
Number Theory Reading Group

Thanic Nur Samin

Contents

1 Thursday, 9/12/2024, Representation of sl2(F) by Hechi 1

2 Thursday, 9/19/2024, Representation of sl2(F) by Hechi 4

3 Thursday, 9/26/2024, Root Systems by Zoia 7

4 Thursday, 10/3/2024, Simple Roots by Zoia 9

5 Thursday, 10/17/2024, Weyl Group, Irr. Root System by Zoia 10

6 Thursday, 10/24/2024, Decomposing into Irr. by Hyeonmin 12

7 Thursday, 10/31/2024, Irr. rootot System by Hyeonmin 14
7.1 12.2 Automorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

8 Thursday, 12/5/2024, Cartan Subalgebras (CSA) by Rostyslav 18

1 Thursday, 9/12/2024, Representation of sl2(F) by
Hechi

sl2(F) := {g ∈ gl2(F) | Tr(g) = 0}

We assume char(F) = 0 and F is algebraically closed.

Theorem 1.1. sl2(F) is semisimple

Proof. Direct computation of the Killing Form.

Recall: if L is semisimple and ϕ : L → gl(V ) is a representation.
L ∋ x = s+ n abstract jordan decomposition.
=⇒ ϕ(x) = ϕ(s) + ϕ(n) is the Jordan decomposition of ϕ(x) in ϕ(L).
From now on, L = sl2(F) = sl(2,F).
(V, ϕ) is a representation.
Basis of L:

x =

[
0 1
0 0

]

y =

[
0 0
1 0

]

h =

[
1 0
0 −1

]
Thus we have [h, x] = 2x, [h, y] = −2y, [x, y] = h.
Since h is diagonal, h is semisimple.
=⇒ ϕ(h) is semisimple and thus diagonalizeable. ∈ End(V ).
We can decompose V =

⊕
λ Vλ where Vλ = {v ∈ V | hv = λv} for all λ ∈ F.

We say Vλ is a weight space with λ as its weight.

Lemma 1.2 (7.1). Suppose v ∈ Vλ. Then,
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1) xv ∈ Vλ+2

2) yv ∈ Vλ−2

Proof. 1) h(xv) = [h, x]v + x(hv) = 2xv + λxv = (λ+ 2)xv

2) h(yv) = [h, y]v + y(hv) = −2yv + λyv = (λ− 2)yv

Vλ−2 Vλ Vλ+2y

x

h

Note that dimV < ∞
Thus, ∃v ∈ V such that x · v = 0.
Such a v is called a maximal vector.
For now, assume V is irreducible.
Let v0 be a maximal vector with weight λ.

Definition. For i > 0 integer, vi =
yi·v0
i!

Also, v−1 = 0.

Lemma 1.3 (7.2). 1) h · vi = (λ− 2i)vi

2) y · vi = (i+ 1)vi+1

3) x · vi = (λ− i+ 1)vi−1

Proof. 1) We use induction. Base case is clear.

Assume it is true for i− 1.

vi−1 ∈ Vλ−2(i−1)

Thus, vi =
1
i · yvi−1

Lemma 7.1 implies vi ∈ Vλ−2i.

2) y · vi = (i+ 1)vi+1 by definition of vi.

3) ix · vi = x(yvi−1) = [x, y]vi−1 + yxvi−1 = hvi−1 + yxvi−1 = (λ− 2(i− 1))vi−1 +
(λ− i+ 2)yvi−2 = i(λ− i+ 1)vi−1

dimV < ∞ so it must end at some point.
So, at some point, it’ll become 0. v0, · · · , vm ̸= 0, vm+1 = 0.

Definition. m is the integer so that vm ̸= 0, vm+1 = 0.

By Lemma 7.2,
span{v0, · · · , vm} is a sub-representation of V .
Since V is irreducible,
V = span{v0, · · · , vm}
Note: by 7.2(3),
0 = x · vm+1 = (λ−m)vm
Since vm ̸= 0 we have λ = m.
Thus, dimV = m+ 1 = λ+ 1
Here m is the highest weight.

V = V−m ⊕ V−m+2 ⊕ · · · ⊕ Vm−2 ⊕ Vm
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Construction. Suppose L ↷ F[X,Y ] [as a F-space].
ρ(x) = X ∂

∂Y

ρ(y) = Y ∂
∂X

ρ(h) = x ∂
∂x − y ∂

∂y

Consider subrepresentations F[X,Y ]m [symmetric polynomials of degreem, dimension
m+ 1].

0 Xm Xm−1Y · · ·
x

y

h

3



2 Thursday, 9/19/2024, Representation of sl2(F) by
Hechi

Root Space Decomposition

Let L be a non-zero semisimple lie algebra over F with charF = 0 and F algebraically
closed.

Definition (Toral Subalgebra). A subalgebra H ⊆ L toral if it consists of semisimple
elements.

Remark. If every element in L is ad-nilpotent, then by Engel’s Theorem L is nilpo-
tent. Thus it is not semisimple.
So, there exists a non-zero toral subalgebra.

Fix H to be the maximal toral subalgebra. A maximal subalgebra exists since L is
finite dimensional.

Lemma 2.1 (8.1). A toral subalgebra T is abelian.

Proof. Suppose x ∈ T . We will prove that adT x = 0 [as a map].
adT x is diagonalizeable. Assume some eigenvalue is non-zero. Then, we can find
eigenvactor y ∈ T with eigenvalue a ̸= 0. So, [x, y] = ay.
Now, adT y(x) = [y, x] = −ay. Since [y, y] = 0 we see that −ay is an eigenvector of
adT y with eigenvalue 0.
adT y is also diagonalizeable. Suppose v1, · · · , vn is the eigenbasis of adT y with
eigenvalues λ1, · · · , λn. Then x = a1v1 + · · ·+ anvn for ai ∈ F.
WLOG, v1 = y.

[y, x] = a1λ1v1 + · · ·+ anλnvn = −ay

By comparing coefficients, a1λ1 = −a. But λ1 = 0. This is a contradiction.

Now, we fix H to be a maximal toral subalgebra. It is not necessarily unique.
Note that adH is a commuting family in End(L). From linear algebra we know that
adH is simultaneously diagonalizeable.

