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Hechi
sly(F) = {g € gr(F) | Tr(g) = 0}
We assume char(F) = 0 and F is algebraically closed.
Theorem 1.1. sly(FF) is semisimple
Proof. Direct computation of the Killing Form.

Recall: if £ is semisimple and ¢ : £ — gl(V) is a representation.

£ 2z = s+ n abstract jordan decomposition.

= ¢(x) = ¢(s) + ¢(n) is the Jordan decomposition of ¢(x) in ¢(L).
From now on, £ = sly(F) = sl(2,F).

(V, ¢) is a representation.

Basis of £:
L_Jo1
10 0
|00
Y=11 o
1 0
=l 4

Thus we have [h, z] = 2z, [h,y] = —2y, [z, y] = h.
Since h is diagonal, h is semisimple.
= ¢(h) is semisimple and thus diagonalizeable. € End(V).

We can decompose V = @, Vi where V) = {v € V | hv = v} for all A € F.

We say V) is a weight space with A as its weight.

Lemma 1.2 (7.1). Suppose v € V. Then,
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1) zv € V4o
2) yv € Va_o

Proof. 1) h(zv) = [h,z]v + z(hv) = 2zv + Azv = (A + 2)zv
2) h(yv) = [h,ylv +y(hv) = =2yv + Ayv = (A — 2)yv

Note that dim V' < oo

Thus, Jv € V such that z-v = 0.

Such a v is called a maximal vector.

For now, assume V is irreducible.

Let vg be a maximal vector with weight A.

i
Y "o
4!

Definition. For i > 0 integer, v; =
Also, v_1 = 0.

Lemma 1.3 (7.2). 1) h-v; = (A — 20)v;
2) Y-v;, = (Z + ].)viJr]
3) X -v; = ()\—’L-’-].)’I)Z,l
Proof. 1) We use induction. Base case is clear.
Assume it is true for ¢ — 1.
vi—1 € Va_a(i—1)
Thus, v; = % S Yvi—1

Lemma 7.1 implies v; € Vy_o;.
2) y-v; = (i + 1)v;y1 by definition of v;.

3) ix-v; = x(yvi—1) = [z, y|vie1 +yavi—1 = hviog +yzvi_1 = (A—2(i—1))v;—1 +
()\ — 14 Z)yvi_g = Z()\ — 1+ 1)”1’—1
]

dim V' < oo so it must end at some point.
So, at some point, it’ll become 0. vg, -+ , vy # 0, Vme1 = 0.

Definition. m is the integer so that v, # 0,v,,41 = 0.

By Lemma 7.2,

span{vg, - -+ , U} is a sub-representation of V.
Since V is irreducible,

V = span{uvg, - ,um}

Note: by 7.2(3),

0=2 Vmt1 = (A—m)vy,

Since vy, # 0 we have A = m.

Thus, dimV =m+1=A+1

Here m is the highest weight.

V=V0n®V io® -0V 20 Vy



Construction. Suppose L ~ F[X,Y] [as a F-space].

pla) = X g5

py) =Y g%

p(h) =25 — vy,

Consider subrepresentations F[X, Y],, [symmetric polynomials of degree m, dimension
m+ 1].
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Root Space Decomposition

Let £ be a non-zero semisimple lie algebra over F with charF = 0 and F algebraically
closed.

Definition (Toral Subalgebra). A subalgebra H C L toral if it consists of semisimple
elements.

Remark. If every element in £ is ad-nilpotent, then by Engel’s Theorem L is nilpo-
tent. Thus it is not semisimple.
So, there exists a non-zero toral subalgebra.

Fix H to be the maximal toral subalgebra. A maximal subalgebra exists since L is
finite dimensional.

Lemma 2.1 (8.1). A toral subalgebra 7 is abelian.

Proof. Suppose z € T. We will prove that adyz = 0 [as a map].
adp x is diagonalizeable. Assume some eigenvalue is non-zero. Then, we can find
eigenvactor y € T with eigenvalue a # 0. So, [z,y] = ay.

Now, adr y(z) = [y,z] = —ay. Since [y,y] = 0 we see that —ay is an eigenvector of
adp y with eigenvalue 0.

adp y is also diagonalizeable. Suppose vy,---,v, is the eigenbasis of adry with
eigenvalues A1, -, \,. Then z = a1v; + - -- 4+ a,v, for a; € F.

WLOG, v =Y.

[y,x] = CL1)\1’U1 4+ 4 an)\nvn = —ay

By comparing coefficients, a;A\; = —a. But A\; = 0. This is a contradiction.
O

Now, we fix H to be a maximal toral subalgebra. It is not necessarily unique.
Note that ad H is a commuting family in End(£). From linear algebra we know that
ad H is simultaneously diagonalizeable.

