Partial Differential Equation 2 MATH 541

Taught by: Dr. Peter Sternberg
Written by:Thanic Nur Samin

This is dedicated to Sobolev Spaces, which we apply to Elliptic (linear) PDE.

Last part of the course is in a different direction. We talk about applying this to
Parabolic/Hyperbolic PDE.

Also Schauder Theory

Monday, 8/26/2024

There are very explicit formula for certain PDE. For example D’Alembert, Poisson
etc.

Weak Solutions to PDE: There is some notion of solution that doesn’t have the
requisite number of derivatives in the classical calculus sense. So we lower our notion
of what a solution is.

ex. Conservation law: Burger’s Equation: u; + uu, = 0,u(x,0) = ug(z). If we try to
solve this for —co < & < 0o,t > 0, we have method of characteristics that attempts
to give us explicit formula (solution will be constant along lines of slope % ), but
there is trouble for general ug. These lines an bump into each other, so in that point
our solution has to equal two different numbers.
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Figure 1: Burger’s Equation

Can also happen that a classical solution does exists, BUT it is easiest to find a weak
solution.

- Find a weak solution

- Show it’s classical (regularity theory)

For linear elliptic PDE’s ex. Laplace’s Equation,

AU=Up,z, + -+ Ug,z, =0



in Q C R™

A weak solution satisfies the equation obtained through multiplication by a test func-
tion Cg° and integrate by parts

ie take any ¢ € C°(Q)

fQ dAu =0

=— [, Vo -Vu+ [,ooVu-v

Note that the second term is integrated over the boundary. So it goes to 0

So, if:

/w.vu:ov(;secgo
Q

We say u weakly solves Laplace’s equation because it requires only one derivative (not
two).

Definition 1 (Weak Derivative). A locally integrable function u [notationally u €

Li,.(Q)] has a weak z; derivative v if v is locally integrable and

Joude, dz = — [, vodx for all ¢ € CZ°(Q)

u and v can be terrible near the boundary but ¢ vanishes so we don’t care!
Recall: Multi-inde notation
Ifu:R* = Rand o = (a,...,a,) where o; is non-negative integer then,

gle
Ogt...0xn

eg in R? for a = (1,2, 1) then D% = Uy, pywyzs

D%y =

Definition 2. Given u,v € L} (2),Q C R” and a a multi-index, we say v is the

loc
weak ath derivative of w if integration by parts works:

if [,uD*¢dz = (-1)l° [ vpdz, Ve € CZ(Q)

If we are define weak anything, if our weak thing actually happened to be good,
we want it to satisfy the strong definition as well! For example if differentiation is
allowed, then integration by parts would actually work. So, if u© were smooth, then
our derivative would actually satisfy the solution, since

/ (D% —v)pdz =0
Q

So D*u = v almost everywhere.
Recall: uw e LP(Q),p > 0if [ |u|Pdz < oo
u € Ly, (Q) if VO CC Q, [ |ufPdo < oo

loc

Sobolev Spaces

Definition 3 (Sobolev Spaces). Fix 1 < p < oo and a non-negative integer k. Let
Q) C R” be open.

Then the Sobolev space W*P(Q) consists of all functions u € L} () such that for
every multi-index o with |a| < k, D*u exists weakly and lies in LP(2).

Example 1: Consider @(z) = |z|. Doesn’t have a derivative. What about weak
derivative?
) o -1, ifx<0;
Claim: u has weak 1st derivative v(z) = .
1, if x > 0;

We verify that using test function.
Let ¢ € C°(R)

00 0 00
LHS = [ v(x)p(z)dr = — 3 ¢(z)dx +/O ¢(z)dz
00 0

RHS = — [ @) (@) do = / o (z)dz — / " ol (2) da

—o0 0



By applying IBP

RHS:—/_Oooqﬁ(x)dx—k/()oo(b(x)dx

[boundary terms don’t matter because either = or ¢ vanishes]
Since |z| is locally integrable for any p, @ € Wllo’f (R) for all p
Example 2: Consider the Heaviside function

1, ifz>0;
u(z) = .
0, ifx<0;

Is NOT going to be weakly differentiable!
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Sobolev Space W*?(())

u € WEP(Q) if
D®u € LP weakly for all a such that || < k
This is a normed space.

=

lllwroey = | 3 / Do

la|<k

If p = 0o we just take the sup norm.

We have convergence: {u;} C WkP() converges in Wk:»
to u € WHP(Q) if Juj — ulyynpiq) — 0 as j — o0
Definition 4. W?(Q) := closure in W*?(Q)-norm of C°(Q)

Remark: W*?(Q) and WEP(Q) are Banach spaces [normed, complete [since Lp is
complete]]

For p = 2 we don’t usually use W*2(Q). We use H*(Q). H is for Hilbert. This is a
Hilbert space [there exists an inner product].

(U, v) e () = Z /Do‘uDo‘v
Q

lal<k

Holder’s inequality implies:

/ D%uD%v
Q

Let’s go back to the example.

Let u(x) be the heaviside function, 0 for negative, 1 for positive. Is it weakly differ-
entiable? Is it in some sobolev space?

Is u € WF*P(R) for some k and p? Does u have a weak solution?

