have a unique ring

homomorphism f : T
f→ R× S so that the diagram commutes.

Definition. e ∈ R is an idempotent if e2 = e.

0, 1 are trivial idempotents.(
0 0
0 1

)
is an idempotent in M2(R)

(0, 1) is an idempotent in R× R
If e is an idempotent so is 1− e

Definition. Idempotent e ∈ R is central if ∀r we have er = re(
0 0
0 1

)
is not central, but (0, 1) is.

Exercise. A ring can be written as a product ring, aka R ∼= R1 ×R2 with Ri ̸= 0 if
and only if there exists a nontrivial central idempotent.
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Semisimiple Modules

Definition. E is a simple R-module if it doesn’t have any nontrivial submodules.
If E ̸= 0 and M ◁ E then M ̸= 0 or M = E

Example. R2 is a simple M2R-module.
R× 0 is a simple R× R module.
Z/pZ is a simple Z-module

Lemma 2. [Schur’s Lemma]: Let E,F be simple R-modules. Then any nonzero
homomoprhism f : E → F is an isomorphism.

Proof. f ̸= 0 means ker f ̸= E and im f ̸= 0.
Since they are submodules, ker f = 0 and im f = F
So f is bijective.

Corollary 3. If E is simple, then EndRE is a skew field [any non-zero element is
invertible]

Example. Commutative example: EndM2R(R2) is a skew field.
In fact, EndM2R(R2) ∼= R

Definition (Direct Sum). Suppose Mi ◁ M for i ∈ I
Then,M =

⊕
i∈I Mi means, ∀m ∈Mi we have m =

∑
i∈I mi with mi ∈Mi uniquely.

There are notions of internal and external direct sums. The above is an internal direct
sum.
External direct sum: given {Mi}i∈I we can construct

⊕
i∈I Mi

Proposition 4 (Universal Property). Given a collection of homomorphisms {ti :
Mi → N}i∈I , it extends directly to a homomorphism

⊕
Mi → N . We denote this by⊕

fi

Remark. Note: Maps to product are easy, maps from direct sum are easy.

Proposition 5 (1.2, Lang XVII). Suppose we have isomorphism En1
1 ⊕ · · · ⊕Enr

r

∼=→
Fm1
1 ⊕ · · · ⊕Fms

s with Ei and Fj simple and non-isomorphic [ie for all k ̸= i, Ek ̸∼= Ei

and k ̸= j, Fk ̸∼= Fj ]
Then r = s and there exists a permutatation σ ∈ Sr so that Ej

∼= Fσ(j) and nj = mσ(j)

Corollary: If E is a finite direct sum of simple modules, then the isomorphism class
of simple components of E and multiplicities are well-defined.

Proof. We use Schur’s Lemma.
We write ϕ as a matrix (ϕji : E

ni
i → F

mj

j )
Since ϕ is injective, for all i there exists a j such that ϕji ̸= 0
Then, Ei

∼= Fj by Schur’s Lemma
Note that Fj are isomorphic. So, for all i, the j such that ϕji ̸= 0 is unique!
We also get σ : {1, . . . , r} → {1, . . . , s} so that σ(i) = j
Since σ−1 exists σ−1 exists, and thus r = s
Since ϕ is an isomorphism, individual ϕji : E

ni
i → F

mσ(i)

σ(i) are isomorphisms.

To complete the proof, we need a lemma
Lemma: Let E be simple. If En ∼= Em then n = m
Proof of lemma; Let D = EndRE. By Schur’s Lemma, D is a division ring.
Since En ∼= Em, we have EndR(E

n) ∼= EndR(E
m)

So, Mn(D) ∼=Mm(D)
Also, isomorphism not just as rings, but also as D-modules.
Every module over a skew field is free, and the number of dimensions is the same.
So, n2 = m2 =⇒ n = m
This finishes the proof.
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Lang XVII section 2

Theorem 6. Let E be an R-module. Then TFAE:
SS1: E is a sum of simple modules [so, we can write m ∈ E as sum of mi but it is
not unique]
SS2: E is a direct sum of simple modules [we can write as a sum, and it’s unique]
SS3: Every submodule of E is a summand.
F ◁ E ⇐= we can find F ′ so that E = F ⊕ F ′
SS3′ : any monomorphism F → E ‘splits’
SS3′′ Short exact sequence

0→ F → E → H → 0

splits.

This leads us to:

Definition. E is semisimple if it satisfies one of the above.

Davies: SS2 is best
eg: R = R× R
E = R× R is semisimple but not simple.
Because: E = R× 0⊕ 0× R

Wednesday, 9/4/2024

Recap: Semisimple modules.

Lemma 7. If E =
∑

i∈I Ei with Ei simple. Then, ∃J ⊂ I such that E =
⊕

j∈J Ej

Corollary 8. SS1 =⇒ SS2

Proof. Let J ⊂ I be maximal such that
∑

j∈J Ej =
⊕

j∈J Ej

This exists by Zorn’s lemma.
∀i ∈ I − J , we have Ei ∩

⊕
j∈J Ej ̸= ∅ by maximality.

Since Ei is simple, Ei ⊂
⊕

j∈J Ej . Therefore, E =
⊕

j∈J Ej .

True of False? Every module has a maximal proper submodule.
False!!! Exercise.

Exercise. a) If M ◁ F proper and M maximal, then F/M is simple.

b) Find a ring R, module M which does not have proper maximal submodules.

c) If F is a finitely generated R-module, then it is contained in a proper maximal
submodule.

Proof of SS2 =⇒ SS3. Suppose F ◁ E =
⊕

i∈I Ei with Ei simple. Let J ⊂ I be
maximal such that:

F +
⊕
j∈J

Ej = F ⊕
⊕
j∈J

Ej

Take any i ∈ I − J . Then, Ei ∩
[
F ⊕

⊕
j∈J Ej

]
̸= 0 by maximality of J .

Since Ei is simple, Ei ⊂ F ⊕
⊕

j∈J Ej .

Therefore, E = F ⊕
⊕
j∈J

Ej︸ ︷︷ ︸
F ′

.

We have found F ′, which proves SS3.

Proof of SS3 =⇒ SS1.

7



Lemma 9. 0 ̸= F ◁E and E satisfies SS3. Then, there exists simple finitely generated
S ◁ F .
Plan: M ◁

̸−
F0
f.g.

◁ F ◁ E.

Then, choose 0 ̸= v ∈ F . Let F0 = Rv.

Exercise. M exists. [Zorn’s Lemma]

Let E =
∑

simple S◁E S.
Then, by SS3, E = E0 ⊕ E′0.
Lemma and definition of E0 implies: E′0 = 0. So, E is indeed a sum of simple
R-modules. We’re done!

Proposition 10 (2.2). Every quotient module and submodule of a semisimple mod-
ules is semisimple.

Proof. Quotients: Suppose M = E/N . We have surjective f : E → M with E
semisimple.
SS1 implies E =

∑
i∈I Si with Si simple.

Then, M =
∑

i∈I f(Si)
Schur’s lemma implies f(Si) is either 0 or simple, so M satisfies SS1.
Submodules: Suppose F ◁ E with E semisimple. SS3 implies E = F ⊕ F ′. Thus
E ∼= E/F ′, so it is semisimple by the quotient result.

Preview:

Definition. A ring R is semisimple if and only if all R-modules are semisimple.
Lang defines semisimple differently: A ring R is semisimple if it is semisimple as an
R-module.

Theorem 11 (Artin-Weddenburn Theorem). A ring is semisimple if and only if it is
isomorphic to a finite product of matrix rings over division algebras:

R ∼=Mn1(D1)× · · · ×Mnk
(Dk)

CG,RG are semisimple. We also have the result:

Theorem 12 (Maschke’s Theorem). The group ring kG is semisimple if G is finite
and k is a field of characteristic prime to G.
This also works with char k = 0. It is in fact an if and only if.

So FpG is also semisimple given p ∤ |G|

Proof. Outline: let |G| = n. We will verify SS3.
Let F ◁ E be kG modules.
k is a field, so there exists a k-linear projection π : E → F such that π(f) = f for
f ∈ F [take a basis of F as a k-vector space, complete it to a basis of E].
Now, define an ‘average’.

π′(e) =

∑
g∈G gπ(g

−1e)

n

Then, π′ : E → F is a kG-linear projection, meaning π′(ge) = gπ′(e).
Then E = imπ′

F
⊕ kerπ′

F ′
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Friday, 9/6/2024

Lang XVII, Sectiion 3

“Density Theorem”
Suppose R is a ring and E is a R-module. Then we have maps R × E → E by
mutliplication on the left.

Definition (Commutant). R′ = R′(E) = EndR(E) is a ring.
ϕ ∈ R′ ⇐⇒ ϕ : E → E such that ϕ(re) = rϕ(e). It ‘commutes with E’.
Note that E is also an R′-module, with R′ × E → E given by (ϕ, e) = ϕ(e).

Definition (Double Commutant). We can iterate on the previous definition.

R′′ = R′(R′E) = EndR′(E)

Therefore,

R′′ = EndR′(E) = EndEndR(E)(E)

This means, f ∈ R′′ ⇐⇒ f : E → E,∀ϕ ∈ R′, f ◦ ϕ = ϕ ◦ f . So, things in R′′:

commute with things which commute with r ∈ R.

Example. Suppose R = R and E = Rn. Then,

R′ = EndR(Rn) =Mn(R)

R′′ = EndMn(R)(R
n)

rI

=
←

R
r

Suppose V = vector space.
V ∗ = Hom(V,R)
Then we have evaluation map ev : V → V ∗ given by v 7→ (ϕ 7→ ϕ(v)).
ev is 1-1.
ev is onto iff dimV <∞.
With inspiration from this, we define,

Definition (Evaluation map). ev : R→ R′′ given b r 7→ (e 7→ re)
We define fr : E → E given by fr = ev(r)

Proposition 13. a) fr ∈ R′′

b) ev is a ring homomorphism.

Proof. a) fr(ϕ(e)) = rϕ(e) = ϕ(re)ϕ(fr(e))

b) ev(r + r′) = ev(r) + ev(r′), ev(1) = 1.

(ev(r))(ev(r′))e = ev(r)(r′e) = rr′e = ev(rr′)e

Lemma 14 (3.1). Suppose E is semisimple over R, e ∈ E and f ∈ R′′
Then ∃r ∈ R such that re = f(e) [i.e. f(e) = ev(r)(e)]

Proof. E is semisimple, and Re is a submodule. Therefore, we can write E = Re⊕F .
Define π : E → E be projection to Re.
Then π ∈ E′ =⇒ f ◦ ϕ = π ◦ f =⇒ f(e) = f(π(e)) = π(f(e)) = re for some
r ∈ R.

We will prove a stronger version of this lemma called the Jacobson Density Theorem.

Theorem 15 (3.2, Jacobson Density Theorem). Suppose E is semisimple over R
e1, · · · en ∈ E
f ∈ R′′
Then, ∃r ∈ R such that rei = f(ei)∀i.
Therefoe, if E is finitely generated over R′, then R→ R′′ is onto.
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Proof. We use a diagonal trick.
Special Case: E is simple.
Idea: Apply the lemma on E with e = (e1, · · · , en) and fn : En → En such that
f(y1, · · · , yn) = (f(y1), · · · , f(yn)).
We need to check that f ∈ R′(R′(E)) to apply it.
This would imply that fn ∈ R′(MnR) =

E simple
R′(R′(En))

Therefore, ∃r such that re = fn(e). This finishes the proof.
For E semisimple, key idea is fn ∈ R′(R′(E)) as above. [Complicated for infinite
sums. We avoid.]

Application:

Theorem 16 (Burnside’s Theorem). Suppose k is an algebraically closed field.
Take subring R such that k ⊂ R ⊂Mn(k)
If kn(= E) is a simple R-module, then prove that:

R =Mn(k)

Exercise. Suppose D2n is the dihedral group of order 2n, aka

D2n = ⟨r, s | rn = 1, s2 = 1, srs−1 = r−1⟩

Let ζn = e2πi/n ∈ C
Then we can define a homomorphism D2n → GL2(C) given by:

r 7→
[
ζn 0
0 ζ−1n

]

s 7→
[
0 1
1 0

]
This gives us a ring map π : CD2n →M2C
Prove the following:

a) Prove that C2 is a simple CD2n module [can be done without technology]

b) Use Burnside’s theorem to show that π is onto.

Note that Burnside’s theorem doesn’t work if k is not algebraically closed.
We have:

R ⊂ C ⊂M2R

since we can embed C into M2R.
C is a simple R module, but C ̸=M2R

Proof of Burnside’s Theorem. Step 1: We show that EndR(E) = k
Note that, k <

central
EndR(E)
skew field

⊂ Endk(E)
finite dim/k

∀α ∈ EndR(E), k(α) is a field and finite dimensional /k.
Therefore, k(α) = k since k is algebraically closed.
Thus, α ∈ k. This finishes Step 1.
Step 2: We show that R = Endk(E).
R ⊂ Endk(E) by hypothesis.
Suppose A ∈ Endk(E). Let e1, · · · , en be a k-basis for E = kn.
Density theorem implies: ∃r ∈ R such that Aei = rei for all i.
Therefore, A = r ∈ R.
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Monday, 9/9/2024

Today:
Density Theorem
Characters determine representation
Artin-Wedderburn Theorem
Homework due Monday 9/16, Exercises 1-7
Recall Jacobson Density Theorem:
If E is semisimple over R, e1, . . . , en ∈ E and f ∈ R′′ then,

∃r ∈ R s.t. f(ei) = rei∀i

Recall that R′′ is defined as follows:

f ∈ R′′ ⇐⇒ f : E → E s.t. ∀ϕ ∈ R′ = EndRE, f ◦ ϕ = ϕ ◦ f

Also recall Burnside’s Theorem:
Suppose k is an algebraically closed field, and k ⊂ R ⊂Mn(k) are subrings
If kn is a simple R-module, then
R =Mn(k)

3.7 Existence of Projection Operators

Theorem 17. Suppose E = V1⊕· · ·⊕Vm, simple non-isomorphic R-modules. Then,
for any i, there exists ri ∈ R such that,

riv =

{
v, if v ∈ Vi;
0, if v ∈ Vj , i ̸= j

So, each projection map is just multiplication.

Proof. This is a consequence of the density theorem.
Choose nonzero ek ∈ Vk.
Let f = πi : E → E which is a projection on Vi.
Note that f ∈ R′′ since for all ϕ ∈ R′, ϕ(Vk) ⊂ Vk [Schur’s Lemma, non-isomorphic].
Density theorem =⇒ ∃ri ∈ R such that riek = πi(ek).
Note that Vk = Rek so ∀v ∈ Vk, v = rek.
So, riv = rirek = rπi(ek) = πi(rek) = πi(v)
Which is what we wanted.

Correction to the Existence of Projection Operators
Suppose k is a field, R is a k-algebra so that R is semisimple. Suppose R-module
E = V ⊕ V ′, dimk E <∞.
For all simple L ◁ V,∀L′ ◁ V ′ then L ∼= L′

Then, ∃r ∈ R such that for all e ∈ E,

re =

{
e, if e ∈ V ;

0, if e ∈ V ′;

Proof. We apply density theorem. Since we have finite dimension, we have:

{e1, · · · , en} = (k-basis of V ) ∪ (k-basis of V ′)

Let πV : E → E be the projection on V .
Then, πV ∈ R′′ [the second commutant] since ∀ϕ ∈ R′, ϕ(v) ⊂ V, ϕ(v′) ⊂ V ′.
Density theorem implies ∃r such that rei = πv(ei).
Then ∀a ∈ k ⊂ center R,
r(aek) = a(rek) = aπv(ek) = πv(aek)
Therefore, re = πv(re).
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Question: What is a k-algebra?
Following Atiyah-McDonald, let k be a commutative ring [often but not always a
field]. Then,

R is a k-algebra
def⇐⇒ homomorphism h : k → R, h(k) ⊂ center(R)

Example. Any ring is a Z-algebra, homomorphism sends n to 1 + 1 + · · ·+ 1
k field, R ̸= 0 =⇒ k ↪→ R
k-algebra ⇐⇒ k ⊂ center(R)

Corollary 18 (3.8). Suppose char k = 0, R is a k-algebra, E,F semisimple over R,
finite dimensional over k.
For r ∈ R, let:
fEr : E → E be fEr (e) = re
fFr : F → F be fFr (f) = rf
If Tr

(
fEr
)
= Tr

(
fFr
)
for all r ∈ R,

Then E ∼= F as R-modules.

Proof. Let V be a simple R-module.
Suppose E = V n ⊕ direct sum of simple R-modules not isomorphic to V
F = V m ⊕ direct sum of simple R-modules not isomorphic to V
We want to show n = m
Let rv ∈ R be the projection operation from 3.7.
Then, Tr

(
fErv
)
= Tr(rv· : E → E) = dimk V

n = ndimk V

Similarly, Tr
(
fFrv
)
= mdimk V =⇒ n = m

Corollary 19 (Characters determine representations). Suppose k is a field and
char k = 0. Let G be a finite group. Suppose:
ρ : G→ GLn(k)
ρ′ : G→ GLm(k)
with kG-modules E = kn over ρ and F = km over ρ′

If Tr(ρ(g)) = Tr(ρ′(g)) for all g,
Then E ∼= F as kG-modules.
Note that, substituting g = 1 gives us:
Tr(ρ(1)) = Tr(ρ′(1)) =⇒ Tr(I) = Tr(I) =⇒ n = m.

Definition ((semi)simple rings). Note that if R is a ring, then R is a left module as
well. We write RR when we’re considering it as a left module, and RRR when we are
considering a two sided ideal.
R is called a semisimple ring if RR is a semisimple R-module.
R is called a simple ring if R is a semisimple ring, and for all simple L,L′ ◁R R =⇒
L ∼= L′

This means, RR = ⊕i∈ILi where Li are simple (left) ideals such that Li
∼= Lj for all

i, j.
Recall that an ideal is simple if it has no proper sub-ideals.

Example. M2(H) is a simple ring. We can write it as direct sum of two ideals[
∗ 0
∗ 0

]
⊕
[
0 ∗
0 ∗

]
Example. M2(H)× R is semisimple.[

∗ 0
∗ 0

]
× 0⊕

[
0 ∗
0 ∗

]
× 0⊕

[
0 0
0 0

]
× R

Artin-Wedderburn generalizes this.

Theorem 20 (Artin-Wedderburn Theorem). i) R simple ⇐⇒ R ∼= Mn(D)
where D is a skew-field.

ii) R semisimple ⇐⇒ R ∼= R1 × · · · ×Rs simple rings.

12



Wednesday, 9/11/2024

Today we discuss the Artin-Wedderburn Theorem.
Exercise: C2 = {1, g}, prove that QC2 is a semisimple ring.
QC2 = B1 ⊕B2 2-sided ideals
QC2

∼= Q×Q.

Lemma 21. Suppose we have a ring R which is decomposed as a sum of (left) ideals:

RR =
⊕
i∈I

Li with Li ̸= 0

Then |I| <∞.