Definition (Root Space Decomposition). Suppose H∗ is the dual space of H. We
can write:

L =
⊕
α∈H∗

{x ∈ L | [h, x] = α(h)x∀h ∈ H}

= L0 ⊕
⊕
α∈Φ

Lα

where Φ = {α ∈ H∗ \ {0} | Lα ̸= 0} and L0 = CL(H) [the centralizer].
This is called the root space decomposition.

Example. sl2(F) has basis:

x =

[
0 1
0 0

]
, y =

[
0 0
1 0

]
, h =

[
1 0
0 −1

]
Then the root space decomposition is:

sl2(F) = H⊕L−2 ⊕ L2

L−2 contains the linear form sending h to −2.

Proposition 2.2 (8.1). Let α, β ∈ H∗. Then,

1) [Lα, Lβ ] ⊆ Lα+β [by Jacobi Identity]
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2) α ̸= 0 =⇒ ∀x ∈ Lα is nilpotent [by 1]

3) α+ β ̸= 0 =⇒ Lα ⊥ Lβ w.r.t. the Killing Form.

Proof of 3. Find h ∈ H such that (α+ β)(h) ̸= 0. Then,

κ([h, x], y) = −κ([x, h], y) = −κ(x, [h, y])

=⇒ (α+ β)(h)κ(x, y) = 0

In particular, L0 ⊥ Lα when α ∈ Φ.

Corollary 2.3 (8.1). The Killing Form restricted to L0, κ|L0
is non-degenerate.

Proposition 2.4 (8.2). H = L0 = CL(H).

Proof. Tedious linear algebra

Corollary 2.5 (8.2). The Killing Form restricted to H, κ|H is non-degenerate.

This implies, the map H → H∗ given by x 7→ κ(x,−) is an isomorphism.
For each ϕ ∈ H∗ we can define tϕ ∈ H to be the pre-image of this isomorphism. So it
satisfies

ϕ(h) = κ(tϕ, h) ∀h ∈ H

Proposition 2.6 (8.3). 1) Φ spans H∗

2) If α ∈ Φ then −α ∈ Φ

3) x ∈ Lα, y ∈ L−α =⇒ [x, y] = κ(x, y)tα

4) α(tα) = κ(tα, tα) ̸= 0

5) dim[Lα,L−α] = 1, spanned by tα

6) Pick any non-zero xα ∈ Lα \ {0}. Then there exists yα ∈ L−α such that
xα, yα, hα := [xα, yα] spans a subalgebra isomorphic to sl2(F), with the isomor-
phism xα 7→ x, yα 7→ y, hα 7→ h

7) hα = 2tα
κ(tα,tα) .

If V is a sl2(F)-module, recalling that h =

[
1 0
0 −1

]
,

V =
⊕
λ∈F

Vλ eigenspaces of h

Recall that all sl2(F)-module is of the form:

sl2(F) ↷ F[X,Y ]

ρ(x) = X
d

dY
, ρ(y) = Y

d

dX
, ρ(h) = X

d

dX
− Y

d

dY

and V = F[X,Y ]m [homogeneous polynomials of degree m] is irreducible and give us
all irreducible representations.
Then we have:

V = V−m ⊕ V−m+2 ⊕ · · · ⊕ Vm−2 ⊕ Vm

Where Vm is generated by Xm and V−m is generated by Y m
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Y m XY m−1 · · · Xm

x

y

h

If m even, 0 ̸= V0 ⊆ V
If m odd, 0 ̸= V1 ⊆ V

Corollary 2.7. V is a sl2(F)-module. Then dimV0 + dimV gives the number of
summands in the irreducible decomposition of V .

Consider Sα = span{xα, yα, hα} ∼= sl2(F) and its adjoint representation (L is an Sα

module).
Fix α ∈ Φ and let M = H+

∑
c∈F× Lcα.

By proposition 8.1, M is a submodule of L [since [Lc1α,Lc2α] ⊆ L(c1+c2)α].
If 0 ̸= x ∈ Lcα we see that [hα, x] = cα(hα) · x = 2cx
=⇒ 2c ∈ Z and a weight︸ ︷︷ ︸

eigenvalue

of hα is 0 or an integer multiple of 1
2 .

Then M = kerα︸ ︷︷ ︸
vectors of weight 0

+ F · hα︸ ︷︷ ︸
weight 0,±2

Therefore, M contains vectors of weight only 0 or ±2.
Therefore, if α ∈ Φ we have c = ±1.
M = H+ Sα. Suppose hc

α is the complement of hα in H.
Then, H+Sα = hc

α︸︷︷︸
abelian

+ Sα︸︷︷︸
irreducible

has dimH−1+1 = dimH = dimM−2 irreducible

summands.
On the other hand, the number of irreducible summands of M is dimM0︸ ︷︷ ︸

dimM−2

+dimM1︸ ︷︷ ︸
0

Therefore, H+ Sα ⊆ M must be equal.
Therefore, dimLα = 1.
Now, suppose β ̸= ±α ∈ Φ. Then, ∃r, q such that β − rα, β − (r − 1)α, · · · , β + qα
are roots and outside outside these, i.e. β − (r + 1)α, β + (q + 1)α are not.
To see this, suppose K =

∑
i∈Z Lβ+iα ⊆ L is a Sα-submodule. We know that

β + iα ̸= 0.
Weights:

β(hα) + iα(hα) = β(hα) + 2i

So, weights are either all even or all odd.
Therefore, K is irreducible.
Consider γ, δ ∈ H∗.
Define (γ, δ) = κ(tγ , tδ) on EQ = spanQ(Φ) then (·, ·) extends to E = EQ ⊗Q R is
positive definite.
Then E is an Euclidean Space.