Answer: No! We use contradiction.

Suppose there is such a v € L}, .(R) such that IBP holds:

loc

/]Ruqﬁ’dx:—/RU(bdx
for all ¢ € C°(R)

Then, fooo ¢ (z)de = — ffooo vodr

Therefore, ¢(0) = [*_v(z)¢(z) dx

We use this for contradiction. Consider a sequence {¢;} of test functions so that
¢;(0) =1 for all j and 0 < ¢;(z) <1 for all «.

Further suppose that the support for ¢; shrinks to the origin.

< [1D%u|| 2 [[ D 0] 22




Now, v¢; — 0 pointwise a.e.

|U¢J‘ < ‘U‘ € Ll()(‘

This gives us the desired contradiction.

Notice: ¢(0) = [wv(x)d(z) is true for the ‘function’ dirac delta. This is not really a
function, this is a distribution.

Moral of the story: We can’t have too big of a discontinuity [here we have a jump
discontinuity] and still be in Sobolev spaces.

Example: f(x) = e ‘a forx € B(0,1)={z €R": |z| <1} and a >0

For which k,p,n,a is f € WFP(B(0,1))?
Question 1: Is this in any Lp space? If no then game over.

/ ¢ / / deT'

- / T%u(aB(O,T))d

1 1
= wp " ldr =w, [ roePtrldr
o o7 0

So, feLPifap<n

Note that |D*f| < LP for || = 1 provided (a+ 1)p <n
Is f weakly differentiable for |a| = 17

Consider € < 1

B(0,1)\B(0,¢) B(0,1)\B(0,¢) B(0,1)\B(0,¢)

/ Jo, da = — / o, da + / fov,dS
B(0,1)\B(0,¢€) B(0,1)\B(0,¢) 9(B(0,1)\B(0,¢))

Note that the outer normal dissapears, we only have the inner normal.

/ FordS = / fov:ds
9(B(0,1)\ B(0,¢)) 0B(0,€)

Setting € — 0 we see that the integral converges. Also,

/ fov; dS S/ \f¢vi|§c/ |f|dS< wn =l _ 50
9(B(0,1)\B(0,¢)) 9B(0,¢€) 0B(0,€)

provided n — 1 > «
So,

/ f¢$1 doe = _/ (bfil?z dz
B(0,1) B(0,1)

So f is weakly differentiable for |a| =1

(See Appendix 5 in Evans)

Mollification:

There are lot of situation in PDE where you have a function and you don’t know how
nice is it in terms of derivative. So you convolve it so that it is nice and take some
limit.

Let n satisty n € C°(R™)

Suppose n=0 for x| > 1

Jn n(z)dz =1



Suppose 7 is radial, n = n(|z|) just a function of radial distance

Note that there is no such analytic function. But there are infinitely differentiable
ones.

Define 7, = ¢ "¢(%)

So we rescale the function.

Then given u € L}, (?) we define the mollification

ue(z) = uxn, = / u(z — y)e(y) dy = / w(y)e( — y) dy
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Given ) C R", open, bounded

Ve define {x € Q : dist(z,9Q) > e} = Q

Let n € C2°(R™) such that

0<e<1land fB(o,l) n(xz)dz =1 and supp(n) C B(0,1)
Define nc(x) == e "n(%)

Then, supp(n.) C B(0,¢€)

[ n@de=en [ yEae= [ p@)de=1
B(0,¢) B(0,e) € B(0,1)
Theorem 1. Given f € L} () define f. :== n. » f for z € Q.

loc

fole) = / ne( — ) (y) dy

Then, i: f.(x) is infinitely differentiable.

ii: fo = f pointwise a.e.

iii: If f is continuous then f. — f uniformly on compact subsets of 2
iv: If for 1 < p < oo, f € LP(Q) then f. — f in LP(2). Also true for f € I}

loc

Proof. (i): Convolution is a child, and it inherits the nicest properties of the parent.
7 is nicer.
Idea: it is legal to bring derivatives inside the integral.

fe(a:—&-he}i)—fe(x) :/Q[ne(as—i—hei—z)—ﬁe(x_y) fy)dy

Stuff in brackets converges uniformly in y to 7., (¢ — y) using Taylor remainder
theorem. '

Then Lebesgue Dominated Convergence finishes the job.

(iii) Fix K C Q where K compact.

Va € K we have | fe(z) — f(2)] = | fo(ne(y)f(z = y)) dy — f(2)]|

_ ‘ /Q ne(y) [f(@ —y) — f(@)] dy

< /Q new) |f (@ — ) - f()] dy

Since K is compact, f is uniformly continuous on K.

So, V3 > 0 we have €y such that Ve < eg such that Vz,y such that |y| < e we have
F—y) - f@)| < B

So,

< /Qne(y)ﬁdx =p



What is the relevance to Sobolev spaces?

Often we are going to try to prove some estimates. We want to prove some inequalities.
Then, we mollify and prove it for the mollification. If we mollify a Sobolev function,
we get an approximation.

Theorem 2 (Local Approximation Away from 0Q). Assume u € W¥5P(Q) [aka
function has k’th weak derivatives which are locally integrable in order p]. Define
ue = ne xu in Q. = {x € Q : dist(z, 9Q) > €}

THen, u, € C*(Q)

And u, — u in WEP(Q)

Proof. Note infinite derivative we already have by property of mollification.

