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Today:
History
Modular
Quotients

Matrices
Lang XVII, Section 1

(Fake) History

History of Groups
Most notions (let’s say what is a vector spce, what is a group) were vague.
Originally, groups were seen as:

e Symmetry Groups Sj,
e GL,(R) aka n x n invertible matrices
e Subgroups of the above

e Representations of the above

For representation, consider G and a homomorphism G — S,, [which is a group action
G ~{1,2,...,n} ] or a homomorphism G — GL,, [which is a group action on vector
space].

Part I of this course will be Ring Theory.

Part I: Ring Theory

Module
Convention: R = Ring with unity

Definition (Left Module). Left Module is an abelian group M with a function R x
M — M so that (r,m) — rm such that R x M — M is Z-billinear.

Meaning, we have:

(r+rYm=rm+r'm

r(m+m') =rm+rm/

Also (rr")ym = r(r'm)

And finally 1m =m

By default, module = left module (since Jim doesn’t want Trump to get reelected, he
prefers left module)

module / field [module over field] = vector space

We can have submodules M’ < M

We have quotients M /M’

We have the short exact sequence:



0—-M —M-—M/M —0

which means in each homomorphism, im = ker
So, M" — M is injective and M — M /M’ is surjective.
Also, kernel of M — M/M' is M’

Remark. Note that R is itself an R-module.

Convention: Submodule M of R = left ideal of R.

Left ideals are not enough to take quotients (like how we need normal subgroup for
group quotients).

So we need two sided ideals.

Definition (Two Sided Ideals). I C R is 2-sided ideal if I is abelian subgroup and
ri € I,ir € I aka “closed”.

Example. Consider a homomoprhism f : R — R’. Then ker f is a 2-sided ideal of
R.

For ring homomorphism we need:

flr+r)=f(r)+ ()

For') = £ ()

F(1) =1

If I C R is 2-sided then R/I is a quotient ring.

For example, M5(R) has no proper 2-sided ideal. But there exists left ideals!

<* 0> is a left ideal
* 0
Matrices are a good ‘source’ of non-commutative rings.

Given any ring R we can consider ring M, (R) of n X n matrices.

Given R-module M we can get Endg(M) = {f: M — M, f is R-module map}
We have (f + g)m = f(m) + g(m), (fg)m = f(g(m)).

This is a ‘coordinate free approach’ to matrices.

Remark. M, (R) and Endg(R") often looks the same, but in general M, (R) %
Endp(R").

Let’s first take n = 1. Let ¢ € R.

Consider R — R map r — ror

We don’t like this because this is not a left module map!!!

So this is not even in Endg(R)

What if we consider r + rrg?

This is a left module map, aka € Endg(R)

But R — Endg(R) is not a ring homomorphism.

So we are going to take the opposite ring.

Fix 1:

Given ring R, we can look into the mirror and find opposite ring R°P
Elements of R°? = elements of R.

0,1, 4 remain the same

But multiplication is reversed: define 7 -4, 7' = r'r

Alternate notation, we write op on elements.

Then r°P(r')°P = (r'r)°P

Then we have isomorphism R° = Endg(R) which is a ring homomoprhism!

Exercise. 1) R= R°® <= 3 antiautomorphism a: R — R

Antiautomorphism means « preserves 0, 1, + but reverses mutliplication
2) R commutative, then (M, R) = (M, R)°
3) Real quaternions H = HP

Remark. If you take right modules, you don’t need op.



There is a contravariant endofunctor in the category of rings which takes objects of
rings to their opposite.

Ring” — Ring [opposite category, not the same thing]

R — RP

Fix 2: [From Lang]

Suppose we have module homomorphism ¢ : E=FE,&---®FE, - F1®---®F, =F

Then we have E; — E L F - F; which we define to be E; (b—lﬁ F;
Then we have a matrix M(¢) so that M(¢) = (¢)s;

Z1
Thenfor [ : | €1 D D E,
Ty
Z1
Then qb(.%‘) = ((b”)
Tn

So, if we have E" = E @ --- @ FE [n times]
Lang says, there is a ring isomorphism

Endgz(E") = M, (EndgE)

¢ = (dij)
If E = R as left module, then Endg R = R°P
By combining these, Endg(R"™) & M, (R°?P)

Wednesday, 8/28 /2024

Today:

Group ring

Category

Simple modules

Question: The course is about ‘group representations’. So why study rings?

Answer: A group representation [homomorphism G — GL,(R)] is exactly the same
as a module over the ring RG.

So knowing everything about modules would tell us everything about representation.
Abelian Category!

Suppose we have a ring R and a group G. We can get a ring out of G

Definition (Group Ring RG). As an abelian group, this is the free R-module with
basis the elements of G.

Elements are symbols of the form g1 + - - - + 7,9, [finite linear combination].

0 is the trivial linear combination. So 0 = 0

1=1le=1gea

Multiplication is defined in the obvious way.

(500 (5, 74)) = Sou, i i,
Suppose V is a R-module.

Then a homomorphism p : G — Autg(V) <» V is RG-module.
p = (32 migi)v = 3, 1ip(gi)v

g+ (v — gv) + V RG module.

Example. C; = {1,t}

Then we have ZCy = {a + bt | a,b € Z,t*> = 0} = Z[t]/(t?)
Note that (1+¢)(1 —¢) =1 — ¢ = 0 so we have zero divisors.
Take Coo = (1)

Then ZCy = Z[t,t~!] the laurent polynomial ring.

QCs = Q[t,t71] is a PID [since it is a euclidean ring]



Now we see categories.
If we fix R then we have a functor Group — Ring given by G — RG
Or we could say we have a functor Ring x Group — Ring given by (R,G) — RG

Definition. A category C consists of:

objects Ob C
morphism C(X,Y) for X, Y € Ob C

compositions C(X,Y) x C(Y,Z) — C(X, Z) given by (g, f) — fog
identity Idy € C(X, X)VX € ObC

Such that we have:
e associativity: (fog)oh= fo(goh)
e composition with identity: Idy o f = f = foldx for f € C(X,Y)
For example in the cateogry of groups, we have objects groups and morphisms homo-
morphism.
Morphism notations: f: X — Y or X Ly for feC(X)Y)

Definition. f: X — Y isisomorphism if 3¢ : Y — X such that fog =1d,go f = Id.
Thehen we say X and Y are isomorphic and write X 2 Y.

Example. Example of Categories:
e Set
e Ring
e Group
o Ab (Abelian Groups)

e R-modules (objects are modules, morphisms are homomorphisms h(rm) =
rh(m) )

e Given a group G we can get a category BG such that:
Ob BG = {x} and BG(x,*x) =G

In this category, there is only one object *. The elements of the group are
morphisms.

Definition. Functor F': C — D is F : Ob C — Ob D given by X — F(X)
And F:C(X,Y) = D(F(X),F(Y)) such that

X Ly gives us F(X) ™Y F(y)
such that F(f og) = F(f) o F(g) and F(Idx) = Idp(x)

Example. Unit Functor Ring — Group given by R+— R* ={r € R|3s € R,rs =
1=usr}

For example, Q% =2 Cy & Z>®[= £p$ps? - -]

7* 2 {+1} = Cy

(ZCQ)X = {:l:l, :tt} = CQ X CQ

Definition. R is a division ring (= skew field) if 1 # 0 and R* = R — 0.

Definition. Quaternions
H={a+bi+cj+dh]a,bcd R}

Where i? = j2 = k? = -1

ij =k, jk=14ki=jji=—kkj=—iik=—j

This is a division ring since we can write down inverses.
a=a+bi+cj+dk givesusa=a—bi —cj —dk

So, norm(a) = a@ = a? + b + % + d?

-1 _ a
SO’ @ ~ norm(a)




Remark. Note that the quaternion group Qg = {£1,+i,+j, +k} is a subgroup of
H* = GL,(H).
So, H is a RQs module.

Theorem 1 (Weddenburn’s Little Theorem). a. A finite commutative domain is a
field [easy]
b. A finite skew field is a field [aka commutative]

a is easy: suppose F is finite commutative domain. For 0 # f € F, consider multipli-
cation by f as a map F' — F. It is injective, and finiteness implies surjective. So, it
is bijective, and there exsits inverse.

eg Z/p is a field.

Simple Modules

These are like primes. We also have some analogue of prime factorization.

Definition. R-module F is simple if:

E#0

No proper submodules, aka M<E — M =0or FE

In other words, F is a simple module if it only has two submodules: 0 and E.

eg simple R-modules are 1 dim vector spaces, aka R
Exercise. a) R? is a simple M(R)-module

b) Express M3(R) as direct sum of simple modules.

Friday, 8/30/2024
Exercise. Suppose finite G # 1 and R # 0 Prove that RG has zero divisors.

Definition. Direct product of rings R x S, addition and multiplication is done com-
ponentwise.
It is a product in the category of rings. aka:

for any pair of ring homomorphisms T Iy R and T EE S we have a unique ring
homomorphism f : T EN R x S so that the diagram commutes.

Definition. e € R is an idempotent if e? = e.

0,1 are trivial idempotents.

8 (1)) is an idempotent in Ms(R)

(0,1) is an idempotent in R x R
If e is an idempotent so is 1 — e

Definition. Idempotent e € R is central if Vr we have er = re
0 0). .
o 1) ismot central, but (0,1) is.

Exercise. A ring can be written as a product ring, aka R = Ry x Ry with R; # 0 if
and only if there exists a nontrivial central idempotent.



Semisimiple Modules

Definition. F is a simple R-module if it doesn’t have any nontrivial submodules.
IfE#0and M<E then M #0or M =F

Example. R? is a simple M>R-module.
R x 0 is a simple R x R module.
Z/pZ is a simple Z-module

Lemma 2. [Schur’s Lemmal: Let E,F be simple R-modules. Then any nonzero
homomoprhism f : F — F is an isomorphism.

Proof. f # 0 means ker f # F and im f # 0.
Since they are submodules, ker f =0 and im f = F
So f is bijective. O

Corollary 3. If F is simple, then EndgFE is a skew field [any non-zero element is
invertible]

Example. Commutative example: Endyz,r(R?) is a skew field.
In fact, EndM2]R(R2) ~R

Definition (Direct Sum). Suppose M; <M for i € I

Then, M = @, ; M; means, Ym € M; we have m = ., m; with m; € M; uniquely.
There are notions of internal and external direct sums. The above is an internal direct
sum.

External direct sum: given {M;};c; we can construct @, ; M;

Proposition 4 (Universal Property). Given a collection of homomorphisms {¢; :
M; — N}ier, it extends directly to a homomorphism @ M; — N. We denote this by

D /i

Remark. Note: Maps to product are easy, maps from direct sum are easy.

Proposition 5 (1.2, Lang XVII). Suppose we have isomorphism E{"' @ --- @ El'" 5
F" & & F"s with E; and F; simple and non-isomorphic [ie for all k # i, By, 2 E;
and k # j, Fy % F |

Then r = s and there exists a permutatation o € S, so that E; = F, ;) and nj = m ;)

Corollary: If F is a finite direct sum of simple modules, then the isomorphism class
of simple components of F and multiplicities are well-defined.

Proof. We use Schur’s Lemma.

We write ¢ as a matrix (¢ : B — F; )

Since ¢ is injective, for all ¢ there exists a j such that ¢;; # 0

Then, F; = F; by Schur’s Lemma

Note that F}; are isomorphic. So, for all ¢, the j such that ¢;; # 0 is unique!
We also get o : {1,...,r} = {1,...,s} so that (i) = j

Since 0! exists 0! exists, and thus r = s

Since ¢ is an isomorphism, individual ¢;; : E]"* — F:(l;)“) are isomorphisms.
To complete the proof, we need a lemma

Lemma: Let E be simple. If E™ & E™ then n =m

Proof of lemma; Let D = EndgFE. By Schur’s Lemma, D is a division ring.
Since E™ = E™ we have Endg(E™) = Endg(E™)

So, M,,(D) & M,,(D)

Also, isomorphism not just as rings, but also as D-modules.

Every module over a skew field is free, and the number of dimensions is the same.
So,n?=m? = n=m

This finishes the proof.



Lang XVII section 2

Theorem 6. Let E be an R-module. Then TFAE:

SS1: FE is a sum of simple modules [so, we can write m € E as sum of m; but it is
not unique]

SS2: E is a direct sum of simple modules [we can write as a sum, and it’s unique]
SS3: Every submodule of F is a summand.

FaFE <= wecan find F’ so that E=F & F’

SS3’ : any monomorphism F — E ‘splits’

SS3” Short exact sequence

0—-F—=-FE—H—=0
splits.
This leads us to:
Definition. F is semisimple if it satisfies one of the above.

Davies: SS2 is best

eg: R=R xR

FE =R x R is semisimple but not simple.
Because: FE =R x040xR

Wednesday, 9/4/2024

Recap: Semisimple modules.
Lemma 7. If E'= ), E; with E; simple. Then, 3J C I such that £ =P, ; E;
Corollary 8. SS1 = SS2

Proof. Let J C I be maximal such that }_.; E; = @, ; E;
This exists by Zorn’s lemma.

Viel—J, wehave E; N D, ; Ej # @ by maximality.

Since Ej is simple, E; C ;¢ ; Ej. Therefore, £ = P, ; Ej.

True of False? Every module has a maximal proper submodule.
False!!! Exercise.

Exercise. a) If M < F proper and M maximal, then F/M is simple.
b) Find a ring R, module M which does not have proper maximal submodules.

¢) If F is a finitely generated R-module, then it is contained in a proper maximal
submodule.

Proof of 552 = S553. Suppose F < E = P
maximal such that:

icr Ei with E; simple. Let J C I be

F+PE =rae@E

JjeJ jeJ

Take any i € I — J. Then, E; N [FQB @jeJEJ'] # 0 by maximality of J.
Since Fj; is simple, E; C F @ @jeJ E;.
Therefore, £ = F & @ E;.

jedJ

F/
We have found F”’, which proves SS3.

Proof of 588 — SS1.



Lemma 9. 0 # F<FE and E satisfies SS3. Then, there exists simple finitely generated
S<F.

Plan: M <« Fy<F<E.
7£fg

Then, choose 0 #wv € F. Let Fy = Rw.
Exercise. M exists. [Zorn’s Lemmal]

Let E = Zsimple S<E S.

Then, by SS3, E = Ey @ E|.

Lemma and definition of Ey implies: Ej = 0. So, F is indeed a sum of simple
R-modules. We’re done!

O

Proposition 10 (2.2). Every quotient module and submodule of a semisimple mod-
ules is semisimple.

Proof. Quotients: Suppose M = E/N. We have surjective f : E — M with F
semisimple.
SS1 implies E = ), S; with S; simple.
Then, M = 3., f(Si)
Schur’s lemma implies f(.S;) is either 0 or simple, so M satisfies SS1.
Submodules: Suppose F < E with E semisimple. SS3 implies £ = F @& F’. Thus
E > E/F’, so it is semisimple by the quotient result.
O

Preview:

Definition. A ring R is semisimple if and only if all R-modules are semisimple.
Lang defines semisimple differently: A ring R is semisimple if it is semisimple as an
R-module.

Theorem 11 (Artin-Weddenburn Theorem). A ring is semisimple if and only if it is
isomorphic to a finite product of matrix rings over division algebras:

R = M,,(Dy) x---x My, (Dg)
CG, RG are semisimple. We also have the result:

Theorem 12 (Maschke’s Theorem). The group ring kG is semisimple if G is finite
and k is a field of characteristic prime to G.
This also works with char k = 0. It is in fact an if and only if.

So F,G is also semisimple given p { |G|

Proof. Outline: let |G| = n. We will verify SS3.
Let F'< E be kG modules.
k is a field, so there exists a k-linear projection 7 : E — F such that n(f) = f for
f € F [take a basis of F' as a k-vector space, complete it to a basis of EJ.
Now, define an ‘average’.

(o) = Zuca 90 0)

n

Then, 7’ : E — F' is a kG-linear projection, meaning 7’(ge) = gn’(e).
Then F = irr}rw’ @ kelgjr’



Friday, 9/6/2024
Lang XVII, Sectiion 3

“Density Theorem”
Suppose R is a ring and E is a R-module. Then we have maps R x £ — FE by
mutliplication on the left.

Definition (Commutant). R’ = R/(E) = Endg(F) is a ring.
¢ € R < ¢: E — FE such that ¢(re) = r¢(e). It ‘commutes with F’.
Note that F is also an R’-module, with R’ x E — E given by (¢, e) = ¢(e).

Definition (Double Commutant). We can iterate on the previous definition.

RH = R/(RIE) = EHdR/ (E)

Therefore,

R" = Endp/(E) = Endgna r(e) (E)
This means, f e R’ < f:E > ENpe R, fop=¢of. So, things in R":

commute with things which commute with r € R.

Example. Suppose R =R and F = R"™. Then,

R’ = Endg(R") = M, (R)

RN = EndMn (R) (Rn)
rl

Suppose V' = vector space.

V* = Hom(V,R)

Then we have evaluation map ev : V. — V* given by v — (¢ — ¢(v)).
ev is 1-1.

ev is onto iff dim V' < oo.

With inspiration from this, we define,

Definition (Evaluation map). ev: R — R” given b r — (e — re)
We define f, : E — E given by f,. = ev(r)

Proposition 13. a) f, € R”
b) ev is a ring homomorphism.