(Φ, E) is called a root system.
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3 Thursday, 9/26/2024, Root Systems by Zoia

Let E be an euclidean space. Suppose (α, β) is a symmetric bilinear form on E.
Reflection in E fixes some hyperplaneH. If α is perpendicular toH then the reflection
sends α to −α
Consider α ∈ E and Pα = {β ∈ E | (α, β) = 0} the hyperplane perpendicular to α.
Suppose σα is the reflection w.r.t. this hyperplane. Then,

projα(β) =
(β, α)

(α, α)
α

σα(β) = β − 2 projα(β) = β − 2
(β, α)

(α, α)
α

Define:

⟨β, α⟩ = 2
(β, α)

(α, α)

Note that ⟨β, α⟩ is linear only in β. Then,

σα(β) = β − ⟨β, α⟩α

Lemma 3.1. Let Φ be a finite subset of E so that Φ spans E. Suppose all reflections
σα(α ∈ Φ) leaves Φ invariant. If σ ∈ GL(E) fixes hyperplane P of E and sends
0 ̸= α ∈ Φ to −α, then σ = σα and P = Pα.

Proof. Suppose τ = σσα = σσ−1
α .

Then, τ(Φ) = Φ, τ(α) = α and τ acts as id on R · α and E/R · α eigenvalues are 1.
So we have (T − 1)L where L = dimE.
β, τ(β), . . . τk(β) ∃k that fixes all β ∈ Φ
Φ spans E, so τk = 1. So T k − 1 = 0.
If m(T ) is the minimal polynomial of τ , then:

m(T ) | T k − 1

m(T ) | (T − 1)k

Therefore, m(T ) = T − 1.
Therefore, τ = id.
Thus σσ−1

α = id =⇒ σ = σα

Definition (Root Systems). A finite subset Φ of E is a root system in E if:

1R) Φ spans E, does not contain 0.

2R) If α ∈ Φ then only multiples of α in Φ are ±α.

3R) If α ∈ Φ, then σα leaves Φ invariant. [∀β ∈ Φ, σα(β) ∈ Φ]

4R) If α, β ∈ Φ then ⟨β, α⟩ ∈ Z.
[
⟨β, α⟩ = 2(β,α)

(α,α)

]
Definition (Weyl Group). Let Φ be a root system in E. Denote by W the subgroup
of GL(E) generaed by σα(α ∈ Φ).
3R =⇒ W is a symmetry group on Φ.

Lemma 3.2. Let Φ be a root system in E with Weyl group W. If σ ∈ GL(E) leaves
Φ invariant, then σσασ

−1 = σσ(α)∀α ∈ Φ and ⟨β, α⟩ = ⟨σ(β), σ(α)⟩∀α, β ∈ Φ.

Proof. σσασ
−1(σ(β)) = σσα(β) = σ(β − ⟨β, α⟩α) = σ(β)− ⟨β, α⟩σ(α).

σ(β) runs over Φ. σσασ
−1 fixes σ(Pα) pointwise and σ(α) → −σ(α).

Therefore, σσασ
−1 = σσ(α) by the lemma.

σσ(α)(σ(β)) = σ(β)− ⟨σ(β), σ(α)⟩σ(α)
Therefore, we must have ⟨β, α⟩ = ⟨σ(β), σ(α)⟩.
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Definition (Isomorphisms). Suppose Φ,Φ′ are root systems with Euclidean spaces
E,E′.
(Φ, E) ∼= (Φ′, E′) if there exists map φ : E → E′ such that φ maps Φ to Φ′ and
∀α, β ∈ Φ we have ⟨φ(β), φ(α)⟩ = ⟨β, α⟩.

Note that:

σφ(α)(φ(β)) = φ(β)− ⟨φ(β), φ(α)⟩︸ ︷︷ ︸
=⟨β,α⟩

φ(α) = φ(β − ⟨β, α⟩α) = φ(σα(β))

Note that, σ 7→ φσφ−1 is an isomorphism of Weyl groups.
Thus, W is a subgroup of Aut(Φ).
Now we consider root systems of different dimensions. Suppose L = dimE.
L = 1: In this case, we have α, α ∈ Φ only. This gives us A1

A1

W(A1) = Z2

L = 2:

W(A1 ×A1) = Z2 × Z2

W(A2) = S3

W(B2) = D4

W(G2) = D6

These are the only possible cases for L = 2, since:

⟨β, α⟩ = 2(β, α)

(α, α)
=

2∥β∥∥α∥ cos θ
∥a∥∥a∥

=
2∥β∥
∥α∥

cos θ ∈ Z

Similarly, 2∥α∥
∥β∥ cos θ ∈ Z. Multiplying, 4 cos2 θ ∈ Z =⇒ 4 cos2 θ = 0, 1, 2, 3, 4

Thus, cos θ = 0,± 1
2 ,±

1√
2
,±

√
3
2 =⇒ θ = π

2 ,
π
3 ,

2π
3 , π

4 ,
3π
4 , π

6 ,
5π
6 .

⟨α, β⟩ ⟨β, α⟩ θ ∥β∥2/∥α∥2

0 0 π
2 undefined

1 1 π
3 1

-1 -1 2π
3 1

1 2 π
4 2

-1 -2 3π
4 2

1 3 π
6 3

-1 -3 5π
6 3

Table 1: Angle Root System

Lemma 3.3. Suppose α, β are non-proportional root.
If (α, β) > 0 then α− β is a root.
If (α, β) < 0 then α+ β is a root.

Proof. ⟨α, β⟩ = 1 =⇒ σβ(α) = α− 1β = α− β ∈ Φ
If ⟨β, α⟩ = 1 then σα(β) = β − 1α = β − α ∈ Φ.
σβ−α(β − α) = (β − α)− ⟨β − α, β − α⟩(β − α) = α− β ∈ Φ

8



4 Thursday, 10/3/2024, Simple Roots by Zoia

A root system Φ of rank l, E-Euclidean Space, W is the Weyl Group.

Definition. A subset ∆ of Φ is called a base if:

B1) ∆ is a basis of E [|∆| = l];

B2) ∀β ∈ Φ, β =
∑

α∈∆ kα · α, the expression is unique with kα being integers and
kα are either all non-negative or all non-positive.

Definition. The roots from ∆ are simple roots.

Definition. The height of a root β [relative to the base ∆] is:

ht(β) =
∑
α∈∆

kα

Definition. We have positive roots Φ+ and negative roots Φ− from the sign of kα.
Furthermore Φ− = −Φ+.
Also, we define:

Φ+(γ) = {α ∈ Φ | (γ, α) > 0}

Definition. γ ∈ E is regular if:

γ ∈ E \
⋃
α∈Φ

Pα

Otherwise it is called singular.
Recall that Pα = {β ∈ E | (α, β) = 0}

Definition. α ∈ Φ+(γ) is decomposable if α = β1 + β2 with β1, β2 ∈ Φ+(γ).
α is indecomposable otherwise.