Fix the multi-index « suh that |a| < k.

Claim 1: D%, = n. * D%u

In other words, mollification and derivatives commute.

To see this, consider x €

D%y, = D* /Q ne(z — y)u(y) dy
=/D§ne(x—y)U(y)dy
Q
= (—=1)le “Ne(x — y)u
(-1) /QDyne( y)uly) dy

= (~1)lel (=1l /Q ne(a — y)D®u(y) dy

=n.x D%
proving the claim. -
Now, fix V C Q with open V C Q (V CC Q)
Apply previous theorem, item iv and the claim
D%*u. — D*u in LP(V) for all « such that |a| < k

Theorem 3 (Global Approximation). Theme:

Sobolev can be approximated by smooth sobolev

Let Q C R™ be open, bounded. Assume u € W*?(Q) for 1 < p < oo

Then, FH{u,,} € C=(Q)NWHFP(Q) [infinitely smooth AND sobolev] such that wu,, — u
in WHP(Q). Meaning:

li

im
m—0o0

l[um — u”wk,p(g) —0

Idea of Proof:




We have a bunch of €; with (=, Q; = Q
Use a partition of unity {¢;} so that > ¢;(z) = 1, mollify.
Proof is on Evans.
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Traces

We are going to solve PDEs using Sobolev spaces. We typically specify boundary
conditions in PDEs. But in first glance, since Sobolev functions are defined upto a
set of measure zero, it seems ill suited to dealing with boundary conditions [since
boundary 92 has measure 0].

How to define boundary values for a Sobolev functions?

We are going to establish an inequality for smooth function.

Theorem 4. Assume 0 is C! surface!. Then 3 a bounded linear operator T :

WhP(Q) — LP(0R) for 1 < p < oo such that:
i) Tu = ulapq if u€ WHP(Q) N C(Q)
i) [Tullps o) < C llullysq) for some C = C(p, )
Proof. Outline:
1) Fix xg € 0Q. Suppose 99 is ‘flat’ near xy. In fact, define ball B centered at x
such that inside B, 01 is flat.
[insert picture]

Then we can define ' = (21, -+ ,x,—1). If the last coordinate is positive, we
are inside ).

Inside B, 09 is flat. we can define B’ C B centered at xg.
Let ¢ € C§°(B) so that ( =1 on B’ and ¢ > 0.

Define I' := 9Q N B’.

Assume u € C1(Q).

/ [ul? dz’ < / ClulP da’
r {z,=0}NB

:_/ (0u707<—|u‘p)(07,07—1)d{£/
{z,=0}NB

We are almost set up for divergence theorem. Since ¢ = 0 on the boundary of
B, we actually have the whole boundary! Applying the divergence theorem, we
get:

—— [ S K@h@P) o

ne axn

u
= 7/ |:<.’Enu|p + Cp|u|p717uzn dx
BNQ |ul

_— / (o luf? + CpluP~ sgn(u)ug, ] da
BN

Now we use Young’s Inequality.

Imeaning 92 can be described as the graph of a C'! function.



Theorem 5 (Young’s Inequality). For any a,b > 0 and p, ¢ such that %—}-% =1,
we have:

aP  b?
ab < — + —
p q

We are estimating abolute value, so we can take absolute value. Using Young’s
inequality on a = |u,, | and b = |u|P~!,

/ lulP” dz’
r

oo . (|u|p—1)p/(p—1) |uznp”
S/B [CE"HM +pC|[ -1 T ||

<c / [uf? + [Vul?] dz < C / [uf? + |Vul?] de
BN Q

Now, 02 € C! means, centered at any point o € 9Q 052 can be written as a
graph x,, = f(2') where |f|c, is bounded.?

Therefore, Ball inside of which 02 is a graph has radius R depending on C'*
norm.

2) For the next step, we flatten the boundary of Q by a change of variables.
[insert picture]
[insert picture 2]

Change variables: y = (¢, yn).

Set 3/ = 2
Yn == Tpn — f('r/)
y = G(x).

So, ¥, = 0 means z,, = f(z'), which means we’re on the graph.

We can think of this in terms of the Inverse Function Theorem. What is the
Jacobian of G?

Jac(G) = det VG = det =1
7fr17fr27"'7f1n—1 1
So, G~ lis C1.
Then, [VG| < C(09) and |[V(G™1) < C(99Q)|.

u is a given function. We can define a new function that has a flat boundary
which we can use instead of u.

Define @(y) = u(G~1(y)).
Then, u(z) = 4(G(x))
Suppose G(I') = G.
Then, Step 1 implies,

[y <c | i+ [VaP) dy
r shaded region

Where the shaded region is {z | z,, > f(2),x € Br}. Now,

2|fle, = sup|f|+sup |V



Vi(y)| < |[Du- V(G| < C|Vu|

Continuing,

[y <c | i+ VaP) dy
r shaded region

— /|u|pdsc’ < c/ ([l + [Val?] dz < c/ ([ul? + [Vul?] dz
r QNBxr Q

Which finishes Step 2.
3) Decompose 9S) into Ng pieces, and add them up using Step 2.
Since 0N is compact, Ng < N(99Q).