Proof. Suppose RR =
⊕

j∈J Lj where Lj are ideals. We want to prove that only
finitely many are non-zero.
Note that, 1 =

∑
j∈J ej . We use only finitely many elements here, so 1 =

∑
i∈I ei

where ei ̸= 0, I ⊂ J, |I| <∞.
For all r ∈ R we have r = r · 1 = r

∑
i∈I ei =

∑
i∈I rei ∈

∑
i∈I Li.

Therefore, RR =
⊕

i∈I Li a finite sum!

Now we go to the theorem.

Proof of Artin-Wedderburn Theorem Part I. We want to prove: R simple ring ⇐⇒
R ∼=MnD where D is a skew field.
First, note that RR ∼= Ln where L is a simple ideal [so no proper sub-ideals]. There-
fore,

Rop ∼= EndR(RR) ∼= EndR(L
n) ∼=Mn( EndR L︸ ︷︷ ︸

division ring

)

Taking transpose,

R ∼=Mn(EndR L)
op ∼=Mn((EndR L)

op) =Mn(D)

So we are done with one direction!
The other direction is a exercise. Here are the steps:

Step 1: MnD =


∗ 0 · · · 0
∗ 0 · · · 0
...

...
. . .

...
∗ 0 · · · 0

⊕ · · · ⊕

0 0 · · · ∗
0 0 · · · ∗
...

...
. . .

...
0 0 · · · ∗



Step 2: Each summand is isomorphic to Dn =


∗
∗
...
∗


Step 3: Dn is a simple module.

Remark. R simple ⇐⇒ R artinian, R has no proper 2-sided ideals. Some definitions
forgo the artinian condition, in this case these are called artinian simple rings.

Lemma 22 (4.2). Suppose L is a simple ideal and M is a simple module so that
L ≁=M . Then LM = 0.

Proof. This is a direct consequence of Schur’s lemma. Consider the map ϕm : L→M
given by l 7→ lm for m ∈M . Since this can’t be an isomorphism, it must be the zero
map. Thus, lm = 0.

13



Proof of Artin-Wedderburn Theorem Part II. Idea: Decompose R as direct sum of
simple ideals. Partition the set of simple ideals so that members of a partition are
isomorphic to each other, members of a partition are not isomorphic to members of
another partition. Direct sum of each partition gives us one Rj .
Suppose R is semisimple.
Let L1, · · · , Ls be a set of pairwise non-isomorphic simple ideals [meaning Li ̸∼= Lj ]
So that, for all simple L <R R,L ∼= Li for some i.
Let Bi =

∑
L∼=Li

L.
Claim: Bi is a 2-sided ideal.
Proof of Claim:

BiR =
4.2

BiBi ⊂ RBi =
Bi is a left ideal

Bi

Thus the claim is proven.
Claim: We have a ‘block decomposition of R’, meaning,
Proof of Claim:

RRR = B1 ⊕ · · · ⊕Bs

Subclaim: Bi ∩
∑

j ̸=iBj = 0
Proof of Subclaim: Every r ∈ R, we have that r ∈ L where L is simple. L ⊂ Bi =⇒
L ∼= Li. L ⊂

∑
j ̸=iBj =⇒ L ∼= Bj for some j ̸= i which is not possible.

Now, we go back to the main proof.
We can write 1 = e1 + · · ·+ es.
Then, Ri := (Bi, ei) is a ring!
We have R ∼= (R1, e1)× · · · × (Rs, es), so we’re done.
The other direction is an exercise.

Friday, 9/13/2024

Key idea:

RR = Ln =⇒ EndRR ∼=Mn(EndR L)

Note that Rop ∼= EndRR [function composition is written in the opposite direction].
Suppose L1, · · · , Ls are non-isomorphic simple R-ideals.
L simple =⇒ L ∼= Li.
Define B =

∑
simple L∼=Li

L ◁R RR.
We can prove that it is a two sided ideals.
Then we can write R ∼= R1 × · · ·Rs simple, where
Ri = (Bi, ei) [ei is the identity in Bi].

Theorem 23 (4.4). Suppose E is a R-module.

Ei :=
∑

simple M◁E

M∼=Li

M

Then, E =
⊕s

i=1Ei

Ei = eiE = BiM .

Corollary 24 (4.5). If R is semisimple, M a simple R-module, then M ∼= Li for
some i.

Corollary 25 (4.6). All simple modules of a simple ring are isomorphic.

M ∼= ⊕L

14



External Product vs. Internal Product

Definition (External Product). If we have [finite] rings R1, · · · , Rs we can construct
the ring:

R1 ×R2 × · · · ×Rs

Definition (Internal Product). ‘Block Decomposition’: If we have a ring R and we
can write it as sum of 2 sided ideals:

RRR = B1 ⊕ · · · ⊕Bs

Then we have ej ∈ Bj so that:

1 = e1 + · · ·+ es

Then, each Bj has a ring structure with ej as identity. Then,

R ∼= (B1, e1)× · · · × (Bs, es)

Just for clarity:

Definition (Direct Sum of Ideals).

RRR = B1 ⊕ · · · ⊕Bs

If and only if for every r ∈ R,

r = b1 + · · ·+ bs

where bj ∈ Bj and the expression is unique.

Jim’s Rant: A subring has to have the same identity. So, (Bj , ej) is not a subring.
Block Decomposition is not a direct sum of rings!
This is because in category theory, sum refers to the co-product.

Lemma 26. Let k be a field, and let D be a skew-field which is a k-algebra such that
dimkD <∞. Then,

a) ∀α ∈ D we have k[α] is a field.

b) k algebraically closed =⇒ D = k.

Example. If k ∈ R, D = H, α ∈ H− R then k[α] ∼= C.

It is not completely obvious since k[i+ j] ∼= C as well.

Proof. a) D is a k-algebra. Therefore, k[α] is commutative. We just need to find
inverse.

Let 0 ̸= β ∈ k[α]. It is enough to prove that for β ∈ k[α], multiplication map
·β : k[α]→ k[α] is bijective.

·β is a finite dimensional linear transformation so those are true.

b) For all α ∈ D we have: k[α] = k since k is closed. So, α ∈ K. Thus D = k.

Corollary 27. Suppose G is finite. Then,

CG ∼=
s∏

i=1

Mni(C)

Proof. Artin-Wedderburn Theorem plus the previous lemma.
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Example. Suppose Cn = ⟨g⟩ cyclic and ζn = e2πi/n. Then,
QC2

∼= Q+ ×Q− where g 7→ (1,−1).
If p is prime we can write:
Q(Cp) ∼= Q×Q(ζp) where g 7→ (1, ζp).
C[Cn] ∼= Cn where:
g 7→ (1, ζn, · · · , ζn−1n )
Q[C2 × C2] ∼= Q4 where:

(1, g) 7→ (1, 1,−1,−1)

(g, 1) 7→ (1,−1, 1,−1)

R[Q8] ∼= R× R× R× R×H where R[Q8] ↣ R[C2 × C2]
Some other examples: Q[Cn],C[Q8],Q[D2n],R[D2n],C[D2n]

Representation Theory

Here, G is a finite group and k is a field.

Representations Modules over kG Characters

ρ : G→ GL(V ) where
V is a finite dimensional V is a kG module χ : G→ k, χρ(g) Tr ρ(g)

vector space

Table 1: Representations, Modules and Characters

Monday, 9/16/2024

We have:

representation ⇐⇒ modules over kG =⇒ [⇐= only if char k = 0] characters.

rep → kG-module
ρ 7→ Vρ by (

∑
g agg)v :=

∑
g agρ(g)v

ρv ← V
ρV (g)v := gv
Recall the definition of character:
We have the trace map:

Tr :Mnk → k

Where Tr(aij) =
∑

j ajj [or the sum of eigenvalues]

We have Tr(AB) = Tr(BA) which implies Tr
(
PAP−1

)
= Tr(A).

So, Tr is basis independent. Thus,

Tr : Endk V → k

Definition (character). Trace is an endomorphism map. This gives us:

G GL(V ) k
ρ

χp

Tr

This is called the character of p

16



There’s a correspondence between kG modules and Representations concepts:

Repesentations Modules over kG

irreducible simple
isomorphism
direct sum

Hom
dual

tensor product

Table 2: Rep and kG-mod

Irreducible vs Simple
We say irreducible representation, when we on the other hand say simple modules.
Same concept!
Isomorphism
Suppose we have two representations:
ρ : G→ GL(V )
ρ′ : G→ GL(V ′)
We say two representations are isomorphic when:

ρ ∼= ρ′
def⇐⇒ Vρ

ϕ∼= Vρ
ϕ∼= V ′ρ′ ⇐⇒ ∃k isomorphism s.t.

ϕ(gv)=gϕ(v)

ϕ : V → V ′ s.t. ∀g ∈ G we have the following commutative diagram:

V V

V ′ V ′

ρ(g)

ϕ ϕ

ρ′(g)

ϕ is called the intertwining map.

Corollary 28. ρ ∼= ρ′ =⇒ χρ = χρ′

Direct Sum
Suppose V ⊕W is a kG-module.

ρV⊕W : G→ GL(V ⊕W )

is given by:

ρV⊕W =

[
ρV 0
0 ρW

]
We also have χV⊕W = χV + χW .
Two Representations

Definition (Trivial Representations).

ρ : G→ GL(k)

g 7→ 1

Is the trivial representation. Also, χρ ≡ 1.

Definition (Regular Representation). Consider the kG-module kGkG. We have:

ρkG : G→ GL(kG)

This is injective.
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Note that G ↷ G by multiplication, this is a free action. For finite group G with
|G| = n,
G↣ Bijection(G,G) so G is a subgroup of Sn. So we have:

G Sn GL(kn)

regular rep.

With the action of ‘permuting the standard basis’.
Exercise: Compute character of Regular Representation.
We have, in line of the previous theorem:

Theorem 29 (Maschke’s Theorem). If V ⊂W as kG-modules and char k ∤ |G| then
∃V ′ such that W = V ⊕ V ′

Proof. First, find a k-linear map π :W → V such that π(v) = v for all v ∈ V .
We average it to make it kG-linear:
π′ :W → V given by:

π′(w) :=

∑
g gπ(g

−1w)

|G|
We have: π′ is kG-linear and π′(v) = v
We can take V ′ := kerπ

Thus, for w ∈W we can write w = π′(w) + (w − π′(w)).
Note that Maschke’s theorem implies kG is semisimple. Artin Wedderburn implies
semisimple kG module is a direct sum of irreducible modules.

V ∼=
⊕
i

niVi

χV =
∑
i

niχi

Homomorphisms:
Suppose V,W are kG-modules, ”representations”. Then,
HomkG(V,W ) is a k-vector space.
Homk(V,W ) is a kG-module.
we define: (gf)v := gf(g−1v)
i.e. ((

∑
g agg)f)v =

∑
g ag(gf(g

−1v))

The g−1 inside is needed for associativity: (g′g)f = g′(gf)
Officially this is a functor.
Homk(−,−) : (kG-mod)op × kG-mod→ kG-mod
Special case:
Dual Representation: W = k. Then,
V ∗ = Homk(V, k).
So, (gf)(v) = gf(g−1v) = f(g−1v)
Exercise: χV ∗ =?

Wednesday, 9/18/2024

Tensor Products

Motivation:
Product Structure: −⊗−: kG-mod ×kG-mod → kG-mod given by V ⊗k W .
Group action works diagonally, g(x⊗ y) = (gx)⊗ (gy), extended linearly.
Extension of scalars:

RG⊗R C = CG

Product of Groups: k[G×H] = kG⊗k kH

18



When for k a field then modules are vector spaces km and kn which are easy:

kn ⊗k k
m = knm

dim(kn ⊗k k
m) = mn

{ei} a basis for kn

{fj} a basis for km

Then {ei ⊗ fj} is a basis for kn ⊗ km.
However, tensor product consists of more than ‘pure’ tensors.

Definition (Tensor Product). Let R be a commutative ring. Tensor product is a
functor:

−⊗R − : R−mod×R−mod→ R−mod

(A,B) 7→ A⊗R B

[Functor meaning if we have homomorphism on the left we will have homomorphisms
on the right]
Construction:
Let F (A×B) be the free R-module with basis A×B. Then a typical element of the
basis is (a, b) ∈ A×B.
Let S be the sub-module generated by the following:

1) (a1 + a2, b)− (a1, b)− (a2, b)

2) (a, b1 + b2)− (a, b1)− (a, b2)

3) r(a, b)− (ra, b)

4) r(a, b)− (a, rb)

Then, we define:

A⊗R B :=
F (A×B)

S

and write a⊗ b for the image of (a, b).
This means, a typical element of A⊗R B is:

n∑
i=1

ai ⊗ bi ∈ A⊗R B

We also have the following relations:
(a1 + a2)⊗ b = a1 ⊗ b+ a2 × b
a⊗ (b1 + b2) = a⊗ b1 + a⊗ b2
r(a⊗ b) = (a⊗ rb) = (ra⊗ b)

Exercise. Z/2⊗Z Z/3 = 0

Proposition 30. Suppose A,B,M are R-modules, and

ϕ : A×B →M is R-billinear

Meaning,

1) ϕ(a1 + a2, b) = ϕ(a1, b) + ϕ(a2, b)

2) ϕ(a, b1 + b2) = ϕ(a, b1) + ϕ(a, b2)

3) rϕ(a, b) = ϕ(ra, b) = ϕ(a, rb)
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Then, by definition,

π : A×B → A⊗R B

is R-bilinear.

Proposition 31 (Universal Property of Tensor Product). π is initial in the category
of bilinear maps with domain A×B. Meaning, every bilinear map from A×B factors
through π.

A×B M

A⊗R B

∀ϕ bilinear

π
∃!ϕ

This diagram commutes

Proof. For uniqueness, note that, ϕ(a⊗ b) = ϕ(π(a, b)) = ϕ(a, b)

For existence, define ϕ̂(a, b) = ϕ(a, b) where ϕ̂ : F (A × B) → M . Then ϕ̂(S) = 0 so
ϕ : A⊗R B →M exists.

Proposition 32 (Rephrasing Universal Property in Terms of Adjoint Functors).

Hom(A⊗B,C) ∼= Hom(A,Hom(B,C))

Proof.
f 7→ (a 7→ (b 7→ f(a⊗ b)))

(a⊗ b 7→ g(a)b)← g

R-mod R-mod

Hom(A, Hom(−,C))

Hom(A⊗−,C)

Proposition 33. 1) Commutative A⊗R B ∼= B ⊗R A

2) Identity R⊗R B ∼= B

3) Assocative (A⊗B)⊗ C ∼= A⊗ (B ⊗ C)

4) Distributive (
⊕

αAα)⊗B ∼=
⊕

α(Aα ⊗B)

5) Functorial

(
f : A→ A′

g : B → B′

)
=⇒ f ⊗ g : A⊗B → A′ ⊗B′

6) Exactness Short Exact Sequence 0 → A
f→ B → C → 0 =⇒ Short Exact

Sequence 0→ A⊗M f⊗1M→ B ⊗M → C ⊗M → 0

7) Right Exactness M R-mod,0 → A → B → C → 0 =⇒ Exact Sequence
A⊗M → B ⊗M → C ⊗M → 0
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Friday, 9/20/2024

Lang Section 2

Tensor Product of Representation
Suppose V,W are k-vector spaces, then we have V ⊗kW is also a k-vector space. But
they all are kG-modules as well:

g(v ⊗ w) = gv ⊗ gw

Proposition 34. The character is multiplicative:

χv⊗w = χvχw

Proof. Let {ei} be a basis for V and {fj} a basis for w.
Suppose gei =

∑
k akiek

And gfj =
∑

l bljfl
Then, g(ei × fj) = gei × gfj =

∑
k,l ekibljek × fl

Take (k, l) = (i, j).
Then, χv×w(g) =

∑
i,j aiibjj = χv(g)χw(g)

Consider f : G→ k. We have:
{1d chars} ⊂ {simple chars} ⊂ {chars} ⊂ {virtual chars} ⊂ {class functions}
We explain these later.

Definition. f is a character if ∃ρ : G→ GLk(V ) such that f = χρ = Tr ◦ρ

Definition. f is a class function if ∀g, h ∈ G we have f(hgh−1) = f(g)

Definition. f is a virtual character if ∃ρ, ρ′ such that f = χρ − χρ′

Definition. f is simple (=irreducible) character if f = χV where V is a simple
kG-module.

Definition. f is 1-dimensional character if f : G → k× is a homomorphism. eg
trivial character χ1(g) ≡ 1.

Proposition 35. Class Functions are k-algebras. Virtual characters are a commu-
tative ring.

Now, suppose char k ∤ |G|. Then,

kG ∼=Mn1
(D1)× · · · ×Mns

(Ds)

Assume Mn1
(Dn1

) = k. Then we have the trivial representation: ga = a.
If Li = Dni

i is a simple kG-module, then
χi = χLi is a simple characteristics.
We have 1 = e1 + · · ·+ es [central non-trivial idempotents].
χi(e) = Tr(IdLi

) = dimk Li = ni dimkDi.

Example. Consider Q8 ↪→ H×. Then,

χH(e) = 4

Now, consider kGkG ∼=
⊕

i niLi, the ‘regular representation’. ejLi = 0 for i ̸= j.
Then,

χi(ei) = χi(1) = χi(e) = dimk Li

So, char χ : G→ k extends to χ : kG→ k by
∑
agg 7→

∑
agχ(g).

If V is a finitely generated kG-module, we have

V ∼= m1L1 ⊕ · · · ⊕msLs

where mi ≥ 0.
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Theorem 36 (2.2, 2.3). χv =
∑

imiχi : G → k with mi uniquely determined if
char k = 0.

Theorem 37 (2.3). Characters Determine Representations: suppose char k = 0.
Then,

V ∼= V ′ ⇐⇒ χV = χV ′

Proof. =⇒ : Trace is independent of basis, so this is easy.
⇐= : We already gave a proof using projection operators. Second Proof:
Assume χV = χV ′ . We decompose:

V ∼= ⊕miLi, V
′ ∼= m′iLi

Note that we have χV (ei) = mi dimk Li = m′i dimk Li = χV ′(ei)
Thus we must have mi = m′i.

Representation Ring

Rk(G) = (virtual char,+,×) ∼= (virtual rep,⊕,⊗).
Example: RQ[C2] ∼= Z[X]

(X2−1)

Monday, 9/23/2024

Dual Characters

Consider ρ : G→ GLk(V )
Dual V ∗ = Homk(V, k) is also a representation.

(gϕ)(v) = ϕ(g−1v)

Inverse because we want it to be a left module.
Claim: ρ : G→ GL(V )→ ρ∗ : G→ GL(V ∗)
ρ∗(g) = (ρ(g)−1)T

Proof. ρ∗(g) = (ρ(g−1))∗ = ρ(g−1)T

Corollary 38. a) χV ∗(g) = χv(g
−1)

b) χHom(V,W )(g) = χV (g
−1)χW (g)

Proof. a follows from the claim.
b: Consider the slant homomorphism:

V ∗ ⊗W → Hom(V,W )

∑
i

ϕi ⊗ wi 7→

(
v 7→

∑
i

ϕi(v)wi

)
It is an isomorphism since V,W are both finite dimensional.