Definition (Root Space Decomposition). Suppose H* is the dual space of H. We
can write:

L= {zec]|ha]=alhavheH}

a€eH*
=Lo® P La

acd

where & = {a € H*\ {0} | L& # 0} and Ly = Cz(H) [the centralizer].
This is called the root space decomposition.

Example. sl3(F) has basis:

_fop o], [t oo
Y=o oY1 o"" T o -1
Then the root space decomposition is:

5[2(F) = H D £—2 D »62

L_5 contains the linear form sending h to —2.

Proposition 2.2 (8.1). Let o, € H*. Then,

1) [La, Lg] € Lo+ [by Jacobi Identity]



2) a#0 = VY € L, is nilpotent |by 1]
3) a+5#0 = L, L Lg w.r.t. the Killing Form.

Proof of 3. Find h € H such that (a + 8)(h) # 0. Then,

H([hv'ﬂay) = —lﬂl([l',h],y) = _H(‘Tv [hay])

= (a+B)(h)k(z,y) =0

O
In particular, Ly L L, when a € ®.
Corollary 2.3 (8.1). The Killing Form restricted to Lo, x|z, is non-degenerate.
Proposition 2.4 (8.2). H =Ly =Cr(H).
Proof. Tedious linear algebra O

Corollary 2.5 (8.2). The Killing Form restricted to H, x| is non-degenerate.

This implies, the map H — H* given by x — x(x, —) is an isomorphism.
For each ¢ € H* we can define t, € H to be the pre-image of this isomorphism. So it
satisfies

d(h) = k(ty,h) YheH
Proposition 2.6 (8.3). 1) ® spans H*
2) If o € @ then —a € ®
3) z€ Loy €Ly = [2,y] = k(z,Y)ta
4) a(ty) = k(ta,ta) #0
5) dim[L,, L_o] = 1, spanned by ¢,
)

6) Pick any non-zero x, € L, \ {0}. Then there exists y, € L_, such that
Loy Yous P = [Ta, Yo SPans a subalgebra isomorphic to slz(F), with the isomor-
phism z, — z,Yo — Y, ho — h

7) hy = — 2

T K(tasta)”

If V is a sl (F)-module, recalling that h = [é _01] ,

V= EB V) eigenspaces of h
AeF

Recall that all sl3(FF)-module is of the form:
sl(F) ~ F[X,Y]

d d d d
p(a) =X o (W) =Y 5 p(h) = X 75 ~ Vo0

and V = F[X,Y],, [homogeneous polynomials of degree m] is irreducible and give us
all irreducible representations.
Then we have:
V=V_,8Voio® - ®Vy2dVy
Where V,,, is generated by X™ and V_,, is generated by Y™



ym Xym-1 Xm

Ifmeven,0 £V, CV
Ifmodd,0£V; CV

Corollary 2.7. V is a slp(IF)-module. Then dimVj + dim V' gives the number of
summands in the irreducible decomposition of V.

Consider S, = span{zq, Ya, ha} = slo(F) and its adjoint representation (£ is an S,
module).

Fixac ®andlet M =H+> px Lea-

By proposition 8.1, M is a submodule of £ [since [Lc,a, Leyal € Licy+es)al-

If 0 # x € L. we see that [hq, 2] = ca(hy) - = 2cz

= 2c€Zand a weight of hq is 0 or an integer multiple of 1.
———

eigenvalue

Then M = ker o + TF-h,

N ——

vectors of weight 0 weight 0,42

Therefore, M contains vectors of weight only 0 or £2.
Therefore, if « € ® we have ¢ = £1.
M =H+S,. Suppose k¢ is the complement of h, in H.
Then, H+S, = hf, + S, hasdimH—1+1=dimH = dim M —2 irreducible

- =~

abelian  irreducible
summands.
On the other hand, the number of irreducible summands of M is dim Mg + dim M;

dim M—2 0

Therefore, H + S, € M must be equal.
Therefore, dim £, = 1.
Now, suppose 8 # +« € ®. Then, Ir,q such that 8 —ra, 8 — (r — Da, -+, 8 + q
are roots and outside outside these, i.e. 8 — (r + 1)a, 8+ (¢ + 1)a are not.
To see this, suppose K = > ., Lgria C L is a Sy-submodule. We know that
B +ia # 0.
Weights:

1€Z

B(hoz) + Z.O‘(ha) = B(ha) + 24

So, weights are either all even or all odd.

Therefore, K is irreducible.

Consider ~,6 € H*.

Define (v,0) = k(t,,ts) on Eg = spang(®) then (-,-) extends to F' = Fgp ®g R is
positive definite.

Then FE is an Euclidean Space.