Proof. &) £o(8(e)) = ré(e) = d(re)o(f:(e))
b) ev(r 4+ ') = ev(r) + ev(r’),ev(1l) = 1.

(ev(r))(ev(r))e = ev(r)(r'e) = rr'e = ev(rr')e

Lemma 14 (3.1). Suppose F is semisimple over R, e € F and f € R
Then 3r € R such that re = f(e) [i.e. f(e) = ev(r)(e)]

Proof. E is semisimple, and Re is a submodule. Therefore, we can write £ = Re® F'.
Define 7 : E — E be projection to Re.

Then 7 € B/ = fo¢p=mnof = f(e) = f(n(e)) = w(f(e)) = re for some
r e R. O

We will prove a stronger version of this lemma called the Jacobson Density Theorem.

Theorem 15 (3.2, Jacobson Density Theorem). Suppose E is semisimple over R
e, e, €FR

feRr”

Then, 3r € R such that re; = f(e;)Vi.

Therefoe, if F is finitely generated over R’, then R — R” is onto.



Proof. We use a diagonal trick.

Special Case: FE is simple.

Idea: Apply the lemma on E with e = (ey, - ,e,) and f™* : E" — E™ such that
fis-syn) = (f1), -+ f(yn)-

We need to check that f € R'(R'(E)) to apply it.

This would imply that f* € R'(M,R) o R'(R'(E™))

simple
Therefore, 3r such that re = f™(e). This finishes the proof.
For E semisimple, key idea is f™ € R'(R'(E)) as above. [Complicated for infinite
sums. We avoid.

O
Application:
Theorem 16 (Burnside’s Theorem). Suppose k is an algebraically closed field.
Take subring R such that k C R C M, (k)
If k"(= E) is a simple R-module, then prove that:
R = M,(k)
Exercise. Suppose Do, is the dihedral group of order 2n, aka
Dy, = (r,s|r" =1, =1,srs ' =r~1)
Let ¢, = e*™/m e C
Then we can define a homomorphism Ds,, — GL2(C) given by:
G O
ros {0 2
. 0 1
o
This gives us a ring map 7 : CDy, — M>C
Prove the following:
a) Prove that C2 is a simple CD,,, module [can be done without technology]
b) Use Burnside’s theorem to show that 7 is onto.
Note that Burnside’s theorem doesn’t work if k is not algebraically closed.
We have:
R c CcC MR
since we can embed C into M>R.
C is a simple R module, but C # MR
Proof of Burnside’s Theorem. Step 1: We show that Endg(F) = k
Note that, ¥ < Endgr(F) C Endig(E)
central glew field  finite dim/k
Vo € Endg(E), k(a) is a field and finite dimensional /k.
Therefore, k(«) = k since k is algebraically closed.
Thus, a € k. This finishes Step 1.
Step 2: We show that R = Endy(FE).
R C Endy(F) by hypothesis.
Suppose A € Endg(E). Let eq,--- ,e, be a k-basis for F = k™.
Density theorem implies: 3r € R such that Ae; = re; for all i.
Therefore, A =1 € R.
O
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Monday, 9/9/2024

Today:

Density Theorem

Characters determine representation

Artin-Wedderburn Theorem

Homework due Monday 9/16, Exercises 1-7

Recall Jacobson Density Theorem:

If F is semisimple over R, e1,...,e, € E and f € R” then,

Jr € Rs.t. f(e;) =re;Vi
Recall that R” is defined as follows:

fER" <= f:E—>Est.V9e R =EndgrE,fo¢p=¢of

Also recall Burnside’s Theorem:

Suppose k is an algebraically closed field, and k C R C M, (k) are subrings
If £™ is a simple R-module, then

R = Mn(k)

3.7 Existence of Projection Operators

Theorem 17. Suppose £ =V @ -- @ V,,, simple non-isomorphic R-modules. Then,
for any i, there exists r; € R such that,

v, ifveV;
TV = . .,
0, ifveVi#j

So, each projection map is just multiplication.

Proof. This is a consequence of the density theorem.
Choose nonzero e € V.
Let f =m; : E — E which is a projection on V;.
Note that f € R” since for all ¢ € R, (Vi) C Vi [Schur’s Lemma, non-isomorphic].
Density theorem = 3r; € R such that r;e; = m;(ex).
Note that Vi = Rey so Yv € Vi, v = reg.
So, riv = ryre, = ri(er) = mi(reg) = m(v)
Which is what we wanted.
O

Correction to the Existence of Projection Operators

Suppose k is a field, R is a k-algebra so that R is semisimple. Suppose R-module
E=V a3V dimgFE < occ.

For all simple L<V,VL' <V’ then L = L’

Then, 3r € R such that for all e € E,

e, ifeeV;
re =
0, ifeeV’;

Proof. We apply density theorem. Since we have finite dimension, we have:

{e1, - ,en} = (k-basis of V) U (k-basis of V')

Let my : E — E be the projection on V.

Then, my € R” [the second commutant] since V¢ € R, ¢(v) C V,¢(v') C V.

Density theorem implies 3r such that re; = m,(e;).

Then Va € k C center R,

r(aex) = a(rey) = amy(er) = my,(aeg)

Therefore, re = m,(re). O

11



Question: What is a k-algebra?
Following Atiyah-McDonald, let k& be a commutative ring [often but not always a
field]. Then,

R is a k-algebra &% homomorphism 1 k — R, h(k) C center(R)

Example. Any ring is a Z-algebra, homomorphism sends n to 1 +1+---+1
kfield, R#0 = k— R
k-algebra <= k C center(R)

Corollary 18 (3.8). Suppose chark =0, R is a k-algebra, E, F' semisimple over R,
finite dimensional over k.

For r € R, let:

fE:E— Ebe fE(e) =re

JFiF = Fbe fF(f)=rf

IfTr(fTE) = Tr(fTF) for all r € R,

Then E = F as R-modules.

Proof. Let V be a simple R-module.
Suppose E = V"™ & direct sum of simple R-modules not isomorphic to V'
F = V™ @ direct sum of simple R-modules not isomorphic to V'
We want to show n =m
Let r, € R be the projection operation from 3.7.
Then, Tr(ff:) =Tr(ry-: E — E) =dimg V™ = ndimg V
Similarly, Tr(ff)) =mdimgyV = n=m
O

Corollary 19 (Characters determine representations). Suppose k is a field and
char k = 0. Let G be a finite group. Suppose:

p:G— GL, (k)

p' G — GLy (k)

with kG-modules E = k™ over p and F = k™ over p/

If Tr(p(g)) = Tr(p(g)) for all g,
Then E = I as kG-modules.

Note that, substituting g = 1 gives us:
Tr(p(1)) = Tr(p'(1)) = Tr(l) =Tr(I) = n=m.

Definition ((semi)simple rings). Note that if R is a ring, then R is a left module as
well. We write g R when we’re considering it as a left module, and gk Rg when we are
considering a two sided ideal.

R is called a semisimple ring if pR is a semisimple R-module.

R is called a simple ring if R is a semisimple ring, and for all simple L, L' <g R =
L=r

This means, rR = @®;crL; where L; are simple (left) ideals such that L; = L; for all
i,]-

Recall that an ideal is simple if it has no proper sub-ideals.

Example. M>(H) is a simple ring. We can write it as direct sum of two ideals

- alel ]

Example. M>(H) x R is semisimple.

x 0 0 = 0 0
L O]XOGB{O *]x()@{o O}XR

Artin-Wedderburn generalizes this.

Theorem 20 (Artin-Wedderburn Theorem). i) R simple <= R = M,(D)
where D is a skew-field.

ii) R semisimple <= R~ R; X --- X R, simple rings.

12



Wednesday, 9/11/2024

Today we discuss the Artin-Wedderburn Theorem.
Exercise: Cy = {1, g}, prove that QC5 is a semisimple ring.
QC5 = B ® By 2-sided ideals

QC,=Q xQ.

Lemma 21. Suppose we have a ring R which is decomposed as a sum of (left) ideals:

rR=EDL; with L; #0
el
Then |I| < 0.

Proof. Suppose rRR = @ je ;Lj where L; are ideals. We want to prove that only
finitely many are non-zero.

Note that, 1 = ZjEJ ej. We use only finitely many elements here, so 1 =}, e;
where e; # 0,1 C J,|I| < oo.

Forallr€ Rwehaver =r-1=r), ;e;=> ,c;re; € ;L.

Therefore, rR = @, L; a finite sum! O
Now we go to the theorem.

Proof of Artin-Wedderburn Theorem Part I. We want to prove: R simple ring <
R = M, D where D is a skew field.

First, note that pR = L™ where L is a simple ideal [so no proper sub-ideals]. There-
fore,

R = Endg(rR) = Endg(L") = M,( Endg L )
15’—.’
dlvision I’ll’lg

Taking transpose,

R = M,(Endg L) = M, ((Endg L)) = M, (D)

So we are done with one direction!
The other direction is a exercise. Here are the steps:

« 0 --- 0 00 --- x
*x 0 -+ 0 0 0
Step 1: M,D=1|. . B SRR
« 0 --- 0 0 0 --- =«

Step 2: Each summand is isomorphic to D" =

Step 3: D™ is a simple module.
O

Remark. R simple <= R artinian, R has no proper 2-sided ideals. Some definitions
forgo the artinian condition, in this case these are called artinian simple rings.

Lemma 22 (4.2). Suppose L is a simple ideal and M is a simple module so that
L% M. Then LM = 0.

Proof. This is a direct consequence of Schur’s lemma. Consider the map ¢,,, : L — M
given by [ — Im for m € M. Since this can’t be an isomorphism, it must be the zero
map. Thus, Im = 0. O
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Proof of Artin-Wedderburn Theorem Part II. Idea: Decompose R as direct sum of
simple ideals. Partition the set of simple ideals so that members of a partition are
isomorphic to each other, members of a partition are not isomorphic to members of
another partition. Direct sum of each partition gives us one R;.

Suppose R is semisimple.

Let Ly,--- , L, be a set of pairwise non-isomorphic simple ideals [meaning L; 2 L]
So that, for all simple L <p R, L 22 L; for some i.

Let Bz = ZL%Li L.

Claim: B; is a 2-sided ideal.

Proof of Claim:

4.2 B; is a left ideal
Thus the claim is proven.
Claim: We have a ‘block decomposition of R’, meaning,
Proof of Claim:

rRRR=DB1® - @ B

Subclaim: B; N>, B; =0

Proof of Subclaim: Every r € R, we have that r € L where L is simple. L C B; =
L=L; LC Z#i B;j = L = By for some j # ¢ which is not possible.

Now, we go back to the main proof.

We can write 1 = e; + -+ - + es.

Then, R; := (B;,e;) is a ring!

We have R 2 (Ry,eq) X -+ X (Rs, €s), so we're done.

The other direction is an exercise.

Friday, 9/13/2024
Key idea:

rR=L" — EDdRRgMn(EndRL)

Note that R°? = Endg R [function composition is written in the opposite direction].
Suppose L1, -+, L are non-isomorphic simple R-ideals.

L simple = L= L;.

Define B = Zsimple 11, L 9r Rp.

We can prove that it is a two sided ideals.

Then we can write R = R; X - -- Ry simple, where

R; = (B, €;) [e; is the identity in B;].

Theorem 23 (4.4). Suppose F is a R-module.

Ei = Z M

simple MJE

~

i

Then, E = ®;_, E;
Ei = eiE = BZM

Corollary 24 (4.5). If R is semisimple, M a simple R-module, then M = L; for
some 3.

Corollary 25 (4.6). All simple modules of a simple ring are isomorphic.

M =6l

14



External Product vs. Internal Product

Definition (External Product). If we have [finite] rings Ry, -- , Rs we can construct
the ring:

R1XR2X'~~XRS

Definition (Internal Product). ‘Block Decomposition’: If we have a ring R and we
can write it as sum of 2 sided ideals:

rRRR=B1 @& B;
Then we have e; € B; so that:

l=e1+ - +es
Then, each B; has a ring structure with e; as identity. Then,
R= (Bl,el) X e X (Bs,es)
Just for clarity:

Definition (Direct Sum of Ideals).
rRR=DB1® - ® Bs
If and only if for every r € R,
r=0by+--+0bs
where b; € B; and the expression is unique.

Jim’s Rant: A subring has to have the same identity. So, (Bj,e;) is not a subring.
Block Decomposition is not a direct sum of rings!
This is because in category theory, sum refers to the co-product.

Lemma 26. Let k be a field, and let D be a skew-field which is a k-algebra such that
dimy D < oo. Then,

a) Ya € D we have k[a] is a field.

b) k algebraically closed — D = k.
Example. If k € R, D = H,a € H — R then k[a] = C.
It is not completely obvious since k[i + j] = C as well.

Proof.  a) D is a k-algebra. Therefore, k[a] is commutative. We just need to find
inverse.

Let 0 # B € k[a]. Tt is enough to prove that for § € k[a], multiplication map
B : k[a] — k[a] is bijective.

-f is a finite dimensional linear transformation so those are true.

b) For all & € D we have: k[a] = k since k is closed. So, « € K. Thus D = k.

O
Corollary 27. Suppose G is finite. Then,
CG =[] Mn,(C)
i=1
Proof. Artin-Wedderburn Theorem plus the previous lemma. O
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Example. Suppose C,, = (g) cyclic and ¢,, = e2™/™. Then,
QCy = Q4+ x Q_ where g — (1,-1).
If p is prime we can write:

Q(Cp) = Q x Q(¢p) where g — (1,¢p).
C[Cy] =2 C™ where:

g— (LCTL?' o 747?71)
Q[Cy x O3] = Q* where:

(1,9) — (1,1,-1,-1)

(ga 1) = (17 717 ]-a 71)

R[Qs] 2R x R x R x R x H where R[Qg] — R[C2 x C5]
Some other examples: Q[C,,], C[@s], Q[D2x], R[Day], C[Day]

Representation Theory

Here, G is a finite group and k is a field.

Representations ‘ Modules over kG ‘ Characters

p: G — GL(V) where
V is a finite dimensional | V' is a kG module | x : G = k, x,(g9) Tr p(g)
vector space

Table 1: Representations, Modules and Characters

Monday, 9/16,/2024
We have:
representation <= modules over kG = [ <= only if char k = 0] characters.

rep — kG-module

p—=V, by (32, ag9)v =73, agp(g)v
pu <V

pv(9)v = gv
Recall the definition of character:
We have the trace map:

Tr: M,k —k

Where Tr(a;j) = >, a;; [or the sum of eigenvalues]

We have Tr(AB) = Tr(BA) which implies Tr(PAP~') = Tr(A).
So, Tr is basis independent. Thus,

Tr:End,V — k

Definition (character). Trace is an endomorphism map. This gives us:

G " GLVv) 25k
Xp

This is called the character of p

16



There’s a correspondence between kG modules and Representations concepts:

Repesentations ‘ Modules over kG

irreducible simple
isomorphism
direct sum
Hom
dual
tensor product

Table 2: Rep and kG-mod

Irreducible vs Simple

We say irreducible representation, when we on the other hand say simple modules.
Same concept!

Isomorphism

Suppose we have two representations:

p:G— GL(V)

p G — GL(V')

We say two representations are isomorphic when:

~ / def is, ,-(3, 7 . .
p=p — V,=2V,=V, < IJkisomorphism s.t.
#(gv)=gd(v)

¢:V — V' s.t. Vg € G we have the following commutative diagram:

v L9,y
oo Lo
v L9,y
¢ is called the intertwining map.
Corollary 28. p=p = x, = Xy

Direct Sum
Suppose V & W is a kG-module.

pvew : G — GL(V e W)
is given by:
_|lpv O
Pvew = {0 pw]

We also have xyvgw = xv + Xw-
Two Representations

Definition (Trivial Representations).

p:G— GL(k)

g—1

Is the trivial representation. Also, x, = 1.

Definition (Regular Representation). Consider the kG-module ;ckG. We have:

PkG : G — GL(kG)

This is injective.

17



Note that G ~ G by multiplication, this is a free action. For finite group G with
|G| =n,
G — Bijection(G, G) so G is a subgroup of S,,. So we have:

regular re‘1I:>.> o
G —— S, —— GL(k™)

With the action of ‘permuting the standard basis’.
Exercise: Compute character of Regular Representation.
We have, in line of the previous theorem:

Theorem 29 (Maschke’s Theorem). If V'C W as kG-modules and char k t |G| then
IV’ such that W =V @V’

Proof. First, find a k-linear map 7 : W — V such that w(v) = v for all v € V.
We average it to make it kG-linear:
7w’ W — V given by:

Loy g gmlgTiw)
7' (w) = T/

We have: 7’ is kG-linear and 7' (v) = v
We can take V' :=ker O

Thus, for w € W we can write w = 7'(w) + (w — 7' (w)).
Note that Maschke’s theorem implies kG is semisimple. Artin Wedderburn implies
semisimple kG module is a direct sum of irreducible modules.

= @nm
Xv = ZniXi

Homomorphisms:

Suppose V, W are kG-modules, "representations”. Then,
Homy(V, W) is a k-vector space.

Homy (V, W) is a kG-module.

we define: (gf)v = gf(g~'v)

ie. (32, a09)f)v =3, aq(gf(g™'v))

The g~! inside is needed for associativity: (¢'g)f = ¢'(gf)
Officially this is a functor.

Homy(—, —) : (kG-mod)°? x kG-mod — kG-mod

Special case:

Dual Representation: W = k. Then,

V* = Homy(V, k).