[insert picture]
We have: Vu € C1(9),

[ P as < 0. [ [ul + Vul) ds
o0 Q

Now, suppose u € W'P(Q). Approximate u in W' norm by {u,} C W'?(Q)n
C'(Q). Then,

”“m - “l”m(ag) <C ||Um - ULH%/LP
—_————

cauchy sequence

RHS — 0,80 LHS — 0 for m,l > 1.
Therefoe, 3Tu € LP(OQ) which is the limit of this cauchy sequence.

Friday, 9/6/2024

A few comments about traces.
Last time: If u € WHP(Q) for 1 < p < oo and 9Q € C! | we can define the trace of u
on 0, Tu € LP(0N) and 3C = C(p, ) such that,

||TuHLP(6Q) <C Hu”vvl,p(g)

Recall: WP (Q) = closure of C2°(2) in the W** norm.
Suppose k = 1,u € Wy?(Q). Then, Tu = 0 on 99
Also, if k > 1 and u € wgP(Q), we have Tu = 0.

In fact, T(D“u) = OV« such that o < k — 1.

Calculus of Variations

Our objects of interest are functionals.
Consider an integral functional of the form:

E(u):/QL(x,u,Vu)d:c

We use E because this often denotes Energy. It comes from physics often.

In that case, we call L an energy density. It is also often called the energy density.
A fundamental problem is:

Determine the infimum of £ among all functions u in an admissible set .27

We define:

m = ulél; E(u)



“First Variation of E”
This is the ‘calculus of variations’ version of a derivative.
fQCR"and u:Q — R,

L= L(z,z2,p)

where: x is a point in @ C R™

z € R [we put u here]

p € R" [we put Vu here]

We put u in E, but we purtrube it a little bit.

Suppose u € o, and v such that u + tv € & for |t| small.

E(u+ tv)

Then, ¢ — E(u + tv) is a function R — R. We take derivative and set t =0

d

T E(u+tv) = §E(u;v)

t=0
Note: if w is a minimum of E, i.e. E(u) = m, then the first variation d E(u;v) = 0 for
all v such that v +tv € &.

Definition 5. u is called a critical point of E in & if dE(u;v) = 0Vv such that
u+tved.

Question: What is true about a critical point « of an integral functional of form (x)?

d
0=a

E(u + tv)
t=0

d

=— /L(x,u—i—tv,Vu—i—th) dz
dt,—o Ja

n

0
:/Q azxuVu Z xuVuva dz

h

L
{8(33, u, Vu)v + V,L - va] dx

Applying IBP,

+/ vVpL(z,u,Vu) - vdS
re)

Now, suppose all allowable v’s are included in C2°(2) functions. That would make
the boundary term 0. Then, since we can choose v however we want, the big integral
is 0.

This is a 2nd order PDE. This is called the Euler-Lagrange equation for F.
Example: Take F(u) = / \Vul®> + W (z,u) dz

Here L(z,z,p) = 5lp|* + W (z, 2)
Then, we find the Euler Lagrangian.

0L

o 1, ., ]
— (@, z,p) =7 |3 + Wiz,u)| = pj
apj( p) a; [2pl W(z,u)| =p;

10



a—L(x, u, V) = Uy,

6pj
Also,
oL ow
5(33,2717) = g(%z)

So, the Euler-Lagrangian equation gives us:

—~ 0 oW
;ﬁj(“m) = a(%u)

ow
Au = y(:m w)

This is a Nonlinear Poisson Equation.

Question: What should we choose &7 to be to make our life easiest?

We want integration by parts to be justified, but we want our topology to be weak
enough so that finding minimizers is easy.

In the previous example, we have integral of |[Vu|?. So, ideally we want it to be L2
So, in the example, best choice is H* ().

How does one find a minimzer?

Direct Method: Our problem is, we want to find u € &/ such that:

m = inf F(u)
uc

Idea: We find a sequence {u;} [called a minimizing sequence]: so that {u;} C &7 and
E(u;) = m.
Step 1: Try to get a convergent subsequence of uj, — u, € «/. [Compactness]
In this step, if we choose &7 to be ‘too strong’, we lose. Ideally we want </ to be
sequentally compact.
Step 2: F might not be continuous in this topology, then we don’t have E(u.) = m.
So, we want lower semi-continuity.

liminf E(u;, ) > E(u.)

k—o0

Then we have E(u,) < m.
This tells us that u, is a minimum.

Monday, 9/9/2024

Theorem 6 (Extension of Sobolev Functions). Assume Q C R", open , bounded
with 9Q € C'. Then, 3C = C(p, ) and an extension E : WHP(Q) — WP(R") such
that:

i) Bu=uin Q
ii) Fu has compact support
iii) HEU“WLP(Rn) < CHUHWLP(Q)
Idea is, we can let a function down to zero ‘gently’ and extend that way.

Theorem 7 (Gagliardo - Nirenberg - Sobolev Inequality). Assume 1 < p < n.
Then, there exists C' = C(p, n) such that for every u € C}(R™) [compactly supported
continuously differentiable function] one has the following inequality:

lull o= (mny < CNVUll Lo )
Where p* = n”_pp is the critical sobolev exponent.

np _ np—p’+p° _ p’
Note that H = nifp —p-l-ﬂ >p.