Definition. We define ∆(γ) to be the set of all indecomposable roots in Φ+(γ).

Theorem 4.1. Any root system Φ has a base. Let γ ∈ E be a regular.
Then, the set ∆(γ) of all the indecomposable roots in Φ+(γ) is a base of Φ.
Conversely, every base of Φ is of the form ∆(γ) for some γ.

Proof. We follow the following steps.
Step 1: Each root in Φ+(γ) is a non-negative Z-linear combination of ∆(γ).
Step 2: If α, β ∈ ∆(γ) then (α, β) ≤ 0 unless α = β.
Step 3: ∆(γ) is a linearly independent set.
Step 4: ∆(γ) is a base of Φ.
Step 5: Each base ∆ of Φ has the form ∆(γ) for some regular γ ∈ E.
Proof of Step 1: Suppose otherwise. Then ∃α ∈ Φ+(γ) that cannot be expessed as a
non-negative Z linear combination of ∆(γ).
We can have multiple such α’s. We pick the α with the smallest (γ, α).
Note that α /∈ ∆(γ), since if α ∈ ∆(γ) then α = 1 · α, which violates the assumption.
Thus, α can be written as sum of two elements in Φ+(γ). Suppose α = β1 + β2

so that β1, β2 ∈ Φ+(γ). Then, (γ, α) = (γ, β1) + (γ, β2). Due to the minimality of
(γ, α), they are both non-negative Z-linear conbination of ∆(γ) which means so is α,
a contradiction.
Proof of Step 2: Suppose otherwise. Then, (α, β) > 0. β cannot be −α, thus α − β
is a root. Then either α − β or β − α is in Φ+(γ). WLOG α − β ∈ Φ+(γ). Then
α = β+(α−β). Then α is decomposable, which is a contradiction since ∆(γ) consists
of all indecomposable roots.
Proof of Step 3: Suppose

∑
α∈∆(γ),rα∈R rα · α = 0. rα can be positive or negative.

We redistribute so that both sides have positive coefficient:

ε :=
∑
α

sαα =
∑
β

tββ
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Then,

0 ≤ (ε, ε) =
∑
α,β

sαtβ︸︷︷︸
≥0

(α, β)︸ ︷︷ ︸
≤0

≤ 0

Thus, ε = 0. Now,

0 = (γ, ε) =
∑
α

sα︸︷︷︸
≥0

(γ, α)︸ ︷︷ ︸
>0

≥ 0

Thus, sα = 0 for all α ∈ ∆(γ). This implies linear independence.
Proof of Step 4: Note that Φ = Φ+(γ) ∪ −Φ+(γ).
B2 is satisfied because of Step 1.
Then ∆(γ) spans E. Step 3 implies ∆(γ) is a basis of E. Thus we have B1.
Proof of Step 5: Given ∆, we select γ ∈ E : (α, γ) > 0∀α ∈ ∆. B2 =⇒ γ is regular
and Φ+ ⊆ Φ+(γ). Also, Φ− ⊆ −Φ+(γ).
Therefore, Φ+ = Φ+(γ). ∆ consists of indecomposable elements, that is ∆ ⊆ ∆(γ).
Coordinates are equal, therefore ∆ = ∆(γ).

Definition (Weyl Chambers). The connected components of E \
⋃

α∈Φ Pα are called
the (open) Weyl Chambers of E.
The fundamental Weyl chamber associated to γ is the open Weyl chamber containing
γ. It is denoted by C(γ).
Furthermore, C(γ) = C(γ′) implies γ and γ′ are on the same side of each hyperplane
Pα. This also means ∆(γ) = ∆(γ′), so the Weyl chambers are in 1-1 correspondence
with the bases.

For example: here is an open Weyl Chamber for A2:

C(∆)-fundamental Weyl chamber relative to the base {α1, α2}.

The Weyl group acts on the Weyl chambers by σ(C(γ)) = C(σ(γ)).
If σ ∈ W and γ is regular.
Also, W permutes bases. σ sends ∆ to σ(∆) which is another base.
Since σ(∆(γ)) = ∆(σ(γ)) because (σγ, σα) = (γ, α).

5 Thursday, 10/17/2024, Weyl Group, Irr. Root
System by Zoia

Lemma 5.1. Let α be simple. Then σα permutes the positive roots other than α.

Corollary 5.2. Set δ = 1
2

∑
β≺0 β. Then,

σα(δ) = δ − α ∀α ∈ ∆

10



Lemma 5.3. Let α1, · · · , αn ∈ ∆ [not necessarily distinct]. Write σi := σαi . If
σ1, · · · , σt−1(αt) is negative, then

∃s : 1 ≤ s < t : σ1 · · ·σt = σ1 · · ·σs−1σs+1 · · ·σt−1

Corollary 5.4. If σ = σ1 · · ·σt is an exp for σ ∈ W, t is as small as possible theen
σ(αt) ≺ 0.

Proof. Suppose σ(αt) > 0. Then,

σ1 · · ·σt︸ ︷︷ ︸
t factors

= σ1 · · ·σs−1σs+1 · · ·σt−1︸ ︷︷ ︸
t−2 factors

which contradicts minimality.

The Weyl Group

Definition. W is the subgroup of GL(E) generated by the reflection (σα)α∈Φ.

Theorem 5.5. Let ∆ be a base of Φ.

a) If γ ∈ E, γ is regular, ∃σ ∈ W : (σ(γ), α) > 0∀α ∈ ∆.

b) If ∆′ is another base of Φ, then σ(∆′) = ∆ for some σ ∈ W.

c) If α is any root =⇒ ∃σ ∈ W : σ(α) ∈ ∆.

d) W generated by σα (α ∈ ∆).

e) If σ(∆) = ∆, σ ∈ W then σ = id.