(®, E) is called a root system.
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Let E be an euclidean space. Suppose (o, ) is a symmetric bilinear form on E.
Reflection in E fixes some hyperplane H. If a is perpendicular to H then the reflection
sends a to —«

Consider « € F and P, = {8 € E | (o, 8) = 0} the hyperplane perpendicular to c.
Suppose o, is the reflection w.r.t. this hyperplane. Then,

roj = (B’O‘)a
proj, () o)
00‘(5):5—2Proja(5)=ﬁ—2gi’zga
Define:
o) = 9B 0)
(B, >72(04,a)

Note that (8, «) is linear only in 8. Then,

0&(5) = B - <ﬁ70[>0[

Lemma 3.1. Let ® be a finite subset of E so that ® spans E. Suppose all reflections
oo(ov € @) leaves @ invariant. If ¢ € GL(E) fixes hyperplane P of E and sends
0#a€®to—a,thenoc =0, and P = P,.

_ _ -1
Proof. Suppose T = 0o, =00, .

Then, 7(®) = ®,7(o) = a and 7 acts as id on R-«a and E/R - a eigenvalues are 1.
So we have (T — 1)* where L = dim E.

B,7(B),...7%(B) Ik that fixes all § € ®

® spans E,so 7" =1. SoTF -1 =0.

If m(T) is the minimal polynomial of 7, then:

m(T) | T — 1
m(T) | (T - 1)*
Therefore, m(T) =T — 1.
Therefore, 7 = id.
Thus oo,! =id = o =0, O

Definition (Root Systems). A finite subset ® of E is a root system in F if:
1R) @ spans E, does not contain 0.

2R) If a € ® then only multiples of o in ® are +a.

3R) If @ € @, then o, leaves ® invariant. [V3 € ®,0,(8) € ]

(e,)

4R) If o, B € ® then (3, a) € Z. [(@a) _ 28 ,m}

Definition (Weyl Group). Let ® be a root system in E. Denote by W the subgroup
of GL(E) generaed by o,(a € ®).
3R = W is a symmetry group on ®.

Lemma 3.2. Let ® be a root system in E with Weyl group W. If 0 € GL(E) leaves
® invariant, then coao™ ! = Oo(ayVa € ® and (B, a) = (0(B),0(a))Va, B € .

Proof. 00,07 (0(B)) = 00a(B) = (B — (8, a)a) = a(B) — (B, a)o(a).

o(B) runs over ®. ogo,0~! fixes o(P,) pointwise and o(a) — —0o(a).

Therefore, 0040~ = 04(4) by the lemma.

0o(a)(@(B)) = o(B) — ((B), o(a))o()

Therefore, we must have (3, a) = (o(8), o()). O



Definition (Isomorphisms). Suppose ®,®’ are root systems with Euclidean spaces
E FE.

(®,E) = (P, F') if there exists map ¢ : E — E’ such that ¢ maps ® to ' and
Va, 8 @ we have ((8), ¢(a)) = (8, a).

Note that:

To(a) (P(B)) = @(B) = (p(B), p(a)) p(a) = (B — (B, a)a) = p(aa(P))
—_——

:<Baa>

Note that, ¢ — @op~! is an isomorphism of Weyl groups.

Thus, W is a subgroup of Aut(®).
Now we consider root systems of different dimensions. Suppose L = dim E.
L =1: In this case, we have a,a € ® only. This gives us A;

e
Ay

VAN v
AN

Ay x Ay A, B, = C, Gy
W(Al X Al) = ZQ X ZQ

W(Az) = 53

W(Bs) = Dy

W(G2) = Dg

These are the only possible cases for L = 2, since:

28,0)  2Blllallcosd 23]
= = = e’
Bo)=Taa) = Talllal Tl %€

Similarly, % cosf € Z. Multiplying, 4cos?0 € Z = 4cos?’0 =0,1,2,3,4

_ 1 1 \/5 _ 7T ™ 27 w™ 3m w 57
Thus, COSH—O7i§’i72’i7 - 8_5’5’?’Z7T’E’?'

(0, 8) | (Ba) | 0 | 1IB1%/lle®

0 0 5 | undefined
1 1 z 1
-1 -1 | & 1
1 2 z 2
-1 2 |2 2
1 3 z 3
-1 3| o 3

Table 1: Angle Root System

Lemma 3.3. Suppose «,  are non-proportional root.
If (o, ) > 0 then oo — 8 is a root.
If (o, B) < 0 then a+ S is a root.

Proof. (a,f) =1 = og(a)=a—-1=a—-pPc®
If (B,a) =1theno,(8) = —la=—acd.
og_a(f—a)=LF—a)—(f-—a,f—a)(f—a)=a—Fc® O
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A root system ® of rank [, E-Euclidean Space, W is the Weyl Group.
Definition. A subset A of ® is called a base if:

B1) A is a basis of FE [|A| =1];

B2) VB € ®,8 =) ca ko - @, the expression is unique with &, being integers and
k. are either all non-negative or all non-positive.