11



Question: Where does p* come from?
Given u € CJ(R™), define:

ux(z) = u(Ax)
for X > 0.

Suppose [u]1qgny < C [Vl gny
For which ¢ could this be true? Consider the norm of the scaled function:

luxll Lo = [/R Iu(Am)|qur - ﬁ [/R |U(Z/)|qdyr

P 1
Vsl = | [ Faatwpas|” = o)
R™ AP

——
1—n

=\ P

v ]

s =

Applying the same inequality,

vl 'u(y)qdy]; <ovs [ Iwmwf

n

TVl YA >0

[ull o < CA'2H

This means 1 — % + % must be 0.

Therefore, ¢ = p*

So, if the theorem is true we must have the gq.
Now we prove the theorem.

Proof. First take n = 3.

Take p = 1.
z1
u(x):/ Uz, (Y1, 22, 23) Ayt
x2
u(x) :/ U, (T1, Y2, 73) dy2
z3
(@) = [ty (1.2, 0)
Therefore,

Multiplying, |u(z)[?

< [/ |Vu(y1,x2,x3)dy1] [/ |Vu($17y2,x3)dy2] [/ |Vu(x17x2,y3)dy3]

— 0 —0o0 -

Therefore, |u(x) |% <

[/ VU(y17$2,$3)|dy1] [/ |Vu(x1,y2,a?3)dy2] {/ |VU(SU1,CC27y3)|dy3}

— o0 —o0 —0

=Ii(z2,23) =Ix(xy1,23) =I3(x1,22)

12



Integrating with respect to x; and applying Holder,

ol
[N

/Oo ()|} day < (I (2, 23))F UOO Ig(xl,xg)dxl]

— 00 —0o0

[ e an]

repeat for xo and x3 and use the fact:

[uta<[[ 7] [[#]
// | Ju@)]F dz < { //R3 Vute) dx}

Therefore, [lu]l 3 < ||Vull,,

We see that,

For p = 1,n > 3, same proof, but use ‘generalized Holder inequality’ given by:
[ ] < s

providedpilJr...Jrizl

Now, for any 1 < p < n, let v(z) = |u(z)|” for some v > 1

v € C§ since u € C§. Use previous case [p = 1]. Note that, in that case, p* = -2+
Also note that, Vo = y|u|""!sgn(u)Vu

Therefore |Vo| < v|u|7~1|Vul

Then,
[ pei] < [
{/ ulrll} ' S’Y/\ulvfl|vu| Hb‘%ﬂer’y [/|u(~,_1)ppl}p {/Wu'pr

We pick v = p(:i:;) > 1. This gives us,

yn (y—1p n .
= — =
n—1 p—1 n—1 b

So we get:

n—1_ p—1

[ / |u|ﬂ <[ Vull,
[ / w*} <[ Vull,

[ull Lo < ANVl Lo

Wednesday, 9/11/2024

Theorem 8. Assume u € Wg’p(Q) for Q C R™ open, bounded, 92 € C'. Then, for
1 < p < n there exists C' = C(p,n, Q) such that,

[ull o < ClIVullLeo

for p* = %

[Note that before we had condition u € C§(R™), so this is a stronger theorem]

13



Proof. Extend u to be @ € WHP(R") so that it is compactly supported
[insert picture here]

Then we approximate @ by smooth functions {u,,} C C§°(R™).

Apply previous result to get:

[em = ]| o < ClVum = Vujl[r = 0

Therefore, {u,,} is cauchy in " (Q).

" (Q
So we have u,, %( ) u

To prove the inequality, we let m — oo in the previous result.

O
Corollary: For 1 < ¢ <p* and 1 <p < n, 3C = C(p,n, Q) such that,
[ullLae) < ClIVull (o)
Proof. By Hélder,
[vllLe < C'llollL Vg < p*
O

This is only half the story since we have p < n. What if p > n? What about p = n?

p =n case

Here u € W,™(Q)

Note that p* = —*2- which is undefined. So we have problem. For that, we do:
Suppose € > 0. Apply GNS inequality for p. =n — e.

Then p; = ;= = @ We have:

lll o gy < Cell Vel oo

Such an inequality exists for every e. So, u is in every L,(£2) space for 1 < g < oo.
Note that ¢ = oo not necessary, there are counterexamples.

Corollary[Poincaré Inequality]: For  C R™ open, bounded and for 1 < p < oo there
exists C' = C(p,n, ) such that

ullzr ) < Cp,n, Q)| Vull e o)

This is true for all u € Wy (Q).
This is weaker than previous inequalities, since p < p*.

What if u € W' or u € Wy and Q ¢ R” and p > n?

These functions are even better!
But first we need to talk about Holder Continuous Functions.