So, (9f)(v) = gf(g7'v) = f(g~"v)

Exercise: xy- =7

Wednesday, 9/18/2024

Tensor Products

Motivation:

Product Structure: — ® —: kG-mod xkG-mod — kG-mod given by V ®@; W.
Group action works diagonally, g(z ® y) = (gx) ® (gy), extended linearly.
Extension of scalars:

RG @r C =CG
Product of Groups: k[G x H] = kG @y kH

18



When for k a field then modules are vector spaces k™ and k™ which are easy:

k,n ®k} k”l — k,nm

dim(k" @k k™) = mn

{e;} a basis for k™

{f;} a basis for k™

Then {e; ® f;} is a basis for k™ @ k™.

However, tensor product consists of more than ‘pure’ tensors.

Definition (Tensor Product). Let R be a commutative ring. Tensor product is a
functor:

—®r—: R—mod x R —mod -+ R —mod

(A,B) I—>A®RB

[Functor meaning if we have homomorphism on the left we will have homomorphisms
on the right]

Construction:

Let F(A x B) be the free R-module with basis A x B. Then a typical element of the
basis is (a,b) € A x B.

Let S be the sub-module generated by the following:

1 (CL1 + az, ) (al,b)—(ag,b)

)
2) (CL by + bg) (a,bl) — (a,bg)
3) r(a,b) — (ra,b)

)

4) r(a,b) — (a,rd)
Then, we define:

and write a ® b for the image of (a, b).
This means, a typical element of A @ B is:

Z a;®b; € A ®r B
i=1

We also have the following relations:

(a1 +a2)®b=a1 @b+ as xb

a® (b1 +b)=a®b +a®by

rla®b)=(a®rb) =(ra®b)

Exercise. Z/2®y;Z/3 =0

Proposition 30. Suppose A, B, M are R-modules, and

¢: Ax B — M is R-billinear

Meaning,
1) ¢(a1 + az,b) = ¢(as,b) + ¢(az, b)
2) ¢(a,by + b2) = ¢(a,by) + ¢(a,bs)

3) r¢(a,b) = ¢(ra,b) = ¢(a,rb)

19



Then, by definition,
mT:AXB— A®QgrB
is R-bilinear.

Proposition 31 (Universal Property of Tensor Product). 7 is initial in the category
of bilinear maps with domain A x B. Meaning, every bilinear map from A x B factors
through .

A x BV(b bilinearM
R
lﬂ 31
A@p B

This diagram commutes

Proof. For uniqueness, note that, ¢(a ® b) = ¢(n(a, b)) = ¢(a, b) B
For existence, define ¢(a,b) = ¢(a,b) where ¢ : F(A x B) — M. Then ¢(S) = 0 so

¢: ARr B — M exists. O
Proposition 32 (Rephrasing Universal Property in Terms of Adjoint Functors).
Hom(A ® B, () = Hom(A, Hom(B, C))
Proof.
f=(a—= (b fla®b)))

(a®@br gla)b) «+ g

Hom(A®—,C)

/—\
R-mod R-mod

Hom(A, Hom(—,C))

Proposition 33. 1) Commutative A ®r B~ B®pr A
2) Identity R®r B = B
3) Assocative (A® B)@ C = A® (B® ()
4) Distributive (P, Aa) ® B =P (Aa ® B)

FiA— A

Functorial
5) Functoria (g:B—)B’

> = [fRg:A®B—> A ®B

6) Exactness Short Exact Sequence 0 — A 5B C -0 = Short Exact
Sequence0—>A®Mf®—l>M BoOM—->CM —0

7) Right Exactness M R-mod,0 - A - B — C — 0 = Exact Sequence
AM —-BM —->CeM —0
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Friday, 9/20/2024

Lang Section 2

Tensor Product of Representation
Suppose V, W are k-vector spaces, then we have V ®; W is also a k-vector space. But
they all are kG-modules as well:

gv®@w) = gv® gw

Proposition 34. The character is multiplicative:

Xve@w = XvXw

Proof. Let {e;} be a basis for V and {f;} a basis for w.

Suppose ge; = Y, akiex

And gf; = >, bijfi

Then, g(e; x fj) = gei X gfj = >y exibijer X fi

Take (k,1) = (i, 7).

Then, Xvxw(9) = 225 ; @iibj; = Xv(9)Xw(9) O
Consider f: G — k. We have:

{1d chars} C {simple chars} C {chars} C {virtual chars} C {class functions}

We explain these later.

Definition. f is a character if 3p : G — GLy(V') such that f = x, = Trop
Definition. f is a class function if Vg, h € G we have f(hgh™') = f(g)
Definition. f is a virtual character if Jp, p’ such that f = x, — x,

Definition. f is simple (=irreducible) character if f = xy where V is a simple
kG-module.

Definition. f is 1-dimensional character if f : G — k* is a homomorphism. eg
trivial character x1(g) = 1.

Proposition 35. Class Functions are k-algebras. Virtual characters are a commu-
tative ring.

Now, suppose char k { |G|. Then,

kG = M,,(D1) X -+ x M,_(Dy)

Assume M, (D,,) = k. Then we have the trivial representation: ga = a.
If L; = D}" is a simple kG-module, then

Xi = XL, is a simple characteristics.

We have 1 = e + - -+ + e, [central non-trivial idempotents].

xi(e) = Tr(Idy,) = dimy L; = n; dimy, D;.

Example. Consider Qg < H*. Then,

xu(e) =4

Now, consider kG = @, n;L;, the ‘regular representation’. e;L; = 0 for i # j.
Then,

xi(ei) = xi(1) = xi(e) = dimy, L;

So, char x : G — k extends to x : kG — k by Y ag9 — Y agx(g)-
If V is a finitely generated kG-module, we have

nglLl@"'EBmSLS

where m; > 0.
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Theorem 36 (2.2, 2.3). x, = >, m;X; : G — k with m; uniquely determined if
chark = 0.

Theorem 37 (2.3). Characters Determine Representations: suppose chark = 0.
Then,
V = V/ < XV = Xv/

Proof. = : Trace is independent of basis, so this is easy.
<= : We already gave a proof using projection operators. Second Proof:
Assume yy = xys. We decompose:

V =2 ®m,;L;, Ve m;Ll

Note that we have xv (e;) = m; dimy, L, = m) dimg L; = xv(e;)

Thus we must have m; = mj.

Representation Ring
Ry (G) = (virtual char, +, x) 2 (virtual rep, B, ®).

Example: Rg[Ca] = (X#{]l)

Monday, 9/23/2024

Dual Characters

Consider p: G — GLy(V)

Dual V* = Homy(V, k) is also a representation.
(90)(v) = ¢(g™")

Inverse because we want it to be a left module.
Claim: p: G — GL(V) = p* : G — GL(V*)
p*(9) = (p(g)™H)"

Proof. p*(g) = (p(g="))* = p(g~")" O
Corollary 38. a) xv-(g) = Xv(gfl)
b) Xtom(v,w)(9) = xv (9~ xw(9)

Proof. a follows from the claim.
b: Consider the slant homomorphism:

V*@ W — Hom(V, W)

D b @w; (U =Y ¢i(v)wz‘>
It is an isomorphism since V, W are both finite dimensional.

Xtom(v.w) (9) = Xv-aw (9) = xv-(9)xw(9) = xv (g~ xw(9)
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1 Dimensional Characters

Definition. 1 D representation is a homomorphism p : G — k*

G k>

~N

Gab

Question: What are the 1d representations for Dg?
Dg 2 7/3x17/2

So, Dgb = 7./2

So, we have kp, k_

r—1

s+ —1

Exercise: Trivial Representation / Idempotent

e :deGg
el

€ kG

G%ZGT

ger = e€r =erg
er € Z(ij)

kG = (kG)er & (kG)(1 — er)

"
(er)

Lemma 39 (2). Any finite subgroup of k* is cyclic.

kG =2k x

Proof. Key Fact: ¢ — 1 € k[z] has at most e roots [proof: long division].

Note: 22 — 1 € Z/8[x] has 4 roots. This implies Z/8 is not a field.

Consider finite abelian A < k*

Consider e = exponent A =inf{m > 1|Va € A,a™ = e}

Then, Va € A,a® — 1 = 0. From the key fact, |A| <e < |A|

Thus, e = | 4| O

Corollary 40. Vhom p:G — k*,3 Cyclic C such that:

G —L2 5k~

~N 7

Recall only finite subgroup of Q is £1.
1 —d Q reps of G < trivial representation + index 2 subgroups
Now we suppose k is algebraically closed, eg k = C. Then,

kG = [ [ M, (k)
If G is abelian, then,

kKG=kx---xk

Corollary 41 (3). k is algebraically closed and G is abelian <= all irreducible
representations are 1-dimensional.
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Corollary 42. Let |G| =n,k =C.

a) YV, xv(G) C Q(¢n)
b) YV, xv+(g) = xv(9)

¢) YV, W, Xtom(v,w)(9) = xv (9)xw (9)

Proof.  a) True for 1d representation from the lemma.
= True for G abelian (corollary 3)
= True for cyclic G
—> always true: ¢ € G = (g) cyclic.

Xp(9) = Xply, (9)
Then, p: G — GL(V), consider g € G.
Then p(g)" =1 = Tr(pv(g)) € Q(Cn)-
b) Same as (a).

p*(9) = (p(g)~1)*
For 1-dim, p* = p.

€) XHom(v,w)(9) = xv (g™ Dxw(9) = xv(9)xw(g)

Two Bases for center kG

Definition. g € G is conjugate to ¢ € G if 37 such that,

Write g ~ o

G =[lg/.[9]
[g9] = {oc € G| g ~ o} conjugacy classes

Proposition 43. {}_ .5 0}gec/~ I8 a k-basis for center of kG.

Proof. Clearly these are linearly independent.
Q=) cqas0 € center
= Ta=ar &= TaT l=a

oca,Tor =Y a,0 = (g~0 = ay,=a,)

Wednesday, 9/25/2024

Lang XVIII, 4

Two bases for Z(kQ)

conjugacy classes

primitive cental idempotents [k algebraically closed]

Exercise. G — @, prove that kG =2 kQ x R
Proposition 44 (4.1). Suppose {}_ ¢, }gjec/~ form a {}-basis for {gg;g;}
Consider a ring R.

Definition. e¢ € R is a primitive central idempotent if:
e is a central idempotent [e2 = e,e € Z(R)]
e =€ +¢" with ¢/, ¢” central idempotent = {e’,e”} = {0, ¢}
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Then, kG 51 =e1 + - + 5, kG 22 [] My, (D;)
e; = (0,--,0,1,0,--- ,0)
Now suppose n = |G|

We have irreducible representations Lq,---, Ls and degrees dy,--- ,ds then L; =
Df". We have irreducible characteristics x1, - - - , xs and primitive central idempotents
(p.ci.) e, - ,es

Facts: (*): xgkG = @, d:L;
(#%): o € kG, 1 # j then x;(e;a) = 0 since e, L; = 0, x;(e;0) = xi(1la) = xi(a)
We have: Xreg = D, diXi

n, ifg=e;

Proposition 45 (4.3). xreg(9) = {0 if g+
, ifg#e

Proof. Xreg(g9) = Tr(-g : kG — kG)

Thus, xreg(e) = Tr(I) =n

If g # e note that G has {01, - ,0,} and preg(9)(0;) = go; # o; for all j. So, there
is nothing in the diagonal matrix and trace is 0. O

Motivation for k algebraically closed:

Consider QC3 =2 Q x Q(¢3). We only have primitive central idempotents, 1 = e; + es.
But the center has dimension 3: dimg(Z(QCs)) = 3.

Assume k is algebraically closed.

Claim: k algebriacally closed, D skew field, k < Z(D), dimy D < co implies k = D
Now, kG # [] Mg, (k)

Consider primitimve central idempotents ey, - -- , e, for a basis.

n=>1d;

e.g. S3 = DG. s =7 dl,dg,dg =7

We have represantatives of conjugacy classes: (1), (12), (123).
§=3,6=1%2+1%2+22

Char. Table:
\ (1) \ (12) \ (123)
x1 | 1 1 1
x2 | 1 -1 1
X3 | 2 0 -1

Table 3: characteristic table

We have CS3 = C; x C_ x MyC

Our representatives are (1), (12), (123), (1234), (12)(34)
d;=1,1,2,3,3

Goal: Express the p.c.i basis in terms of conjugacy class basis.

Corollary 46 (4.2). If k is algebraically closed,
the number of conjugacy classes = dimy, Z(G) = number of irreducible representation
=s

Proposition 47 (4.4). k algebraically closed, then
(=S
n
TG

Proof. Let e; =3 cqarT.
We compute Xreg(e;7 ) in two ways.
1 Xeeg (6T 71) = Xeeg (DS @07 =3 ao Xreg(0771) = arn
1y () 1y (x%) _ _
2 Xeeg(ei™!) = 20 dixg(em™) = dixileir™!) = dixi(m7)
Thus, a,n = d;x;(77') = a, = %Xi(Tﬁl) O

Recall that exp G is the smallest positive integer m such that ¢ = id for all g.
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Corollary 48 (4.5). Let m = expG. Then,

1 1
i € —Z2[Cn|G] € —Z]C,)G
i € [ZGnlG) € - [ZGIC)
Corollary 49 (4.6). chark {d;
Proof. If not, char k | d; then e; = 0 which is a contradiction. O]

Corollary 50 (4.7). x1,--+ ,Xs are linearly independent over k. In fact they form a
basis for the class functions f: G — k.

Proof. Suppose 0 =" a;x;.
Then 0 =Y a;xi(e;) = a;jx;(ej) =a;d; = a; =0 O

Then dimy (class functions) = number of conjugacy classes = s.

Friday, 9/27/2024

Review:

e = % Z xi(o)oTt € kG (%)

ocG
Is a primitive central idempotent.

Xreg = XkG = Z dez
i

U:anzidf

di | n
Z Xi(U)Xj(Uil) = ndj;
ceG
s 1, if 7 =o0;
S xile)i(rh) =4 ol
i=1 0,° otherwise.
If G = S5 then:
‘ (1) ‘ (12) ‘ (123) H
x1 | 1 1 1 6
xe2 | 1 -1 1 6
X3 2 0 -1 6
(6 2] 3 |

Table 4: Characeristic Table of S3

0 = Xreg(123) = 1x1(123) + 1x2(123) + 2x3(123)

k=C,x(c™") =x(0)
End of review
X (G) = {class functions f : G — k} so that f(ror~!) = f(0).

Definition (Perfect Pairing). A perfect pairing of k vector space is a k-bilinear map
B:V x W — k such that 3 basis {v;}, {w,} such that

B(vi, w;) = 6i;
<— Adp:V - W*
v (w e B, w))
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Theorem 51 (4.9).
X(G) x Z(kG) — k

(f, @) = f(e)
is a perfect pairing.
Proof. Dual basis: {din} e}

1
3, Xi(e) = 9ij

O

Corollary 52 (4.8). Suppose k is algebraically closed, chark = 0. Then d; =

dimK Li | n

We need integrality theory (M502)

See Lang p 334.

A subring of B, a € B.

« is integral over A if 3 monic f(x) € A[z] such that f(a) = 0.
a€EQ = ait/Z < acZ

Condition (k*): « being integral is equivalent to the existence of a faithful A[a]-

module M which is finitely generated as A-module.

Faithful means: Vj3 € Ala],BM =0 < B =0.

In other words, Ala] < End gjq)(M).

Condition (%%) <= « int/A. This is proved by a determinant trick.
Applying (xx) on A = 7Z, 7 €Q

Multiplying e; = % 3" . xi(0)o ™! € kG with e;,

n

d; _
e, = 6? = EZ ZX,L(O')O' 161'
o

n _
d—iei = Zg:xi(o)a Le,;

M =Z((oe)joec isaZ [;] -module

3

We are done by (xx). d; | n.

Orthogonality, Lang XVIII, 5, Serre 2.3
Theorem 53. Suppose we have (,) : X(G) x X(G) — k by:

(f.0) = 3 flo)glo™)

oelG

is a nonsingular symmetric form and {x1,- -, Xs} forms an orthonormal basis.

Proof. Symmetric form, k-bilinear (f, g) = (g, f)
Apply x; to (x)

4y = xi(e) = = 3 xalo)s(o ™)

Remark: Irreducibility criterion: {x,x) =1 <= x irreducible.
(X0 aixas 2oy aixi) = >, a3
Proposition 54 (1.7, Serre p20). a) >0, xi(o)xi(c™!) = 4

o]
b) [o] # 1] = Yi_ixi(o)xi(r7') =0
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Proof. Consier the characteristic function for [o]:
fo =1 on [o] and 0 everywhere else.

fU = Ez )‘iXi~
N = i) = & Sreq fo(0x(r7) = Bl (07
fo(=) = Ei ha(e ™ xi(-) -

This finishes the proof.

Monday, 9/30/2024
Serre Ch 4

What about representations of infinite groups?

|

compact groups S' C C* discrete groups Z(2 Cw)
C*G C*-algebras N(G) von Neumann Algebra

Definition (Topological Group). Topological Group is a group (G, -) such that G
has a topology so that:

GxG—G

(g.h) = gh™!
is continuous.

Definition (Lie Group). Lie Group is a topological lie group G where G is a smooth
manifold and (g, h) — gh~! is smooth.