Definition. The roots from A are simple roots.
Definition. The height of a root 8 [relative to the base A] is:
nt(8) = > ka
a€EA

Definition. We have positive roots ®* and negative roots ®~ from the sign of k.
Furthermore ®~ = —®™.
Also, we define:

o7 (y) ={ac®|(y,0) >0}
Definition. v € E is regular if:

VGE\UPQ

acd

Otherwise it is called singular.
Recall that P, = {8 € E| (a, 8) =0}

Definition. «a € ®* () is decomposable if a = 81 + B2 with 81, B2 € ®T (7).
« is indecomposable otherwise.

Definition. We define A(y) to be the set of all indecomposable roots in & (~).

Theorem 4.1. Any root system ® has a base. Let v € F be a regular.
Then, the set A(v) of all the indecomposable roots in ®T(v) is a base of ®.
Conversely, every base of ® is of the form A(y) for some +.

Proof. We follow the following steps.

Step 1: Each root in ®*(v) is a non-negative Z-linear combination of A(7).

Step 2: If o, 8 € A(y) then (o, 8) < 0 unless o = 3.

Step 3: A(7y) is a linearly independent set.

Step 4: A(7) is a base of ®.

Step 5: Each base A of ® has the form A(«y) for some regular v € E.

Proof of Step 1: Suppose otherwise. Then Ja € ®T () that cannot be expessed as a
non-negative Z linear combination of A(%).

We can have multiple such «’s. We pick the a with the smallest (v, «).

Note that o ¢ A(), since if a € A(y) then o = 1- ¢, which violates the assumption.
Thus, a can be written as sum of two elements in ®*(vy). Suppose a = B1 + B2
so that 81,82 € ®*(y). Then, (y,a) = (v,81) + (7, 82). Due to the minimality of
(7, @), they are both non-negative Z-linear conbination of A(+) which means so is «,
a contradiction.

Proof of Step 2: Suppose otherwise. Then, (o, ) > 0. § cannot be —q«, thus o — 8
is a root. Then either & — f or f — v is in @+ (y). WLOG a — 8 € ®*(y). Then
a = B+ (a—p). Then « is decomposable, which is a contradiction since A(y) consists
of all indecomposable roots.

Proof of Step 3: Suppose ZQGA(V)M@R ro + @ = 0. 7, can be positive or negative.
We redistribute so that both sides have positive coefficient:

€= Zsaa = Ztgﬁ
o 8




Then,

0<(,6) =) sats(a,8) <0
a,B >0 <0

Thus, € = 0. Now,

0=(7.6)=> o (1,0)20

* >0 >0

Thus, s, = 0 for all & € A(~). This implies linear independence.
Proof of Step 4: Note that ® = ®T(y) U —®T ().
B2 is satisfied because of Step 1.
Then A(7) spans E. Step 3 implies A(7) is a basis of E. Thus we have B1.
Proof of Step 5: Given A, we select v € E : (a,y) > OVa € A. B2 = « is regular
and ®T C ®F(v). Also, @~ C —dT ().
Therefore, ®T = ¥ (7). A consists of indecomposable elements, that is A C A(vy).
Coordinates are equal, therefore A = A(~y).
O

Definition (Weyl Chambers). The connected components of E \ | J
the (open) Weyl Chambers of E.

The fundamental Weyl chamber associated to 7y is the open Weyl chamber containing
. It is denoted by C(7).

Furthermore, C(v) = C'(y') implies v and +' are on the same side of each hyperplane
P,. This also means A(y) = A(v'), so the Weyl chambers are in 1-1 correspondence
with the bases.

aca Pa are called

For example: here is an open Weyl Chamber for As:

C(A)-fundamental Weyl chamber relative to the base {a1, as}.

The Weyl group acts on the Weyl chambers by o(C(v)) = C(a(7)).
If o € W and 7 is regular.

Also, W permutes bases. o sends A to o(A) which is another base.
Since o(A(y)) = A(o(y)) because (o7, 0a) = (v, a).

5 Thursday, 10/17/2024, Weyl Group, Irr. Root
System by Zoia

Lemma 5.1. Let a be simple. Then o, permutes the positive roots other than a.

Corollary 5.2. Set § = %Zwo B. Then,

04(0) =0 —aVae A

10



Lemma 5.3. Let a1, -+ ,a, € A [not necessarily distinct]. Write o; = 0,,. If
o1, ,01—1(¢) is negative, then

ds:1<s<t:o1---0,=01"05-10541""*O¢_1

Corollary 5.4. If 0 = 07 ---0; is an exp for 0 € W, t is as small as possible theen
o(ayg) < 0.

Proof. Suppose o(a;) > 0. Then,

010t =01"""0g-10541"""04_1

t factors t—2 factors

which contradicts minimality. O

The Weyl Group
Definition. W is the subgroup of GL(F) generated by the reflection (04 )aca-

Theorem 5.5. Let A be a base of ®.

a) If y € E, vy is regular, 30 € W: (0(7),a) > 0Va € A.
b) If A’ is another base of @, then o(A’) = A for some o € W.