Proof. We consider the subgroup W ′ generated by σα(α ∈ ∆).
For a, b, c we prove the theorem for W ′ and for d, e we prove that W ′ = W.
a)

δ :=
1

2

∑
α≺0

α

Choose σ ∈ W ′ such that (σ(γ), δ) is as big as possible.
If α is simple then σασ ∈ W ′ =⇒ (σ(γ), δ) ≥ (σασ(γ), δ) = (σ(γ), σα(δ)) =
(σ(γ), δ − α) = (σ(γ), δ)− (σ(γ), α).
Therefore, (σ(γ), α) ≥ 0.
Furthermore, (σ(γ), α) ̸= 0 so we have strict inequality. Therefore,

∀α ∈ ∆, (σ(γ), α) > 0

Therefore, σ(γ) is in the fundamental Weyl chamber of ∆ and σ sends C(γ) to C(∆).
b) Since W ′ permutes the Weyl chambers by a, it also permutes the bases of Φ.
c) Hyperplanes Pβ (β ̸= ±α) are distinct from hyperplane Pα =⇒ ∃γ : γ ∈ Pα, γ /∈
Pβ . Lets choose γ′ so that γ′ is close to γ such that (γ′, α) = ε > 0 while |(γ′, β)| > ε
for any β ̸= ±α.
Then α ∈ ∆(γ′).
d) We want to show thatW ′ = W. It is enough to show that each reflection σα(α ∈ Φ)
is in W ′.
Find σ ∈ W ′ such that β = σ(α) ∈ ∆ using c. Then,

σβ = σσ(α) = σσασ
−1 =⇒ σα = σ−1σβσ ∈ W ′

e) Let σ(∆) = ∆ but σ ̸= id. If σ is written minimally as a product of simple
reflections then we have contradiction from corollary 5.4.
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Irreducible Root System

Φ is irreducible if it cannot be partitioned intothe union of two proper subsets in the
following way: each root in one set is orthogonal to each root in the other subset.
Exmaple: A1, A2, B2, G2 are irreducible. A1 ×A1 is not irreducible.
Claim: Φ is irreducible ⇐⇒ ∆ cannot be partitioned.

Proof. ⇐= : Suppose Φ = Φ1 ∪ Φ2 with (Φ1,Φ2) = 0.
If ∆ is not wholly contained in Φ1 or Φ2 then it induces the partition in ∆.
Now WLOG suppose ∆ ⊂ Φ1. Then, (∆,Φ2) = 0. Since ∆ spans E.
=⇒ : Let Φ be irreducible but suppose ∆ = ∆1 ∪∆2 with (∆1,∆2) = 0.
Each root is conjugate to a simple root (by theorem). Then,

Φ = Φ1 ∪ Φ2

where Φi is the set of roots that are conjugates with those in ∆i.
Since W is generated by the σα where α ∈ ∆, it follows that each root in Φi can be
obtained from obtained from ∆i by + or − elements of ∆i.
Therefore, Φi lies in the subspace Ei of E spanned by ∆i.
Then, (Φ1,Φ2) = 0.
Since Φ is irreducible, it follows that Φ1 = ∅ or Φ2 = ∅.
Therefore, ∆1 = ∅ or ∆2 = ∅.

Lemma 5.6. Let Φ be irreducible. Then relative to the partial ordering ≺, there
exists a unique maximal root β.
If β =

∑
α kαα (α ∈ ∆) then all kα > 0.

Lemma 5.7. Let Φ be irreducible. Then W acts irreducibly on E. In particular, the
W-orbit of a root α spans E.

Lemma 5.8. Let Φ be irreducible. Then at most two root lengths occur in Φ and
all roots of this length are conjugates under W.

Lemma 5.9. Suppose Φ is irreducible with two distinct root lengths. Then the
maximal root β of lemma 5.6 is long.

6 Thursday, 10/24/2024, Decomposing into Irr. by
Hyeonmin

Facts:

1) Lemma 9.2 and (R3): ∀α, β ∈ Φ, ∀σ ∈ W, ⟨β, α⟩ = ⟨σβ, σα⟩.

2) Table 1 in 9.4: ∀α, β ∈ E,α ̸= β, ⟨α, β⟩⟨β, α⟩ = 0, 1, 2, 3.

3) Lemma 10.1: ∀α, β ∈ ∆, α ̸= β, ⟨α, β⟩ ≤ 0.

4) Theorem 10.3b: W acts transitively on the bases. 10.3c: ∀α ∈ Φ, ∃σ ∈ W such
that σ(α) ∈ ∆. 10.3d: W is generated by σα(α ∈ ∆).

5) Claim 10.4: Φ: irreducible ⇐⇒ ∆ canot be partitioned into proper ∆1 ∪∆2

such that (∆1,∆2) = 0.

Classification

Fix ∆ ⊆ Φ and let l = dimR E.

Definition. Fix an ordering (α1, · · · , αl) of ∆.
Then (⟨αi, αj⟩)ij is called the cartan matrix of Φ.
The entries are called the Cartan integers.

12



Example. In B2 the Cartan matrix is:[
2 −1
−2 2

]
Remark. 1) The Cartan matrix depends on the chosen ordering.

2) The Cartan matrix is independent of the choice of ∆. This is because, if ∆′ is
another base, since σ acts transitively, there exists σ ∈ W such that σ∆ = ∆′.
Using the fact ⟨αi, αj⟩ = ⟨σαi, σαj⟩ we see that the matrices are the same.

3) The Cartan Matrix is nonsingular. This is because:

(⟨αi, αj⟩)i,j · diag
(
(αi, αi)

2
, · · · , (αl, αl)

2

)
= ((αi, αj))ij︸ ︷︷ ︸

nonsingular since inner product of basis

Proposition 6.1 (11.1). Let (Φ′, E′) be another root system. Suppose it has base
∆′ = {α′

1, · · · , α′
s} such that ⟨αi, αj⟩ = ⟨α′

i, α
′
j⟩.

Then the bijection ∆
αa

→
7→

∆′
α′

a

extends unique to a root system isomorphism ϕ : (Φ, E) →

(Φ′, E′).
Therefore, the Cartan matrix of Φ determines Φ upto isomorphism.

Proof. ∆,∆′ are both basis =⇒ ∃ vector space isomorphism ϕ : E → E′ such that
αa → α′

a.