Definition 6 (Holder Quotient). Let 0 < a < 1. Define Hélder quotient:

u(z) — u(y)|

Ul 0,00y = SUP
[ }CO (£2) ‘$*y|o‘

z,y€EQ,x#y
Definition 7 (Holder Space). u € C%(Q) if
ullgo.e @y = sup [lu(@)| + [ g)| <o

€N

This is a Banach Space.
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Note: if u € C%%(Q) then u is uniformly continuous.
Example: Suppose Q = [0, 1] and u(z) = 2 for any 3 € (0, a].
[graph]

It’s derivative goes to oo but it is still Holder continuous.

Theorem 9 (Morrey’s Inequality). Assume n < p < oo. Then 3C = C(p,n) such
that

[ullgo.r(R") < Clluflwr»(R)
for all u € C}(R™) where vy =1 — .

We can approxunate so this is also true for u € W P(Q).
Thus, when u € WO P(Q) we can say that u is in fact Holder continuous.

Proof. We have to prove that both sup and the Holder quotient are controlled by the
Sobolev norm.
Step 1: Claim: There exists C = C(n) such that Vz € R™ such that r > 0,

][ lu(y) —u(z)[dy < c/ L(y)_'l dy YueC'(R")
B(z,r) B(z,r) |y - ‘/L"n

Proof of Claim: Fix z. Fix r. Fix w € 9B(0,1). Then,

u(z + sw) — u(z)| =

S d S
/ u(x—l—tw)dt‘ S/ |Veu(z + tw)] - |w| dt
o dt 0 —~

Integrating over all w € 9B(0,1) we get

/ lu(z + sw) — u(x)| dS, < / / |Viu(z + tw)| dt dS,
wedB(0,1) wedB(0,1) J0

// |Vou(z +tw)| t"1dS,, dt
wedB(0,1) —_——

=dS on 0B(0,t)

Let y=az+tw = t=|y— x|

B(z,s) |y - x|n

<f I,
B(z,r) ‘y - x|n

TBC

Friday, 9/13/2024

Continuing Morrey’s Inequality.
We had:

[ e —uias,< [ VL,
8B(0,1) B(z,r) ly — x|

n—1

Multiplying by s™~*,

n—1
/ lu(x + sw) — u(z)[s" 1 dS, < / M dy
8B(0,1) Bz 1Y — x|

Integrating over s from 0 to 7,

// u(z + sw) — u(x)|s" "t dS, ds<// [Vul)ls™ T dyds
8301) (2,7 |y—:1c|”

15



// ) —u(x)|dSy ds<// Nuyls™ T dyds
aB(:vs) B(x,r) Iy_x‘n

Vu(y
/ L
- ) 9= 1]

1 / 1 [Vu(y)|
u(y) —y(z)|dy < / dy
a(n)r” B(z,r) | ( ) ( )| na(”) B(z,r) |y - x|n—1

which is the claim.
Step 2: (Bounding sup |u])
Fix z € R™.

mwnﬁmmu@n@

gf7 wmw—mwMy+f’ ()| dy
B(z,1) B(w,1)

First term: apply step 1. Second term: apply Young’s inequality

(/ uww)uw
B(z,1)

(@l <€ WdWC(/L’pldy)pP

Bz Y — x|

Now apply Hélder’s inequality on the first part:

1 1 o
————|Vu(y)|dy < / [] dy
fyoy eIV le@ PR

We simplify:

p—1 D
=25 P R o
/ {1 } Ty = / / s D5 45 ds
B(z,R) LIy — 2" o JoB(o,s)

p=1 p=1

p=1 R . 2=l
/ Snflf(nfl)ﬁ ds
0

= / st Tw(n)s" tds =C
0
=C [R”*”*”ﬁ] P CRYT () Z ORYE (w)

-1

Applying R = 1 on (xx) and substituting to ()x),
[u(@)] < C [ Vull o

Step 3: Bounding the Holder quotient [u]go.:
Fix z,y in R™ and let r = |z — y|.

Define W = B(z,r) N B(y, r).

[insert picture]

Iwﬂu@)fQHMMU@%h

<} @) —u)laz+ £ july) - u(e)]d:

lu(z) —u(z)|dz < — lu(z) — u(2)|dz

Now,

<C(m) fB( @)~ u(a)la:

16



Applying the claim,

cof v,
B(z,r) |',1j - Z|n
Applying Holder and (x),

< ClVul o gn) rTy

So we're done.
O

Theorem 10. Let Q C R™ be bounded, open with 9Q € C1. Assume n < p < 0.
Then, 3C(n,p, ) such that: for every u € WHP(Q) one has u € C%7(Q) where

n

’y:l—gand:

H“”co’v(ﬁ) <C ||“HW1,p(Q)

So, if our Sobolev LP space is better than our dimension, our function must be con-
tinuous, or even better, Holder Continuous!

Actually, Sobolev Functions are defined upto a set of measure 0. So, we actually have
a continuous representative.

Proof. Extension Theorem O

If we have W*P we can have better statements.

Morrey and G-N-S inequalities can be concatenated.

[See Evans]

Example: Suppose u € W22(Q). Suppose Q C R? and bounded.

u € H?(Q) therefore u,, € WH2(Q).

p=2,n=3. Use GNS. 2* :%:

Thus, u,, € L* = LS.

Since also v € W2, u € LS.

Therefore, u € W1 . We have jumped above the dimension, since p = 6,n = 3.
n < p so we can use Morrey.