)
)
¢) If ais any root = Jo € W:o(a) € A.
d) W generated by o, (o € A).

)

e) If o(A) = A, 0 € W then o =id.

Proof. We consider the subgroup W’ generated by o,(a € A).
For a, b, ¢ we prove the theorem for W’ and for d, e we prove that W' = W.

a)
12
25 «

a<0
Choose o € W' such that (o(),d) is as big as possible.
If « is simple then o0 € W = (0(v),d) > (040(7),9) = (o(7),04(d)) =
(@(7),0 — ) = (a(7),0) = (0(7), ).
Therefore, (o(v),a) > 0.
Furthermore, (o(7y), ) # 0 so we have strict inequality. Therefore,

Va € A, (o(y),a) >0

Therefore, o () is in the fundamental Weyl chamber of A and o sends €(y) to €(A).
b) Since W’ permutes the Weyl chambers by a, it also permutes the bases of ®.

c) Hyperplanes Ps (8 # £a) are distinct from hyperplane P, = 3y :v € P, v ¢
Pg. Lets choose 7' so that +' is close to «y such that (7/,a) = ¢ > 0 while |(v/,8)] > ¢
for any 8 # +a.

Then o € A(Y).

d) We want to show that W = W. It is enough to show that each reflection o, (a € ®)
is in W'.

Find o € W’ such that 8 = o(a) € A using ¢. Then,

08 = Op(a) = 00,0 ' => 0o =0 'ogo €W

e) Let o(A) = A but o # id. If o is written minimally as a product of simple
reflections then we have contradiction from corollary 5.4.
O

11



Irreducible Root System

® is irreducible if it cannot be partitioned intothe union of two proper subsets in the
following way: each root in one set is orthogonal to each root in the other subset.
Exmaple: A1, As, By, G5 are irreducible. A; x A; is not irreducible.

Claim: & is irreducible <= A cannot be partitioned.

Proof. <= : Suppose & = &1 U &5 with ($1, Do) = 0.

If A is not wholly contained in ®; or ®5 then it induces the partition in A.
Now WLOG suppose A C ;. Then, (A, Py) = 0. Since A spans E.

= : Let ® be irreducible but suppose A = A; U Ay with (A, Ay) = 0.
Each root is conjugate to a simple root (by theorem). Then,

S =0,UDy

where ®; is the set of roots that are conjugates with those in A;.
Since W is generated by the o, where o € A, it follows that each root in ®; can be
obtained from obtained from A; by + or — elements of A;.
Therefore, ®; lies in the subspace F; of E spanned by A;.
Then, ((I)l, (I)Q) =0.
Since ® is irreducible, it follows that ®; = & or &5 = @.
Therefore, A1 = & or Ay = @.
O

Lemma 5.6. Let ® be irreducible. Then relative to the partial ordering <, there
exists a unique maximal root f3.

If 3=7>5", koo (o € A) then all k, > 0.

Lemma 5.7. Let ® be irreducible. Then W acts irreducibly on E. In particular, the
W-orbit of a root « spans E.

Lemma 5.8. Let & be irreducible. Then at most two root lengths occur in ® and
all roots of this length are conjugates under W.

Lemma 5.9. Suppose & is irreducible with two distinct root lengths. Then the
maximal root 8 of lemma 5.6 is long.

6 Thursday, 10/24/2024, Decomposing into Irr. by

Hyeonmin
Facts
1) Lemma 9.2 and (R3): Vo, € ®,Yo € W, (B, a) = (008, 0c).
2) Table 1 in 9.4: Vo, 8 € E,a # 3, {a, ){B, ) =0,1,2,3.
3) Lemma 10.1: Vo, 8 € A, a # 5, {«, 8) < 0.
4) Theorem 10.3b: W acts transitively on the bases. 10.3c: Va € ®,30 € W such

that o(«) € A. 10.3d: W is generated by o, (a € A).
5) Claim 10.4: ®: irreducible <= A canot be partitioned into proper A; U Ay
such that (A1, Ag) = 0.
Classification

Fix A C ® and let | = dimg F.

Definition. Fix an ordering (aq,---, ) of A.
Then ({a;,a;))q; is called the cartan matrix of ®.
The entries are called the Cartan integers.

12



Example. In B, the Cartan matrix is:

2 -1
-2 2
Remark. 1) The Cartan matrix depends on the chosen ordering.

2) The Cartan matrix is independent of the choice of A. This is because, if A’ is
another base, since o acts transitively, there exists ¢ € W such that oA = A’.
Using the fact (a;, oj) = (0, 0a;) we see that the matrices are the same.

3) The Cartan Matrix is nonsingular. This is because:

(fass g - ding (124520, o)) (0 05))

nonsingular since inner product of basis

Proposition 6.1 (11.1). Let (®’, E’) be another root system. Suppose it has base

A" ={ay, -+, a4} such that (a;, a;) = (af, o).