∀i, j σϕ(αi)(ϕ(αj)) = ϕ(αj)− ⟨ϕ(αj),ϕ(αi)⟩
⟨αj ,αi⟩ ϕ(αi) = ϕ(αj − ⟨αj , αi⟩αi) = ϕ(σαi

(αj))

Therefore, we have the commutative diagram:

E E′

E E′

ϕ

σα σα′

ϕ

(A)

α ∈ ∆ and ∀x ∈ E, ⟨x, α⟩ = ⟨ϕ(x), ϕ(α)⟩ (B)
A and since W is generated by σα we have for all σ ∈ W we have:

E E′

E E′

ϕ

σ σ′

ϕ

Where σ = σαl1
· · ·σαlk

and σ′ = σαl′1
· · ·σαl′

k

.

Therefore ϕ ◦ σ ◦ ϕ−1 = σ′ ∈ W (D).
Claim 1: ϕ(Φ) ⊆ Φ′

Let β ∈ Φ =⇒ ∃σ ∈ W,∃α ∈ ∆ such that σα = β
Also, ϕ(β) = (ϕ ◦ σ ◦ ϕ−1)︸ ︷︷ ︸

∈W′

(ϕ(α))︸ ︷︷ ︸
∈Φ′

∈ Φ′

Claim 2: ∀β, γ ∈ Φ, ⟨γ, β⟩ = ⟨ϕ(γ), ϕ(β)⟩.
Since W is generated by reflections ∃σ ∈ W, ∃α ∈ ∆ such that σα = β. Then,

⟨γ, β⟩ = ⟨σ−1γ, α⟩ =
B
⟨ϕ ◦ σ−1(γ), ϕ(α)⟩ = ⟨σ′ ◦ ϕ ◦ σ−1(γ), σ′ ◦ ϕ(α)⟩ = ⟨ϕ(γ), ϕ(β)⟩

Definition. Fix ∆ = ⟨α1, · · · , αl⟩ a base. The Coxeter graph of Φ consists of l
vertices correlated to ∆ and ⟨αi, αj⟩⟨αj , αi⟩ edges between the i’th and j’th vertices
(i ̸= j).
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Remark. This graph is independent of ∆. Since ∆′ another base =⇒ ∃σ ∈ W such
that σ∆ = ∆′ =⇒ ⟨αi, αj⟩ = ⟨σαi, σαj⟩.
Also, we have ⟨αi, αj⟩⟨αj , αi⟩ = 0, 1, 2, 3.

e.g. [insert fig table]
We need more information to recover Cartan integer.
We cannot recover ⟨αi, αj⟩ when ⟨⟩ = 2, 3.

Definition. The Dynkin diagram of Φis the Coxeter graph adding an arrow pointing
to the shorter length root.
e.g [insert picture and matrix for B2 fig]

Proposition 6.2 (11.3). Φ decomposes uniquely as the union of irreducible root
system Φi in subspaces Ei ⊂ E such that E = E1 ⊕ · · · ⊕Et [orthogonal direct sum].

Proposition 6.3 (Ex 9.1). E′ ⊂ E: a subspace. If σα(E
′) ⊆ E′ then either α ∈ E′

or E′ ⊆ Pα

Proof. Suppose E′ ⊊ Pα. Then ∃β ∈ E′ such that (α, β) ̸= 0.
σα(β) = β − ⟨β, α⟩α ∈ E′ =⇒ α ∈ E′.

Proof. (Of 11.3)
∆ cannot be partitioned into proper ∆1∪∆2 such that (∆1,∆2) = 0 ⇐⇒ the coxeter
graph of Φ is connected (A).
[insert picture fig]
Assume that the coxeter graph consists of connected components C1, · · · , Ct.
Let ∆ = ∆1 ∪ · · · ∪∆t be the partition so that ∆i correlates to Ci.
A =⇒ ∆i are mutually orthogonal. Define Ei = spanR(∆i).
Therefore, E = E1 ⊕ · · · ⊕ Et [orthogonal]. (B)
Define Φi = {α ∈ Φ | α : a Z-linear combination of ∆i}.
Then, (Φi, Ei) is a root sytem [by checking the axioms].
∆i ⊆ Φi is a base (again checking the axioms).
Therefore, Φi are irreduible.
Finally, we want to check Φ = Φ1 ∪ · · · ∪ Φt.
The Weyl group Wi corresponding to Φi is the subgroup of W generated by σα where
α ∈ ∆i.
B =⇒ σα acts trivially on Ei for any α ∈ ∆j , i ̸= j. (C)

Ei is Wi invariant, so σα(Ei) ⊆ Ei∀α ∈ ∆i
C
=⇒ Ei is W-invariant.

Thus, σ(Ei) ⊆ Ei for any σ ∈ W
Now we use Exercise 9.1.
⊇ is trivial by definition.

⊆ α ∈ Φ =⇒
D

σα(Ei) ⊆ Ei
Ex 9.1
=⇒ ∃1 ≤ j ≤ t such that α ∈ Ej but α /∈ Ei∀i ̸= j.

Thus, α ∈ spanR(∆i) ∩ Φ =⇒ α is a Z-linear combination of ∆ in span(∆i).
Therefore, α is a Z-linear combination of ∆i.
This is the definition of Φi.
Therefore, α ∈ Φi.

Theorem 6.4 (Classification Theorem). Let Φ be an irreducible root system. Then,
Φ can only have A−G type Dynkin diagrams.

7 Thursday, 10/31/2024, Irr. rootot System by
Hyeonmin

Theorem 7.1 (11.4). If Φ is an irreducible root system, its Dynkin diagram is one
of the following:

14



Figure 1: Dynkin Diagrams

Proof. Suffices to Show: Coxeter graph is one of the following:

Al, Bl(= Cl), Dl, E6,7,8, F4, G2

So we can ignore the length of the roots. We work with unit vectors.

Definition. Let E be euclidean space of dimension m and let A = {ε1, · · · , εn} ⊆ E
be admissible if:

1) Vectors are linearly independent.

2) Vectors are unit vectors.

3) (εi, εj) ≤ 0 if i ̸= j.

4) 4(εi, εj)
2 = 0, 1, 2 or 3.

Then, The graph Γ of A[coxeter graph] has n vertices and 4(εi, εj)
2 as edges.