χHom(V,W )(g) = χV ∗⊗W (g) = χV ∗(g)χW (g) = χV (g
−1)χW (g)
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1 Dimensional Characters

Definition. 1 D representation is a homomorphism ρ : G→ k×

G k×

Gab

Question: What are the 1d representations for D6?
D6
∼= Z/3⋊ Z/2

So, Dab
6
∼= Z/2

So, we have kT , k−
r 7→ 1
s 7→ −1
Exercise: Trivial Representation / Idempotent

eT =

∑
g∈G g

|G|
∈ kG

e2T = eT

geT = eT = eT g

eT ∈ Z(kG)

kG = (kG)eT ⊕ (kG)(1− eT )

kG ∼= k × kG

⟨eT ⟩

Lemma 39 (2). Any finite subgroup of k× is cyclic.

Proof. Key Fact: xe − 1 ∈ k[x] has at most e roots [proof: long division].
Note: x2 − 1 ∈ Z/8[x] has 4 roots. This implies Z/8 is not a field.
Consider finite abelian A < k×

Consider e = exponent A = inf{m ≥ 1 | ∀a ∈ A, am = e}
Then, ∀a ∈ A, ae − 1 = 0. From the key fact, |A| ≤ e ≤ |A|
Thus, e = |A|

Corollary 40. ∀ hom ρ : G→ k×, ∃ Cyclic C such that:

G k×

C

ρ

Recall only finite subgroup of Q is ±1.
1− d Q reps of G ↔ trivial representation + index 2 subgroups
Now we suppose k is algebraically closed, eg k = C. Then,

kG ∼=
∏
i

Mni
(k)

If G is abelian, then,

kG ∼= k × · · · × k

Corollary 41 (3). k is algebraically closed and G is abelian ⇐⇒ all irreducible
representations are 1-dimensional.
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Corollary 42. Let |G| = n, k = C.

a) ∀V, χV (G) ⊂ Q(ζn)

b) ∀V, χV ∗(g) = χV (g)

c) ∀V,W, χHom(V,W )(g) = χV (g)χW (g)

Proof. a) True for 1d representation from the lemma.

=⇒ True for G abelian (corollary 3)

=⇒ True for cyclic G

=⇒ always true: g ∈ G =⇒ ⟨g⟩ cyclic.

χρ(g) = χρ|⟨g⟩(g)

Then, ρ : G→ GL(V ), consider g ∈ G.
Then ρ(g)n = I =⇒ Tr(ρV (g)) ∈ Q(ζn).

b) Same as (a).

ρ∗(g) = (ρ(g)−1)t

For 1-dim, ρ∗ = ρ.

c) χHom(V,W )(g) = χV (g
−1)χW (g) = χV (g)χW (g)

Two Bases for center kG

Definition. g ∈ G is conjugate to σ ∈ G if ∃τ such that,

τgτ−1 = σ

Write g ∼ σ

G =
∐

G/∼[g]

[g] = {σ ∈ G | g ∼ σ} conjugacy classes

Proposition 43. {
∑

σ∈[G] σ}[g]∈G/∼ is a k-basis for center of kG.

Proof. Clearly these are linearly independent.
α =

∑
σ∈G aσσ ∈ center

⇐⇒ τα = ατ ⇐⇒ τατ−1 = α
σaστστ

−1 =
∑
aσσ =⇒ (g ∼ σ =⇒ ag = aσ)

Wednesday, 9/25/2024

Lang XVIII, 4
Two bases for Z(kG)
conjugacy classes
primitive cental idempotents [k algebraically closed]

Exercise. G↠ Q, prove that kG ∼= kQ×R

Proposition 44 (4.1). Suppose {
∑

σ∈[g]}[g]∈G/∼ form a {kZ}-basis for {
Z(kG)
Z(ZG)}

Consider a ring R.

Definition. e ∈ R is a primitive central idempotent if:

e is a central idempotent [e2 = e, e ∈ Z(R)]
e = e′ + e′′ with e′, e′′ central idempotent =⇒ {e′, e′′} = {0, e}
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Then, kG ∋ 1 = e1 + · · ·+ es, kG ∼=
∏
Mdi(Di)

ei → (0, · · · , 0, 1, 0, · · · , 0)
Now suppose n = |G|
We have irreducible representations L1, · · · , Ls and degrees d1, · · · , ds then Li

∼=
Ddi

i . We have irreducible characteristics χ1, · · · , χs and primitive central idempotents
(p.c.i.) e1, · · · , es
Facts: (∗): kGkG =

⊕
i diLi

(∗∗): α ∈ kG, i ̸= j then χj(eiα) = 0 since eiLj = 0, χi(eiα) = χi(1α) = χi(α)
We have: χreg =

∑
i diχi

Proposition 45 (4.3). χreg(g) =

{
n, if g = e;

0, if g ̸= e

Proof. χreg(g) = Tr(·g : kG→ kG)
Thus, χreg(e) = Tr(I) = n
If g ̸= e note that G has {σ1, · · · , σn} and ρreg(g)(σj) = gσj ̸= σj for all j. So, there
is nothing in the diagonal matrix and trace is 0.

Motivation for k algebraically closed:
Consider QC3

∼= Q×Q(ζ3). We only have primitive central idempotents, 1 = e1+ e2.
But the center has dimension 3: dimQ(Z(QC3)) = 3.
Assume k is algebraically closed.
Claim: k algebriacally closed, D skew field, k < Z(D), dimkD <∞ implies k = D
Now, kG ̸=

∏
Mdi(k)

Consider primitimve central idempotents e1, · · · , es for a basis.
n =

∑s
i=1 d

2
i

e.g. S3 = D6. s =? d1, d2, d3 =?
We have represantatives of conjugacy classes: (1), (12), (123).
s = 3, 6 = 12 + 12 + 22

Char. Table:

(1) (12) (123)

χ1 1 1 1
χ2 1 -1 1
χ3 2 0 -1

Table 3: characteristic table

We have CS3 = C+ × C− ×M2C
Our representatives are (1), (12), (123), (1234), (12)(34)
di = 1, 1, 2, 3, 3
Goal: Express the p.c.i basis in terms of conjugacy class basis.

Corollary 46 (4.2). If k is algebraically closed,
the number of conjugacy classes = dimk Z(G) = number of irreducible representation
= s

Proposition 47 (4.4). k algebraically closed, then

ei =
di
n

∑
τ∈G

χi(τ
−1)τ

Proof. Let ei =
∑

τ∈G aττ .
We compute χreg(eiτ

−1) in two ways.
1: χreg(eiτ

−1) = χreg(
∑
aσστ

−1) =
∑
aσχreg(στ

−1) = aτn

2: χreg(eiτ
−1)

(∗)
=
∑

j djχj(eiτ
−1)

(∗∗)
= diχi(eiτ

−1) = diχi(τ
−1)

Thus, aτn = diχi(τ
−1) =⇒ aτ = di

n χi(τ
−1)

Recall that expG is the smallest positive integer m such that gm = id for all g.
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Corollary 48 (4.5). Let m = expG. Then,

ei ∈
1

n
[Z[ζm]G] ⊂ 1

n
[Z[ζn]G]

Corollary 49 (4.6). char k ∤ di

Proof. If not, char k | di then ei = 0 which is a contradiction.

Corollary 50 (4.7). χ1, · · · , χs are linearly independent over k. In fact they form a
basis for the class functions f : G→ k.

Proof. Suppose 0 =
∑
aiχi.

Then 0 =
∑
aiχi(ej) = ajχj(ej) = ajdj =⇒ aj = 0

Then dimk(class functions) = number of conjugacy classes = s.

Friday, 9/27/2024

Review:

ei =
di
n

∑
σ∈G

χi(σ)σ
−1 ∈ kG (∗)

Is a primitive central idempotent.

χreg = χkG =
∑
i

diχi

σ = 1, n =
∑

i d
2
i

di | n ∑
σ∈G

χi(σ)χj(σ
−1) = nδij

s∑
i=1

χi(σ)χi(τ
−1) =


n

|σ|
, if τ = σ;

0, ‘ otherwise.

If G = S3 then:

(1) (12) (123)

χ1 1 1 1 6
χ2 1 -1 1 6
χ3 2 0 -1 6

6 2 3

Table 4: Characeristic Table of S3

0 = χreg(123) = 1χ1(123) + 1χ2(123) + 2χ3(123)

k = C, χ(σ−1) = χ(σ)
End of review
X(G) = {class functions f : G→ k} so that f(τστ−1) = f(σ).

Definition (Perfect Pairing). A perfect pairing of k vector space is a k-bilinear map
β : V ×W → k such that ∃ basis {vi}, {wj} such that

β(vi, wj) = δij

⇐⇒ Adb : V →W ∗

v 7→ (w 7→ β(v, w))
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Theorem 51 (4.9).
X(G)× Z(kG)→ k

(f, α) 7→ f(α)

is a perfect pairing.

Proof. Dual basis:
{

1
di
χi

}
, {ej}

1

di
χi(ej) = δij

Corollary 52 (4.8). Suppose k is algebraically closed, char k = 0. Then di =
dimK Li | n

We need integrality theory (M502)
See Lang p 334.
A subring of B, α ∈ B.
α is integral over A if ∃ monic f(x) ∈ A[x] such that f(α) = 0.
α ∈ Q =⇒ α int/Z ⇐⇒ α ∈ Z
Condition (∗∗): α being integral is equivalent to the existence of a faithful A[α]-
module M which is finitely generated as A-module.
Faithful means: ∀β ∈ A[α], βM = 0 ⇐⇒ β = 0.
In other words, A[α] ↪→ EndA[α](M).
Condition (∗∗) ⇐⇒ α int/A. This is proved by a determinant trick.
Applying (∗∗) on A = Z, n

di
∈ Q,

Multiplying ei =
di

n

∑
σ∈G χi(σ)σ

−1 ∈ kG with ei,

ei = e2i =
di
n

∑
σ

χi(σ)σ
−1ei

n

di
ei =

∑
σ

χi(σ)σ
−1ei

M = Z⟨ζjnσei⟩j,σ∈G is a Z
[
n

di

]
-module

We are done by (∗∗). di | n.

Orthogonality, Lang XVIII, 5, Serre 2.3

Theorem 53. Suppose we have ⟨, ⟩ : X(G)×X(G)→ k by:

⟨f, g⟩ = 1

n

∑
σ∈G

f(σ)g(σ−1)

is a nonsingular symmetric form and {χ1, · · · , χs} forms an orthonormal basis.

Proof. Symmetric form, k-bilinear ⟨f, g⟩ = ⟨g, f⟩
Apply χj to (∗)

diδij = χj(ei) =
di
n

∑
σ

χi(σ)χj(σ
−1)

Remark: Irreducibility criterion: ⟨χ, χ⟩ = 1 ⇐⇒ χ irreducible.
(
∑

i aiχi,
∑

i aiχi) =
∑

i a
2
i

Proposition 54 (I.7, Serre p20). a)
∑s

i=1 χi(σ)χi(σ
−1) = n

|[σ]|

b) [σ] ̸= [τ ] =⇒
∑s

i=1 χi(σ)χi(τ
−1) = 0
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Proof. Consier the characteristic function for [σ]:
fσ = 1 on [σ] and 0 everywhere else.
fσ =

∑
i λiχi.

λj = ⟨fσ, χj⟩ = 1
n

∑
τ∈G fσ(τ)χj(τ

−1) = |[σ]|
n χj(σ

−1)

fσ(−) =
∑

i
|[σ]|
n χi(σ

−1)χi(−)

This finishes the proof.
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Serre Ch 4

What about representations of infinite groups?

G

compact groups S1 ⊂ C× discrete groups Z(∼= C∞)

C∗G C∗-algebras N (G) von Neumann Algebra

Definition (Topological Group). Topological Group is a group (G, ·) such that G
has a topology so that:

G×G→ G

(g, h) 7→ gh−1

is continuous.

Definition (Lie Group). Lie Group is a topological lie group G where G is a smooth

manifold and (g, h) 7→ gh−1 is smooth.

Compact Lie Groups:
Torus T r = S1 × · · · × S1

O(n) = {A ∈Mn(R) | AAT = I}
U(n) = {A ∈Mn(C) | AA∗ = I}
Exceptional: G2, F4, E6, E7, E8

We also have compact groups are not lie groups¿
(Z/p)∞ =

∏
Z/pZ

p-adic Zp = limZ/pnZ
Serre Ch 4 says that:

Representation of compact groups is almost the same as finite group!

We need Haar Measure.

Proposition 55. For locally compact Hausdorff topological group G there exists a
unique Haar Measure:

dt : {Borel Subsets of G} → [0, 1]
B 7→

∫
B
dt =

∫
G
χB(t)dt

So that
∫
G
dt = 1 and dt is translation invariant:∫

G

f(t) dt =

∫
G

f(gt) dt =

∫
G

f(tg) dt
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Example. If G is finite: ∫
G

f dt =
1

|G|
∑
g∈G

f(g)

G = S1 ∫
S1

dt = 1

∫
quarter circle

dt =
1

4

Theorem 56 (Maschke’s Theorem, Peter-Weyl Theorem). Let G be a compact
group, k = C. Let W ⊂ V be a subrepresentation of ρ : G → GL(V ). Then ∃
subrepresentation W ′ such that V =W ⊕W ′.

Proof. Let ⟨, ⟩′ : V × V → C be any inner product.
We define a new inner product by averaging this inner product.

⟨v, w⟩ =
∫
G

⟨ρ(t)v, ρ(t)w⟩′ dt

This gives us a G-invariant inner product.
We take W ′ to be orthogonal to W w.r.t. this inner product.

Corollary 57. Any representation is the direct sum of irreducible representation
(unique upto multiplicity).

Consider the regular representation L2(G) ∼= “
⊕

i ”diLi.
We don’t have characteristic of regular representation
We don’t have a group ring
Suppose G = S1, n ∈ Z
χn : S1 → C×
χn(z) = zn gives us Cn

L2(S1) = “⊕ ”Cn

Representation Ring: R(S1) ∋ ρ− ρ′

R(S1) = Z[χ1, χ
−1
1 ], χn = χ1 ⊗G · · · ⊗G χ1

Then, R(S1 × · · · × S1) = Z[α1, α
−1
1 , · · · , αr, α

−1
r ] where:

S1 × · · · × S1 S1 C×proj

Consider Tn ⊂ U(n)
Σn = U(n)/Tn

R(U(n)) ↪→ R(Tn).
image Z[σ1, · · · , σn−1, σn, σ−1n ] where
σi is the i-th elementary symmetric function in α1, · · · , αn.

Infinite Discrete Groups

C∞ = ⟨x⟩
ZC∞ = Z[x, x−1] the Laurent Polynomial Ring.
We can think of it like the localization of Z[x] at x [aka x−1Z[x]] or Z[x, x−1] ⊂ Q(x)
the rational function field.
This is not a super well behaved domain since it has dimension 2.
Q[x, x−1] is a Euclidean domain and hence a PID. But not Z[x, x−1].
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Some Conjectures about Torsion-Free Groups

Torsion free: If g ∈ G− {e}, n > 0 then gn ̸= e.

Proposition 58 (Farrell-Jones Conjecture). for R = Z or a field, all finitely generated
projective RG-modules are stably-free.

Projective means it’s a summand of a free module.
P is stably free if P ⊕ free is free.
It has been proved for the torsion-free groups we care about, but not generally.

Proposition 59 (Kaplansky Idempotent Conjecture). Suppose R is an integral do-
main. Then the only idempotents in RG are 0 and 1.

Proposition 60 (Zero Divisor Conjecture). Suppose R is an integral domain. Then
RG has no zero divisor.

Proposition 61 (Embedding Conjecture). Suppose R is an integral domain. Then
RG is a subring of a skew field.

We have Embedding Conjecture =⇒ Zero Divisor Conjecture =⇒ Kaplansky
Idempotent Conjecture

Proposition 62 (Unit Conjecture). Suppose k is a field. Then,

(kG)× = ⟨k×, G⟩

Wednesday, 10/2/2024

Serre Chapter 5
Examples
k = C: Use characters.
5.1: Cn = ⟨r⟩, ζn = e2πi/n.
n = #conjugacy classes =⇒ n = s irreducible representations.
Cn is abelian =⇒ all irreducible representation (=char) is one dimensional.

χ : Cn → C×

χ(r)n = χ(rn) = χ(e) = 1

Irreducible representation χh(r) = ζhn . We have characters χ0, χ1, · · · , χn−1.
χhχh′ = χh+h′ (mod n)

Representation Ring Z[characters] = Z[χ1] ∼= Z[x]/(xn − 1).
Trivial character is 1 in R(G).

ϕ : C[Cn] → C× · · · × C
r 7→ (ρ0, ρ1, · · · , ρn−1)

Φ : Q[Cn]→
∏
d|n

Q(ζd)

a
Question: How to justify that ϕ and Φ are isomorhisms?
Answer: CRT
For a non-abelian group G, recall that:
# of 1d rep = |Gab| = |G/[G,G]|
# of irreducible rep = # of conjugacy classes.
Suppose di = dimC Li then n = d21 + · · ·+ d2s and di | |G|.
5.1 Dihedral Group D2n (order 2n)
Recal,

D2n = ⟨r, s | rn = 1, s2 = 1, srs = r−1⟩
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isometries of a regular n-gon.
Here, (srs−1)k = srks−1 so srks−1 = r−k. Also, rksr−k = r2ks.
Conjugacy classes are given by the following:

{e} {s}
{r, r−1} {r2s}
{r2, r−2} {r4s}

{r6s}

We have split based on whether n is even or odd.

n odd n even
{e} {e}
{r, r−1} {r, r−1}

...
...

{r n−1
2 , r−

n−1
2 } {r n−2

2 , r−
n−2
2 }

{s, rs, r2s, · · · , rn−1s} {r n
2 }

{r, r2s, · · · , rn−1s}
{rs, r3s, · · · , rn−2s}

So, for n odd:
# of conjugacy class is n+3

2
Dab

2n = {1, s} ∼= C2

Z(D2n) = {e}
For n even,
# of conjugacy classes is n+6

2
Dab

2n = {1, s, r, rs} ∼= C2 × C2

1-dim representations:
n odd implies we have representations C+,C−
χ±(r) = 1, χ±(s) = ±1
n even implies we have representations C++,C+−,C−+,C−−
εr = ±1, εs = ±1
χεrεs(r) = εr and χεrεs = εs
2-dim representations:

ρh : D2n → GL2(C)

ρh(r) =

[
ζhn 0
0 ζ−hn

]

ρh(s) =

[
0 1
1 0

]
[Induced from Cn-representation Ch later]
For 0 < h < n

2 it is irreducible [homework].

χh(r
k) = e2πihk/n + e−2πihk/n = 2 cos 2πhk

n
χh(r

ks) = 0
Since characters determine representation, we have ρh ∼= ρ−h = ρn−h.
Also, for 0 < h < n

2 the repesentations are distinct.
We have all irreducible 2-dim representations.
Remark: ∃ real representations D2n → GL2(R) [isometries in R2]. Then,

ρ̂h(r) =

[
cos 2πh

n − sin 2πh
n

sin 2πh
n cos 2πh

n

]

ρ̂(s) =

[
0 1
1 0

]
We have χh = χ̂h and thus ρh ∼= ρ̂h
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Serre 5.4
Suppose G = D2n × C2.
Then, CG = CD2n ⊗C CC2 = (CD2n)+ × (CD2n)−.
Twice as many irreducible representation as D2n. 5.7 and 5.8
We have the following exact sequence:

1→ A4 → S4
sign→ {±1} → 1

We have |S4| = 24 = 4!, |A4| = 12.{
S4

A4

}
=

{
o.p

}
isometries of a tetrahedron.