Compact Lie Groups:

Torus T" = St x ... x St

O(n) ={A e M,(R) | AAT =TI}

Un)={Ae M,(C) | AA* =1}

Exceptional: GQ, F‘47 EG» E‘77 Eg

We also have compact groups are not lie groups;,

(z/p)> =11Z/pZ
p-adic Z, = imZ/p"7Z
Serre Ch 4 says that:

Representation of compact groups is almost the same as finite group!

We need Haar Measure.

Proposition 55. For locally compact Hausdorff topological group G there exists a
unique Haar Measure:

dt : {Borel Subsets of G} — [0,1]
B w—  [pdt= [,xs(t)dt

So that [, dt =1 and dt is translation invariant:

/G F(t)at = /G flgt)dt = /G f(tg) dt
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Example. If G is finite:

1
/Gfdt=@2f(g)

geG

1
/ dr =1 / ar =1
St quarter circle 4

Theorem 56 (Maschke’s Theorem, Peter-Weyl Theorem). Let G be a compact
group, k = C. Let W C V be a subrepresentation of p : G — GL(V). Then 3
subrepresentation W’ such that V =W @ W’.

G=25!

Proof. Let (,) : V x V — C be any inner product.
We define a new inner product by averaging this inner product.

(o) = [ {ple)o. ployu’ a

This gives us a G-invariant inner product.
We take W’ to be orthogonal to W w.r.t. this inner product. O

Corollary 57. Any representation is the direct sum of irreducible representation
(unique upto multiplicity).

Consider the regular representation L?(G) = “@D, " d; L.
We don’t have characteristic of regular representation
We don’t have a group ring

Suppose G = S',n € Z

Xn 1 ST — CX

Xn(2) = 2™ gives us C,

L2(Sl) o« @ ”(Cn

Representation Ring: R(S) 3 p—p/

R(SY) = Z[x1,x1 '], Xn = x1 @6 - ®c xa

Then, R(S' x --- x SY) = Z[ay,a; -+, o, a;7t] where:

pro

Sl oox G P, g1 x

Consider T" C U(n)

Y, =U(n)/T"

R(U(n)) — R(T™).

image Z[o1, - ,0n_1,0n,0, ] where

o is the i-th elementary symmetric function in aq, - , .

Infinite Discrete Groups

Coo = ()

ZCs = Z|z, 1] the Laurent Polynomial Ring.

We can think of it like the localization of Z[z] at = [aka 2~ 'Z[z]] or Z[z,2™'] C Q(z)
the rational function field.

This is not a super well behaved domain since it has dimension 2.

Q[z,z7'] is a Euclidean domain and hence a PID. But not Z[z,z~1].
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Some Conjectures about Torsion-Free Groups
Torsion free: If g € G — {e},n > 0 then g™ # e.

Proposition 58 (Farrell-Jones Conjecture). for R = Z or a field, all finitely generated
projective RG-modules are stably-free.

Projective means it’s a summand of a free module.
P is stably free if P & free is free.
It has been proved for the torsion-free groups we care about, but not generally.

Proposition 59 (Kaplansky Idempotent Conjecture). Suppose R is an integral do-
main. Then the only idempotents in RG are 0 and 1.

Proposition 60 (Zero Divisor Conjecture). Suppose R is an integral domain. Then
RG has no zero divisor.

Proposition 61 (Embedding Conjecture). Suppose R is an integral domain. Then
RG is a subring of a skew field.

We have Embedding Conjecture = Zero Divisor Conjecture — Kaplansky
Idempotent Conjecture

Proposition 62 (Unit Conjecture). Suppose k is a field. Then,

(RG)* = (K, G)

Wednesday, 10/2/2024

Serre Chapter 5

Examples

k = C: Use characters.

5.1: Cy, = (1), ¢ = e2™/m,

n = #conjugacy classes = n = s irreducible representations.

(), is abelian = all irreducible representation (=char) is one dimensional.

x:C, = C*

x(r)" =x(r") = x(e) = 1
Irreducible representation xp,(r) = ¢”*. We have characters xo, X1, * » Xn_1-

XhXh' = Xh+h' (mod n)
Representation Ring Z[characters| = Z[x1] & Z[z]/ (=™ — 1).
Trivial character is 1 in R(G).

¢: ClCn] — Cx---xC
r = (poaplv"'apnil)

o:QlC.) - [[ Q)
d|n

a
Question: How to justify that ¢ and ® are isomorhisms?
Answer: CRT

For a non-abelian group G, recall that:

# of 1d rep = |G™| = |G/[G, G

# of irreducible rep = # of conjugacy classes.

Suppose d; = dim¢ L; then n = d3 + -+ + d? and d; | |G|.
5.1 Dihedral Group Dy, (order 2n)

Recal,

Do, = (r,s|r" =1,5 =1,srs =71"1)
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isometries of a regular n-gon.

Here, (srs™1)F = srks1 so srks™! = r=F. Also, r¥sr=F = r2ks.
Conjugacy classes are given by the following:
{e} {s}
{ror=t} {r2s}
{r3,r=2} {r's}
{rs}
We have split based on whether n is even or odd.
n odd n even

e} e}
{rr ) {rr )

n—1 n—1 n—2 n—2

! [ )
{SaTSaTQSa"' ’,,,n—ls} {7‘5}
{Tv T2357 e 7,r,n7125}
{rs,r3s,- - ,r"*s}
So, for n odd:
n+3

# of conjugacy class is ==
Dgh = {1,5} = Cy
Z(Dapn) = {e}
For n even,
: o N6
# of conjugacy classes is "5~
D$b = {1,5,7,75} = Oy x Oy
1-dim representations:
n odd implies we have representations C,,C_
X+(r) =1, x+(s) = £1
n even implies we have representations C,,C,_,C_, , C__
e, =xl,64 = %1
Xeres (’I“) =&, and Xeres — €s
2-dim representations:

P : Dy, — GLy(C)

so-[§ &

n

h 0 1

p(s) = [1 0}
[Induced from C,-representation Cy, later]
For 0 < h < § it is irreducible [homework].
Xh(,,,k) _ 627\'2’hk/n + 6727rihk/n = 2¢co0s 2mhk

n

xn(r*s) =0
Since characters determine representation, we have pp, = p_p = pp—n.
Also, for 0 < h < 5 the repesentations are distinct.
We have all irreducible 2-dim representations.
Remark: 3 real representations Da,, — G La(R) [isometries in R?]. Then,

5" (r) = cos % —sin %
P sin 2Th g 2R
n n

=7 g

We have x, = xp and thus pp = pp
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Friday, 10/4/2024

Serre 5.4

Suppose G = Do, x Cs.

Then, CG = CDy,, ®c CCy = (CD3y,)+ x (CDay,)—.

Twice as many irreducible representation as Ds,. 5.7 and 5.8
We have the following exact sequence:

1 Ay — 88 (£1} > 1
We have |Sy| = 24 = 4!, |A4]| = 12.

{54} = {o p} isometries of a tetrahedron.

Ay

. o .| S4 (1),(12),(12)(34),(123),(1234) s=5
Conjugacy classes (c.c.) in {A4} ar (1), (12)(34), (123), (213) s 4
Interestingly, not all 3-cycles are conjugates in Ay. For example, (123) £ (124).
Intuition: we need to swap 3 and 4, but in A4 we need something else because
swapping 3 and 4 is odd.
Also: Ay is not simple [even though As, Ag etc are].
54 = Cg X Cg el 53
A4:CQ><02>403.
Also: S¢° = Oy
Aab — Cd
Then, 24 = 12 + 12 + 22 + 32 + 32
12=12+1% 412 4 32
C[A4) =C x Cx Cx M3(C)

—_——

C3-quotient geometry

Dg-quotient
—
C[S4] = CxC xMCx M3(C X M3(C
~— S~~~ N~~~
C2-quotient geometry  geom®cCsign

Chapter 6
Suppose we have a finite group G and (chark, |G|) = 1. Then kG is semisimple.

Proposition 63 (10). Let A be semisimple ring. Suppose Lq,---, L, are simple,
non-isomorphic kG-modules such that V simple L we have L = L; for some i. Then,

A— HEndA L;

Corollary: t < s implies:

t
A— []Enda L;
i=1
is onto.
6.5:
Review: Corollary 2: if k is algebraically closed and char k = 0 and d = dimy, L where
L is a simple kG module, then

e
We strengthen this.
Proposition 64 (17). Let Z = Z(G) be the center of G. Then,

G|
d| —=
Z|
Proof. Let p : G — GL(L) be an irreducible representation and d = dim. Define
homomorphism A : Z — k* such that:



Ym>1let p":Gx---xG— GL(L®---® L) which is irreducible.
Then we have \™ : Z x --- x Z — k> with:

(sla"' ,Sm)'—>/\(31-~-8m)

Let H={(s;)) € Z™ |1+ sm =1} < Z™ < G™.

H=7""1!and H C ker p™.

Then p™ : G™/H — GL(L ® - -- ® L) irreducible.
|G|m,

Therefore, Ym, d™ | \%\ = 1zp== which implies by taking m big enough that d \

161

\ZE]
Tensor Product for Non-Commutative Rings

Suppose R is a non-commutative ring. Then, tensor product is a functor

—®pr—: mod R x R mod — Ab

right mod left mod

Ar®r rB > a1 @b+ + ap @by
(a+d)®@b=a®b+d ®b
aRb+b)=ab+axl

ar®b=a®rb

Exercise. Formulate adjoint proposition:

2 77
Hom:(A ® B, C) = Homs (A, Hom (B, C))
Definition (Induced module). : Suppose k is a field and H < G. Then,

nd$ : kH -mod — kG -mod

IndG W = kG @k W

2

eg. Suppose H = C,, = (r|[r" =1) and G = Da,, = (r,s | r" =1 = s%;srs = 1r71).

If W =C we have H — C* by r — (,.

V = CD3, ®c[c,) C1 = (C[Cr] @ sC[Cy]) ®cic,,) C1

C-basisof Vis1®1,s®1.

Recall r — [%L Cfl} , 8> {(1) (1)]

s(Iel)=s®1

ss@l)=8®1l=11
rs@1)=rs@l=sr"101=sx( 1= (s®1)

Monday, 10/7/2024

Exercise. Work out the representation theory of G = Cy x C3 = (r,s | r7 = 1,53 =
2

1,srs™ =r?).

Meaning: find an isomorphism CG — M,,C

Suppose we have a (most likely non-commutative) ring R and
A tensor product functor — ® g — : mod-R x R-mod — Ab

Proposition 65 (Universal Property). Suppose A is a right R-module and B is a
left R-module and G is an abelian group.

m:Ax B — G is R-balanced. Meaning: 7 is Z-bilinear and = (ar,b) = w(a,rb).
There exists an R-balanced 7 : A x B — A ® g B which is initial.
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Ax B

lﬂ. VR-balanced
A®rB 317 hot G
Construction:
F(Ax B
A Rnr B = %

Where F(A x B) is the free abelian group with basis of A x B. We write F(A x B) =
Z[A x B].

T is the subgroup generated by (a + a’,b) — (a,b) — (a’,b),(a,b + V') — (a,b) —
(a,b"), (ar,b) — (a,rd).

Main thing to remember:

‘ar@b:a@rl)‘

Proposition 66. Suppose we have a ring homomorphism f : R — S of possibly
non-commutative rings. We preserve addition, multiplicationand identity.
We then have the restriction functor

f*:S-mod — R-mod
f*M = M (as abelian group)

Rx f*M — f*M
(r,m) = f(r)m
If we have inclusion inc : kH — kG then we have:
inc* = Res% : kG-mod — kH-mod

We also have the left adjoint of f*.

f« : R-mod — S-mod “base change”

foeM =S ®r M

S is a right R-module. We have S x R — S given by (s,r) + sf(r) which trns S to
a (S, R) -bimodule: gSgr. So we can take the tensor product.

Proposition 67.

| Homg (f.M, N) = Homp(M, f*N) |

is an isomorphism of abelian groups.

So we can go back and forth between S-modules and R-modules.

/f\

S-mod 1 R-mod

\/

fs

f+ is left adjoint.
f* is right adjoint.

Adjoint of Id¢«n :| f« f*"N — N |is the counit.
Adjoint of Id¢, ps :| M — f*f.M |is the unit.

We also have:
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inc, = Indg : kH-mod — kG-mod
Which gives us:
Homy, (Ind% W, V) = Homy, i (W, Res$; V)
Remark: If we have a module, how do we know it is induced?

Proposition 68. If V = @, ; W; and G permutes summands transitively and 3W =
Wi, and H = {g € G | gW = W} then V is induced.

Example: CDs,, ®cc, C; = 1CC,, ® C; + sCG,, @ C;.

Proposition 69. V is induced if W < V invariant under H:

V:@rw

reR

R is a set of left coset representation for H in G.

Character of Induced representation
Theorem 70 (12, p30). V = Ind% W.

_ 1 _
xv(u) = Z xw (r lur):f Z xw (g~ ug)
reR ‘ | geG
r~turecH gflugeH

Proof. Write V- = @, .z rW. We care about when urW = rW, since otherwise we
have non-diagonal terms so they don’t contribute to the trace.

wW=rW < r W =W << rlureH

xv(u) =Tr(u-:V=V)= Z Tr(u- : 7W — rW)

reR
r~lureH

1
= Z Tr(rilur- W — T’W) = Z xw (r~tur) = H Z xw (g ug)
reR reER | | geqG
r~lurcH r~lurcH g lugeH

Frobenius Reciprocity
(Ind4, ¢)c = (¢, Res ) u

Wednesday, 10/9/2024

Recall: If

V =Ind§ W

Then V as a k-vector space can be written as direct sum of k-vector spaces:

And action of H permutes the summands.

Stab(W) ={geW |gW =W}=H
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Also recall Class Functions:

CUG) ={f:G = k| flgog™") = f(0)}
The charcters xy are a basis of the vector space of class functions.
For H < G we have restriction:

Res: ClG) — CI(H)
f = flu

We also have induction:

Ind : CI(H) — CI(G)

(Ind f)(o) = \H| Z flg tog)

geG
g logeH

Last time we did:

Xmdw = Ind xw

Also we had the following:
Homyg(Ind W, V) = Homyg g (W, Res V)

Today we give a character version of this.

Frobenius Reciprocity
Theorem 71 (Frobenius Reciprocity). Suppose k is algebraically closed. Then:

(Ind¢, ) = (,Res )

where ¢ € CI(H) and ¢ € Cl(G) with H < G.
Also, for review: if a, 8 € CI(G) then,

(@,B)a =2 alg)Blg™") €k

geG

And irreducible characters are an orthonormal basis w.r.t. this inner product.

(Xi> Xj)G = 0ij
Proof. Suppose

V%@mivi

where Vi, --- |V are irreducible. We define multiplicity: m&, := m,;. Then,

(xv,xv+) Z my, mV S dimy, Homy(V, V')
We finally start the proof.

ClG) = span{y;}
WLOG assume 1, ¢ ae characters of W and V.

dimg Homgg (Ind W, V') = dimy (Homy g (W, Res V))

= (Ind(xw),xv)a = (xw.Resxv)n

Since this is true for basis, it is true for general character.
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Mackey’s Double Coset Formula

Suppose G is a group with subgroups H, K. aka H, K < G. Let W be a kH-module.
Question: What is Res% Indg W as a kK-module?
Let s = [K\G/H] be the double coset representation. Meaning:

G=]]KsH
seS
i.e.

¢S K\G/H
The above dotted map is []. Then,

mol]=1d
We have:

H, =sHs 'NnK < K

p: H— GL(W)

We thus have the twisted representation:

p°: Hy — GL(W)

las)

p*(x) = pw(s
Wy = W, is a kH s-module.
Proposition 72 (Mackey’s Double Coset Formula, MDCF).
RespInd W= Indjy W,
s€[K\G/H]
Proof. Suppose V = Indg W. Then, from the definition of Ind W,

V:@xw

xe€G/H
Where Stab(W) = H.

V=P «aw

z€G/H
Then, as hK-module,

V= @ KW
se€[K\G/H]
Note that, since Stab™ (sW) = H,,
KsW = @ xsW

z€K/H,

= Indj;, sW

= Indj;, W,

Since
W, =2 sW
w — SW

So we're done.
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Mackey’s Irreducibility Criterion, MIC
Suppowe W = W, is kH-module. TFAE:

1) V = Ind$ W is irreducible

2) a) W irreducible
b) Vs € G\ H, p° and Resy, p are disjoint.

Recall: V, V' are disjoint if Homgg(V, V') = 0.

Proof. We asssume k is algebraically closed.

V irreducible <= (xv,xv)ac =1
(xv,xv)c = (Ind xw, Ind xw)a
= (xw,ResInd xw)u [FR]

=W, @ dj, (ps)u [MDCF]
s€[K\G/H]

= Z(RQSHS p,p* ) u, [FR]
=> d,
ds = (Resp, p*) m,

dl - <pWapW> Z 1
Thus,

So we're done.

Example: Suppose G = H x K where H = C3,G = Dg = S3, K = Cs.
Then,

C[C3] =Cy x Cy x Cy
C[Dg] = C4 x C_ x M>C
ResCy =Cy
ResC_ =Cy

ResC2 = C; x Cy
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Monday, 10/14/2024

Exercises 8-13 due Friday

Wed, Chapter 9

Suppose K, H < G and p: H - GL(W).
For s € G consider H, = sHs 'NK < K
Then p* : H, — GL(W)

p°(x) = p(s~'ws)

MDCT:
Res& Ind$§, p = Z Indgs o’
sE[K\G/H]
Take K = H.
MIC:
Indg p is irreducible
—

a) p irredicuble
b) Vs € G — H, p® and p|H are disjoint.