Existence:

∆ ⊇ {α1, · · · , αn} =⇒

{
α1√

(α1, α1)
, · · · , αn√

(αn, αn)

}
:= {ε1, · · · , εn} admissible.

4(εi, εj)
2 =

4(αi, αj)
2

(αi, αj)(αj , αi)
= ⟨αi, αj⟩⟨αj , αi⟩

1) A subset A′ ⊆ A is still admissible.
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2) #{pairs of vertices in Γ connected by each other} < n.

Since set ε :=
∑n

i=1 εi ̸= 0. Thus 0 < (ε, ε) = n︸︷︷︸
=
∑

i(εi,εi)

+
∑

i<j 2(εi, εj).

Suppose (εi, εj) < 0.

4(εi, εj)
2 = 1, 2, 3 =⇒ 2(εi, εj) ≤ −1.

3) Γ contains no cycles.

Let Γ′ ⊆ Γ be a vertix on k vertices.

Then #{such pairs from (2) in Γ′} ≥ k. Contradiction by 2.

4) #{edges originated at a vertex (ε) of Γ} ≤ 3

Let ε, η1, · · · , ηk ∈ A be distinct such that (ε, ηi) ̸= 0.

(3) =⇒ (ηi, ηj) = 0∀i ̸= j.

Set η′0 := ϵ−
∑k

i=1(ε, ηi)ηi and η0 :=
η′
0

(η′
0,η

′
0)
. Then,

• (η′0, ηi) = (ε, ηi)− (ε, ηi)(ηi, ηi) = 0 =⇒ (η0, ηi) = 0.

• η0 ∈ span{ε, η1, · · · , ηk} =⇒ (η0, ε) ̸= 0.

• (η′0, η
′
0) = (ε, η′0) =⇒

∑k
i=0(ε, ηi)ηi = (ε, η0)η0 +

∑k
i=1(ε, ηi)ηi

=
(ε,η′

0)
(η′

0,η
′
0)
η′0 +

∑k
i=1(ε, ηi)εi = ε.

=⇒ 1 = (ε, ε) =
∑k

i=0(ε, ηi)
2 >

∑k
i=1(ε, ηi)

2 =⇒ 4 >
∑k

i=1 4(ε, ηi)
2.

5) The only graph Γ containing a triple edges is G2.

6) Let {ε1, · · · , εk} ⊆ A have a subgraph

[insert pic like A1 with veps 1, ..., veps k]

A′ = (A \ {ε1, · · · , εk}) ∪ {ε} is admissible where ε =
∑k

i=1 εi.

Condition 1 is satisfied automatically.

Condition 2: ε is a unit: 2(εi, εi+1) = −1 =⇒ (ε, ε) = k +
∑k−1

i=1 (εi, εi+1) = 1
so it holds.

Condition 3: η ∈ U\{ε1, · · · , εk} can be connected to at most one of ε1, · · · , εk.
3 =⇒ (η, ε) = 0 or (η, ε) = (η, εj) ≤ 0 =⇒ (η, ε) ≤ 0.

Condition 4: 4(η, ε)2 = 0 or 4(η, εi)
2 = 0, 1, 2 or 3

7) Γ contains no subgraph of the form:

[insert figure]

8) Any connected Γ of an admissible set has one of the following forms:

[insert figure]

9) The second type in 8: Bl(= Cl), F4.

Set ε :=
∑p

i=1 iεi, η :=
∑q

i=1 iηi.

Then 2(εi, εi+1) = −1 = 2(ηj , ηj+1).

Then, (ε, ε) =
∑p

i=1 i
2 −

∑p−1
i=1 i(i+ 1) = p(p+1)

2 , and (η, η) = q(q+1)
2 . (A)

4(εp, ηq)
2 = 2 =⇒ (ε, η)2 = (pεp, qηq)

2 = p2q2

2 (B).

The Schwarz inequality of linear independent ε · η : (ε, η)2 < (ε, ε)(η, η).

A and B =⇒ 2p2q2

2 < pq(p+1)(q+1)
4 =⇒ pq−p−q−1 < 0 =⇒ (p−1)(q−1) < 2

=⇒ p = q = 2︸ ︷︷ ︸
F4

or p = 1 or q = 1︸ ︷︷ ︸
Bl

.
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10) The 3rd type in 8: Dl, E6, E7, E8.

Set up ηi :=
∑

j η
i
j =⇒ (ηi, ηj) = 0, (ε, ηi) ̸= 0.

Applying the method in the proof of (4),

η0′ := ε−
∑3

i=1
(ε,ηi)
(ηi,ηi)η

i and η0 := η0′√
(η′

0,η
′
0)

It is easy to show that:

• (η0, ηi) = 0

• (ε, η0) ̸= 0

• ε = (ε, η0)η0 +
∑3

i=1
(ε,ηi)
(ηi,ηi)η

i

Then 1 = (ε, ε) >
∑3

i=1
(ε,ηi)2

(ηi,ηi) by the same reason in (4).

(η′, η′) = p(p−1)
2 =⇒ (ε,η′)2

(η′,η′) = p−1
2p = 1

2

(
1− 1

p

)
. Apply η2, η3.

=⇒ 1 >
∑ (ε,ηi)

2

(ηi,ηi) =
1
2

(
3− 1

p − 1
q − 1

r

)
=⇒ 1

p + 1
q + 1

r > 1 (C).

WLOG assume 1
p ≤ 1

q ≤ 1
r ≤ 1

2 (D) [if one of them is 1 graph is Al].

C, D =⇒ 1
3 < 1

r ≤ 1
2 =⇒ r = 2 =⇒ 1

p + 1
q > 1

2 (E).

D, E =⇒ 1
4 < 1

q ≤ 1
2 =⇒ q = 2, 2 ≤ p =⇒ Dl or q = 3, p = 3, 4, 5 =⇒

E6, E7, E8.