Conjugacy classes (c.c.) in

{
S4

A4

}
are

(1), (12), (12)(34), (123), (1234) s = 5
(1), (12)(34), (123), (213) s = 4

Interestingly, not all 3-cycles are conjugates in A4. For example, (123) ̸∼ (124).
Intuition: we need to swap 3 and 4, but in A4 we need something else because
swapping 3 and 4 is odd.
Also: A4 is not simple [even though A5, A6 etc are].
S4 = C2 × C2 ⋊ S3

A4 = C2 × C2 ⋊ C3.
Also: Sab

4 = C2

Aab
4 = C3

Then, 24 = 12 + 12 + 22 + 32 + 32

12 = 12 + 12 + 12 + 32

C[A4] = C× C× C︸ ︷︷ ︸
C3-quotient

× M3(C)︸ ︷︷ ︸
geometry

C[S4] =

D6-quotient︷ ︸︸ ︷
C× C︸ ︷︷ ︸

C2-quotient

×M2C× M3C︸ ︷︷ ︸
geometry

× M3C︸ ︷︷ ︸
geom⊗CCsign

Chapter 6
Suppose we have a finite group G and (char k, |G|) = 1. Then kG is semisimple.

Proposition 63 (10). Let A be semisimple ring. Suppose L1, · · · , Ls are simple,
non-isomorphic kG-modules such that ∀ simple L we have L ∼= Li for some i. Then,

A −→
mul

∏
EndA Li

Corollary: t < s implies:

A→
t∏

i=1

EndA Li

is onto.
6.5:
Review: Corollary 2: if k is algebraically closed and char k = 0 and d = dimk L where
L is a simple kG module, then

d | |G|

We strengthen this.

Proposition 64 (17). Let Z = Z(G) be the center of G. Then,

d | |G|
|Z|

Proof. Let ρ : G → GL(L) be an irreducible representation and d = dim. Define
homomorphism λ : Z → k× such that:

ρ(s) = λ(s) id
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∀m ≥ 1 let ρm : G× · · · ×G→ GL(L⊗ · · · ⊗ L) which is irreducible.
Then we have λm : Z × · · · × Z → k× with:

(s1, · · · , sm) 7→ λ(s1 · · · sm)

Let H = {(si) ∈ Zm | s1 · · · sm = 1} < Zm < Gm.
H ∼= Zm−1 and H ⊂ ker ρm.
Then ρm : Gm/H → GL(L⊗ · · · ⊗ L) irreducible.
Therefore, ∀m, dm | |G

m

H | =
|G|m
|Z|m−1 which implies by taking m big enough that d | |G||Z| .

Tensor Product for Non-Commutative Rings

Suppose R is a non-commutative ring. Then, tensor product is a functor

−⊗R − : modR
right mod

×R mod
left mod

→ Ab

AR ⊗R RB ∋ a1 ⊗ b1 + · · ·+ ak ⊗ bk
(a+ a′)⊗ b = a⊗ b+ a′ ⊗ b
a⊗ (b+ b′) = a⊗ b+ a⊗ b′

ar ⊗ b = a⊗ rb

Exercise. Formulate adjoint proposition:

Hom?(
?

A⊗
?

B,
?

C) ∼= Hom?(A,Hom?(B,C))

Definition (Induced module). : Suppose k is a field and H < G. Then,

IndGH : kH -mod→ kG -mod

IndGH W = kG⊗kH W

eg. Suppose H = Cn = ⟨r|rn = 1⟩ and G = D2n = ⟨r, s | rn = 1 = s2; srs = r−1⟩.
If W = C we have H → C× by r 7→ ζn.

V = CD2n ⊗C[Cn] C1 = (C[Cn]⊕ sC[Cn])⊗C[Cn] C1

C-basis of V is 1⊗ 1, s⊗ 1.

Recall r 7→
[
ζn 0
0 ζ−1n

]
, s 7→

[
0 1
1 0

]
.

s(1⊗ 1) = s⊗ 1
s(s⊗ 1) = s2 ⊗ 1 = 1⊗ 1
r(1⊗ 1) = r1⊗ 1 = ζn ⊗ 1 = ζn(1⊗ 1)
r(s⊗ 1) = rs⊗ 1 = sr−1 ⊗ 1 = s⊗ ζ−1n 1 = ζ−1n (s⊗ 1)

Monday, 10/7/2024

Exercise. Work out the representation theory of G = C7 ⋊
·2
C3 = ⟨r, s | r7 = 1, s3 =

1, srs−1 = r2⟩.
Meaning: find an isomorphism CG

∼=→Mdi
C

Suppose we have a (most likely non-commutative) ring R and
A tensor product functor −⊗R − : mod-R×R-mod→ Ab

Proposition 65 (Universal Property). Suppose A is a right R-module and B is a
left R-module and G is an abelian group.
π : A×B → G is R-balanced. Meaning: π is Z-bilinear and π(ar, b) = π(a, rb).
There exists an R-balanced π : A×B → A⊗R B which is initial.
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A×B

A⊗R B G

π ∀R-balanced

∃!Z-hom

Construction:

A⊗R B :=
F (A×B)

T

Where F (A×B) is the free abelian group with basis of A×B. We write F (A×B) =
Z[A×B].
T is the subgroup generated by (a + a′, b) − (a, b) − (a′, b), (a, b + b′) − (a, b) −
(a, b′), (ar, b)− (a, rb).
Main thing to remember:

ar ⊗ b = a⊗ rb

Proposition 66. Suppose we have a ring homomorphism f : R → S of possibly
non-commutative rings. We preserve addition, multiplicationand identity.
We then have the restriction functor

f∗ : S-mod→ R-mod

f∗M =M (as abelian group)

R× f∗M → f∗M
(r,m) 7→ f(r)m

If we have inclusion inc : kH → kG then we have:

inc∗ = ResGH : kG-mod→ kH-mod

We also have the left adjoint of f∗.

f∗ : R-mod→ S-mod “base change”

f∗M = S ⊗R M

S is a right R-module. We have S × R → S given by (s, r) 7→ sf(r) which trns S to
a (S,R) -bimodule: SSR. So we can take the tensor product.

Proposition 67.

HomS(f∗M,N) ∼= HomR(M,f∗N)

is an isomorphism of abelian groups.

So we can go back and forth between S-modules and R-modules.

S-mod ⊥ R-mod

f∗

f∗

f∗ is left adjoint.
f∗ is right adjoint.

Adjoint of Idf∗N : f∗f
∗N → N is the counit.

Adjoint of Idf∗M : M → f∗f∗M is the unit.

We also have:
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inc∗ = IndGH : kH-mod→ kG-mod

Which gives us:

HomkG(Ind
G
H W,V ) ∼= HomkH(W,ResGH V )

Remark: If we have a module, how do we know it is induced?

Proposition 68. If V =
⊕

i∈I Wi and G permutes summands transitively and ∃W =
Wi0 and H = {g ∈ G | gW =W} then V is induced.

Example: CD2n ⊗CCn C1 = 1CCn ⊗ C1 + sCGn ⊗ C1.

Proposition 69. V is induced if ∃W < V invariant under H:

V =
⊕
r∈R

rW

R is a set of left coset representation for H in G.

Character of Induced representation

Theorem 70 (12, p30). V = IndGH W .

χV (u) =
∑
r∈R

r−1ur∈H

χW (r−1ur) =
1

|H|
∑
g∈G

g−1ug∈H

χW (g−1ug)

Proof. Write V =
⊕

r∈R rW . We care about when urW = rW , since otherwise we
have non-diagonal terms so they don’t contribute to the trace.

urW = rW ⇐⇒ r−1urW =W ⇐⇒ r−1ur ∈ H

χV (u) = Tr(u· : V → V ) =
∑
r∈R

r−1ur∈H

Tr(u· : rW → rW )

=
∑
r∈R

r−1ur∈H

Tr
(
r−1ur· : rW → rW

)
=

∑
r∈R

r−1ur∈H

χW (r−1ur) =
1

|H|
∑
g∈G

g−1ug∈H

χW (g−1ug)

Frobenius Reciprocity

⟨Indψ, ϕ⟩G = ⟨ψ,Resϕ⟩H

Wednesday, 10/9/2024

Recall: If

V = IndGH W

Then V as a k-vector space can be written as direct sum of k-vector spaces:

V =
⊕

g∈G/H

gW

And action of H permutes the summands.

Stab(W ) := {g ∈W | gW =W} = H
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Also recall Class Functions:

Cl(G) = {f : G→ k | f(gσg−1) = f(σ)}
The charcters χV are a basis of the vector space of class functions.
For H < G we have restriction:

Res : Cl(G) → Cl(H)
f 7→ f |H

We also have induction:

Ind : Cl(H)→ Cl(G)

(Ind f)(σ) :=
1

|H|
∑
g∈G

g−1σg∈H

f(g−1σg)

Last time we did:

χIndW = IndχW

Also we had the following:

HomkG(IndW,V ) ∼= HomkH(W,ResV )

Today we give a character version of this.

Frobenius Reciprocity

Theorem 71 (Frobenius Reciprocity). Suppose k is algebraically closed. Then:

⟨Indψ, ϕ⟩G = ⟨ψ,Resϕ⟩H
where ψ ∈ Cl(H) and ϕ ∈ Cl(G) with H < G.
Also, for review: if α, β ∈ Cl(G) then,

⟨α, β⟩G =
∑
g∈G

α(g)β(g−1) ∈ k

And irreducible characters are an orthonormal basis w.r.t. this inner product.

⟨χi, χj⟩G = δij

Proof. Suppose

V ∼=
⊕
i

miVi

where V1, · · · , Vs are irreducible. We define multiplicity: mV
Vi

:= mi. Then,

⟨χV , χV ′⟩ =
s∑

i=1

mV
Vi
mV ′

Vi
=

Schur
dimk HomkG(V, V

′)

We finally start the proof.

Cl(G) = span{χi}
WLOG assume ψ, ϕ ae characters of W and V .

dimk HomkG(IndW,V ) = dimk(HomkH(W,ResV ))

=⇒ ⟨Ind(χW ), χV ⟩G = ⟨χW .ResχV ⟩H
Since this is true for basis, it is true for general character.
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Mackey’s Double Coset Formula

Suppose G is a group with subgroups H,K. aka H,K < G. Let W be a kH-module.
Question: What is ResGK IndGH W as a kK-module?
Let s = [K\G/H] be the double coset representation. Meaning:

G =
∐
s∈S

KsH

i.e.

G K\G/Hπ

The above dotted map is [ ]. Then,

π ◦ [ ] = Id

We have:

Hs := sHs−1 ∩K < K

ρ : H → GL(W )

We thus have the twisted representation:

ρs : Hs → GL(W )

ρs(x) = ρW (s−1xs)

Ws =Wρs is a kHs-module.

Proposition 72 (Mackey’s Double Coset Formula, MDCF).

ResGK IndGH W ∼=
⊕

s∈[K\G/H]

IndKHs
Ws

Proof. Suppose V := IndGH W . Then, from the definition of IndW ,

V =
⊕

x∈G/H

xW

Where Stab(W ) = H.

V =
⊕

x∈G/H

xW

Then, as hK-module,

V =
⊕

s∈[K\G/H]

KsW

Note that, since StabK(sW ) = Hs,

KsW =
⊕

x∈K/Hs

xsW

= IndKHs
sW

= IndKHs
Ws

Since
Ws
∼= sW

w 7→ sw

So we’re done.
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Mackey’s Irreducibility Criterion, MIC

Suppowe W =Wρ is kH-module. TFAE:

1) V = IndGH W is irreducible

2) a) W irreducible

b) ∀s ∈ G \H, ρs and ResHs
ρ are disjoint.

Recall: V, V ′ are disjoint if HomkG(V, V
′) = 0.

Proof. We asssume k is algebraically closed.

V irreducible ⇐⇒ ⟨χV , χV ⟩G = 1

⟨χV , χV ⟩G = ⟨IndχW , IndχW ⟩G

= ⟨χW ,Res IndχW ⟩H [FR]

= ⟨W,
⊕

s∈[K\G/H]

IndHHs
(ρs)⟩H [MDCF ]

=
∑
s

⟨ResHs
ρ, ρs⟩Hs

[FR]

=
∑
s

ds

ds = ⟨Res ρ, ρs⟩Hs

d1 = ⟨ρW , ρW ⟩ ≥ 1

Thus,

1 = ⟨V, V ⟩G ⇐⇒
d1 = 1
ds = 0

So we’re done.

Example: Suppose G = H ×K where H = C3, G = D6 = S3,K = C2.
Then,

C[C3] = C0 × C1 × C2

C[D6] = C+ × C− ×M2C

ResC+ = C0

ResC− = C0

ResC2 ?
= C1 × C2
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Monday, 10/14/2024

Exercises 8-13 due Friday
Wed, Chapter 9
Suppose K,H < G and ρ : H → GL(W ).
For s ∈ G consider Hs = sHs−1 ∩K < K
Then ρs : Hs → GL(W )
ρs(x) := ρ(s−1xs)
MDCT:

ResGK IndGH ρ ∼=
∑

s∈[K\G/H]

IndKHs
ρs

Take K = H.
MIC:

IndGH ρ is irreducible

⇐⇒

a) ρ irredicuble

b) ∀s ∈ G−H, ρs and ρ
∣∣
Hs

are disjoint.

Now take H = K ◁ G normal.
Corollary: Ind ρ is irreducible ⇐⇒ ρ irredcible and ∀s /∈ H ρ is not isomorpic to
conjugate ρs.
e.g. H = C3 = ⟨r⟩
G = D6 = S3 = ⟨r, s⟩
CH ∼= C0 × C1 × C2

r 7→ (1, ζ3, ζ
2
3 )

CG ∼= C+ × C− ×M2C
Only two dimensional irredicuble reps are C+ × C− and C2

IndGH C0
∼= C+ × C−

IndGH C1
∼= C2

Corollary?: IndC0 is real since ρ ∼= ρs, ρs = ρ(s−1xs)
IndC1 is [], (ρ : H → C), ρ

C1

̸∼= ρs
C2

.

More on MCDF “Mackey Functors”
Review
Ring f : R→ S

S-mod R-mod
f∗

f∗

“Res” f∗N = N
“Ind” f∗M = S ⊗R M
MDCF: H,K < G
Ks = s−1Ks
sH = sHs−1

cs : K
s

g
→
7→

K
sgs−1

(Ind cs)M = kK ⊗kKs M

ResGK IndGH =
∑

s∈[K\G/H]

IndKK∩sH Ind cs Res
H
Ks∩H

Definition. A Mackey Functor M is:

M : {subgroups of G} → Ab
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∀H ≤ K ≤ G, we have:
Induction map IKH :M(H)→M(K)
Restriction map RH

KM(K)→M(H)
Conjugation map ∀g ∈ K, cg :M(Ks)→M(K)
Satisfies 6 axioms. Key one is MDCF.

H,K ≤ J ≤ G

RJ
KI

J
H =

∑
K\J/H

· · ·

Examples of Mackey Functors
M(H) = RK(H) representations.
Homology groups M(H)Hn(H;−)
Cohomology groups M(H) = Hn(H;−)
Stable Homotopy theory: M(H) equals X based G-space ΠH

n X
Number theory: if we have K/finite galoisL/finiteQ,

M(H) = Cl(O(KH))

Wednesday, 10/16/2024

No class Friday
Homework due monday, 8-13

Representation Ring

Representation R(G) = Z[χ1, · · · , χn] ⊂ Cl(G) = {f : G→ C : f(στσ−1) = f(τ)}
where χ1, · · · , χh are irreducible C-rep.

• (R(G),+) ∼= Zn

• R(G)⊗Z C = Cl(G)

A basis of CG can be found the following way: Fix σ. Then
∑

τ∼σ τ gives us the
basis where ∼ means they are in the same conjugacy class.
Another basis are χ1, · · · , χh. So, h = the number of conjugacy classes.

Theorem 73 (Artin Induction Theorem).

Ind : Q⊗
⊕

cyclic C<G

R(C) ↠ Q⊗R(G)

Exercise: Let χT be the trivial characteristic of D6 Express aχT as a subrepresenta-
tionm of characters a > 0 induced from cyclic subgroups.

Proof.

Res : R(G) ↣
⊕
C

R(C)

Res : R(G)⊗ C ↣
⊕
C

R(C)⊗ C injective

=⇒
Frob. Reciprocity

Ind :
⊕
C

R(C)⊗ C ↠ R(G)⊗ C surjective

Why? in matrix terms, we can think of the matrices being transposed, A injective
implies AT is surjective. We can also think of dual maps, V ↣W ⇐⇒ W ∗ ↠ V ∗

=⇒ Ind :
⊕
C

R(C)⊗Q ↠ R(G)⊗Q
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Another view of R(G)

Let V be a representation, [V ] be its isomorphism class. Then,

R(G) ∈ [V ]− [V ′]

“virtual representation”

0.1 Grothendieck Construction

Define the category CMon, commutative monoids.

(M,+ :M ×M →M)

commutative, associative, identity

The morphisms are homomorphism [preserves unity].

CMon Ab

Gr

F Forgetful

Ab(GrM,A) ∼= CMon(M,FA)

⇐⇒ universal property:

M GrM

A
ab

∀monoid map
∃!

[Take A = GrM ]
Note: Gr(Z≥0,+) = (Z,+)
Gr(Z>0, ·) = (Q×>0, ·)
Gr(Z̸=0, ·) = (Q×, ·)
Consider a field k and a group G.
Iso(k,G) = isomorphism class of finite dimensional k-representations ρ : G→ GL(V )
with dimk V <∞.
We define Rk(G) := Gr(Iso(k,G),⊕)
Is is a group. We can make this a ring by defining the product as:

[V ][W ] := V ⊗k W

the diagonal k-action.
Suppose X is a set of subgroups of G.

Definition. RkG is

{
detected
generated

}
by X if:{

Res : R(G)→
⊕

H∈X R(H)
Ind :

⊕
H∈X R(H)→ R(G)

}
is

{
injective
surjective

}
e.g. R(G) is detected by cyclics
R(G)⊗Q is generated by cyclics.
Consider:

hom f : H → G

Res : RkG→ RkH is a ring hom

Ind : RkH → RkG is a RkG-module map
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1 = [k] ∈ R(G).

ResW ⊗k f∗V ∼= f∗(W ⊗k V )

W ⊗k (kG⊗kH V ) ∼= kG⊗kH (W ⊗k V )

w ⊗ (α⊗ v)←[
?
α⊗ (w ⊗ v)

Note: Consider f : X → Y . Then f∗ : H∗Y → H∗X is a ring map, f∗ : H∗X → H∗Y
is a module map.

Monday, 10/21/2024

Brauer Induction Theorem

Let p be a prime.

Definition. H is p-elementary if

H ∼= P × C
where P is a p-group and C is a cyclic group with order prime to p.