Now take H = K < G normal.

Corollary: Ind p is irreducible <= p irredcible and Vs ¢ H p is not isomorpic to
conjugate p°.

eg. H=0C3=(r)

G =Dg =S5 =(rs)

CH = (:0 X (:1 X (:2

re (1,6, G2)

CG=Cy xC_ x MyC

Only two dimensional irredicuble reps are C x C_ and C?
Ind$ Cy = Cy x C_

md% C, = C?

Corollary?: Ind Cy is real since p = p*, p* = p(s~1xs)
IndCy is ||, (p: H—=C), p 2 p°.

Ci C
More on MCDF “Mackey Functz)rs”
Review
Ring f: R— S
m
S-mod R-mod
\\\\\I:,///)
“Res” f*N =N

“Ind” f,M =S @ M
MDCF: H,K < G

Ks=s"1Ks
SH =sHs™!
cs : K*— K

g > sgs—1!

(Ind ¢)M = kK ®px: M

ResfIndf = Y Indfn.y Indc, Resiony
sE[K\G/H]

Definition. A Mackey Functor M is:

M : {subgroups of G} — Ab
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VH < K < G, we have:

Induction map I5 : M(H) — M(K)
Restriction map REM(K) — M(H)
Conjugation map Vg € K, ¢, : M(K®°) - M(K)
Satisfies 6 axioms. Key one is MDCF.

HEK<J<G
Rily= Y
K\J/H

Examples of Mackey Functors

M(H) = Rk (H) representations.

Homology groups M (H)H, (H; —)

Cohomology groups M(H) = H"(H; —)

Stable Homotopy theory: M(H) equals X based G-space ITH X
Number theory: if we have K/gnite galoisL/finite@,

M(H) = CI(O(K*H))

Wednesday, 10/16/2024

No class Friday
Homework due monday, 8-13

Representation Ring

Representation R(G) = Z[x1, -+ ,xn] CCUG) ={f: G - C: f(oro™ ') = f(1)}
where x1,- -, xn are irreducible C-rep.

o (R(G),+) 217"
e R(G) ®;C = CI(G)

A basis of CG can be found the following way: Fix o. Then )
basis where ~ means they are in the same conjugacy class.
Another basis are x1, -, Xn. S0, h = the number of conjugacy classes.

T gives us the

T~O

Theorem 73 (Artin Induction Theorem).

md: Qe @ R(C)—~»QeREG)

cyclic C<G

Exercise: Let xr be the trivial characteristic of Dg Express axr as a subrepresenta-
tionm of characters a > 0 induced from cyclic subgroups.

Proof.
Res : R(G) — @) R(C)
C

Res: R(G) @ C — @ R(C) @ Cinjective
c

Frob. Reciprocity

— Ind : @ R(C) ® C - R(G) ® Csurjective
c

Why? in matrix terms, we can think of the matrices being transposed, A injective
implies AT is surjective. We can also think of dual maps, V — W «—= W* - V*

= Ind:@R(C)@@—»R(G}@Q
C
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Another view of R(G)

Let V be a representation, [V] be its isomorphism class. Then,

R(G) € [V]=[V]

“virtual representation”

0.1 Grothendieck Construction

Define the category CMon, commutative monoids.

(M,+: M x M — M)

commutative, associative, identity
The morphisms are homomorphism [preserves unity].
Gr
CMon/_\ Ab
~_

F Forgetful

Ab(Gr M, A) =2 CMon(M, FA)

<= universal property:

M —— Gr M

|
13!
Vmonoid map <+

A
ab
[Take A = Gr M]
Note: Gr(Z>o,+) = (Z,+)
Gr(Z=0, ) = (Q%0:)
Gr(Zgo,) = (@5, )
Consider a field k and a group G.
Iso(k,G) = isomorphism class of finite dimensional k-representations p : G — GL(V)
with dimg V < oo.
We define R;(G) = Gr(Iso(k,G), ®)
Is is a group. We can make this a ring by defining the product as:

V][W] =V @5 W

the diagonal k-action.
Suppose X is a set of subgroups of G.

s . detected "
Definition. R;G is generated} by X if:

Res: R(G) = @ycx R(H) | . [ injective
Ind: @y R(H) — R(G) % surjective

e.g. R(G) is detected by cyclics
R(G) ® Q is generated by cyclics.
Consider:

homf:H — G
Res: RyG — R H is a ring hom
Ind: RpyH — RiG is a RyG-module map
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1= [k] € R(G).

ResW @y, [V & (W @ V)
W Rk (kG @k V) 2 kG Qg (W @ V)

w®(a®v)<7|a®(w®v)
Note: Consider f: X — Y. Then f*: H'Y — H*X is a ring map, f, : H. X — H,Y

is a module map.

Monday, 10/21/2024

Brauer Induction Theorem
Let p be a prime.

Definition. H is p-elementary if

H=Px(C
where P is a p-group and C' is a cyclic group with order prime to p.
Definition. H is elementary if H is p-elementary for some p.
Example. Qg x C3 is 2-elementary.
Theorem 74 (Brauer Induction Theorem). R(G) is generated by elementary sub-

groups. i.e.:

Ind: @ R(E)—» R(G)
elem E<G
in other words,

Vp:G—=GL(V);x, = Zai Indgi pi

where F; are elementary.

Example. Consider Dg = C3 x Cs. Elementary subgroups are 1,Cs, Cs.
For p odd prime, Dy, has elementary subgroups 1,Cs, C,,.

Remark. We can’t always choose a; > 0 in .

Theorem 75 (18'). Let |G| = p*l with (I,p) = 1.
[C'] =1[C] =1 is induced by p-elementary subgroups.

= Z a; Indgi Pi

E;,p elem

Note: Theorem 18 = Brauer Induction Theorem. Let |G| = p7*---pg . Then

ged (%,-n ,Ilg) € image Ind (@E<G R(E)) = Vz € R(G),z € image [Ind is

R(G)-module map] = Brauer Induction Theorem.
Proof of theorem 18 is ommitted.

Applications of Brauer Induction Theorem
Definition. A representation p : G — GL(V) is a monomial if
p=TIndf

where p: H — C* is a 1-dim representation.
In other words, “p is induced by irreducible representation of G2P.”

Application (Brauer): Artin L-functions are meromorphic (on C).
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Chapter 8
Goal:

Theorem 76 (20). Every x € R(G) is a Z-linear combination of monomial characters.
This is stronger than Brauer Induction Theorem.

Why does Brauer induction theorem imply this?
We want to show: Every character of an elementary group is a monomial.

Definition. G is supersolvable if:

N=GycGC---CG,=G

such that G; <G and G;/G;_1 is cyclic.
Sylow theorem = p-groups are super solvable.
Hence elementary subgroups are super-solvable.

Remark. p-group = nilpotent = super-solvable = solvable.
Definition. R-module
Our goal changes to proving: every character of super-solvable group is monomial.

Definition. R-module M is isotypic if M is a direct sum of simple, isomorphic
submodules.

M=2S®---0S

Proposition 77 (24). Suppose (chark,|G|) = 1. Suppose V is an irreducible kG-
module and A < G. Then either:

a) J proper H < G such that A < H and there eixsts an irreducible kH-module
W such that V = Ind% W

b) Res ‘A V is isotypic.
Proof. V = @?:1 Vi
Vi isotypic and ¢ # j = V; and V} are disjoint.
Vs € G,
sV; =sAV;, = AsV;
AQG

Thus, sV; = Vj for some j.

Thus, s: V — V permutes V; transitively [since W is irreducible].

Case b: V =11.

Case a: H = Stab(V;) = {s € G | sVi = 1} < G proper = W = Ind$ V4.

Remark. If A is abelian and k = C then Case b <= p(a) = al Va € A.

Wednesday, 10/23/2024

Goal: Theorem 20: R(G) is generated by monomial characters
Recall: R-module M is isotypic if:

MEJSEB-“EBS

where S is simple.

We also have proposition 24: Suppose we are in the Maschke case (char k,G) = 1 and
V' is an irreducible kG-module and A < G.

Then either:
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a) 3 proper H < G containing A and irreducile kH-module W such that V =
Indg W or:

b) Resa V is isotypic.

Proof. RespaV =V; & --- @V, isotypic, nonzero, disjoint (meaning no common irre-
ducible subrepresentation).

Then Vs € G, sV; = V; [use A normal = sV is isotypic]

V irreducible = G permutes V; transitively.

Let H={se G|sVi =V1}. Let W =1].

Then V = Indyg W.

n > 1 puts us in case a, n = 1 gives us case b. O

Remark. If V is a CA module and A is abelian, p : G — GL(V)
Then V is isotypic <= Va € A,Ja € C* such that p(a) = al.
Why C? Then representation is 1-dimensional since A is abelian.

Corollary 78. Consider abelian A < G. Let V be a simple CG module and d =
dimc V.

Then d | (G : A) = [§].

eg Cp,<aDyy = d=1,2.

In C7 x Cj5 since Cy is normal d | % =3sod=1,3.

Proof. Recall d | |G| [on page 52].

We also have d | (G : Z(G)) [on page 53].

We use the second result to prove this. We use induction on |G|.

We use Proposition 24/77:
Case a:

d \ (H:A)|(G:A)

induction hypothesis

Case b: Resy p is isotypic.
p:G— GL(V),G' = p(GQ), A" = p(A).
G/A— G'JA

P

Remark. A’ C Z(G’)

d | G Z2(G))[G":AT[G: A

p.53
O
Recall irreducible CG-module V' is monomial if it is induced from a 1-dim represen-
tation.

supersolvable
solvable

G; <G .| cyclic
{Gi <1G¢+1} and Gi/Giy is {abelian}

Theorem 79. Evey irreducible representation of a semsimple group is monomial.

Definition. G is if 31 = Go € Gy C --- C G, = G such that

Lemma 80 (4). Let G be a non-abelian supersolvable group. Then 3 abelian A< G
such that A ¢ Z(G).

Proof. H=G/Z(G) is supersolvable. = 3 cyclic normal 1 # H; < H.
Let A= n"1H; where 7 : G — G/Z(G).
Claim:

1-— A —-—B— (C —1 = B abelian

central cyclic

choose b € B such that (imb) = C'.

Every element of B looks like ab’:

ablab’ = ab’ab'.

a € Z(B). O
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Proof of theorem 16. induction on |G|.p : G — GL(V), irreducible, G supersolvable.
Case 1: p not injective. p: G/ker p — GL(V).

pP= Ind%(c) (1-dim) by induction hypothesis so p = Ind 177 is 1 dim.

Case 2: GG abelian then we’re done.

Case 3: irreducible p : G — GL(V) and G not abelian.

Lemma 4 = Jabelian A<G,A ¢ Z(G) = p(A) ¢ Z(p(G)) = Fa € A such

that p(a) ¢ Z(p(G)) = remarkin case a. O
Corollary 81. Every irreducible representation of elementary group is monomial.

Corollary 82 (using BIT). Theorem 20

Friday, 10/25/2024

3 Applications of rep theory to group theory:
Exercise 8.6:

Theorem 83 (Burnside’s Theorem). Let #G = p®q® where p, ¢ are primes. Then G
is not simple (31 < N < G), all proper.

Frobenius I (Exercise 7.3)
If G ~ X effectively, transitvely, Vg € G\ e, X9 is a point or empty. Then,

G=2HxK

H = Stab(x¢) for some z € X.

For example, Dg ~ A so Dg = Cy x Cf.
Frobenius IT (Corollary 2, page 83)
Suppose n | #G. Then,

n|#{reG|a" -1}

Suggestion
Look at exercises for Chapter 12.

Chapter 12 Rationality

QC = Q4 xQ-
QC, = Q x Q(Cp)
Do), has (), inside of it.

QD2 = Qp x Q- xM3(Q[M])
N
r—1l,s—1 r—ls——1
QRs=Qy xQu - xQ_4 xQ__ xQ[s,,K]

R02§R+XR,
RCpng(sz;l:Rx(Clx--~><(CpT—1

—1

RDy, 2R, x R_ x My(R)Z
RQs =~ R* x H

H =R(i, j, k)

COy=CyxC_

COngO X(Cl X X(Cp_l
Where we map to C{; at Cy.

Cy = Cp_1 as RC, modules [z — Z]
C, #2C,_1 as CCp-modules.
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CDsp = Cy x C_ x My(C)" =
(CQg = (C4 X Mz((C)

Dgp — GL((CQ)

= |:% <01:|
P

o1
710
Dy, — GL(R?)
Lo -1
TN,
Lo
S SR

Note that the matrices that map from r are conjugate over C. Both have the same
characteristic polynomial: 22 — A,z + 1.

12.1
Suppose K is a subfield of C.

{kG-mod} — {CG-mod}

Vi Ve=CGRgegV =CgV

central central
idempotents of » — < idempotents of
KG CG

Question: What about irreducible representation?

V irreducible —= Vi irreducible?

W irreducible over CG —= W = Ve for some V.
Question: What about primitive central idempotents?

G —2 GLx(V) 225 GLcVe

pPc

Xp = Tr(p) = Tr(pc) = G — K.
Definition. CG-module W is realizable over K if W = V¢ for some kG-mod V.

Consider the Representation Ring RG = RcG.

RiG = subring of class function f : G — K, generated by the characters of K-
representation.

Rk G is a subring of RG.

= Gr(Isom(f.g. KG-mod),$)

“virtual representations”
Let x1,- -, Xn be distinct irreducible character of KG.
Ri(G) =7Zx1 @ - - ® Zx, additively.
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{x:} are orthogonal [but not orthonormal] under the usual bilinear form:

1 1
(.9 = 2@ > flo)gle™)

Theorem 84 (12.3). Every C-rep of G is realizable over Q((|g)-
In fact let m = l.c.m{order(g) | g € G} | #G.
Every C representation of G is realizable over Q((, ).

Monday, 10/28/2024

Proof. Special case: G abelian.

Follows since irreducible rep G — C*.
General case: Let x € R(G).

Monomial representations generate R(G).

X =Y n;Indf (¢;) ¢; l-dim.

Then ¢; : H — C*

¢i(H) € Q(¢m)

Thus Ind% (¢;) € Q(Cm)-

Therefore x € Ry, G- -

12.2 Brauer Groups

Definition. A central simple algebra over K is:
A simple ring A.

K =Z(A).

(A: K) < .

Example. H is a CSA over R.

Recall that a simple ring is simply a matrix ring over a division algebra.

Artin Wedderbern = A 2 M, (D) where D is a central simple division algebra
over K.

Facts:

1) A,Bcsa /K = ARk Biscsa /K.
2) K subfield of L and A case /K — L ®p Aiscsa /L.
3) K alg. closed and A csa /K = A= M, (K).

Definition. L is a splitting field for csa A if

L@ A= M,L

Facts = Algebraically closed is splitting field for A.

3 = (A:K)=m?since (A: K) = (AL : L) where L is splitting field which has
dimension m? since it is isomorphic to M,,L. m = VA : K is the Schur Index
Harder Fact: maximal subfield of A is splitting field for A.

e.g. Cor H = M>C.

If D is a skew field CSA /K then (D : K) = m? where m = Schur index of D.

A case /K so schur index of A is divisible by schur index of D.

Definition (Brauer Group). Let K be a field.

csa/ K
Br(K) = (M (Dg ~D> QK
egBrC=1

BrR = C, = (H). H®g H 2 My(R)
Br(K) = H2(Gal(K /K); Z/2)
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12.2 Schur Indices
RQs = R x H

CQs = C* x M,C

N 0 -1
0
. i 0
T 0
Consider RQg module V = H and CQg module W = C? not realizable over R.

Xv(£1) = +4

xv(£i, £5,£k) =0

Xw(:tl) = :|:2, Xw(:ti, :tj, ﬂ:k) =0
We have:

kG = [ [ Mn, (Ds)
K; = centerD;

schur indexm; = \/(D; : K;)
eg G=Qs, K =R,myz =2.
Definition. Rx(G) C RxG ={f € R(G) | f(G) C K} C R(G)
eg xw = Xxc2 € Rr(Qs) — Rr(Qs)

Proposition 85 (35). x1,---,xn are the irreducible characters of KG. Then they
are Z basis for RgG. Then,

XL ... Xk oare a Z-basis for RgG.
mi mp

Corollary 86. Ry (G) C Rk (G) finite index with equality iff all D; are fields.

Wednesday, 10/30/2024
12.4 Rank RxG

Cc,=cCr
QC, = Q x Q(G,)
¢ = (m = €¥™/™ where m is multiple of lem(ord(g)) e.g. m = |G|.
/ )
L=K(C)
K
LG =] M,,(L)
rank RG = # of irreducible CG-modules

= # of irreducible LG-modules
= # of conjugacy classes of G

What about # of irreducible K G-reps?

=Tk = {te(Z/m)*| 3o Gal(L/K)s.t. o(¢) = ('} < (Z/m)*
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I' = image(Gal(L/K) = (Z/:n)x)

o

where 04(¢) = ¢t.

eg g = Gal(Q(Gn)/Q) = (Z/m)*
Te=1

1, if m odd;
I'g = .
+1, if m even.