Then the bijection A — A’ extends unique to a root system isomorphism ¢ : (®, E) —
Qg a(’l

(9, F).

Therefore, the Cartan matrix of ® determines ® upto isomorphism.

Proof. A, A" are both basis = 3 vector space isomorphism ¢ : E — E’ such that
o, = al.

Vi, ] () (B(05)) = dlay) = LD g(a,) = g(a; — (ay, ai)as) = B0, ()
Therefore, we have the commutative diagram:

E—, g

N

E—25 B
a € AandVr € B, (z,a) = (¢(2), ¢(a)) (B)
A and since W is generated by o, we have for all 0 € W we have:

E—,F

E—,F

Where 0 =04, 04, and o' =04, " Oay -
1 k
Therefore poogog™t =o' €W (D).
Claim 1: ¢(®) C @'
Let $ € ® = do € W,da € A such that caa=f
Also, ¢(8) = (poao¢™?) (¢(a)) € @/
—
_ ew’ €d!
Claim 2: VB,v € ®,{y,8) = (¢(7), #(B))-
Since W is generated by reflections 30 € W, da € A such that ca = 8. Then,

(7,8) = {07 7,0) = ($007(7),6(a)) = (0" 0007 (7),0" 0 $(e)) = (6(7), #(B))

O

Definition. Fix A = (g, --,q;) a base. The Coxeter graph of ® consists of [
vertices correlated to A and (a;, a;){a;, o) edges between the i’'th and j’th vertices

(i #3)-
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Remark. This graph is independent of A. Since A’ another base = Jo € W such
that cA = A" = (a;, ) = (oo, 0a;).
Also, we have (a5, o) (o, ;) = 0,1,2,3.

e.g. [insert fig table]
We need more information to recover Cartan integer.
We cannot recover (o, ;) when () = 2,3.

Definition. The Dynkin diagram of ®is the Coxeter graph adding an arrow pointing
to the shorter length root.
e.g [insert picture and matrix for B2 fig]

Proposition 6.2 (11.3). ® decomposes uniquely as the union of irreducible root
system ®; in subspaces F; C F such that E = F; & --- & E; [orthogonal direct sum).

Proposition 6.3 (Ex 9.1). E' C E: a subspace. If 0,(E’) C E’ then either o € E’
or ' C P,

Proof. Suppose E' C P,. Then 38 € E’ such that («,3) # 0.
oa(B) =B —(B,a)a € B' = acFE" 0

Proof. (Of 11.3)

A cannot be partitioned into proper A;UA5 such that (Ay, Ag) =0 <= the coxeter
graph of ® is connected (A).

[insert picture fig)

Assume that the coxeter graph consists of connected components C1,--- , C;.

Let A = Ay U---UA; be the partition so that A; correlates to C;.

A = A, are mutually orthogonal. Define E; = spang(A;).

Therefore, E = F1 @ - -+ ® E; [orthogonal]. (B)

Define ®; = {a € ® | a : a Z-linear combination of A;}.

Then, (®;, F;) is a root sytem [by checking the axioms].

A; C ®; is a base (again checking the axioms).

Therefore, ®; are irreduible.

Finally, we want to check ® = ®; U--- U ®y.

The Weyl group W; corresponding to ®; is the subgroup of W generated by o, where
a € A;.

B = o0, acts trivially on E; for any o € Aj,i # j. (C)

E; is Wj invariant, so o, (E;) C ENa € A; = E; is W-invariant.

Thus, o(E;) C E; for any 0 € W

Now we use Exercise 9.1.

D is trivial by definition.

Cacd :D> Ua(Ei)gEiEngﬁlEllngtsuchthataEEjbutagéENi;éj.

Thus, « € spang(A;) N® = « is a Z-linear combination of A in span(A;).
Therefore, « is a Z-linear combination of A;.
This is the definition of ®;.
Therefore, a € ®,.
O

Theorem 6.4 (Classification Theorem). Let ® be an irreducible root system. Then,
® can only have A — G type Dynkin diagrams.

7 Thursday, 10/31/2024, Irr. rootot System by
Hyeonmin

Theorem 7.1 (11.4). If ® is an irreducible root system, its Dynkin diagram is one
of the following:

14



B, (n=>2) T m % & & & & @8

Oy [0 | *a i B = = = = = 8
.

D, (n=4 * = & & & »

Eiy $—0—1—4—4—0—~

Fy -—— o %

G —»

Figure 1: Dynkin Diagrams
Proof. Suffices to Show: Coxeter graph is one of the following:

Ala Bl(: Ol)a Dl7 E6,7,85 F4a G2
So we can ignore the length of the roots. We work with unit vectors.

Definition. Let F be euclidean space of dimension m and let A = {ey,--- ,e,} C F
be admissible if:

1) Vectors are linearly independent.