= ue 0% (Q) where'yzlfgzlf%:
So, u e W22 = ue C%2(Q).

Monday, 9/16/2024

Definition 8 (continuously / compactly embedded). Given two Banach spaces X,Y
with X CY we say X is continuously embedded in Y if 3C' > 0 such that:

lzlly < Cllz||xVr € X

X is compactly embedded in Y if it is continuously embedded and every bounded
sequence in X is pre-compact in Y.

In other words, if every bounded sequence in X has a Y-convergent subsequence.
Typically people use X CC Y to denote this.

Theorem 11 (Rellich-Kondrachov Compactness). Let Q@ C R™ open, bounded with
9Q C CL. If 1 < p < n then WHP(Q) ccC LY(Q) for all q € [1,p*)
[here p* = n"fp]

P
Remark: We already have continuous embedding for ¢ € [1, p*] by GNS inequality.
Theorem 12 (Holder Generalization). Assume 1 < s <r <t < oo and 1 = ’”—59 +
@ for some 0 € (0,1).
Then, if u € L5(Q2) N L*(2) then u € L"(Q) and:

ullp?

6
LS

[uflzr < lul

17



Proof.

) r(1-6)

/|u|r:/ |u|r0|u|(1—9)r < |:/ |u|7~9:9:| s |:/ ul(l—e)f.r(lte):|
Q Q Q Q

0 r(1—0)
t

] (]

Proof of Rellich-Kondrachov. Assume |[um, |lw1.»q) < Co

Step 1: Mollify u,, ~» uf, and argue that uf, approximates w,, [uniformly in m] in
L.

Step 2: Apply Arzela-Ascoli to {ug,} for each e fixed.

Step 3: Use diagonalization argument. We control things when m is fixed, we control
things when € is fixed so we can vary both.

First extend u,, to be compactly supported in V' 2 €. Still have |[um, ||w1.rv) < Co.
Now Mollify: uS, = 1 * up,. 1e(z) = € "y (£) with n € C§° and supp(n) C B(0,1)
with [n=1

Note u, is compactly supported. Say supp(us,) C V. V' C V.

Claim: {u¢,} converges as € — 0 t0 u,, in L2(€) uniformly in m. That is, we claim:
Vo > 0 there exists ¢y > 0 such that Ve < ¢

O

l[umm — umHLq(V) <4

Vm.
To see this, first assume u,, is smooth.

U, (1) — () = /B o ) () () dy

Let z =%

/ ) [um (z — €2) — up(x)] dz
B(0, 1)

—etz)dtdz

S / St et2)

:76/ n(z / Vum(r —€tz) - zdtdz
B(0,1)

/ / / 2)| Vi (x — etz)| dt dzdx
B(0,1)
—e/ / / 2)um (y')| dt dz dy’
B(0,1)

— ¢ / Vet ()] dy/
\%

Let v/ = x — etz

Apply Hélder:

< €C|| V|| 1r < €Co
If w,y, is not smooth then approximate w,, by @, smooth such that |G, —wm||wier < 0

for all m.Then,
[ @)~ wn(o)] do <
v
/ |us, () — U (x)| da +/ [t () — U (2)|dz < 5+ 6
1% v

18



Now apply interpolation:

e, = wmll vy < gy = il o — w157

E ~
Recall GNS gave us ||uf,, — tml|za(v) < Co

Wednesday, 9/18/2024

€ —-n r—y
< [ 77< )|um<y>|dy
\%4 €

<em / ()] dy
\%

<€ "||tm|lwrrvy < constant

Note that

Vo) = [ v (T2 Lt dy

€
rz—1y\|1
Vn( . >‘ ~lum(y)|dy

< ™D gup |V / ftn ()]

Vs, ()] < /
\%

< " sup | V||| wm || wre vy < constant

Therefore, s, is equi-Lipschitz and thus equicontinuous.
Step 3:
Claim: We can find a subsequence {u,; } of the u,, so that:

lim sup||tm; — Um, ||Laqv)y <9
J,k—00

Use step 1 to find € such that ||uS, — wm|ze(vy < § for all m.
Apply Arzela-Ascoli for that e to get subsequence u,,; such that:

lj_rzljtolfllu;j — U, | =0
:

= |uf, — um, llLavy) =0

Therefore,
€ € € €
s =i gy < o, = i, + e, =, + e = o
Take limsup; ., to see < g + 0+ g =4
L _
Then take 6 =1, %, i -+ - [subsequences of subsequences] to get Uy, —> U

Remark: What if [um||y1.0(q) < Co with n < p?
Morrey’s inequality gives us:

||ucho,a < constant

|um(1:) - um(y)| < C(|‘1j - y‘a

Thus we also have equicontiunity.

19



Elliptic PDE Definition

Suppose u = density, amount/volume, v = u(x,t), v € R3.
Let © C R? be any domain where the whole process is taking place.
Suppose we want to know the amount of stuff in Q in time ¢. It is:

/Qu(x,t) dx

Now we ask: how does it change w.r.t. time?
— [ u(z,t)dx
a /., (z,1)

This depends on the stuff enterring or exiting [= flux accross 9] + sources/sinks.
What is flux? It must be a vector Q(x,t) . So, total contribution of flux is:

- Q(z,t) - vdS
a0

Plus sources/sinks density.