Definition. s,s’ € G are I'g-conjugate if 37 € G,t € ' such that:
T8/t =5t
we write s’ ~ s
K

Corollary 87 (page 96). rank RxG = # of ', conjugacy classes.

If G = C, then I' conjugacy classes are {1}, {r'}i0()
Recall that RC), = R x cE
G= Cp then FR Conjugacy classes are {1}7 {Tv ,],,—1}7 {7"2, 7’_2}, ) {TPT_l77'pT_1}
We have:
RG — Cl, G = {f G —= L ‘ f(TSTfl) — f(g)}

We can take K linear combinations of this.
K ®z RG—ClyG={f:G— L| f(rst™ ') = f(s)}
Theorem 88 (25). Let f € Cly G. TFAE:

a) [ € K @ RG
b) Vt € T',Vs € G we have o,(f(s)) = f(s')

Proof. a = b: It is enough to show it for characters. We want to show for x,
where p : G — GL(C™). Let Ay,---, A, be eigenvalues of p(s). They must all be
roots of unity. Then x,(s) = >, Ai.

MM@FW«XMJZZMZMW)

b = a: Let f € Cl.
Irreducible characters form an orthonormal basis.

F=Y (fx0x

X irr
Vt € 'k we have:

mMﬂaZNWWU— ﬂZm%ww
cG

reindex ‘G
s

_ Tél S 0u(f(9)or(x(s™Y) = o2 (£ X))

seG

Thus, (f,x) are invariant under Galois therefore (f, x) € K which is what we wanted
to prove. O

Corollary 89 (1). Let f € Clk.
f€K®RxkG < f is constant on I'x conjugacy classes.
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Proof. = : WLOG f = x, where p: G — GL(K™).
't =5t

= x,(5) = x,(s") = o1Xp(8) § (:)EK Xp(5).
P S

<—: f:G — K is constant on I'i conjugacy classes.
Thus, 25b holds for f.

Thus, 25a holds for f.

Thus, f € K ®z RG.

F= > (fxx

irr x€RL(G)

We need to take L representations to K representations.

1
f:mv Z (fyotox)(otoX)
irr xERL(G),telk
f = ﬁ S (oo fx)(@on)

irr x€ERL, (G),tEFK

1

f== > (f;x)(orox)
I ~

| K| irr x€RL(G),telk cK

f=mr Y Yoy

irr x€ERL(G) t
1
f=== >, {(fx)(Trx)
Tkl
irr x€RL(G)

Last equality is due to the fact:
G5 GLL (L") B GLk (L)
XTrop = 2.0t 0 Xp

Friday, 11/1/2024
Recap:

C

/

L=K((n) m=expG

/

R.G 3 RG = RcG

K

I'x = image (Gal(L/K) — (Z/m)*)
ot — t

Ut(gm) = Cfn

s s (s’ is K-conjugate to s)

If 3r € G,t € 'k such that:



Corollary 2, page 96: rank R G = # of K-conj classes.
13.1: K = Q. Then,

Gal(Q(¢n)/Q) = (Z/m)*
Thus,
s’ Rl Ir € G st ()T = (s)

Corollary 1: # of QG-reps = # of conjugacy classes of cyclic subgroups.
Corollary 2: G finite, following TFAE:

i) (s) = (s') = s is conjugate to 5.

ii) # of conjugacy classes = # of conjugacy classes of cyclic subgroups.

ii) # of p.c.iin QG = # of p.c.iin CG

iv) Vp: G — GL(C"),V¥s € G, x,(s) € Q [characters are rational valued].

v) Vp:G — GL(C"),Vs € G, x,(s) € Z.

Proof. “Think about it” O

111

eg Symmetric grouo S, satisfies (i).

Fact [stronger than this] QS,, = [[ M,,(Q)

eg QS3 = QD = Q x Q x M3(Q[A3]) = Q x Q x M3(Q).
All C-rep of S,, are realizable over Q.

“Young diagrams”.

G = Qs also satisfies (i).

QQs = Q* x Hy

CQg = C* x M,(C)

But irreducible representation C2 not realizable over Q.

12.5

C

/
K

Theorem 90 (Artin’s Theorem).
P RC®Q—RGxQ
cyclic C<G

Same proof as for K = C.
Characters are determined by cyclics.

Theorem 91 (Brauer’s Theorem).

& RE-RG

elem E<G

Definition. E is elementary if E = P x C where P is p-group, C'is cyclic, (|P|,|C|) =
1

Theorem 92 (Brauer’s Theorem).

@ RixE — RiG

I'ik-elem E<G

Definition. FE is I'k-elementary if E = C x4 P, P p-group, C cyclic, (|P|,|C|) =1
If ¢ factos as

P——Tg —— (Z/m)* — Aut(C)

¢
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13.2 K =R

Fact: Only finite dimensional division algebras /R are R, C and H.
“Proof”: BrR = H?(Gal(C/R);Z/2) = {R,H}.
C  alg closed

/ deg2
R
BrC=1.
Thus only R, C,H are possible.
We achieve all:
RCQ =R x R.
ch 2R xC
RQs = R*x H
3 types of finite dimensional simple reps over R.
3 types of irreducible RG reps
3 types of irreducible QG reps
Let xo be char of irreducible RG module.
x = char of irreduible CG module
such that x is a component of C ®r Vy <= xo is a component of res x.
Type O: x = xo. Complexification gives you the same representation.
R = Homgg (Vo, Vo) by Schur.
Type U: x #X. Then xo = x +X-
C= HOmRG(Vo, Vo)
Type Sp: X =X, X = 2Xo-
H = Homgeg (Vo, Vo)

Exercise. GG odd order = all nontrivial irreducible representation have type U.

Monday, 11/4/2024

K=R
RCgZRX(C
RQg = R x H

(CC;),:(C()X(ClX(CQ
O U U

CQg = (C4 X MQ((C)
o Sp

X type O if x is realizeable over R.

X is type U if x # X

X is type Sp if x = X and x is not realizable /R.
Let i = RG — CG.

Let xo be irreducible component of i*z[= z o i].
X type O <= x = Xxo

xtype U <= xo=x+X

X type Sp <= xo0 = 2x

Goal: Propoistion 39:

|G|, if x has type O;
> x(g®) =40, if x has type U;
9eG —|G|, if x has type Sp.

Let V be finite dimensional vecto space over F.
A bilinear B : U x V — F is nonsingular if:

AdB:V S v*
given by

z = (y = B(x,y))
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<= V basis {e;} for V,

det(B(e;,e5)) #0
V is a FG-module, so is V* = Homp(V, F). Action is like:

(99)(v) = d(g™ ")
F = C then,

X*(9) = x(9) = x(¢7")
Theorem 93 (31, FS). p: G - GLcV,x =%, : G — C.
i) x =X <= 3 nonsingular G-invariant form B:V x V — C.
ii) x realizable over R <= 3 nonsingular symmetric G-invariant B : V x V — C.

Proof. i) x =X(=x*) < V 2V* < IJG-invariant nonsingular bilinear
VxV—=C
ii) = : Let V real / R. V = C ®g Vy where V; is RG module.
3 symmetric, positive definite B : Vy x Vj — R.

—> symmetric, positive definite, G-invariant B; : Vj — Vj:

ﬁ > Blgz,gy)

geG

Bl (1'7 y) =
Extension of scalars: Define B¢ : V x V — C by:

Be(z ®v,2',2" @) = 22’ Be(v,v')

<= : (outline)
Suppose we have nonsingular symmetric G-invariant B : V x V — C.

Step 1: Choose G-invariant inner product:

(—,—):VxV=C
[average any inner product)

Step 2: Definea bijection ¢ : V — V:

B(z,y) = (p(2),y)
 is conjugate linear.

Step 3: ¢? : V — V is C-linear, hermitian w.r.t. (—, —) and has positive eigen-
vales.

(Px,y) = (2, %)
Then ¢? has positive eigenvalues.
Step 4: Spectral theorem = 3! square root v : V — V of 2.
v:V =V of 2
v is C-linear, and v? = ¢? where v is hermitian, positive eigenvalues.
Step 5: Let 0 = pov™L.
o :V = V is the conjugate linear with o2 = Id.

Step 6: o eigenvalues are 1 and —1. So we split into two eigenspaces: V =
VieV_.

WV =V. = V=C®g Vy (since Vi =V_).

53



Corollary 94. Let V be an irreducible CG-module.

a) If i non-zero G-invariant bilinear form V x V — C then V has type U.

b) A non-zero G-invariant bilinear form V x V' — G is unique up to a multiple.
B symmetric <= V has type O.
B alternating [B(x,y) = —B(y,z) ] <= V has type Sp.

Proof. Note that in irreducible, by Schur, nonsingular iff nonzero. This also gives us
the uniqueness upto a multiple in ii.

a <= i: Contrapositive.

ii: B(x,y) = B(Ivy);B(y@) + B(Tay);B(yaI) =B, +B_.

Uniqueness = By =0or B_ =0.

B symmetric <= V type O.

V type Sp <= not type O on V <= B alternates.

Wednesday, 11/6/2024
Proposition 95 (39). Let x = xy be irreducible /CG.

|G| if x has type O
Z x(g*) =<0 if x has type U
9€G —|G| if x has type Sp

Proof. Use sym and alt squares 1.6, 2.1, 13.2.

sw: VeV —=VecV
a®®b—b®a

sw? =id

We know that V@cV=SV)aAV)=V,dV,

S(V) is symmetric, +1 eigenspace containing ¢ ® ¢ and a ® b+ b ® a.
A(V) is altrnating, —1 eigenspae containing a ® b — b ® a.

Then (V,)* = G-invariant symmetric V x V — C.

(V,)* = G-invariant alternating V x V — C.

type dim¢ Homeg (C, V) dime Homeg (C, V)
o Thm¥H 1 0
(*)
U 0 0

Sp 0 1

. N
dim¢ Homeq(C, Vy) = (1, %,) |G\ Z X5 (g |G| Z Xo (g

geG geG

dimc Homeg (C, |G| Z Xa
g€eG

L. 210 (g2
Proposition 96 (3). x,(g9) = w,
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Proof. p,(g) is diagonalizable with eigenvalue \; = x.(g) = >_; \i with eigenvector
€;.

V, has eigenvectors e; ® e; +¢e; ® e; 1 < j.

Ve has eigenvectors e; ® e; —e; ® e;1 < j.

B LA (@) +x(g?)
Xo’(g) - ZAl)‘J - 2 - 9

i<j

x(9)* — x(g?)
2

Proposition 3 4+ Table (x) + (xx) implies Proposition 39.

Xa(g) =
xvev(9) = X*(9) = Xo(9) + Xal9)

Research Project?

Consider ring R and nonzero divisor A = Ar = {r ER|VreR-0, :T;ﬁg}.

Definition (Ore). A left classical ring of quotient (q.r. = quotient ring) of R is a
ring homomorphism i : R — A:

Va € A,3r € R, 35 € A such that a = i(§)~Li(r).

We write:

A=A"'R

eg if R is a commutative domain then A™'R = Frac(R).
Question: What rings have q.r.?

Question: For what group G does ZG have a q.r.?

R commutative ring = 3 q.r. by localization.

G finite = ZG has quotient ring, A™'ZG = QG.

We don’t know a lot about infinite groups.

Fa{x,y) non-commutative polynmials and Z[F'(2)] have no q.r.s.

Proposition 97.
R has q.r. <= “Ore Conditions hold” :

Vr € R,V6 € A,

ArN RO # &

Definition. G is virtually abelian if 3:

1— ?ZAG% F =1

finite
G virtually abelian = q.r. for G.
AZLG = (AZLZA) @y ZF
Now assume A = Z".

172" G- F —1

finite

Remark. G is classified by 2 invariants.
F — GL,(Z)
and an extension class € H?(F;Z").

Theorem 98. A~!ZG is semisimple.
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AT'ZG = My, (D;)
Research project: Redo Parts I and II of Serre. h =7 divisibility for d;?7 types?
Splitting fields? Q(¢r|) ®z A~'ZG =[] M; (fields)? induction theorem?
Warm up: G =2" x S,.
Q: A™1zG =77

Friday, 11/8/2024

Modular Representation Theory

Recall Maschke’s theorem:

kG semisimple <= (chark,|G|) = 1.

We ask the question: what happens if chark | |G|?

eg F,G where p | |G].

It is not semisimple, but it is not BAD. For example, they’re Artinian.
Motivation:

1. (Jim) study ZG modules.

GnX— X, mX=0G.

H,X,m,X are ZG modules.

We can consider:

Ok — K
Galois
Z Q

Ok is Z|Gal(K/Q)].

2. Classification of (simple) groups.

3. Algebraic K-theory: K.(F,). eg G = GLo(F,).

4. Non-abelian class field theory: Gal — GL,(Z,). Here we want to deal with
Z,G-modules.

Technique: Use p-adic integers Z, to interpolate between Q and F,,.

Now we start studying F,G.

Example. Exercise: Let p, g be distinct primes. Then,

h
FpCy = [[Fps

i=1
What is h and f;7
eg [F,Cy = trivial rep and sign rep = F, x I,
FCy =7
Hint: Multiplicative group of a finite field (IF;) is cyclic. Fo x C3 = Fy x Fy since
Fy>7Z/(4-1)=17Z/3.
It is given by r — (1,(3).
FoCs =7
We have (5 € Fiy = Z/15 so:
F205 = Fg X F16.
Actually we can say FoCs = Fo @ Fyg.
F207 = ]F2 X ]Fg X Fg.
T (13 C7a C?) or 1 +— (17 <77 Cil)
Minimal polynomial: ®7(x) =25+ 2% + 2t + 23 + 22 + 2+ 1
D7 (x) = f(x)g(x) €€ Falx].
FyCy = (Fz[w] _ Fa[x] o Fa(z) o Folz] o Falo] ~ Fy x Fg x Fg.

27-1) T @-Df(@)g() — a-1 fl@) = glz) —
Now, we deal with p # 3 and F,C5.
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FC F, xF, xF,, ifp=1(3);
3= .
P Fp x Fpe, if p £ 1(3).

How do we know F207 = Fg X Fg X Fg and not FQ X F64?
The image of r lies in Fg so it is actually in Fy x Fg!
We look for the minimal field where the cyclotimic polynomial splits.

Modular Case

Complete list of ideals in FoCs.

O C{l1—r)CFyCs.

(1 — r) is isomorphic to Fy, simple, not projective [not summand of free modules].
Why is it not projective?

Consider the augmentation map:

e: RG — R
S2iTigi Y 20T

It is a ring map.
Augmentation ideal I = ker(e) C RG.
We have Norm element N =3° - g € RG.
If G is a p-group then N € ker(e : F,G — F)).
Aug map € : FoCy — Fy as FoCy module.
Therefore Fy is not projective over FoCl.
Complete list of finitely generated FoCo-modules (up to isomorphism):

(F2)® ® (F2Cy)°
Complete list of IF,C)p-ideals:
0Oc{l—rPtc...c(l—r)CF,C,
(N) kere

Thus F,C), is local.

It is simple, not projective.

Complete list of finitely generated F,Cp,-modules up to isomorphism: direct sum of
ideals.

Definition. Ring R is semilocal if R/J(R) is semisimple.

eg kG is always semilocal.
Serre p 163

Definition (Artinian Ring). R is artinian if:
i) Every decreasing sequence of ideals is stationary.
ii) <= every f.g. R-module has finite length.

eg Z is not artinian, but kG is artinian.
This is because f.d. k-algebra is artinian.

Remark. If R is artinian then every finitely generated module has a minimal sub-
module and hence simple.

Theorem 99. If R is artinian then 3 unique minimal 2-sided ideal J(R) so that
R/J(R) is semisimple.

Here, R/J(R) is the maximal semisimple quotient. J(F,Cp) = (1 — r) since the
quotient is [F,,.

For a general ring R we have:

JR)= |J M

max left
ideals
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Despite having a one-sided definition it is a two sided ideal.
Then, J(R)S = 0 when S is a simple module.

R artinian:

Simple modules over R <> simple modules over R/J(R).

Monday, 11/11/2024

Simple vs Indecomposable

Simple and Indecomposable are not the same thing.

We have Jordan-Holder Theorem and Krull-Schmidt Theorem.
Let R be a ring and M be a module. Then,

(M) =mnif chain 0 = My C M; C - C M, = M and n is maximal.

Definition. Composition series for M is maximal chain <= all the quotient mod-
ules M;/M,_; are simple.

Definition. Module M is indecomposable if M = A® B =— A=0or B=0.
Let M be of finite length.

Theorem 100 (Jordan-Holder Theorem). If M has finite length, then M has a
composition series. Any two composition series have the same simple quotients.

Theorem 101 (Krull-Schmidt Theorem). If M has finite length then M = I &- - -® 1},
with [; indecomposable and if M = I{ @ --- @ I}, with I} independent then k = &’
and [; = Ii‘(j) for o € Sy.

Works for abelian categories, works for groups.
Group Ring where the ring is a field has finite length.
Consider S3 = Dg = (r,s | r® =1,52 =1,srs = r~!) = C3 x Cs.

QDs =Q @ Q@ M(Q)
1)

0 1
sr—>(1,1, [1 0])
FyDg =?

We have: £(1+r+7?%) a central idempotent.

FoDg = FoCo @ Moy

F2C5 is projective, not simple.
0 0
FoDs = FoCh @ [: }@[ :]

JH = ]F27 ]FQ, (F2)2, (FQ)Q.