Construction:
[matrices for Al, Bl, Cl, Dl]
Let E = Rn with the usual inner product and standard basis {ε1, · · · , εn}. Let I =
{Z-linear combination of {ε1, · · · , εn}}.
Al(l ≥ 1)E : a l-subspace of Rl+1 orthogonal to ε1 + · · ·+ εl+1.
I ′ = I ∩ E.
Φ = {α ∈ I ′ | (α, α) = 2} = {(εi − εj), i ̸= j}.
Root system: ∆ = {ε1 − ε2, · · · , εl − εl+1}

Weyl Group: σεi−εi+1
:
εi 7→ εi+1

εi+1 7→ εi
↔ (i, i+ 1).

Thus, W ∼= Sl+1.
Bl(l ≥ 2)E = Rl

ΦB = {α ∈ I | (α, α) = 1 or 2} = {±εi,±(εi ± εj), i ̸= j}.
∆ = {ε1 − ε2, · · · , εl−1 − εl, εl} a base.
Weyl Group W:
σεi−εi+1

↔ (i, i+ 1)
σεlεl 7→ −εl
W ∼= (Z/2Z)l ⋊ Sl.
Dl(l ≥ 4)E = Rl,Φ = {α ∈ I | (α, α) = 2} = {±(εi ± εj)}.
∆ = {ε1 − ε2, · · · , εl−1 − εl, εl−1 + εl}
σεi−εi+1

: (i, i+ 1)
σεl−1+εl : εl−1 7→ −εl, εl 7→ −εl−1.
W ∼= (Z/2Z)l−1 ⋊ Sl.

7.1 12.2 Automorphism

Claim 1: AutΦ ∼= Γ⋊W where Γ = {τ ∈ AutΦ | τ(∆)∆}.
Claim 2: Γ may be identified with automorphims of its dynkin diagram of Φ.
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8 Thursday, 12/5/2024, Cartan Subalgebras (CSA)
by Rostyslav

2+2 Definitions.
General Lie Algebra:

i) In terms of a normalizer

ii) In terms of Engel subalgebra

Semisimple Lie Algebra:

i) Maximal toral subalgebras

ii) Maximal centralizer

If x ∈ End(V ), V =
⊕

Va(x), Va(x) = ker(x−a id)m where m is a multiplicity of root
of char. poly.
We have x

∣∣
va(x)

= a︸︷︷︸
scalar

+ n︸︷︷︸
nilpotent

.

Then, L = ⊔a∈FLa(adx) = Lu(adx)⊕ Ln(adx)

Lemma 8.1. If a, b ∈ F then,

[La(adx), Lb(adx)] ⊂ La+b(adx)

In particular, when Lt(adx) is a subalgebra of L, charF = 0, a ̸= 0 then,

∀l ∈ La(adx) l is nilpotent

Fact: (simple) adjoints are derivations

(adx− (a+ b))m[yz] =

m∑
i=0

(
m

i

)
[(adx− a)i(y), (adx− b)m−i(z)]

For m sufficiently large all elements on the right well vanish.

Definition (Engel Subalgebra). is L0(adx).

Lemma 8.2 (15.2.A). Let K ⊂ L-subalgebra. Choose z ∈ K such that L0(ad z) is
minimal among L0(adx) for all x ∈ K. Suppose K ⊂ L0(ad z). Then L0(ad z) ⊂
L0(adx)∀x ∈ K.

Let x ∈ K fixed, but arbitrary. Consider a family of endomorphisms of L{ad(z +
cx) | c ∈ F}. K0 = L0(ad z) is a subalgebra of L including K therefore these
endoomorphisms will stabilize K0(= L0(ad z)).
Can induce endomorphism of L

∣∣
K0(=L0(ad z))

.

Endomorphism is ad(z + cx). Let f, g be char. poly in K0 over L/K and let n =
dimK0, n− dimL.

f(T, c) = T r + f1(c)T
n−1 + · · ·+ fn(c)

g(T, c) = Tn−r + g1(c) + Tn−r−1 + · · · gn−r(c)

fi, gi are polynomials.
By definition, eigenvalue 0 appears only in K0 when T = 0, gn−r is not identically
zero on F . Lets take c1, · · · , cr+1 not zeros of gn−r. To say gn−r(0) = 0 ⇐⇒ 0 is
not an eigenvalue of ad(z + cx) on the quotient space.
=⇒ ∀L0(ad(z + cx)) lie in the subspace of K0.
But K0 is minimal.
K0 = L0(ad z) = L0(z + cix) 1 ≤ i ≤ r + 1.
The only eigenvalues ad(z + cx) has is 0.
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=⇒ f(T, ci) = T r, fi = f(T, ci).
∀fi has r + n distinct zeros =⇒ ∀fi are identically zero.
L0(ad(z + cx)) ⊃ K0∀c ∈ F .
Replace x with x− z, c = 1.
L0(adx) ⊃ K0 = L0(adx) so we’re done.

Lemma 8.3 (15.2.B). If K ⊂ L subalgebra and L0(adx) ⊂ K =⇒ K is self
normalizing. In particular, Engel subalgebras are self-normalizing.

L0(adx) ⊂ K =⇒ adx acts on NL(K)/K without an eigenvalue 0 in ker = 0.
x ∈ K [NL(K)x] ⊂ K =⇒ adx acts trivially on NL(K)/K =⇒ NL(K) = K.

Definition (Cartan Subalgebra). Cartan Subalgebra is a nilpotent subalgebra of L
that is self-normalizing.

Theorem 8.4 (15.3). Let H-subalgebra of L. H is a CSA ⇐⇒ H is a minimal
Engel subalgebra.

⇐= : Assume it is a minimal Engel subalgebra. Then, H = L0(ad z)
15.2.B
=⇒ H is

self-normalizing.
15.2.A
=⇒ L0(ad z) ⊂ L0(adx).

We apply Engel’s Theorem which states if ∀x ∈ L adx is nilpotent then L is nilpotent.
∀x ∈ H in particular adH x is nilpotent so H is nilpotent.
=⇒ : Let H be CSA, H is nilpotent by defintion. H ⊂ L0(adx). We want to prove
∃z such that H = L0(ad z).
Lets assume that is not the case.
Take L0(ad z) smallest,

15.2.A
=⇒ L0(ad z) ⊂ L0(adx).

L0(ad z)/H here x ∈ H will act as a nilpotent.
H annihilates some y +H where y ̸= 0.
∃y ∈ H such that [Hy] ⊂ H. But H is self normalizing. Contradiction! So we’re
done.
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