Definition. H is elementary if H is p-elementary for some p.

Example. Q8 × C3 is 2-elementary.

Theorem 74 (Brauer Induction Theorem). R(G) is generated by elementary sub-
groups. i.e.:

Ind :
⊕

elem E<G

R(E) ↠ R(G)

in other words,

∀ρ : G→ GL(V );χρ =
∑
i

ai Ind
G
Ei
ρi

where Ei are elementary.

Example. Consider D6 = C3 ⋊ C2. Elementary subgroups are 1, C3, C2.
For p odd prime, D2p has elementary subgroups 1, C2, Cp.

Remark. We can’t always choose ai ≥ 0 in χρ.

Theorem 75 (18′). Let |G| = pkl with (l, p) = 1.
[Cl] = l[C] = l is induced by p-elementary subgroups.

l =
∑

Ei,p elem

ai Ind
G
Ei
ρi

Note: Theorem 18′ =⇒ Brauer Induction Theorem. Let |G| = pe11 · · · perr . Then

gcd
(
|G|
p
e1
1

, · · · , |G|
per
r

)
∈ image Ind

(⊕
E<GR(E)

)
=⇒ ∀x ∈ R(G), x ∈ image [Ind is

R(G)-module map] =⇒ Brauer Induction Theorem.
Proof of theorem 18′ is ommitted.

Applications of Brauer Induction Theorem

Definition. A representation ρ : G→ GL(V ) is a monomial if

ρ = IndGH ρ̂

where ρ̂ : H → C× is a 1-dim representation.
In other words, “ρ is induced by irreducible representation of Gab.”

Application (Brauer): Artin L-functions are meromorphic (on C).
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Chapter 8

Goal:

Theorem 76 (20). Every χ ∈ R(G) is a Z-linear combination of monomial characters.
This is stronger than Brauer Induction Theorem.

Why does Brauer induction theorem imply this?
We want to show: Every character of an elementary group is a monomial.

Definition. G is supersolvable if:

∃1 = G0 ⊂ G1 ⊂ · · · ⊂ Gn = G

such that Gi ◁ G and Gi/Gi−1 is cyclic.
Sylow theorem =⇒ p-groups are super solvable.
Hence elementary subgroups are super-solvable.

Remark. p-group =⇒ nilpotent =⇒ super-solvable =⇒ solvable.

Definition. R-module

Our goal changes to proving: every character of super-solvable group is monomial.

Definition. R-module M is isotypic if M is a direct sum of simple, isomorphic
submodules.

M ∼= S ⊕ · · · ⊕ S

Proposition 77 (24). Suppose (char k, |G|) = 1. Suppose V is an irreducible kG-
module and A ◁ G. Then either:

a) ∃ proper H < G such that A < H and there eixsts an irreducible kH-module
W such that V ∼= IndGH W

b) Res
∣∣
A
V is isotypic.

Proof. V =
⊕h

i=1 Vi
Vi isotypic and i ̸= j =⇒ Vi and Vj are disjoint.
∀s ∈ G,

sVi = sAVi =
A◁G

AsVi

Thus, sVi = Vj for some j.
Thus, s : V → V permutes Vi transitively [since W is irreducible].
Case b: V = V1.
Case a: H = Stab(V1) = {s ∈ G | sV1 = V1} < G proper =⇒ W = IndGH V1.

Remark. If A is abelian and k = C then Case b ⇐⇒ ρ(a) = αI ∀a ∈ A.

Wednesday, 10/23/2024

Goal: Theorem 20: R(G) is generated by monomial characters
Recall: R-module M is isotypic if:

M ∼= S ⊕ · · · ⊕ S

where S is simple.
We also have proposition 24: Suppose we are in the Maschke case (char k,G) = 1 and
V is an irreducible kG-module and A ◁ G.
Then either:
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a) ∃ proper H < G containing A and irreducile kH-module W such that V ∼=
IndGH W or:

b) ResA V is isotypic.

Proof. ResA V = V1 ⊕ · · · ⊕ Vn isotypic, nonzero, disjoint (meaning no common irre-
ducible subrepresentation).
Then ∀s ∈ G, sVi = Vj [use A normal =⇒ sVi is isotypic]
V irreducible =⇒ G permutes Vi transitively.
Let H = {s ∈ G | sV1 = V1}. Let W = V1.
Then V = IndH W .
n > 1 puts us in case a, n = 1 gives us case b.

Remark. If V is a CA module and A is abelian, ρ : G→ GL(V )
Then V is isotypic ⇐⇒ ∀a ∈ A, ∃α ∈ C× such that ρ(a) = αI.
Why C? Then representation is 1-dimensional since A is abelian.

Corollary 78. Consider abelian A ◁ G. Let V be a simple CG module and d =
dimC V .
Then d | (G : A) = |G|

|A| .

eg Cp ◁ D2p =⇒ d = 1, 2.
In C7 ⋊ C3 since C7 is normal d | 217 = 3 so d = 1, 3.

Proof. Recall d | |G| [on page 52].
We also have d | (G : Z(G)) [on page 53].
We use the second result to prove this. We use induction on |G|.
We use Proposition 24/77:
Case a:

d |
induction hypothesis

(H : A) | (G : A)

Case b: ResA ρ is isotypic.
ρ : G→ GL(V ), G′ = ρ(G), A′ = ρ(A).
G/A↠

ρ
G′/A′

Remark. A′ ⊂ Z(G′)

d |
p.53

[G′ : Z(G′)] | [G′ : A′] | [G : A]

Recall irreducible CG-module V is monomial if it is induced from a 1-dim represen-
tation.

Definition. G is

{
supersolvable

solvable

}
if ∃1 = G0 ⊂ G1 ⊂ · · · ⊂ Gn = G such that{

Gi ◁ G
Gi ◁ Gi+1

}
and Gi/Gi−1 is

{
cyclic
abelian

}
Theorem 79. Evey irreducible representation of a semsimple group is monomial.

Lemma 80 (4). Let G be a non-abelian supersolvable group. Then ∃ abelian A ◁ G
such that A ̸⊂ Z(G).

Proof. H = G/Z(G) is supersolvable. =⇒ ∃ cyclic normal 1 ̸= H1 ◁ H.
Let A = π−1H1 where π : G→ G/Z(G).
Claim:

1→ A
central

→ B → C
cyclic

→ 1 =⇒ B abelian

choose b ∈ B such that ⟨imb⟩ = C.
Every element of B looks like abi:
abiabj = abjabi.
a ∈ Z(B).
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Proof of theorem 16. induction on |G|.ρ : G→ GL(V ), irreducible, G supersolvable.
Case 1: ρ not injective. ρ : G/ ker ρ→ GL(V ).

ρ = Ind
ρ(G)

H
(1-dim) by induction hypothesis so ρ = Indρ−1H is 1 dim.

Case 2: G abelian then we’re done.
Case 3: irreducible ρ : G↣ GL(V ) and G not abelian.
Lemma 4 =⇒ ∃ abelian A ◁ G,A ̸⊂ Z(G) =⇒ ρ(A) ̸⊂ Z(ρ(G)) =⇒ ∃a ∈ A such
that ρ(a) ̸⊂ Z(ρ(G)) =⇒ remarkin case a.

Corollary 81. Every irreducible representation of elementary group is monomial.

Corollary 82 (using BIT). Theorem 20

Friday, 10/25/2024

3 Applications of rep theory to group theory:
Exercise 8.6:

Theorem 83 (Burnside’s Theorem). Let #G = paqb where p, q are primes. Then G
is not simple (∃1 < N ◁ G), all proper.

Frobenius I (Exercise 7.3)
If G↷ X effectively, transitvely, ∀g ∈ G \ e,Xg is a point or empty. Then,

G ∼= H ⋊K

H = Stab(x0) for some x0 ∈ X.
For example, D6 ↷ △ so D6 = C2 ⋊ C3.
Frobenius II (Corollary 2, page 83)
Suppose n | #G. Then,

n | #{x ∈ G | xn − 1}

Suggestion
Look at exercises for Chapter 12.

Chapter 12 Rationality

QC2
∼= Q+ ×Q−

QCp
∼= Q×Q(ζp)

D2p has Cp inside of it.

QD2p
∼= Q+︸︷︷︸

r 7→1,s7→1

× Q−︸︷︷︸
r 7→1,s7→−1

×M2(Q[λp])

QQ8
∼= Q++ ×Q+− ×Q−+ ×Q−− ×Q[i, j, k]

RC2
∼= R+ × R−

RCp
∼= R× C

p−1
2 = R× C1 × · · · × C p−1

2

RD2p
∼= R+ × R− ×M2(R)

p−1
2

RQ8
∼= R4 ×H

H = R(i, j, k)

CC2
∼= C+ × C−

CCp
∼= C0 × C1 × · · · × Cp−1

Where we map to ζkp at Ck.
C1
∼= Cp−1 as RCp modules [z 7→ z]

C1 ̸∼= Cp−1 as CCp-modules.
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CD2p
∼= C+ × C− ×M2(C)

p−1
2

CQ8
∼= C4 ×M2(C)

D2p → GL(C2)

r 7→
[
ζp 0
0 ζ−1p

]

s 7→
[
0 1
1 0

]
D2p → GL(R2)

r 7→
[
0 −1
1 λp

]

s 7→
[
0 1
1 0

]
Note that the matrices that map from r are conjugate over C. Both have the same
characteristic polynomial: x2 − λpx+ 1.

12.1

Suppose K is a subfield of C.

{kG-mod} → {CG-mod}

V 7→ VC = CG⊗KG V = C⊗K V

 central
idempotents of

KG

→
 central
idempotents of

CG


Question: What about irreducible representation?

V irreducible
?

=⇒ VC irreducible?

W irreducible over CG ?
=⇒ W ∼= VC for some V .

Question: What about primitive central idempotents?

G GLK(V ) GLCVC
ρ

ρC

Id⊗−

χp = Tr(ρ) = Tr(ρC) = G→ K.

Definition. CG-module W is realizable over K if W ∼= VC for some kG-mod V .

Consider the Representation Ring RG = RCG.
RKG = subring of class function f : G → K, generated by the characters of K-
representation.
RKG is a subring of RG.

= Gr(Isom(f.g. KG-mod),⊕)

“virtual representations”
Let χ1, · · · , χn be distinct irreducible character of KG.
RK(G) = Zχ1 ⊕ · · · ⊕ Zχn additively.
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{χi} are orthogonal [but not orthonormal] under the usual bilinear form:

⟨f, g⟩ = 1

#G

∑
f(σ)g(σ−1)

Theorem 84 (12.3). Every C-rep of G is realizable over Q(ζ|G|).
In fact let m = l.c.m{order(g) | g ∈ G} | #G.
Every C representation of G is realizable over Q(ζm).

Monday, 10/28/2024

Proof. Special case: G abelian.
Follows since irreducible rep G→ C×.
General case: Let χ ∈ R(G).
Monomial representations generate R(G).

χ =
∑
i

ni Ind
G
Hi

(ϕi) ϕi 1-dim.

Then ϕi : H → C×
ϕi(H) ⊂ Q(ζm)
Thus IndGHi

(ϕi) ⊂ Q(ζm).
Therefore χ ∈ RQ(ζm)G.

12.2 Brauer Groups

Definition. A central simple algebra over K is:
A simple ring A.
K = Z(A).
(A : K) <∞.

Example. H is a CSA over R.

Recall that a simple ring is simply a matrix ring over a division algebra.
Artin Wedderbern =⇒ A ∼= Mn(D) where D is a central simple division algebra
over K.
Facts:

1) A,B csa /K =⇒ A⊗K B is csa /K.

2) K subfield of L and A case /K =⇒ L⊗K A is csa /L.

3) K alg. closed and A csa /K =⇒ A ∼=Mn(K).

Definition. L is a splitting field for csa A if

L⊗K A ∼=MnL

Facts =⇒ Algebraically closed is splitting field for A.
3 =⇒ (A : K) = m2 since (A : K) = (AL : L) where L is splitting field which has
dimension m2 since it is isomorphic to MmL. m =

√
A : K is the Schur Index

Harder Fact: maximal subfield of A is splitting field for A.
e.g. C⊗R H ∼=M2C.
If D is a skew field CSA /K then (D : K) = m2 where m = Schur index of D.
A case /K so schur index of A is divisible by schur index of D.

Definition (Brauer Group). Let K be a field.

Br(K) =

(
csa/K

Mn(D) ∼ D

)
,⊗K

eg BrC = 1
BrR = C2 = ⟨H⟩. H⊗R H ∼=M4(R)
Br(K) = H2(Gal(K/K);Z/2)
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12.2 Schur Indices

RQ8
∼= R4 ×H

CQ8
∼= C4 ×M2C

i 7→
[
0 −1
1 0

]

j 7→
[
i 0
0 −i

]
Consider RQ8 module V = H and CQ8 module W = C2 not realizable over R.
χV (±1) = ±4
χV (±i,±j,±k) = 0
χW (±1) = ±2, χW (±i,±j,±k) = 0
We have:

kG ∼=
∏

Mni
(Di)

Ki = centerDi

schur indexmi =
√

(Di : Ki)

eg G = Q8,K = R,m5 = 2.

Definition. RK(G) ⊂ RKG = {f ∈ R(G) | f(G) ⊂ K} ⊂ R(G)

eg χW = χC2 ∈ RR(Q8)−RR(Q8)

Proposition 85 (35). χ1, · · · , χh are the irreducible characters of KG. Then they
are Z basis for RKG. Then,
χ1

m1
, · · · , χh

mh
are a Z-basis for RKG.

Corollary 86. RK(G) ⊂ RK(G) finite index with equality iff all Di are fields.

Wednesday, 10/30/2024

12.4 Rank RKG

CCp
∼= Cp

QCp
∼= Q×Q(ζp)

ζ = ζm = e2πi/m where m is multiple of lcm(ord(g)) e.g. m = |G|.

C

L = K(ζ)

K

LG ∼=
∏
Mni

(L)

rankRG = # of irreducible CG-modules
= # of irreducible LG-modules
= # of conjugacy classes of G

What about # of irreducible KG-reps?

Γ = ΓK := {t ∈ (Z/m)× | ∃σ ∈ Gal(L/K)s.t. σ(ζ) = ζt} < (Z/m)×
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Γ = image(Gal(L/K)
σt

↣
7→

(Z/m)×

t
)

where σt(ζ) = ζt.
eg ΓQ = Gal(Q(ζm)/Q) ∼= (Z/m)×

ΓC = 1

ΓR =

{
1, if m odd;

±1, if m even.

Definition. s, s′ ∈ G are ΓK-conjugate if ∃τ ∈ G, t ∈ ΓK such that:

τs′τ−1 = st

we write s′ ∼
K
s

Corollary 87 (page 96). rankRKG = # of ΓK conjugacy classes.

If G = Cp then ΓQ conjugacy classes are {1}, {rt}t̸≡o(p)
Recall that RCp

∼= R× C
p−1
2

G = Cp then ΓR conjugacy classes are {1}, {r, r−1}, {r2, r−2}, · · · , {r
p−1
2 , r

p−1
2 }

We have:

RG→ ClLG = {f : G→ L | f(τsτ−1) = f(s)}

We can take K linear combinations of this.

K ⊗Z RG ↪→ ClLG = {f : G→ L | f(τsτ−1) = f(s)}

Theorem 88 (25). Let f ∈ ClLG. TFAE:

a) f ∈ K ⊗Z RG

b) ∀t ∈ Γ, ∀s ∈ G we have σt(f(s)) = f(st)

Proof. a =⇒ b: It is enough to show it for characters. We want to show for χρ

where ρ : G → GL(Cn). Let λ1, · · · , λn be eigenvalues of ρ(s). They must all be
roots of unity. Then χρ(s) =

∑
i λi.

σt(χρ(s)) = σt

(∑
i

λi

)
=
∑
i

λti = χρ(s
t)

b =⇒ a: Let f ∈ ClL.
Irreducible characters form an orthonormal basis.

f =
∑
χ irr

⟨f, χ⟩χ

∀t ∈ ΓK we have:

⟨f, χ⟩ = 1

|G|
∑
s∈G

f(s)χ(s−1) =
reindex

1

|G|
∑
s∈G

f(st)χ(s−t)

=
1

|G|
∑
s∈G

σt(f(s))σt(χ(s
−1)) = σt(⟨f, χ⟩)

Thus, ⟨f, χ⟩ are invariant under Galois therefore ⟨f, χ⟩ ∈ K which is what we wanted
to prove.

Corollary 89 (1). Let f ∈ ClK .
f ∈ K ⊗RKG ⇐⇒ f is constant on ΓK conjugacy classes.

49



Proof. =⇒ : WLOG f = χρ where ρ : G→ GL(Kn).
τs′τ−1 = st

=⇒ χρ(s
′) = χρ(s

t) =
25b

σtχρ(s) =
χρ(s)∈K

χρ(s).

⇐= : f : G→ K is constant on ΓK conjugacy classes.
Thus, 25b holds for f .
Thus, 25a holds for f .
Thus, f ∈ K ⊗Z RG.

f =
∑

irr χ∈RL(G)

⟨f, χ⟩χ

We need to take L representations to K representations.

f =
1

|ΓK |
∑

irr χ∈RL(G),t∈ΓK

⟨f, σt ◦ χ⟩(σt ◦ χ)

f =
1

|ΓK |
∑

irr χ∈RL(G),t∈ΓK

⟨σt−1 ◦ f, χ⟩(σt ◦ χ)

f =
1

|ΓK |
∑

irr χ∈RL(G),t∈ΓK

⟨f, χ⟩︸ ︷︷ ︸
∈K

(σt ◦ χ)

f =
1

|ΓK |
∑

irr χ∈RL(G)

⟨f, χ⟩
∑
t

(σt ◦ χ)

f =
1

|ΓK |
∑

irr χ∈RL(G)

⟨f, χ⟩(Trχ)

Last equality is due to the fact:

G
ρ→ GLL(L

n)
Tr→ GLK(Ln)

χTr ◦ρ =
∑
σt ◦ χρ

Friday, 11/1/2024

Recap:

C

L = K(ζm) m = expG

K

RLG
∼=→ RG := RCG

ΓK = image
(
Gal(L/K)→ (Z/m)×

)
σt 7→ t

σt(ζm) = ζtm

s′ ∼
K
s (s′ is K-conjugate to s)

If ∃τ ∈ G, t ∈ ΓK such that:

τs′τ−1 = st
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Corollary 2, page 96: rankRKG = # of K-conj classes.
13.1: K = Q. Then,

Gal(Q(ζm)/Q)
∼=→ (Z/m)×

Thus,

s′ ∼
Q
s ⇐⇒ ∃τ ∈ G s.t. τ⟨s′⟩τ−1 = ⟨s⟩

Corollary 1: # of QG-reps = # of conjugacy classes of cyclic subgroups.
Corollary 2: G finite, following TFAE:

i) ⟨s⟩ = ⟨s′⟩ =⇒ s is conjugate to s′.

ii) # of conjugacy classes = # of conjugacy classes of cyclic subgroups.

iii) # of p.c.i in QG = # of p.c.i in CG

iv) ∀ρ : G→ GL(Cn), ∀s ∈ G,χρ(s) ∈ Q [characters are rational valued].

v) ∀ρ : G→ GL(Cn), ∀s ∈ G,χρ(s) ∈ Z.