Maximal semisimple quotient F3Dg/J = F3Cy = F3 x Fs.

Jacobson Radical J = (1 —r).

We have a (not central) idempotent: e = 32, So we don’t have block decomposition.
F3Dg = % &5 % not block decomposition.

Now we go back to Serre.

Let R be semisimple. Then Projective <= @ simple.

If R is Artinian, which is better? Both
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Serre 14.1 Simple

The abelian group R;G is Z[T]/R with generator set T where:
T = isomorphism classes of finitely generated kG-modules [M].
We have following relations R:

[M] = [M'] + [M"] if there exists a short exact sequence:

0O-M —-M-—-M'—0

In the Maschke case the short exact sequence splits and so M = M’ & M".
Ring with — ® —.
S = Sk G = isomorphism classes of simple kG-modules.
(Rp, Dg, +) = 22, [F2Dg] = [S1] + [S1] + [S2] + [S2].
*

S1=TFy, 5 = L}

(Rr, D, +) = Z2.
[F3sDg] = S; + 51+ 51+ 55+ 55+ 5%
We want to prove proposition 40:

Proposition 102 (Serre 40). Sy is Z-basis for the representation ring Ry (G) addi-
tively. [s] — [s].

Proof.
Z[Sy] <+ RiG

> (M /M) 4 M

Projective Module Review

Let R be a ring.
Lemma 103. R-module P. TFAE:

i) 3Q such that P + @Q = free [has a basis].

ii) We have the following:

P
M —— N
ili) A surjection to P splits.
M — P
iv) SES
o
0 M N P 0
splits.

v) P isimage of projection.
dror=7n:R — R°s.t.P 2 7(R’)

eg R =R x MsR, (:) = (: 8) is projective, not free.
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Let R be a ring.

KyR = Gr(iso chlass of f.g. projective R-modules,®).

Serre writes P4(G) = Ko(AG) for ring A.

Ky(kG) is module over R;G. [Not ring since we don’t have identity].
Key point: M ®j kG = i*M Ry, kG where i : k — kG is free.
m®gr— g imeg.

Note that M ®j proj is proj.

Wednesday, 11/13/2024

Serre 14.3
We are looking at kG, character possibly dividing #G.

indecomposable simple
Ko(kG) Ry G
P — P/J(R)P
Pg < S

projective cover
Definition. f: M — M’ is essential if:

e f onto.

o VM C M, f|M,/ not onto.

The idea is f is essential if it is ‘barely onto’.

Definition. f: P —+ M where P is projective and f is essential is a projective cover.
Note: P is the projective cover of M.

Proposition 104 (4.1). If I(M) < oo there exists projective cover, unique upto
isomorphism.
If P is projective and E is maximal semisimple quotient, then P — F is a projective
cover.
eg if R is artinian, then (M) < oo <= M finitely generated.
P projective implies P — P/JP is projective cover. P/JP is semisimple.
eg FoCy — Ty is a projective cover.
e= %, FsDge — 3 is a projective cover.
proj

FSDG - Fg'CQ.

essential

Proof. Existence:

e Choose SES (choice in blue):

proj

0O—-R—> L —M—0

e Choose N C R minimal such that:

L/N = M
Let P:=L/N.
e Let @) C L minimal such that:
L
Q onto, P
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e Choose lift

2nd choice and 3rd choice implies:

0N—-L5Q—0
SES — P=Q.

3rd choice and 4th choice = L % Q@ split.
LEN®Q=N® P, P projective.
Uniqueness:

P
lift <7 l
P —s M

P’ — M essential so g onto.
P — M essential so ¢ is 1-1.

Suppose R is artinian eg R = kG.
Corollary 105 (1).

proj. indecomposable R-mod < simple R-mod

P P/JP

PE<—1E

Corollary 106. Let $ be isomorphism classes of simple R-modules.
{PEg}pes form a basis of KyR.

Corollary 107. f.g. projective R-modules P and P’, [P] = [P'] € KoR < P 2
P

No stabilization required!

Proof. ?: Suppose [P] = [P'] € Ko(kG).

<= [s] =[¢'] € RiG [s = P/JP]

— sxd

<~ P=P. O

Setting of Chapter 14, p-adics

Consider ((K,v), A, m, k).
Example: (Qp,vp), Zy, pZy, F,p.

Definition (pl164). A discrete valuation (K,v) is a field K and a homomorphism
v: K* — Z such that v(z + y) > min(v(z), v(y)).

Basic example: K = Q then v, is the power of p in the factorization.

Generalize: If A is a PID and we have prime P < A we have a discrete valuation
(Frac(A),vp).

Let (K, v) bea discrete valuation.
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Definition. Valuation ring of (K, v) is:

A= V_lzzo

This is a DVR (discrete valuation ring) (= PID with unique maximal ideal).
Maximal ideal is

m= Vﬁlz>0

eg for (Q,vp) we have A = Zp).

For (K,v) we have an absolute value on K which gives us a metric on K.

|z| = e=v(®),

metric: d(z,y) = |z — y|.

Fact: Completion of K (use Cauchy sequences) K, is also a field with discrete valu-

ation v. R
K is complete if K = K.

Friday, 11/15/2024

Basic plan for learning p-adic: Suppose we want to study F,G. If p | |G| then Maschke
doesn’t work. So we mod out the Jacobson Radical F,G/.
Our setting:

( (K,v) A m

9 ) ) .
complete D.V valuation ring maximal residue field

eg ((Qp, vp), Zyp, pZyp, Fp)
In Q,vp, vp(p" %) =n.
Renormalize: ||z| = p~*®)

lim p" =0

n—oo

Qp is completion of Q under ||z — y||,

sz{zaipiIOSaiép—l}

i=—k

Z, = Zaipi|0<ai<p—1}
i=0

m:{Zaipi|0<ai<p—1}
i=1
Better Approach

We use the inverse limit to define it.

2y =1m2fp" = {(b) € [T 2/0" | busr = b (mod p)}

Compact by Tychonoff.
Qp = Frac(Z,).

The case p = 2

p = 2 consider binary expansion.

In Z, 11011 is finite.

In R we can have 11011.101110110- - -
—— ——

finite infinite

In Q2 we ca have ---1011011.01101
——— —

infinite finite
Thus we can have algorithms for adding and other stuff.

62



Serre 14.4

Lemma 108 (Lemma 20). Let A be a commutative ring and P be a AG-module.
P projective /AG = P projective /A and JA-map u : P — P so that:

Z su(s7'z) =aVr € P

seG
Serre writes it as:
Z sus~t=1
seS
Proof. Ommitted. Just computation O

Lemma 109 (Lemma 21). Let A be local ring, k = A/m.
a) Let P be a AG-module free /A

P proj./AG <= P = P ®r k proj/kG

b) Projectives P, P’ implies P = P’ <= P = =z

Proof. Idea: the maps are matrices, we show their determinants are invertible. Local
means we need to show dets are not in max ideal.

a) = part is clear. We do <:

P projective. Lemma 20 implies 3u : P — P k-map so that:

Z sus =1

We “lift w”.

Then v’ = > sus™! =1 mod m.

Thus v’ is AG-map, detu’ ¢ m = detu’ € ' = «/ invertible.
Zsu(u’)_ls_l =d(W) " =122 P proj

b) Let w : P 5P Lifw: P — P'. Then detw ¢ m = w is invertible and thus

is isomorphism.

O
Proposition 110 (42). Let A be a complete local ring.

a) E is AG-module. Then FE proj / AG <= FE free /A and E projective /kG.
b) If F is projective kG-module, 3! projective P/AG such that P = F.

Corollary 111. There exists bijection:

proj indecom proj. indecom simple
AG-mod — kG-mod —  kG/J-mod



Now we go back to proposition 42.

Proof of Lemma 21. Lemma 21 = a and uniqueness.Question: existence?
F projective kG-module.

A=1limA/m"

(A/m™)G is Artinian.
3 projective cover P, — F of (A/m™)G-modules.

Pn+1

.
.
/// J{
.
v

P, —— F

Wehave~~~%P3%P2%P1%Po .
Let P =lim. P,, detailed ommitted. P projective AG-module, P = P ®4 k. O]

Monday, 11/18/2024

14.3 and 14.4 Review

In (A, k) [eg Z,,F,] we say A is a complete local ring where valuation ring is complete
(K,v). k= A/m is the residue field.
Suppose we have our finite group G. We have the ‘reduction mod m’ homomorphism:

AG 5 F,G
Then we have:
AG 5 F,G 5 F,G/J(F,G)

J indicates the Jacobson Radical.
We have bijections.

basis Ko(AG) basis Ko (F,G) basis RyG
proj indecom proj. indecom simple
AG-mod — kG-mod —  kG/J-mod
,,,,,, e ——m——— Py ——————
iso iso iso

If M is an AG-module then 7. M =F,G ®@a¢ M.
We have Pp - F <+ FE

essential
Recall that essential maps are maps that are ‘barely surjective’.

We have P = lim, P, < P

P, — P projective cover of (A/m"™)G-modules.

Now we deal with the case char K = 0, char k = p. Recall that K has a valuation ring
A with unique maximal ideal m and k = A/m.

Definition. {I]j} is a splitting field for G if:
KG =[] MK
kG = [ Mi, (k)

Definition. {I]j} is sufficiently large if {[k(} contains all {;Z,}

Where m = lem{ord(G) | g € G} = exp G where m’ = m/p* where (p,m’) = 1.
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Fact: sufficiently large = splitting fields.
K due to Brauer, k see remark in 14.5.

Example. F5[C3] 2 F5 x Fas. So F5 is not splitting field.
Fo5[C3] = F3; so Fas is splitting field for Cj.

Definition. F is absolutely simple if dim{K} Hom{KG} (E,E)=1.
k kG

14.5 Dualities

Suppose char K = 0.
If £, F are KG-modules, we can define:

(E,F) =dimg Homgg(E,F) = (E,F) = (XE, XF)

We thus have bilinear (,) : RxG x RyG — Z.

Simples [E] are orthogonal basis.

Orthonormal iff K is a splitting field for G.

Now suppose char k = p | #G.

(,) : RkG x RyG — Z is not bilinear! This is because SES don’t split.

Take 0 — Fy — FoCy — Fy — 0. But if we take HoszCz (FQCQ, Fg) but <]F202, FQ) 75
(Fa,Fy) + (Fa, Fa).

But the following is bilinear:

<,> : K()(kG) X RkG — 7

If k is a splitting field then {Pg} and {E} are dual bases.
Homyg (PE, E') 2 Homyg(E, E') for E, E’ simple.

14.6

Consider K’/K. Then we have RxG — Ry G.

This is an injection.

This is infact a split injection [so there’s a map backwards] iff V simple E, (E, E) =1
[so the schur index = 1].

Isomorphism <= K is a splitting field.

All follow from KG semisimple:

M, (D) ®x K' = M,(D @k K')

Example. Rp(Qs) — Rc(Qs):
We have the matrix:

2

Since H ®g C = M(C) as rings and = C? & C? as module and also (H, H)gg, = 4.
So not split injection.

integral domain

Theorem 112 (Wedderburn). Finite { skew field

} is a field.
Consider k' /k, Ri(G) — R G, Ko(kG) — Ko(k'G).

These are split injection.

Isomorphism iff £’ is spliting field for G.

“Setting”:
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=
—

finite

T

Here A’ = integral closure of A in K’
We have:

Ko(AG)
Ko(kG) — Ko(K'G)
KoAG — KyA'G is splitting.

Isomorphism if K is sufficiently large.

Wednesday, 11/20/2024

CDE Triangle

Recall:

A = completely local ring
K = field of fractions

k = residue field.

A— K
k
The CDE triangle is the following:
KO(kG) forg:)tful RkG
e d
m lattice
RkG

Each group has a canonical basis.
Therefore, we have matrice C, D, E.

Exercise. Compute C, D, FE for k =Fy,G = Cg, Ds.
15.1: ¢[P] = [P]

S = isomorphism classes of simple kG modules.

Ko(kG) —— RyG

{Pr}tpes {E}Ees

C' is square C = (Crg)

c[Pe] =3 pes CrelF]
Crg = # of F factor in composition series for Pg.

d: RKG — RkG
Let E be finitely generated K G-module.

Definition. A G-lattice in FE is a finitely generated AG-submodule of F.

Remark. Existence: If {e1,---,e,} generates E, then By = > "  AGe; C E is
G-lattice.
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FEq is G-lattice in F.

E, = Ei/mE (= k®4 Ey)

Define d[E] = [E1]
Is d well defined? Proof later!
e KQ(k‘G) — RKGZ

e

T

Ko(kG) +5— Ko(AG) — Ko(KG) = RxG

p——p KG®ac P
Il
K®aP

Remark. i) cis defined for any field k.

ii) d is defined when A is a local ring

iii) e is defined wen A is a complete local ring
Remark. The triangle commutes: ¢ = doe.

Lemma 113. d and e are adjoints.

for all x € Ko(kG) and y € R G

Proof. x = [X] where X is a projective AG-module.
y=[K ®4 Y] where Y is AG-module which is A-free.
Homy;(X,Y) is projective A-module. Thus it is a free A-module.
Let r be the rank.
<7, *>k : Ko(k?G) X RkG — 7
(A, B) = dimy Homy (A, B)
(x,d(y))r, = dimg Hompg(X,Y) = dimg(k ® 4 Homag(X,Y)) =7
(e(z),y)x = dimg Hompgg(K @4 X, K ®4Y) =dimg K ® 4 Homag(X,Y) =7
[

Remark. For K sufficiently large [(,, € K,m = exp(G)| implies K,k are both
splitting fields.

Thus, bases of Ko(kG) and Ry, G are duals. Basis of R G is orthonormal. So, (—, —)k
are perfect parings.

Therefore, E = DT

Then C = DE = DDT = (' is symmetric.

We now prove that d is well-defined.

Friday, 11/22/2024
G-lattice in f.g. KG-module F is f.g. AG-submodule E; such that £ = KF;.

El = El/mEl

We want to show this is well defined.

Lemma 114. If E; and E; are G-lattices in E, then [E;] = [Es].
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Proof. Recall: d[E] = [E1] where By C E is finitely generated AG-submodule and
E1 = E1 /mE1
Case A: mF; C E5 C Eq
Consider:
O‘)EQ‘)El‘)El/EQ*}O

Third isomorphism theorem:

— 00— Eg/mEl — El/mEl — El/EQ —0
Thus,

(*)0 — Eg/mEl —>E71—> El/EQ —0

We also have:

O%mEl 4)E2 %Eg/mEl — 0
Then,

mE1 E2
4)

0
- mEg mEg

— Eg/mEl — 0

- (**)0 — El/Eg — E72—> Eg/mEl —0
Splicing (*) and (xx) we get:

0*>E2/mE1 E2/mE1 — 0

Ey / Ey
EvxE>

= [E] = [Ex]

Case B: F> C Ey 3n such that m"E; C Ey C Ej.

We show that [E;] = [E2] by induction on n. Case A was our base case.
Let E3 = m"‘lEl + Es.

m"_lEl C FE3 C Fy and mE3 C Ey C Es.

Induction hypothesis = [E1] = [E3] = [E3)].

General Case: G-lattices Ey, E3 then 31 € A\ {0} such that [Ey C Fj.

15.5 p’ group
ie. pt#G

F,G semisimple.
central idempotents of QG C ﬁZG C Zy)G C ZyG

Proposition 115 (43). Premise is as before. Then,

i) All kG-modules are projective.
All A-free AG-modules are projective.

ii) Sk = S is bijective
E w— B, DO

iii) C=D=E=1.
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Proof. i) kG semisimple from Maschke.
Let P be an A-free AG-module.
We will prove that any epomorphism to P splits.
Consider M = P
P is A-free, A-splitting M & P.

Then we ‘average’:
—~ 1 1
(o) = 17 > gs(g™'p)
Gl 7=

— §is AG-map.

= § is splitting. So we are done.

ii and iii:
G-lattice

f.g. KG-module «~  A-free f.g. AG-mod f.g. kG-mod

= K®a o~ pﬁojA cover o~

I — k®a
f.g. proj AG-mod

Sk = Sa = Sk

simple K G-mod proj AG-mod C=D=FE=1

Jacobson Radical
Suppose chark = p

Theorem 116 (Davis Thesis). Suppose we have a p-group P<G. Vp € P,p—1 €
J(kG)

Corollary 117 (1).
1-P—-G—-Q—-1 = G=PxQ.

Here Q is a p’-group.
kG/J(kG) = kQ is “largest semisimple quotient”.

Corollary 118. 1 - P -G - Q — 1
kG/J(kG) =2 kQ/J(kQ).

We redefine Jacobson Radical:
701d def: J(R> = mM max left M
New Def: J(R) =) Ann(E).
Recall:

simple E
AmmE ={re R|rE =0}

Ann F is 2 sided ideal.
JE =0.
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P64 Serre
Theorem 119 (L1). Suppose a p-group P ~ X finite set.
X =|X| (mod p)
Proof. X — X% = Uorbits = UGz = UG /G, O
Theorem 120 (L2). If M is f.g. kP-module, then M¥ # 0

Proof. Can assume k finite = #M finite.