2) Vectors are unit vectors.

(Ei,Ej) <0ifi 75]
4) 4(ei,e5)?> =0,1,2 or 3.

)
)
3)
)

Then, The graph I' of 2[coxeter graph] has n vertices and 4(e;,£;)? as edges.
Existence:

AD{ag,- - , €n } admissible.

e M)
4(5“ J) (ai7aj)(aj7ai) < ) J>< 7 Z>

1) A subset 2" C 2 is still admissible.

15



2)

#{pairs of vertices in I" connected by each other} < n.
3 ~ — n ~ —

Since set € := Y1 ;&; # 0. Thus 0 < (¢,¢) = n, 43005 2(8€5).
=Zi (5i7511)

Suppose (g;,¢;5) < 0.

4(67;,6]‘)2 =123 = 2(61',6]') < -1

I' contains no cycles.

Let IV C T be a vertix on k vertices.

Then #{such pairs from (2) in I} > k. Contradiction by 2.

#{edges originated at a vertex (¢) of I'} <3

Let e,m1,- -+ ,nx € A be distinct such that (,n;) # 0.
k ’

Set nf, =€—>_,_,(e,m)n; and ny = (77(:77376) Then,

o (ng,mi) = (g,m:) — (&,m3)(mismi) =0 = (no,mi) = 0.
e 1o € span{e,ni, -+, Mk} = (no,€) #0.
o () = (e.m) = Sio(em)mi = (e.m0)m0 + iy (£ m:)mi
= ((naé,nég))) 1o + Zf:l(gﬂ 7)€ = €.
— 1= (5,0) = Lo(em)? > L, (6m)? = 4> X0, 4(e,m)*

The only graph I' containing a triple edges is Gs.

Let {e1, -+ ,er} C A have a subgraph
[insert pic like A1 with veps 1, ..., veps K]
A = A\ {e1, - ,er}) U{e} is admissible where ¢ = Zle €.

Condition 1 is satisfied automatically.

Condition 2: ¢ is a unit: 2(g;,&;41) = -1 = (g,6) =k + E?;11(€i75i+1) =1
so it holds.
Condition 3: n € 4\ {e1,-- ,ex} can be connected to at most one of £1,- - , &.

3 = (ne)=0o0r(ne)=(ne)<0 = (ne) <0

Condition 4: 4(n,)? =0 or 4(n,&;)*> =0,1,2 or 3

I' contains no subgraph of the form:

[insert figure]

Any connected T" of an admissible set has one of the following forms:

[insert figure]

The second type in 8: Bj(= (), Fy.

Set e =" Jig;,n=> 0 in.

Then 2(€i’8i+1) =—-1= 2(7’]j,’l7]+1)

Then, (¢,¢) = Y20, = Y02y i +1) = P52 and (n,n) = D52 (A)
2q2

Alep,ng)? =2 = (e,1)* = (pep, ny)* = 25~ (B).
The Schwarz inequality of linear independent ¢ -7 : (£,1)? < (g,¢)(n,7).

Aand B = 2”;'5’2 < p'I(er?(qH) = pg—p—q—-1<0 = (p—1)(¢g—1) <2
= p=q=2orp=1lorqg=1.
—— —_—

Fy B,
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10) The 3rd type in 8: Dy, Eg, E7, Es.
Set up ' =32, m; = (n',7’) =0,(e,n") # 0.
Applying the method in the proof of (4),

0. . 3 (em) i 0o._ _ n”
ni=e—->3, G and " = ;

It is easy to show that:
(") =0
o (,0°) #0
3 ¢ i
o o= (e, + X0 Ehn

Then 1= (¢,¢) > 37, Ef]n;)j by the same reason in (4).
p— /2 p—
') = p(p2 Do (67771 ) p=1 % (1 _ %) Apply 12, 3.

— 1>Z(e,m)_2:%< _l_l_l) — %+%+%>1(C).

(n*,n*)

WLOG assume (D) [if one of them is 1 graph is 4;].

1
q
C,D = 3<;<3 = 7r=2= _+.>;(E).

DE = ;<.:<3 = ¢=22<p = Diorg=3p=345 =

Es, E7, Eg
Construction:
[matrices for Al, Bl, Cl, Dl]
Let E = R™ with the usual inner product and standard basis {e1, - ,e,}. Let I =
{Z-linear combination of {e1,--- ,e,}}.
Aj(I > 1)E : a I-subspace of R orthogonal to £1 + - - + £141.
I'=INE.
= fael| (aa) =2} = {(ei — =), £ .
Root system: A = {e; —e9, -+ ,61 — €141}

. L€ Eitl ..

Weyl Group: o.,_,,, : cir1 > & (4,4 1).

Thus, W = Sl+1.

B(l>2E =R

Op={ael|(a,a) =1or2} ={xe;,£(e; £¢j),i #j}.
A={e) —eq, - ,61-1 —e1,&} a base.