Proof. “Think about it”

eg Symmetric grouo Sn satisfies (i).
Fact [stronger than this] QSn

∼=
∏
Mni

(Q)
eg QS3 = QD6

∼= Q×Q×M2(Q[λ3]) = Q×Q×M2(Q).
All C-rep of Sn are realizable over Q.
“Young diagrams”.
G = Q8 also satisfies (i).
QQ8

∼= Q4 ×HQ
CQ8

∼= C4 ×M2(C)
But irreducible representation C2 not realizable over Q.

12.5

C
/

K

Theorem 90 (Artin’s Theorem).⊕
cyclic C<G

RKC ⊗Q ↠ RKG⊗Q

Same proof as for K = C.
Characters are determined by cyclics.

Theorem 91 (Brauer’s Theorem).⊕
elem E<G

RE ↠ RG

Definition. E is elementary if E = P×C where P is p-group, C is cyclic, (|P |, |C|) =
1

Theorem 92 (Brauer’s Theorem).⊕
ΓK -elem E<G

RKE ↠ RKG

Definition. E is ΓK-elementary if E = C ⋊ϕ P, P p-group, C cyclic, (|P |, |C|) = 1
If ϕ factos as

P ΓK (Z/m)× Aut(C)

ϕ
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13.2 K = R
Fact: Only finite dimensional division algebras /R are R,C and H.
“Proof”: BrR = H2(Gal(C/R);Z/2) = {R,H}.

C alg closed
/ deg 2

R
BrC = 1.
Thus only R,C,H are possible.
We achieve all:
RC2

∼= R× R.
RC3

∼= R× C
RQ8

∼= R4 ×H
3 types of finite dimensional simple reps over R.
3 types of irreducible RG reps
3 types of irreducible QG reps
Let χ0 be char of irreducible RG module.
χ = char of irreduible CG module
such that χ is a component of C⊗R V0 ⇐⇒ χ0 is a component of resχ.
Type O: χ = χ0. Complexification gives you the same representation.
R = HomRG(V0, V0) by Schur.
Type U: χ ̸= χ. Then χ0 = χ+ χ.
C = HomRG(V0, V0)
Type SP : χ = χ, χ = 2χ0.
H = HomRG(V0, V0)

Exercise. G odd order =⇒ all nontrivial irreducible representation have type U .

Monday, 11/4/2024

K = R
RC3 = R× C
RQ8 = R4 ×H
CC3 = C0

O
× C1

U
× C2

U

CQ8 = C4

O
×M2(C)

SP

χ type O if χ is realizeable over R.
χ is type U if χ ̸= χ
χ is type SP if χ = χ and χ is not realizable /R.
Let i = RG ↪→ CG.
Let χ0 be irreducible component of i∗x[= x ◦ i].
χ type O ⇐⇒ χ = χ0

χ type U ⇐⇒ χ0 = χ+ χ
χ type SP ⇐⇒ χ0 = 2χ
Goal: Propoistion 39:

∑
g∈G

χ(g2) =


|G|, if χ has type O;

0, if χ has type U ;

−|G|, if χ has type SP .

Let V be finite dimensional vecto space over F .
A bilinear B : U × V → F is nonsingular if:

AdB : V
∼=→ V ∗

given by

x 7→ (y 7→ B(x, y))
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⇐⇒ ∀ basis {ei} for V,

det(B(ei, ej)) ̸= 0

V is a FG-module, so is V ∗ = HomF (V, F ). Action is like:

(gϕ)(v) = ϕ(g−1v)

F = C then,

χ∗(g) = χ(g) = χ(g−1)

Theorem 93 (31, FS). ρ : G→ GLCV, χ = χρ : G→ C.

i) χ = χ ⇐⇒ ∃ nonsingular G-invariant form B : V × V → C.

ii) χ realizable over R ⇐⇒ ∃ nonsingular symmetric G-invariant B : V × V → C.

Proof. i) χ = χ(= χ∗) ⇐⇒ V ∼= V ∗ ⇐⇒ ∃G-invariant nonsingular bilinear
V × V → C

ii) =⇒ : Let V real / R. V = C⊗R V0 where V0 is RG module.

∃ symmetric, positive definite B : V0 × V0 → R.
=⇒ symmetric, positive definite, G-invariant B1 : V0 → V0:

B1(x, y) =
1

|G|
∑
g∈G

B(gx, gy)

Extension of scalars: Define BC : V × V → C by:

BC(z ⊗ v, z′, z′ ⊗ v′) = zz′BC(v, v
′)

⇐= : (outline)

Suppose we have nonsingular symmetric G-invariant B : V × V → C.
Step 1: Choose G-invariant inner product:

⟨−,−⟩ : V × V → C

[average any inner product]

Step 2: Definea bijection φ : V → V :

B(x, y) = ⟨φ(x), y⟩

φ is conjugate linear.

Step 3: φ2 : V → V is C-linear, hermitian w.r.t. ⟨−,−⟩ and has positive eigen-
vales.

⟨φ2x, y⟩ = ⟨x, φ2y⟩

Then φ2 has positive eigenvalues.

Step 4: Spectral theorem =⇒ ∃! square root v : V → V of φ2.

v : V → V of φ2.

v is C-linear, and v2 = φ2 where v is hermitian, positive eigenvalues.

Step 5: Let σ = φ ◦ v−1.
σ : V → V is the conjugate linear with σ2 = Id.

Step 6: σ eigenvalues are 1 and −1. So we split into two eigenspaces: V =
V+ ⊕ V−.
iV+ = V− =⇒ V = C⊗R V+ (since V+ = V−).

53



Corollary 94. Let V be an irreducible CG-module.

a) If ∄ non-zero G-invariant bilinear form V × V → C then V has type U .

b) A non-zero G-invariant bilinear form V × V → G is unique up to a multiple.

B symmetric ⇐⇒ V has type O.

B alternating [B(x, y) = −B(y, x) ] ⇐⇒ V has type SP .

Proof. Note that in irreducible, by Schur, nonsingular iff nonzero. This also gives us
the uniqueness upto a multiple in ii.
a ⇐⇒ i: Contrapositive.

ii: B(x, y) = B(x,y)+B(y,x)
2 + B(x,y)−B(y,x)

2 = B+ +B−.
Uniqueness =⇒ B+ = 0 or B− = 0.
B symmetric ⇐⇒ V type O.
V type SP ⇐⇒ not type O on V ⇐⇒ B alternates.

Wednesday, 11/6/2024

Proposition 95 (39). Let χ = χV be irreducible /CG.

∑
g∈G

χ(g2) =


|G| if χ has type O

0 if χ has type U

−|G| if χ has type SP

Proof. Use sym and alt squares 1.6, 2.1, 13.2.

sw : V ⊗C V → V ⊗C V

a⊗ b 7→ b⊗ a

sw2 = id

We know that V ⊗C V = S(V )⊕ Λ(V ) = Vσ ⊕ Va
S(V ) is symmetric, +1 eigenspace containing a⊗ a and a⊗ b+ b⊗ a.
Λ(V ) is altrnating, −1 eigenspae containing a⊗ b− b⊗ a.
Then (Vσ)

∗ = G-invariant symmetric V × V → C.
(Va)

∗ = G-invariant alternating V × V → C.

type dimC HomCG(C, V ∗σ ) dimC HomCG(C, V ∗a )
O

Thm35⇐⇒ 1 0
U 0 0
SP 0 1

(∗)

dimC HomCG(C, V ∗σ ) = ⟨1, χσ⟩ =
1

|G|
∑
g∈G

χσ(g
−1) =

1

|G|
∑
g∈G

χσ(g)

dimC HomCG(C, V ∗a ) =
1

|G|
∑
g∈G

χa(g)

Proposition 96 (3). χσ(g) =
χ(g)2+χ(g2)

2 , χa(g) =
χ(g)2−χ(g2)

2 .
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Proof. ρv(g) is diagonalizable with eigenvalue λi =⇒ χv(g) =
∑

i λi with eigenvector
ei.
Vσ has eigenvectors ei ⊗ ej + ej ⊗ ei i ≤ j.
Va has eigenvectors ei ⊗ ej − ej ⊗ ei i < j.

χσ(g) =
∑
i≤j

λiλj =
(
∑

i λi)
2
+
∑

i λ
2
i

2
=
χ(g)2 + χ(g2)

2

χa(g) =
χ(g)2 − χ(g2)

2

Proposition 3 + Table (∗) + (∗∗) implies Proposition 39.

χV⊗V (g) = χ2(g) = χσ(g) + χa(g)

Research Project?

Consider ring R and nonzero divisor ∆ = ∆R =
{
r ∈ R | ∀r′ ∈ R− 0, rr

′ ̸=0
r′r ̸=0

}
.

Definition (Ore). A left classical ring of quotient (q.r. = quotient ring) of R is a
ring homomorphism i : R→ A:
∀a ∈ A, ∃r ∈ R, ∃δ ∈ ∆ such that a = i(δ)−1i(r).
We write:

A = ∆−1R

eg if R is a commutative domain then ∆−1R = Frac(R).
Question: What rings have q.r.?
Question: For what group G does ZG have a q.r.?
R commutative ring =⇒ ∃ q.r. by localization.
G finite =⇒ ZG has quotient ring, ∆−1ZG = QG.
We don’t know a lot about infinite groups.
F2⟨x, y⟩ non-commutative polynmials and Z[F (2)] have no q.r.s.

Proposition 97.

R has q.r. ⇐⇒ “Ore Conditions hold” :

∀r ∈ R, ∀δ ∈ ∆,

∆r ∩Rδ ̸= ∅

Definition. G is virtually abelian if ∃:

1→ A
abel
→ G→ F

finite
→ 1

G virtually abelian =⇒ q.r. for G.

∆−1ZGG =
(
∆−1ZAZA

)
⊗ZA ZF

Now assume A = Zn.

1→ Zn → G→ F
finite

→ 1

Remark. G is classified by 2 invariants.
F → GLn(Z)
and an extension class ∈ H2(F ;Zn).

Theorem 98. ∆−1ZG is semisimple.

55



∆−1ZG ∼=Mdi
(Di)

Research project: Redo Parts I and II of Serre. h =? divisibility for di? types?

Splitting fields? Q(ζ|F |)⊗Z ∆−1ZG ?
=
∏
Mj (fields)? induction theorem?

Warm up: G = Zn ⋊ Sn.
Q: ∆−1ZG =??

Friday, 11/8/2024

Modular Representation Theory

Recall Maschke’s theorem:
kG semisimple ⇐⇒ (char k, |G|) = 1.
We ask the question: what happens if char k | |G|?
eg FpG where p | |G|.
It is not semisimple, but it is not BAD. For example, they’re Artinian.
Motivation:
1. (Jim) study ZG modules.

G↷ X̃ → X, π1X = G.
HnX,πnX̃ are ZG modules.
We can consider:

OK K

Z Q

Galois

OK is Z[Gal(K/Q)].
2. Classification of (simple) groups.
3. Algebraic K-theory: K∗(Fp). eg G = GL2(Fp).
4. Non-abelian class field theory: Gal → GLn(Zp). Here we want to deal with
ZpG-modules.
Technique: Use p-adic integers Zp to interpolate between Q and Fp.
Now we start studying FpG.

Example. Exercise: Let p, q be distinct primes. Then,

FpCq =

h∏
i=1

Fpfi

What is h and fi?
eg FpC2

∼= trivial rep and sign rep ∼= Fp × Fp

F2Cq =?
Hint: Multiplicative group of a finite field (F×p ) is cyclic. F2 × C3

∼= F2 × F4 since

F×4 ∼= Z/(4− 1) = Z/3.
It is given by r 7→ (1, ζ3).
F2C5 =?
We have ζ5 ∈ F×16 ∼= Z/15 so:
F2C5

∼= F2 × F16.
Actually we can say F2C5 = F2 ⊕ F16.
F2C7

∼= F2 × F8 × F8.
r 7→ (1, ζ7, ζ

3
7 ) or r 7→ (1, ζ7, ζ

−1)
Minimal polynomial: Φ7(x) = x6 + x5 + x4 + x3 + x2 + x+ 1
Φ7(x) = f(x)g(x) ∈∈ F2[x].

F2C7 = F2[x]
(x7−1) =

F2[x]
(x−1)f(x)g(x)

∼= F2(x)
x−1 ×

F2[x]
f(x) ×

F2[x]
g(x)

∼= F2 × F8 × F8.

Now, we deal with p ̸= 3 and FpC3.
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FpC3 =

{
Fp × Fp × Fp, if p ≡ 1(3);

Fp × Fp2 , if p ̸≡ 1(3).

How do we know F2C7
∼= F2 × F8 × F8 and not F2 × F64?

The image of r lies in F8 so it is actually in F2 × F8!
We look for the minimal field where the cyclotimic polynomial splits.

Modular Case

Complete list of ideals in F2C2.
O ⊂ ⟨1− r⟩ ⊂ F2C2.
⟨1− r⟩ is isomorphic to F2, simple, not projective [not summand of free modules].
Why is it not projective?
Consider the augmentation map:

ε : RG∑
i rigi

→
7→

R∑
i ri

It is a ring map.
Augmentation ideal I = ker(ε) ⊂ RG.
We have Norm element N =

∑
g∈G g ∈ RG.

If G is a p-group then N ∈ ker(ε : FpG→ Fp).
Aug map ε : F2C2 → F2 as F2C2 module.
Therefore F2 is not projective over F2C2.
Complete list of finitely generated F2C2-modules (up to isomorphism):

(F2)
a ⊕ (F2C2)

b

Complete list of FpCp-ideals:

0 ⊂ ⟨1− r⟩p−1
⟨N⟩

⊂ · · · ⊂ ⟨1− r⟩
ker ε

⊂ FpCp

Thus FpCp is local.
It is simple, not projective.
Complete list of finitely generated FpCp-modules up to isomorphism: direct sum of
ideals.

Definition. Ring R is semilocal if R/J(R) is semisimple.

eg kG is always semilocal.
Serre p 163

Definition (Artinian Ring). R is artinian if:

i) Every decreasing sequence of ideals is stationary.

ii) ⇐⇒ every f.g. R-module has finite length.

eg Z is not artinian, but kG is artinian.
This is because f.d. k-algebra is artinian.

Remark. If R is artinian then every finitely generated module has a minimal sub-
module and hence simple.

Theorem 99. If R is artinian then ∃ unique minimal 2-sided ideal J(R) so that
R/J(R) is semisimple.

Here, R/J(R) is the maximal semisimple quotient. J(FpCp) = ⟨1 − r⟩ since the
quotient is Fp.
For a general ring R we have:

J(R) =
⋃

max left
ideals

M
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Despite having a one-sided definition it is a two sided ideal.
Then, J(R)S = 0 when S is a simple module.
R artinian:
Simple modules over R ↔ simple modules over R/J(R).

Monday, 11/11/2024

Simple vs Indecomposable

Simple and Indecomposable are not the same thing.
We have Jordan-Hölder Theorem and Krull-Schmidt Theorem.
Let R be a ring and M be a module. Then,
l(M) = n if chain 0 =M0 ⊊M1 ⊊ · ⊊Mn =M and n is maximal.

Definition. Composition series for M is maximal chain ⇐⇒ all the quotient mod-
ules Mi/Mi−1 are simple.

Definition. Module M is indecomposable if M = A⊕B =⇒ A = 0 or B = 0.

Let M be of finite length.

Theorem 100 (Jordan-Hölder Theorem). If M has finite length, then M has a
composition series. Any two composition series have the same simple quotients.

Theorem 101 (Krull-Schmidt Theorem). IfM has finite length thenM = I1⊕· · ·⊕Ik
with Ij indecomposable and if M = I ′1 ⊕ · · · ⊕ I ′k′ with I ′j independent then k = k′

and Ij = I ′σ(j) for σ ∈ Sk.

Works for abelian categories, works for groups.
Group Ring where the ring is a field has finite length.
Consider S3

∼= D6 = ⟨r, s | r3 = 1, s2 = 1, srs = r−1⟩ = C3 ⋊ C2.
QD6 = Q⊕Q⊕M2(Q)

r 7→
(
1, 1,

[
0 1
−1 −1

])

s 7→
(
1,−1,

[
0 1
1 0

])
F2D6 =?
We have: 1

3 (1 + r + r2) a central idempotent.

F2D6 = F2C2 ⊕M2F2

F2C2 is projective, not simple.

F2D6 = F2C2 ⊕
[
∗ 0
∗ 0

]
⊕
[
0 ∗
0 ∗

]
JH =⇒ F2,F2, (F2)

2, (F2)
2.

Maximal semisimple quotient F3D6/J = F3C2 = F3 × F3.
Jacobson Radical J = ⟨1− r⟩.
We have a (not central) idempotent: e = 1+s

2 . So we don’t have block decomposition.

F3D6 = F3D6

1−e ⊕
F3D6

e not block decomposition.
Now we go back to Serre.
Let R be semisimple. Then Projective ⇐⇒ ⊕ simple.
If R is Artinian, which is better? Both
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Serre 14.1 Simple

The abelian group RkG is Z[T ]/R with generator set T where:
T = isomorphism classes of finitely generated kG-modules [M ].
We have following relations R:
[M ] = [M ′] + [M ′′] if there exists a short exact sequence:

0→M ′ →M →M ′′ → 0

In the Maschke case the short exact sequence splits and so M =M ′ ⊕M ′′.
Ring with −⊗k −.
Sk = SkG = isomorphism classes of simple kG-modules.
(RF2

D6,+) ∼= Z2, [F2D6] = [S1] + [S1] + [S2] + [S2].

S1 = F2, S2 =

[
∗
∗

]
(RF3D6,+) ∼= Z2.
[F3D6] = S′1 + S′1 + S′1 + S′2 + S′2 + S′2
We want to prove proposition 40:

Proposition 102 (Serre 40). Sk is Z-basis for the representation ring Rk(G) addi-
tively. [s] 7→ [s].

Proof.
Z[Sk]↔ RkG

∑
[Mi/Mi−1]←[ M

Projective Module Review

Let R be a ring.

Lemma 103. R-module P . TFAE:

i) ∃Q such that P +Q = free [has a basis].

ii) We have the following:

P

M N
∃

iii) A surjection to P splits.

M P

iv) SES

0 M N P 0

splits.

v) P isimage of projection.

∃π ◦ π = π : Rs → Rs s.t.P ∼= π(Rs)

eg R = R×M2R,
(
∗
∗

)
∼=
(
∗ 0
∗ 0

)
is projective, not free.
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Let R be a ring.
K0R = Gr(iso chlass of f.g. projective R-modules,⊕).
Serre writes PA(G) = K0(AG) for ring A.
K0(kG) is module over RkG. [Not ring since we don’t have identity].
Key point: M ⊗k kG ∼= i∗M ⊗k kG where i : k ↪→ kG is free.
m⊗ g 7→ g−1m⊗ g.
Note that M ⊗k proj is proj.

Wednesday, 11/13/2024

Serre 14.3

We are looking at kG, character possibly dividing #G.

indecomposable simple
K0(kG) RkG

P 7→ P/J(R)P
PS ←[ S

projective cover

Definition. f :M →M ′ is essential if:

• f onto.