0=|M|=|MP| (mod p)

O
Now we prove that p — 1 € J(kG).
Proof. Let E be a simple kG-module.
EP C FE is a kG-submodule (use P < G).
L2 = 0#4EP — EP =
Thus, Vpe P,p—1€ AnnE — p—1€ J(kG) O

Monday, 12/2/2024

Recall that we are working on group with characteristic p. Maschke’s theorem does
not work.
Also recall the CDE triangle:

KO(kG) forgiztful RkG
e d
m Aice
RxG

The setting of part 3 of Serre is that we have a valuation ring A, fraction field K and
residue field &, eg Z,, Q, and ).

Recall 15.7:

Serre: G = P x Q where P is a p group and Q is a p’ group.

Davis: G =P x Q.

<= J Split SES:

1-P5G5Q—1

mos =idg.

Recall that 7 : G — @ gives us 7 : kG — kQ and thus we have 7* and 7,

Recall: if we have f : R — S we have exactness preserving f* : S-mod — R-mod.
Also, if we have f, : R — S we have projectiveness preserving f, : R-mod — S-mod.

Theorem 121. 3 bijections:

*

a) isomorphism classes of simple kG-modules Z isomorphism classes of simple
k@Q-modules.

Tk

b) isomorphism classes of projective indecomposable kG modules & isomorphism

Sx

classes of projective indecomposable kQ-modules.

™

¢) isomorphism classes of projective indecomposable AG-modules i isomorphism

Sx

classes of projective indecomposable AQ-modules.
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Remark. F =2 7*F <= P acts trivially on F.
Will prove: «*, m,,m, are bijections, s*,s,, s, are l-sided inverses <= 2-sided
inverses.

kG/J(kG) = kQ.

Proof. a and b are general facts:

R artinian means R/.J is the maximal semisimple quotient. We have R = R/.J.
Then we have simple R-mod % simple R/J-mod.

Recall J = Ann(FE).

p.i R-mod % simple R/J-mod by projective cover.

simple R-mod F

Thus we are done with a and b.
c:
. T % .
p-i AG-mod rphg p-i AQ-mod
14.4]1)* %J{p* 15.5 Maschke

pi kG-mod ﬁ*by p-i kQ-mod

O
Corollary 122. If G = P x Q matrix C' = | P|- identity.
Proof. Uses a and b.
/\
KokG = R1Q z RyG
basis basis basis
SxFr, 0 s Fy Fy,-- F 7 Fy, - T Fy
$*Cs,F; = s* (kG ®pq F) = s* (kP @4 F,) = k1P| @, F; = F)*!
O

Question: what is C for P x @Q 7
Next time: First theorem of chapter 16 [theorem 33]: d in the CDE triangle is sur-
jective.

Remark. d is split, since R;G is free abelian.
d is onto since every k-representation can be lifted to K virtually.

Wednesday, 12/4/2024

Brauer Induction Theorem (BIT)

Definition. F is p-elementary if E = P x C where P is a p-group and C' is a cyclic
p’ group.
FE is elementary if it is p-elementary for some p.

Theorem 123 (BIT). Ind : @, g RE — RG.

17.1, 17.2: BIT in modular, sufficiently large case:
Suppose char K = 0, ¢, € K,m = lem{ord(g) | g € G}.
Then BIT: Ind: @y RxkE — RkG.

Proof. Consider the following isomorphisms:
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RxG
O
BIT = the trivial representation is induced by subgroups:
(*) [K] = 1 = Y. nd§(zx).
Setting: ((K,v), A, k).
BIT: If K is sufficiently large (i.e. ¢, € K) then,
Ind: @ RLE —» RyG
E<G
Ind: @ KokE — KokG
E<G
Proof. Apply d [of CDE triangle] to (x):
(#4) : 1 = > Ind§(d(zp))
— Vy,y=y-1x =Y Indg(d(zr)ResG(y))
So we’re done. See 17.1 for details (!) O

If K is not sufficiently large, we need ' elementary.

Some more CDE triangle

Recall:

KokG consists of projective modules, R;G consists of all. Since projective covers are
unique, ¢ must be injective.

Our CDE triangle ends up looking like this:

KokG - R,.G

We prove this using Brauer induction theorem.
Theorem 124 (33). d is surjective.

Proof. 1t is true in general. We only prove the case where K is sufficiently large.

Special case: G = elementary, aka G = P x C. We go to the general case using Brauer

induction theorem.

Let m : G — C be the projection map.

y € RiG = y = 7"y where v’ € R;C by 15.7.

de : RxC S R,C [15.5].

Thus, Jy” € R C such that d(y") =y

Since d(m*y") = 7*(d(y")) = 7*(y’) = y, we're done in the special case.

For general G: consider y € R;G then,

dBIT = Y= pec md%(yp) = Y peeInd(d(yy)) = d (X peeInd(yf)) so we are
one.

O

d is a surjection. Since everything in the CDE triangle is free, it is in fact a split
surjection.

Theorem 125 (34). e is a split injection.
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Proof. Again suppose K sufficiently large. Then D = E* where d is a split surjection.
Therefore, F is a split injection. O

For general K, we have:

e S

K k

Where K’ is sufficiently large. Then we have:

e
L

kG Kok'G ¢

RiG Ry G

—> Corollary 1 KokG — Rg:G is split injection — KokG — RiG is split
injection.

Corollary 126 (7). Let P, P’ be f.g. projective AG-modules.
IfK®sP2K®yP then PP,

Proof. K @A P2 K®s P = ¢[P]=¢[P] = [P|]=[P] = P
Px=p.

I

P =
O

Theorem 127 (35). Let p™ || |G|. Then p™ coker c = 0.
ie. Yy € R,G,3x € KokG such that c(z) = p"y.

Proof. Again assume G is sufficiently large.
Special case: G = P x C

15.7 = matrix C = p" -id.

For general G we use BIT:

yeRG = y=3 p.oInd(ys) = p"y = p.cInd(p"yr) = > 5 Ind(c(zg))
=c(XpInd(zg)) O

Friday, 12/6/2024

Theorem 35 and KokG = Z° = R, G
Corollary 1: = 3 SES:

0 = KokG =5 R,G — finite p-group — 0

Corollary 2: If P, P’ are projective kG-modules with the same composition factors,
then P = P’

Proof. ¢|[Pl=¢|P'| = [P]=[P] = PXPF O

Corollary 3: If K is SL, then the Cartan matrix C is symmetric, positive definite
and det C' = p* for some k.

Proof. Theorem 35 = |detC| = p*.
C symmetric (15.4), C = DE,D = E*
Vo € Z* —0,2'Cz > 0 <= C positive definite?

Let {e;},{fi},{gi} be canonical bases for KokG, R,G, RxG.
Recall 14.5: we have Rx G X RxG — Z given by:

(V,W) = dimg Homgg(V, W)

Also, (gi, gj) = 0;j so it is an orthonormal basis.
We have KokG x R,G — Z given by (V, W), = dimg Homy(V, W) with (e;, f;) = 6;;
so e;, f; are dual bases.
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KokG

x| \

KokG x KokG —— 7

Thus we have B(z,y) = (z,c(y))k-

Is B symmetric?

B(x,y) = (z,d(e(y)))r = (e(z),e(y))r = B(y,x) so it is symmetric.

B is positive definite since (, )k is positive definite and e is injective.
Bleisej) = (ei,clej))w = (i, 22, cij fi) = Cij

C' is matrix of 8 and since  is positive definite we deduce that C' is positive definite.

Theorem 128 (36). Image of e = set of virtual characters which are zero in p-singular
elements.

Definition. g € G is p-regular if (ord g,p) = 1.
g € G is p-singular if p | ord g.

Recall: x : RxG < CG) = {f: G = K | foro™) = f(1)}.

X[V]=[W] "= XV — XW

Theorem 129 (36). im(e) = {y € RxG | nyp_singu]ar = 0}.

Exercise. Verify this for G = Dg,p =2,p = 3.

PT‘OOf. Kok’G <? K()AG Emd K()KG

g € G p-singular.

Replace G by (g) = P x @ p-group times p’-group. Then g = (gp, gg) and g, # e.
e(E) where E is projective AG-module.

15.7: E 2 s, F = A[P] ®4 F with F A[Q]-mmodule.
XKE = XKP @ 1.

Xk p is the regular representation.

Xe(E) (9) = xxE(9)

= xxkpr(9p)¥(9Q)

= 0¢(gq) = 0.

Zero since trace of nontrivial permutation matrix is 0.
For the other direction D:

When K is SL:

Idea: Use BIT to reduce to P x @. Then apply 15.7.

Monday, 12/9/2024

Today: Proof of theorem 36, Brauer Characters.
Wedsesday: Example A,,.
Now we go back to the proof.
Recall: g € G is p-singular if p | ord(g).
We did the C part last class.
Today: 2
Case 1: G = P x Q, p-group xp'-group.
RxP ®z Rxk@Q = R (P x Q).
There exists y € RxG such that x,(p — sing) = 0.
Claim: x, = Xk p®ys where f(q) = ﬁxy(aq) € Cl(Q).
Proof of Claim: Consider a € P such that a # e.
Since p | ord(a) we have:
Xy(a,q) = 0= xxp(a) f(g) = 0.

——

xo(®-0) = [PIF(a) = xxp()1(@) = (uer) (@) f @) = (xicr ® F)(erq).
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We want to show: f € RgQ.

Vp € R (@, we have:

(f.p) = xxp, 1){f,p) = Xy, 1®p) €L

If {e;} is a basis for Rx@ then,

f=>{f ei)ei € RrQ.

So we are done.

Now, Ko(AQ) = RkQ by 15.5.

So yg — f.

Thus, y = e(A[P] ®4 yg) so we’re done.

Case 2: General G.

In this case we use BIT to reduce this to case 1.

BIT implies all representations are induced by elementary groups. So, the trivial
representation is also induced by the elementary groups.
Recall that elementary groups are p group x cyclic p’ group.
Vy € RxG,y =) pIndg(xe Resgy)

=Y pIndg(e(zg)) from case 1.

=e (> pInde(zr))

Brauer Characters

“Setting”: We have a field K that is complete w.r.t. a valuation v. We have valuation
ring A and maximal ideal M, and also the residue field k. K is the quotient field of
Aand k=A/M.

We write it as ((K,v), A, M, k).

We assume K is sufficiently large.

Given a kG-module E that is finitely generated, we want to find a “modular repre-
sentation” [char p] representation.

We could, in the usual way, define a k-valued character G *5 k. This is lousy and we
don’t have much information.

Brauer had the idea of ‘lifitng’ it to characteristic 0.

(25}
—>.
Greg Brauer character I
X
G E k

Where:

Greg ={g € G| (ordg,p) =1}

m' = {lemordg | g € Greg}

m = pFm’ where (p,m’) = 1.

Ng =N =m’ roots of 1 in K

N =N =m/ roots of 1 in k.

These are integrally closed and we have A — k. Therefore, N = Ny.

NKéNk

[

A—— k

kG-mod FE < Pg : G — GL,, k.
Vg € Greg, pr(g) is diagonalizable.
= xe(9) =Trpe(g) = >_; \i m'-roots of 1.

Definition (Brauer Character). ¢pg : Greg — A so that xp(g) = >, Xi
Theorem 130 (Facts about Brauer Character). i) ¢g(e) =dimE

ii) ¢p : Greg — K is a class function

(0]



lll) SES0 - E - E — E" — 0 of ]CG—I’IlOd7 d)E = ng/ + d)EH. Proof: for
9 € Greg, E| (= E'| & B[,

iV) ¢E1®E2 = ¢E1 QSEQ

v) xXe(9) = ¢r(gr) where g € G, g, € Greg. 10.1 = Vg € G, 3lg = g,g, where g,
is a p’-element and g, is a p-element and g,g, = gpgr-

Proof. v: eigenvalues of pg(g) = eigenvalues of pgr(g.). Note that eigenvalues of
pr(gp) are all 1. Since eigenvalues of p(gg, 1) are 1, g and g, commutes. O

Wednesday, 12/11/2024

In the following, ¢g : Greg — A are Brauer characters. The maps are the obvious
ones.

Pr:G— A ¢E:Greg_>A
KokG ¢ R.LG
e e
Rk G
Xv - G— A

Suppose I is a projective kG-module.

We can ‘lift’ it to F, a projective AG-module.
Then, ®p == Xy o 7

We have: x.p = Pr.

Theorem 131 (36). ®p(p-sing) = 0.

Theorem 132 (pg 150). # of simple kG-modules = # of conjugacy classes of p-
regular elements of G.

This is in the sufficiently large case.

This is also the number of projective indecomposable modules.

Proof. Follows from:

rank KgkG = rank RpG. So we can talk about the number of projective indecom-
posable modules instead of simple kG-modules.

e is injective (theorem 33).

Recall: ime = {y € RxG | xy(p-sing) = 0}

RxG® K 5 Cl(G = K).

dimg{f € CI(G — K) | f(p-sing) = 0} = # of c.c. of p-reg elements. O

We do an example: Sy.

conjugacy classes: 1, (ab), (ab)(cd), (abc), (abed) so we have x1, X2, X3, X4, X5-

2 regular conjugacy classes: 1, (abc). We have ¢q, o, @1, Po.

3 regular conjugacy classes: 1, (ab), (ab)(cd), (abed).

Questions: What are the dimensions of simple kG-modules? What are the composi-
tion factors of projective indecomposable kG-modules?

We use characters.

Remark. For symmetric groups we don’t need ‘sufficiently large’. @Q (and hence
Qp, Fp) are splitting fields for S,,.
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S4 = Isom(tetrahedron) = (Ce x C3) X S3
———

rotation with axis stabilizer of a vertex
through midpoint of opposite edges

Sy — S3 — {:l:l}
S3 = Dg, isometries of triangle. Over complex numbers, it looks like:

0 1
10
Gs
G3
So we have:

(1) (ab) (ab)(cd) (abc) (abed)
x1 1 1 1 1 1
sign x2 1 -1 1 1 -1
X3 2 0 2 -1 0
geom X4 3 1 -1 0 -1
geom ®sign x5 3 —1 -1 0 1

To check we have all, we need to check irreducibility: (x;, x;) = 1.
Now suppose we want Ry, Ss. We want G-reg elements. So we copy over those ones:

(1) (abe)
o1 = X1fg_reg 1 1
o1 = leG_reg 1 1
¢2 = X3 ’G-reg 2 -1
1+ ¢2 = X4’(;_reg 3 0
1+ P2 = X5’G-reg 3 0

¢1 and ¢ are the irreducible ones!
What is the matrix D?

11011
D_[00111}

In order to get E we can use E = DT

P =x1+ X2+ Xa+ X5 =401 + 20201 Greg

Dy =201 + 302
We can also compute the Cartan matrix C:
C =DD! = E ?J so ®1 = 4¢pq + 2¢ etc.

Friday, 12/13/2024

Primitive Central Idempotents (pcils) = blocks.
For all ring R,

l=e1+--+e

with e; nonzero central idempotents (e? = e;) with b maximal.
For all ring R,

NrRr=B1% - ® By

nonzero 2 sided ideals with b maximal.

pcils <« blocks
€; — Re;
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eg suppose R =R x MsR. Then b =

o= (13 e )6 )

We have noncentral idempotents!a

R semisimple, # simple = # blocks.

what about kG?

If R is an artinian ring, F1, - - - Fs isomorphism classes of simple modules,

rR=P, @ - @ Psproj. ind
VP;,3!j such that P; C B;.
Corollary 133. s > b.

Method for computing blocks of kG:
Step 1: Express 1 =e; +---+ e, € KG.
Step 2: Express 1 =¢e; +---¢, € AG
Step 3: Reduce mod M < A.

l=e 4 +&¢€kG

Lemma from blog (p.3) = &; are pci.
Thus, # of kG blocks = # of AG blocks.
For step 1, we have KG = [[ M, (K).

|G| PR

geG
Now, let’s look at S3. Here we indeed have s # b.

| 1| (ab) | (abc)
yi|1] 1 1
X2 1 -1 1
s 2] 0 | -1

Table 5: Character Table

Another way of finding out: x1 + X2 + 2X3 = Xreg-

Then,

e = 1+r+7‘2+g+sr+sr2 ¢ 7555,
€9 = 1+r+r2—6§—sr—sr2 ¢ Zsz
€3 = 27'r37r2

Suppose p =2, A = Z,.

We need to combine e; and es to get a pci.

1=¢ +62 where €] = 61 + e9,€5 = e3.

é\l* 1+7‘+r 33:2 r—r?

What about FyS557

p =2 so 2 blocks. # simple FyS3-modules = # of 2-reg c..c. =2so0b=s.
1 =% +eée.

If p =3 then 1 € Z3S3 is a p.c. since e1 + ea, €3 + e3,e1 + e3 & Z3S3.

So,if p=3thenb=1,s=2.

Let’s try to complete the CDE triangle for S3!

Suppose p = 2.
What are the 2-regular conjugacy classes?
1 and (abc).
So we have 2 simple modules.
1 (abe)
o1 1 1
¢ Xe|2 reg 2 -1



1 (ab) (abc)
P =x1+x2 2 0 2
q)g = X3 2 0 -1

C will be a 2 x 2 matrix.

2 0
0_{01

w42

10

Then, F = |1 0| and D = what we get.
0 1

What about p = 37

3-reg c.c.:

gpr=x2| 1 -1

1 (ab) (abc)
P =x1+x3 3 1 0
Pr=x2+x3 3 -1 0

We get the linear combination since in F3S3/J = F3Cy = IF;' oF;.
F3S3 composition factor 3Fq, 3IF§1

1+s 1—s
20 2 ¢

3 0
-0}
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