Weyl Group W:

Oci—eit1 €7 (ivi + 1)

O¢ €1 — —€]

W = (Z/27)" x S.
D(l>4)E=R,®={aecl|(a,a)=2}={(c L)}
A={eg—e2, 61 —€n6-1+ e}

Oei—eit1 - (i7i + 1)

Ocgi_14¢,° €1—1 > —€1, €1 = —€1—1-

W = (Z/27) 71 % S).

7.1 12.2 Automorphism

Claim 1: Aut® 2T x W where I' = {7 € Aut & | 7(A)A}.
Claim 2: I may be identified with automorphims of its dynkin diagram of ®.
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8 Thursday, 12/5/2024, Cartan Subalgebras (CSA)
by Rostyslav

242 Definitions.
General Lie Algebra:

i) In terms of a normalizer

ii) In terms of Engel subalgebra
Semisimple Lie Algebra:

i) Maximal toral subalgebras

ii) Maximal centralizer

If € End(V),V = @ V,(z), Vo(z) = ker(xz — aid)™ where m is a multiplicity of root

of char. poly.

We have x|va(m) =@ + 2L
scalar  nilpotent

Then, L = UgerLs(adz) = Ly (adz) ® Ly, (ad x)
Lemma 8.1. If a,b € F then,

[Lo(ad z), Ly(ad )] C Lats(ad x)
In particular, when L;(ad x) is a subalgebra of L,char F = 0,a # 0 then,

Vil € L,(ad x) [ is nilpotent

Fact: (simple) adjoints are derivations

(e (a0)"lys] =3 (77 ) lfad = @), (o = )" o)
=0

For m sufficiently large all elements on the right well vanish.
Definition (Engel Subalgebra). is Lo(ad ).

Lemma 8.2 (15.2.A). Let K C L-subalgebra. Choose z € K such that Lo(ad z) is
minimal among Lg(adz) for all x € K. Suppose K C Lo(ad z). Then Lyo(adz) C
Lo(adz) Vo € K.

Let z € K fixed, but arbitrary. Consider a family of endomorphisms of L{ad(z +
cx) | ¢ € F}. Ky = Lp(adz) is a subalgebra of L including K therefore these
endoomorphisms will stabilize Ko(= Lo(ad z)).

Can induce endomorphism of L| Ko(=Lo(adz)"
Endomorphism is ad(z + cz). Let f,g be char. poly in Ky over L/K and let n =
dim Kg,n — dim L.

f(T,e) =T+ fi(e)T" L+ + fule)

9T, ) =T""+g1(c) + T " 4 guy(c)

fi, gi are polynomials.

By definition, eigenvalue 0 appears only in Ky when 7' = 0, g,_, is not identically
zero on F. Lets take c¢1,- -, ¢q41 not zeros of g,—,. To say g,—(0) =0 <= 0is
not an eigenvalue of ad(z + cz) on the quotient space.

= VLo(ad(z + cx)) lie in the subspace of Kj.

But K is minimal.

Ko=Lo(adz) = Lo(z+ca)1 <i<r+1.

The only eigenvalues ad(z + cx) has is 0.
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- f(Tv Ci) = Trafi - f(Tv Ci)'

Vf; has r + n distinct zeros = Vf; are identically zero.
Lo(ad(z + cx)) D KoVc € F.

Replace ¢ with x — z,¢ = 1.

Lo(adz) D Ko = Lo(ad z) so we're done.

Lemma 8.3 (15.2.B). If K C L subalgebra and Lo(adz) C K = K is self
normalizing. In particular, Engel subalgebras are self-normalizing.

Lo(adz) € K = adxz acts on Np(K)/K without an eigenvalue 0 in ker = 0.
z € K[NL(K)z] C K = adx acts trivially on N(K)/K = Ny (K)=K.

Definition (Cartan Subalgebra). Cartan Subalgebra is a nilpotent subalgebra of L
that is self-normalizing.

Theorem 8.4 (15.3). Let H-subalgebra of L. H is a CSA <= H is a minimal
Engel subalgebra.

<= : Assume it is a minimal Engel subalgebra. Then, H = Lg(ad z) Ry

self-normalizing. 1524 Lo(ad z) C Lo(ad x).

We apply Engel’s Theorem which states if V& € L ad x is nilpotent then L is nilpotent.
Vz € H in particular ady z is nilpotent so H is nilpotent.

= : Let H be CSA, H is nilpotent by defintion. H C Lo(adz). We want to prove
3z such that H = Lo(ad 2).

Lets assume that is not the case.

Take Lg(ad z) smallest, 1524 Lo(ad z) C Lo(ad x).

Lo(ad z)/H here x € H will act as a nilpotent.

H annihilates some y + H where y # 0.

Jy € H such that [Hy] C H. But H is self normalizing. Contradiction! So we're
done.
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