• ∀M ′′ ⊊M ′, f
∣∣
M ′′ not onto.

The idea is f is essential if it is ‘barely onto’.

Definition. f : P →M where P is projective and f is essential is a projective cover.
Note: P is the projective cover of M .

Proposition 104 (4.1). If l(M) < ∞ there exists projective cover, unique upto
isomorphism.
If P is projective and E is maximal semisimple quotient, then P → E is a projective
cover.
eg if R is artinian, then l(M) <∞ ⇐⇒ M finitely generated.
P projective implies P → P/JP is projective cover. P/JP is semisimple.
eg F2C2 → F2 is a projective cover.
e = 1+s

2 , F3D6e→ F3 is a projective cover.
proj

F3D6 ↠
essential

s.s.

F3C2.

Proof. Existence:

• Choose SES (choice in blue):

0→ R→
proj

L →M → 0

• Choose N ⊂ R minimal such that:

L/N
ess→M

Let P := L/N .

• Let Q ⊂ L minimal such that:

L

Q Ponto
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• Choose lift

L

Q P

q

2nd choice and 3rd choice implies:

0→ N → L
q→ Q→ 0

SES =⇒ P ∼= Q.

3rd choice and 4th choice =⇒ L Qq

i

split.

L ∼= N ⊕Q ∼= N ⊕ P , P projective.
Uniqueness:

P

P ′ M

lift q∼=

P ′ →M essential so q onto.
P →M essential so q is 1-1.

Suppose R is artinian eg R = kG.

Corollary 105 (1).

proj. indecomposable R-mod↔ simpleR-mod

P 7→ P/JP

PE ←[ E

Corollary 106. Let $ be isomorphism classes of simple R-modules.
{PE}E∈$ form a basis of K0R.

Corollary 107. f.g. projective R-modules P and P ′, [P ] = [P ′] ∈ K0R ⇐⇒ P ∼=
P ′.
No stabilization required!

Proof. ?: Suppose [P ] = [P ′] ∈ K0(kG).
⇐⇒ [s] = [s′] ∈ RkG [s = P/JP ]
⇐⇒ s ∼= s′

⇐⇒ P ∼= P ′.

Setting of Chapter 14, p-adics

Consider ((K, ν), A,m, k).
Example: (Qp, νp),Zp, pZp,Fp.

Definition (p164). A discrete valuation (K, v) is a field K and a homomorphism
ν : K× ↠ Z such that ν(x+ y) ≥ min(ν(x), ν(y)).

Basic example: K = Q then νp is the power of p in the factorization.
Generalize: If A is a PID and we have prime P ◁ A we have a discrete valuation
(Frac(A), νP ).
Let (K, ν) bea discrete valuation.
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Definition. Valuation ring of (K, ν) is:

A = ν−1Z≥0
This is a DVR (discrete valuation ring) (= PID with unique maximal ideal).
Maximal ideal is
m = ν−1Z>0

eg for (Q, νP ) we have A = Z(P ).
For (K, ν) we have an absolute value on K which gives us a metric on K.
|x| = e−ν(x).
metric: d(x, y) = |x− y|.

Fact: Completion of K (use Cauchy sequences) K̂ν is also a field with discrete valu-
ation ν.
K is complete if K = K̂ν .

Friday, 11/15/2024

Basic plan for learning p-adic: Suppose we want to study FpG. If p | |G| then Maschke
doesn’t work. So we mod out the Jacobson RadicaL FpG/.
Our setting:

( (K, ν)
complete D.V

, A
valuation ring

, m
maximal

, k
residue field

)

eg ((Qp, νp),Zp, pZp,Fp)
In Q, νp, νp(pn a

b ) = n.

Renormalize: ∥x∥ = p−ν(x)

lim
n→∞

pn = 0

Qp is completion of Q under ∥x− y∥p

Qp =

{ ∞∑
i=−k

aip
i | 0 ≤ ai ≤ p− 1

}

Zp =

{ ∞∑
i=0

aip
i | 0 ≤ ai ≤ p− 1

}

m =

{ ∞∑
i=1

aip
i | 0 ≤ ai ≤ p− 1

}

Better Approach

We use the inverse limit to define it.

Zp := lim
←

Z/pn =
{
(bn) ∈

∏
Z/pn | bn+1 ≡ bn (mod pn)

}
Compact by Tychonoff.
Qp = Frac(Zp).

The case p = 2

p = 2 consider binary expansion.
In Z, 11011 is finite.
In R we can have 11011︸ ︷︷ ︸

finite

. 101110110 · · ·︸ ︷︷ ︸
infinite

In Q2 we ca have · · · 1011011︸ ︷︷ ︸
infinite

. 01101︸ ︷︷ ︸
finite

Thus we can have algorithms for adding and other stuff.
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Serre 14.4

Lemma 108 (Lemma 20). Let Λ be a commutative ring and P be a ΛG-module.
P projective /ΛG =⇒ P projective /Λ and ∃Λ-map u : P → P so that:∑

s∈G
su(s−1x) = x∀x ∈ P

Serre writes it as: ∑
s∈S

sus−1 = 1

Proof. Ommitted. Just computation

Lemma 109 (Lemma 21). Let Λ be local ring, k = Λ/m.

a) Let P be a ΛG-module free /Λ

P proj./ΛG ⇐⇒ P = P ⊗Γ k proj/kG

b) Projectives P, P ′ implies P ∼= P ′ ⇐⇒ P ∼= P ′
k

Proof. Idea: the maps are matrices, we show their determinants are invertible. Local
means we need to show dets are not in max ideal.

a) =⇒ part is clear. We do ⇐= :

P projective. Lemma 20 implies ∃u : P → P k-map so that:∑
sus−1 = 1

We “lift u”.

P

P

P P

u

u

Then u′ =
∑
sus−1 ≡ 1 mod m.

Thus u′ is ΛG-map, detu′ /∈ m =⇒ detu′ ∈ Γ× =⇒ u′ invertible.∑
su(u′)−1s−1 = u′(u′)−1 = 1

L20
=⇒ P proj

b) Let w : P
∼=→ P

′
. Lif w : P → P ′. Then detw /∈ m =⇒ w is invertible and thus

is isomorphism.

Proposition 110 (42). Let A be a complete local ring.

a) E is AG-module. Then E proj / AG ⇐⇒ E free /A and E projective /kG.

b) If F is projective kG-module, ∃! projective P/AG such that P ∼= F .

Corollary 111. There exists bijection:

proj indecom proj. indecom simple
AG-mod → kG-mod → kG/J-mod
−−−−−− −−−−−− −−−−−−

iso iso iso
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Now we go back to proposition 42.

Proof of Lemma 21. Lemma 21 =⇒ a and uniqueness.Question: existence?
F projective kG-module.

A = limA/mn

(A/mn)G is Artinian.
∃ projective cover Pn → F of (A/mn)G-modules.

Pn+1

Pn F

We have · · · → P3 → P2 → P1 → P0

Let P = lim← Pn, detailed ommitted. P projective AG-module, P = P ⊗A k.

Monday, 11/18/2024

14.3 and 14.4 Review

In (A, k) [eg Zp,Fp] we say A is a complete local ring where valuation ring is complete
(K, ν). k = A/m is the residue field.
Suppose we have our finite group G. We have the ‘reduction mod m’ homomorphism:

AG
π→ FpG

Then we have:

AG
π→ FpG

p→ FpG/J(FpG)

J indicates the Jacobson Radical.
We have bijections.

basis K0(AG) basis K0(FpG) basis RkG

proj indecom proj. indecom simple
AG-mod → kG-mod → kG/J-mod
−−−−−− π∗ −−−−−− p∗ −−−−−−

iso iso iso

If M is an AG-module then π∗M = FpG⊗AG M .
We have PE → E

essential
←[ E

Recall that essential maps are maps that are ‘barely surjective’.
We have P = lim← Pn ←[ P
Pn → P projective cover of (A/mn)G-modules.
Now we deal with the case charK = 0, char k = p. Recall that K has a valuation ring
A with unique maximal ideal m and k = A/m.

Definition.

{
K
k

}
is a splitting field for G if:

KG ∼=
∏

Mni
K

kG/J ∼=
∏

Mli(k)

Definition.

{
K
k

}
is sufficiently large if

{
K
k

}
contains all

{
m
m′

}
.

Where m = lcm{ord(G) | g ∈ G} = expG where m′ = m/pa where (p,m′) = 1.
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Fact: sufficiently large =⇒ splitting fields.
K due to Brauer, k see remark in 14.5.

Example. F5[C3] ∼= F5 × F25. So F5 is not splitting field.
F25[C3] ∼= F3

25 so F25 is splitting field for C3.

Definition. E is absolutely simple if dimKk

HomKGkG


(E,E) = 1.

14.5 Dualities

Suppose charK = 0.
If E,F are KG-modules, we can define:

⟨E,F ⟩ = dimK HomKG(E,F ) = ⟨E,F ⟩ = ⟨χE , χF ⟩

We thus have bilinear ⟨, ⟩ : RkG×RkG→ Z.
Simples [E] are orthogonal basis.
Orthonormal iff K is a splitting field for G.
Now suppose char k = p | #G.
⟨, ⟩ : RkG×RkG→ Z is not bilinear! This is because SES don’t split.
Take 0→ F2 → F2C2 → F2 → 0 . But if we take HomF2C2

(F2C2,F2) but ⟨F2C2,F2⟩ ̸=
⟨F2,F2⟩+ ⟨F2,F2⟩.
But the following is bilinear:

⟨, ⟩ : K0(kG)×RkG→ Z

If k is a splitting field then {PE} and {E} are dual bases.
HomkG(PE , E

′) ∼= HomkG(E,E
′) for E,E′ simple.

14.6

Consider K ′/K. Then we have RKG ↪→ RK′G.
This is an injection.
This is infact a split injection [so there’s a map backwards] iff ∀ simple E, ⟨E,E⟩ = 1
[so the schur index = 1].
Isomorphism ⇐⇒ K is a splitting field.
All follow from KG semisimple:

Mn(D)⊗K K ′ =Mn(D ⊗K K ′)

Example. RR(Q8)→ RC(Q8):
We have the matrix: 

1
1

1
1

2


Since H⊗R C ∼=M2(C) as rings and ∼= C2 ⊕ C2 as module and also ⟨H,H⟩RQ8

= 4.
So not split injection.

Theorem 112 (Wedderburn). Finite

{
integral domain

skew field

}
is a field.

Consider k′/k,Rk(G)→ Rk′G,K0(kG)→ K0(k
′G).

These are split injection.
Isomorphism iff k′ is spliting field for G.
“Setting”:
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k′ A′ K ′

k A K

finite

Here A′ = integral closure of A in K ′

We have:

K0(AG) K0(A
′G)

K0(kG) K0(k
′G)

π∗∼= ∼=

K0AG→ K0A
′G is splitting.

Isomorphism if K is sufficiently large.

Wednesday, 11/20/2024

CDE Triangle

Recall:
A = completely local ring
K = field of fractions
k = residue field.

A K

k

The CDE triangle is the following:

K0(kG) RkG

RKG

c

forgetful
e

lift

d

lattice

Each group has a canonical basis.
Therefore, we have matrice C,D,E.

Exercise. Compute C,D,E for k = F2, G = C6, D6.

15.1: c[P ] = [P ]
S = isomorphism classes of simple kG modules.

K0(kG) RkG

{PE}E∈S {E}E∈S

C is square C = (CFE)

c

c[PE ] =
∑

F∈S CFE [F ]
CFE = # of F factor in composition series for PE .
d : RKG→ RkG
Let E be finitely generated KG-module.

Definition. A G-lattice in E is a finitely generated AG-submodule of E.

Remark. Existence: If {e1, · · · , en} generates E, then E1 =
∑n

i=1AGei ⊂ E is
G-lattice.
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E1 is G-lattice in E.

E1 := E1/mE1(= k ⊗A E1)

Define d[E] = [E1]
Is d well defined? Proof later!
e : K0(kG)→ RKG:

K0(kG) K0(AG) K0(KG) = RKG

p p KG⊗AG P

K ⊗A P

e

∼=

=

Remark. i) c is defined for any field k.

ii) d is defined when A is a local ring

iii) e is defined wen A is a complete local ring

Remark. The triangle commutes: c = d ◦ e.

Lemma 113. d and e are adjoints.

⟨x, d(y)⟩k = ⟨e(x), y⟩K
for all x ∈ K0(kG) and y ∈ RKG

Proof. x = [X] where X is a projective AG-module.
y = [K ⊗A Y ] where Y is AG-module which is A-free.
HomAG(X,Y ) is projective A-module. Thus it is a free A-module.
Let r be the rank.
⟨−,−⟩k : K0(kG)×RkG→ Z
⟨A,B⟩ = dimk HomkG(A,B)
⟨x, d(y)⟩k = dimk HomkG(X,Y ) = dimk(k ⊗A HomAG(X,Y )) = r
⟨e(x), y⟩K = dimK HomKG(K ⊗A X,K ⊗A Y ) = dimK K ⊗A HomAG(X,Y ) = r

Remark. For K sufficiently large [ζm ∈ K,m = exp(G)] implies K, k are both
splitting fields.
Thus, bases of K0(kG) and RkG are duals. Basis of RKG is orthonormal. So, ⟨−,−⟩k
are perfect parings.
Therefore, E = DT .
Then C = DE = DDT =⇒ C is symmetric.

We now prove that d is well-defined.

Friday, 11/22/2024

G-lattice in f.g. KG-module E is f.g. AG-submodule E1 such that E = KE1.

E1 = E1/mE1

d[E] = [E1]

We want to show this is well defined.

Lemma 114. If E1 and E2 are G-lattices in E, then [E1] = [E2].
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Proof. Recall: d[E] = [E1] where E1 ⊂ E is finitely generated AG-submodule and
E1 = E1/mE1.
Case A: mE1 ⊂ E2 ⊂ E1

Consider:

0→ E2 → E1 → E1/E2 → 0

Third isomorphism theorem:

=⇒ 0→ E2/mE1 → E1/mE1 → E1/E2 → 0

Thus,

(∗)0→ E2/mE1 → E1 → E1/E2 → 0

We also have:

0→ mE1 → E2 → E2/mE1 → 0

Then,

0→ mE1

mE2
→ E2

mE2
→ E2/mE1 → 0

=⇒ (∗∗)0→ E1/E2 → E2 → E2/mE1 → 0

Splicing (∗) and (∗∗) we get:

0 E2/mE1 E1 E2 E2/mE1 0

E1χE2

=⇒ [E1] = [E2]
Case B: E2 ⊂ E1 ∃n such that mnE1 ⊂ E2 ⊂ E1.
We show that [E1] = [E2] by induction on n. Case A was our base case.
Let E3 = mn−1E1 + E2.
mn−1E1 ⊂ E3 ⊂ E1 and mE3 ⊂ E2 ⊂ E3.
Induction hypothesis =⇒ [E1] = [E3] = [E2].
General Case: G-lattices E1, E2 then ∃l ∈ A \ {0} such that lE2 ⊂ E1.

15.5 p′ group

i.e. p ∤ #G
FpG semisimple.
central idempotents of QG ⊂ 1

|G|ZG ⊂ Z(p)G ⊂ ZpG

Proposition 115 (43). Premise is as before. Then,

i) All kG-modules are projective.

All A-free AG-modules are projective.

ii)
SK → Sk

E 7→ E1
is bijective.

iii) C = D = E = I.
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Proof. i) kG semisimple from Maschke.

Let P be an A-free AG-module.

We will prove that any epomorphism to P splits.

Consider M
π
↠ P

P is A-free, ∃A-splitting M s← P .

Then we ‘average’:

ŝ(p) =
1

|G|
∑
g∈G

gs(g−1p)

=⇒ ŝ is AG-map.

=⇒ ŝ is splitting. So we are done.
ii and iii:

f.g. KG-module
∼=

A-free f.g. AG-mod
∼=

f.g. kG-mod
∼=

f.g. proj AG-mod

SK SA Sk

simple KG-mod proj AG-mod C = D = E = I

G-lattice

K⊗A

∼=

=
proj. cover

∼=
k⊗A

∼=∼=

Jacobson Radical

Suppose char k = p

Theorem 116 (Davis Thesis). Suppose we have a p-group P ◁ G. ∀p ∈ P, p − 1 ∈
J(kG)

Corollary 117 (1).

1→ P → G→ Q→ 1 =⇒ G = P ⋊Q.

Here Q is a p′-group.
kG/J(kG) ∼= kQ is “largest semisimple quotient”.

Corollary 118. 1→ P → G→ Q→ 1
kG/J(kG) ∼= kQ/J(kQ).

We redefine Jacobson Radical:
Old def: J(R) =

⋂
M max leftM

New Def: J(R) =
⋂

simple E Ann(E).
Recall:

AnnE = {r ∈ R | rE = 0}

AnnE is 2 sided ideal.
JE = 0.
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P64 Serre

Theorem 119 (L1). Suppose a p-group P ↷ X finite set.

|XG| ≡ |X| (mod p)

Proof. X −XG = ⊔orbits = ⊔Gx ∼= ⊔G/Gx

Theorem 120 (L2). If M is f.g. kP -module, then MP ̸= 0

Proof. Can assume k finite =⇒ #M finite.

0 ≡ |M | ≡ |Mp| (mod p)

Now we prove that p− 1 ∈ J(kG).

Proof. Let E be a simple kG-module.
Ep ⊂ E is a kG-submodule (use P ◁ G).
L2 =⇒ 0 ̸= Ep =⇒ Ep =
Thus, ∀p ∈ P, p− 1 ∈ AnnE =⇒ p− 1 ∈ J(kG)

Monday, 12/2/2024

Recall that we are working on group with characteristic p. Maschke’s theorem does
not work.
Also recall the CDE triangle:

K0(kG) RkG

RKG

c

forgetful
e

lift

d

lattice

The setting of part 3 of Serre is that we have a valuation ring A, fraction field K and
residue field k, eg Zp,Qp and Fp.
Recall 15.7:
Serre: G = P ×Q where P is a p group and Q is a p′ group.
Davis: G = P ⋊Q.
⇐⇒ ∃ Split SES:

1→ P → G
s←→
π
Q→ 1

π ◦ s = idQ.
Recall that π : G→ Q gives us π : kG→ kQ and thus we have π∗ and π∗
Recall: if we have f : R→ S we have exactness preserving f∗ : S-mod→ R-mod.
Also, if we have f∗ : R→ S we have projectiveness preserving f∗ : R-mod→ S-mod.

Theorem 121. ∃ bijections:

a) isomorphism classes of simple kG-modules
s∗→←
π∗

isomorphism classes of simple

kQ-modules.

b) isomorphism classes of projective indecomposable kG modules
π∗→←
s∗

isomorphism

classes of projective indecomposable kQ-modules.

c) isomorphism classes of projective indecomposable AG-modules
π∗→←
s∗

isomorphism

classes of projective indecomposable AQ-modules.
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Remark. E ∼= π∗F ⇐⇒ P acts trivially on E.
Will prove: π∗, π∗, π∗ are bijections, s∗, s∗, s∗ are 1-sided inverses ⇐⇒ 2-sided
inverses.
kG/J(kG) ∼= kQ.

Proof. a and b are general facts:
R artinian means R/J is the maximal semisimple quotient. We have R

π→ R/J .

Then we have simple R-mod
π∗

←∼= simple R/J-mod.

Recall J =
⋂

simple R-mod E Ann(E).

p.i R-mod
π∗

→∼= simple R/J-mod by projective cover.

Thus we are done with a and b.
c:

p.i AG-mod p.i AQ-mod

p.i kG-mod p.i kQ-mod

π∗

π split

p∗14.4 p∗ 15.5 Maschke∼=
π∗
∼= (b)

Corollary 122. If G = P ×Q matrix C = |P |· identity.

Proof. Uses a and b.

K0kG RkQ RkG

basis basis basis

s∗F1, · · · , s∗Ft F1, · · · , Ft π∗F1, · · · , π∗Ft

s∗
∼=

π∗

∼=

s∗

s∗Cs∗Fi = s∗(kG⊗kQ Fi) = s∗(kP ⊗k Fi) = k|P | ⊗k Fi = F
|P |
i

Question: what is C for P ⋊Q ?
Next time: First theorem of chapter 16 [theorem 33]: d in the CDE triangle is sur-
jective.

Remark. d is split, since RkG is free abelian.
d is onto since every k-representation can be lifted to K virtually.

Wednesday, 12/4/2024

Brauer Induction Theorem (BIT)

Definition. E is p-elementary if E ∼= P × C where P is a p-group and C is a cyclic
p′ group.
E is elementary if it is p-elementary for some p.

Theorem 123 (BIT). Ind :
⊕

elem E<GRE ↠ RG.

17.1, 17.2: BIT in modular, sufficiently large case:
Suppose charK = 0, ζm ∈ K,m = lcm{ord(g) | g ∈ G}.
Then BIT: Ind:

⊕
E<GRKE ↠ RKG.

Proof. Consider the following isomorphisms:
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RQ(ζm)(G) RCG

RKG

∼=

∼=

BIT =⇒ the trivial representation is induced by subgroups:
(∗) [K] = 1K =

∑
IndGE(xE).

Setting: ((K, ν), A, k).
BIT: If K is sufficiently large (i.e. ζm ∈ K) then,

Ind :
⊕
E<G

RkE ↠ RkG

Ind :
⊕
E<G

K0kE → K0kG

Proof. Apply d [of CDE triangle] to (∗):

(∗∗) : 1k =
∑

IndGE(d(xE))

=⇒ ∀y, y = y · 1k =
∑

IndGE(d(xE)Res
G
E(y))

So we’re done. See 17.1 for details (!)

If K is not sufficiently large, we need ΓK elementary.

Some more CDE triangle

Recall:
K0kG consists of projective modules, RkG consists of all. Since projective covers are
unique, c must be injective.
Our CDE triangle ends up looking like this:

K0kG RkG

RKG

c

e d

We prove this using Brauer induction theorem.

Theorem 124 (33). d is surjective.

Proof. It is true in general. We only prove the case where K is sufficiently large.
Special case: G = elementary, aka G = P×C. We go to the general case using Brauer
induction theorem.
Let π : G→ C be the projection map.
y ∈ RkG =⇒ y = π∗y′ where y′ ∈ RkC by 15.7.

dc : RKC
∼=→ RkC [15.5].

Thus, ∃y′′ ∈ RKC such that d(y′′) = y′

Since d(π∗y′′) = π∗(d(y′′)) = π∗(y′) = y, we’re done in the special case.
For general G: consider y ∈ RkG then,
BIT =⇒ y =

∑
E<G IndGE(yE) =

∑
E<G Ind(d(y′E)) = d

(∑
E<G Ind(y′E)

)
so we are

done.

d is a surjection. Since everything in the CDE triangle is free, it is in fact a split
surjection.

Theorem 125 (34). e is a split injection.
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Proof. Again suppose K sufficiently large. Then D = Et where d is a split surjection.
Therefore, E is a split injection.

For general K, we have:

K ′ k′

K k

Where K ′ is sufficiently large. Then we have:

kG K0k
′G

RKG RK′G

e

14.6

=⇒ Corollary 1 K0kG → RK′G is split injection =⇒ K0kG → RKG is split
injection.

Corollary 126 (7). Let P, P ′ be f.g. projective AG-modules.
If K ⊗A P ∼= K ⊗A P

′ then P ∼= P ′.

Proof. K ⊗A P ∼= K ⊗A P ′ =⇒ e[P ] = e[P ′] =⇒ [P ] = [P ′] =⇒ P ∼= P ′ =⇒
P ∼= P ′.

Theorem 127 (35). Let pn || |G|. Then pn coker c = 0.
i.e. ∀y ∈ RkG, ∃x ∈ K0kG such that c(x) = pny.

Proof. Again assume G is sufficiently large.
Special case: G = P × C
15.7 =⇒ matrix C = pn · id.
For general G we use BIT:
y ∈ RkG =⇒ y =

∑
E<G Ind(yE) =⇒ pny =

∑
E<G Ind(pnyE) =

∑
E Ind(c(xE))

= c (
∑

E Ind(xE))

Friday, 12/6/2024

Theorem 35 and K0kG ∼= Zs ∼= RkG
Corollary 1: =⇒ ∃ SES:

0→ K0kG
c→ RkG→ finite p-group→ 0

Corollary 2: If P, P ′ are projective kG-modules with the same composition factors,
then P ∼= P ′.

Proof. c[P ] = c[P ′] =⇒ [P ] = [P ′] =⇒ P ∼= P ′

Corollary 3: If K is SLy then the Cartan matrix C is symmetric, positive definite
and detC = pk for some k.

Proof. Theorem 35 =⇒ | detC| = pk.
C symmetric (15.4), C = DE,D = Et

∀x ∈ Zs − 0, xtCx > 0 ⇐⇒ C positive definite?

Let {ei}, {fi}, {gi} be canonical bases for K0kG,RkG,RKG.
Recall 14.5: we have RKG×RKG→ Z given by:

⟨V,W ⟩ = dimK HomKG(V,W )

Also, ⟨gi, gj⟩ = δij so it is an orthonormal basis.
We have K0kG×RkG→ Z given by ⟨V,W ⟩k = dimk HomkG(V,W ) with ⟨ei, fj⟩ = δij
so ei, fj are dual bases.
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K0kG

K0kG×K0kG Z

1×c

β

Thus we have β(x, y) = ⟨x, c(y)⟩k.
Is β symmetric?
β(x, y) = ⟨x, d(e(y))⟩k = ⟨e(x), e(y)⟩k = β(y, x) so it is symmetric.
β is positive definite since ⟨, ⟩K is positive definite and e is injective.
β(ei, ej) = ⟨ei, c(ej)⟩k = ⟨ei,

∑
i cijfi⟩ = Cij

C is matrix of β and since β is positive definite we deduce that C is positive definite.

Theorem 128 (36). Image of e = set of virtual characters which are zero in p-singular
elements.

Definition. g ∈ G is p-regular if (ord g, p) = 1.
g ∈ G is p-singular if p | ord g.

Recall: χ : RKG ↪→ Cl(G) =
{
f : G→ K | f(στσ−1) = f(τ)

}
.

χ[V ]−[W ] := χV − χW

Theorem 129 (36). im(e) = {y ∈ RKG | χy

∣∣
p-singular

≡ 0}.

Exercise. Verify this for G = D6, p = 2, p = 3.

Proof. K0kG K0AG K0KG

e

∼=

g ∈ Gp-singular.
Replace G by ⟨g⟩ = P ×Q p-group times p′-group. Then g = (gP , gQ) and gp ̸= e.
e(E) where E is projective AG-module.
15.7: E ∼= s∗F = A[P ]⊗A F with F A[Q]-mmodule.
χKE = χKP ⊗ ψ.
χKP is the regular representation.
χe(E)(g) = χKE(g)

= χKP (gp)ψ(gQ)
= 0ψ(gQ) = 0.
Zero since trace of nontrivial permutation matrix is 0.
For the other direction ⊇:
When K is SL:
Idea: Use BIT to reduce to P ×Q. Then apply 15.7.

Monday, 12/9/2024

Today: Proof of theorem 36, Brauer Characters.
Wedsesday: Example Ay.
Now we go back to the proof.
Recall: g ∈ G is p-singular if p | ord(g).
We did the ⊆ part last class.
Today: ⊇
Case 1: G = P ×Q, p-group ×p′-group.
RKP ⊗Z RKQ = RK(P ×Q).
There exists y ∈ RKG such that χy(p− sing) = 0.
Claim: χy = χKP⊗f where f(q) = 1

|P |χy(e, q) ∈ Cl(Q).

Proof of Claim: Consider a ∈ P such that a ̸= e.
Since p | ord(a) we have:
χy(a, q) = 0 = χKP (a)︸ ︷︷ ︸

=0

f(q) = 0.

χy(p, q) = |P |f(q) = χKP (e)f(q) = (χKP )(e)f(q) = (χKP ⊗ f)(e, q).
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We want to show: f ∈ RKQ.
∀ρ ∈ RKQ, we have:
⟨f, ρ⟩ = ⟨χKP , 1⟩⟨f, ρ⟩ = ⟨χy, 1⊗ ρ⟩ ∈ Z
If {ei} is a basis for RKQ then,
f =

∑
i⟨f, ei⟩ei ∈ RKQ.

So we are done.
Now, K0(AQ)

∼=→ RKQ by 15.5.
So yQ 7→ f .

Thus, y = e(A[P ]⊗A yQ) so we’re done.
Case 2: General G.
In this case we use BIT to reduce this to case 1.
BIT implies all representations are induced by elementary groups. So, the trivial
representation is also induced by the elementary groups.
Recall that elementary groups are p group × cyclic p′ group.
∀y ∈ RKG, y =

∑
E IndE(χE ResE y)

=
∑

E IndE(e(zE)) from case 1.
= e (

∑
E IndE(zE))

Brauer Characters

“Setting”: We have a field K that is complete w.r.t. a valuation ν. We have valuation
ring A and maximal ideal M , and also the residue field k. K is the quotient field of
A and k = A/M .
We write it as ((K, ν), A,M, k).
We assume K is sufficiently large.
Given a kG-module E that is finitely generated, we want to find a “modular repre-
sentation” [char p] representation.

We could, in the usual way, define a k-valued character G
χE→ k. This is lousy and we

don’t have much information.
Brauer had the idea of ‘lifitng’ it to characteristic 0.

Greg A

G k

ϕE

Brauer character

χE

Where:
Greg = {g ∈ G | (ord g, p) = 1}
m′ = {lcm ord g | g ∈ Greg}
m = pkm′ where (p,m′) = 1.
NK = Nm′

K = m′ roots of 1 in K

Nk = Nm′

k = m′ roots of 1 in k.
These are integrally closed and we have A↠ k. Therefore, NK

∼= Nk.

NK Nk

A k

∼=

kG-mod E ↔ PE : G→ GLn k.
∀g ∈ Greg, ρE(g) is diagonalizable.
=⇒ χE(g) := Tr ρE(g) =

∑
i λi m

′-roots of 1.

Definition (Brauer Character). ϕE : Greg → A so that χE(g) =
∑

i λ̃i

Theorem 130 (Facts about Brauer Character). i) ϕE(e) = dimE

ii) ϕE : Greg → K is a class function
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iii) SES 0 → E′ → E → E′′ → 0 of kG-mod, ϕE = ϕE′ + ϕE′′ . Proof: for
g ∈ Greg, E

∣∣
⟨g⟩
∼= E′

∣∣
⟨g⟩ ⊕ E′′

∣∣
⟨g⟩

iv) ϕE1⊗E2
= ϕE1

ϕE2

v) χE(g) = ϕE(gr) where g ∈ G, gr ∈ Greg. 10.1 =⇒ ∀g ∈ G,∃!g = grgp where gr
is a p′-element and gp is a p-element and grgp = gpgr.

Proof. v: eigenvalues of ρE(g) = eigenvalues of ρE(gr). Note that eigenvalues of
ρE(gp) are all 1. Since eigenvalues of ρ(gg−1r ) are 1, g and gr commutes.

Wednesday, 12/11/2024

In the following, ϕE : Greg → A are Brauer characters. The maps are the obvious
ones.

ΦF : G→ A ϕE : Greg → A

K0kG RkG

RKG

χV : G→ A

c

e d

Suppose F is a projective kG-module.
We can ‘lift’ it to F̃ , a projective AG-module.
Then, ΦF :=:= χK⊗F̃ .
We have: χe[F ] = ΦF .

Theorem 131 (36). ΦF (p-sing) = 0.

Theorem 132 (pg 150). # of simple kG-modules = # of conjugacy classes of p-
regular elements of G.
This is in the sufficiently large case.
This is also the number of projective indecomposable modules.

Proof. Follows from:
rank K0kG = rank RkG. So we can talk about the number of projective indecom-
posable modules instead of simple kG-modules.
e is injective (theorem 33).
Recall: im e = {y ∈ RKG | χy(p-sing) = 0}
RKG⊗K

∼=→ Cl(G→ K).
dimK{f ∈ Cl(G→ K) | f(p-sing) = 0} = # of c.c. of p-reg elements.

We do an example: S4.
conjugacy classes: 1, (ab), (ab)(cd), (abc), (abcd) so we have χ1, χ2, χ3, χ4, χ5.
2 regular conjugacy classes: 1, (abc). We have ϕ1, ϕ2,Φ1,Φ2.
3 regular conjugacy classes: 1, (ab), (ab)(cd), (abcd).
Questions: What are the dimensions of simple kG-modules? What are the composi-
tion factors of projective indecomposable kG-modules?
We use characters.

Remark. For symmetric groups we don’t need ‘sufficiently large’. Q (and hence
Qp,Fp) are splitting fields for Sn.
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S4 = Isom(tetrahedron) = (C2 × C2)︸ ︷︷ ︸
rotation with axis

through midpoint of opposite edges

⋊ S3︸︷︷︸
stabilizer of a vertex

.

S4 → S3 → {±1}.
S3 = D6, isometries of triangle. Over complex numbers, it looks like:

0 1
1 0

ζ3
ζ3


So we have:

(1) (ab) (ab)(cd) (abc) (abcd)
χ1 1 1 1 1 1

sign χ2 1 −1 1 1 −1
χ3 2 0 2 −1 0

geom χ4 3 1 −1 0 −1
geom⊗ sign χ5 3 −1 −1 0 1

To check we have all, we need to check irreducibility: ⟨χi, χi⟩ = 1.
Now suppose we want RF2S4. We want G-reg elements. So we copy over those ones:

(1) (abc)
ϕ1 = χ1

∣∣
G-reg

1 1

ϕ1 = χ2

∣∣
G-reg

1 1

ϕ2 = χ3

∣∣
G-reg

2 −1
ϕ1 + ϕ2 = χ4

∣∣
G-reg

3 0

ϕ1 + ϕ2 = χ5

∣∣
G-reg

3 0

ϕ1 and ϕ2 are the irreducible ones!
What is the matrix D?

D =

[
1 1 0 1 1
0 0 1 1 1

]
In order to get E we can use E = DT .

Φ1 = χ1 + χ2 + χ4 + χ5 = 4ϕ1 + 2ϕ2 on Greg

Φ2 = 2ϕ1 + 3ϕ2

We can also compute the Cartan matrix C:

C = DDt =

[
4 2
2 3

]
so Φ1 = 4ϕ1 + 2ϕ2 etc.

Friday, 12/13/2024

Primitive Central Idempotents (pcils) = blocks.
For all ring R,

1 = e1 + · · ·+ eb

with ei nonzero central idempotents (e2i = ei) with b maximal.
For all ring R,
∃!RRR = B1 ⊕ · · · ⊕Bb

nonzero 2 sided ideals with b maximal.

pcils ↔ blocks
ei 7→ Rei

pri(1) ←[ Bi
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eg suppose R = R×M2R. Then b = 2.

1 = (1, 0) + (0, I2) =

(
1,

[
0 0
0 0

])
+

(
0,

[
1 0
0 0

])
+

(
0,

[
0 0
0 1

])
We have noncentral idempotents!a
R semisimple, # simple = # blocks.
what about kG?
If R is an artinian ring, E1, · · ·Es isomorphism classes of simple modules,

RR = P1 ⊕ · · · ⊕ Ps proj. ind

∀Pi, ∃!j such that Pi ⊂ Bj .

Corollary 133. s ≥ b.

Method for computing blocks of kG:
Step 1: Express 1 = e1 + · · ·+ es ∈ KG.
Step 2: Express 1 = ê1 + · · · êb ∈ AG
Step 3: Reduce mod M ◁A.

1 = e1 + · · ·+ eb ∈ kG

Lemma from blog (p.3) =⇒ ei are pci.
Thus, # of kG blocks = # of AG blocks.
For step 1, we have KG ∼=

∏
Mni(K).

ei =
ni
|G|

∑
g∈G

χ(g−1)g

Now, let’s look at S3. Here we indeed have s ̸= b.

1 (ab) (abc)

χ1 1 1 1
χ2 1 −1 1
χ3 2 0 −1

Table 5: Character Table

Another way of finding out: χ1 + χ2 + 2χ3 = χreg.
Then,

e1 = 1+r+r2+s+sr+sr2

6 /∈ Z2S3.

e2 = 1+r+r2−s−sr−sr2
6 /∈ Z2S3

e3 = 2−r−r2
3 .

Suppose p = 2, A = Z2.
We need to combine e1 and e2 to get a pci.
1 = ê1 + ê2 where ê1 = e1 + e2, ê2 = e3.

ê1 = 1+r+r2

3 , ê3 = 2−r−r2
3 .

What about F2S3?
p = 2 so 2 blocks. # simple F2S3-modules = # of 2-reg c..c. = 2 so b = s.
1 = e1 + e2.
If p = 3 then 1 ∈ Z3S3 is a p.c.i since e1 + e2, e2 + e3, e1 + e3 /∈ Z3S3.
So, if p = 3 then b = 1, s = 2.
Let’s try to complete the CDE triangle for S3!
Suppose p = 2.
What are the 2-regular conjugacy classes?
1 and (abc).
So we have 2 simple modules.

1 (abc)
ϕ1 1 1

ϕ2 = χe

∣∣
2-reg

2 −1
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1 (ab) (abc)
Φ1 = χ1 + χ2 2 0 2

Φ2 = χ3 2 0 −1

C will be a 2× 2 matrix.

C =

[
2 0
0 1

]
Since

[
2 0
0 1

] [
ϕ1
ϕ2

]
=

[
Φ1

Φ2

]
Then, E =

1 0
1 0
0 1

 and D = what we get.

What about p = 3?
3-reg c.c.:

1 (ab)
ϕ1 1 1

ϕ2 = χ2

∣∣ 1 −1

1 (ab) (abc)
Φ1 = χ1 + χ3 3 1 0
Φ2 = χ2 + χ3 3 −1 0

We get the linear combination since in F3S3/J = F3C2 = F+
2 ⊕ F−2 .

F3S3 composition factor 3F2, 3F−13
1+s
2 , 1−s2 .

C =

[
3 0
0 1

]
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