Jr/ F(x,t)dx

Q

Thus we have,
d -~
— | u(z,t)dz = — Qz,t) - vdS +/ F(z,t)dt
dz Jg a0 Q

The choice of flux Cj distinguishes different physical settings.
Let’s rewite our equation as 1 volume integral.

/ [ut(z,t) +divG(z, t) — F(x,t)} dz =0
Q

This is true for arbitrary €2 so we have:

—

uy = —div(Q) + F
Naturally, we pick @) to model a diffusion process.
If there’s a lot of stuff ‘inside’ then stuff will go outside and vice versa. So, we can
take,
Q = —kVu

Or more generally,

Q=—A(z)Vu
where A is positive definite 3 x 3 matrix.
For Q = —kVu we have:
up = div(kVu) + F = kEAu+ F
which is the heat equation.
For Q = —A(x)Vu,
uy = div(A(z)Vu) + F

This is a model where stuff ‘smooths out / settles down’.
As t — oo we expect u(z,t) = a(z).

In that case, — div(A(x)Vu) = F.

If A has entries a;;(z), then,

20



div(A(z)Vu) = Z %(aij (z)uz,)

This is an elliptic operator [if a;; = a;;, A positive definite].
This is the divergence form.

Friday, 9/20/2024

Assume A is symmetric. We define the linear elliptic operator L by:

i) Lu= —%j (aijuz,) + bi(2)ug,; + c(z)u [divergence form elliptic operator]
ii) Lu= —ai;(2)uz,;a,+b;i(2)uz, +c(x)u [non divergence form| where b; : @ — R, i =
Lo ne: Q=R OQCR™ If a; are C* then a;;(x)uq,o, = aij (@i (x)ug,) —

(a%aij (»”C)) Ua,
Why elliptic? A = (a;;) and a;;(2)&&; > 0€]* VE € R™ for some 6 > 0.

Definition 9. We say u € H}(Q) [same as W] is a weak solution to the equation
Lu = f for some f € L*(Q) and u = 0 on 9 [homogeneous Dirichlet condition] if:

/AVu~Vvda:—|—/bi(x)ux,ivdx—k/c(x)uvda::/vfda; (%)
Q Q Q o
for all v € H}(Q).

Definition 10. We say u € H'(2) is a weak solution to

Lu = f, in Q;
AVu-vgg =0, on 0N

[Neumann boundary condition]
if () holds for all v € H'(Q).

Suppose

/ @i (x)ug,vj + bi(x)ug,v + cuv dx + / vAVu-vde = / fodz  (xx)
Q 1) Q

why? Suppose u was a classical solution. Then integrating by part yields the second
equation.

Functional Analysis

Background on Hilbert Spaces

Recall: a Hilbert Space H is a Banach space [normed and complete] that posses an
inner product (+,-)g such that ||-|| is inherited from the inner product.

Basically: complete space with inner product.

Example: R™ with dot product, L*(Q) with (u,v)z2 = [, wvda

Or, H'(Q) with (u,v)g = [yuwvdz + [, Vu-Vodz

Or, most importantly, in Hg () we have (w,v) gz = Jo Vu-Vudz

By Poincare, then C|jul|%, < ||u|\§{é = [o|Vul*dz < Cs||ull?

Given u,v € H we’ll say u is orthogonal to v if (u,v) = 0.

Given a subspace M C H, we'll write M+ = {v € H : (u,v) = 0Vu € M}

Proposition 1. Let M C H be a closed subspace of H. Then Vz € H,Jy € M,z €
M+ such that z =y + 2.
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Proof. Idea: y is the point closest to z in M.
Consider ¢ M. Define

d= inf ||z—2|
r’'eM

Then there must be a sequence {y,} C M such that ||z — y,| — d.

Recall:

IX = Y? +1X +Y[? = 2| X[* + 2| V||
Pick X =2 — yn,Y =2 — yp,. Then,

2

1
&= 5 Wn +ym)|| =2lz—yal® + 2]z - yul®

| Ym — yn | + 4 5

Therefore,

Ad* + ”yn - ym||2 < 2H$ - yn”2 + 2H$ - ym||2

1y = ymll® < 20|z = yul* + 2|2 — ym||* — 4d°

Taking limsup we see that {y,} is cauchy.
Define z = x — y. It is easy to see that z € M.

Monday, 9/23/2024

Divergence from Linear Elliptic Operator
0
L(u) = —5—(ai;(2)us,) + bi(2)ue, + c(z)u

81']‘
Uniform ellipticity:
a;j = aj; symmetric
ai;(2)€:€; > 01€]2VE € Rz € Q for some 6 > 0.
Meaning minimum eigenvalue is uniformly bigger than some 6
Review: u € H} () is a weak solution to Lu = f in Q for f € L*(Q) and u = 0 on
oq if:

B(u,v) = / [aij (2)ug, vz, + bi(@)ug,v + c(z)uw] dz = / foda Vo € HY(Q)
Q Q
u is a weak solution to Lu = f in Q@ and AVu - vgg = 0 on 01 if
B(u,v) = / fodaVv € HY(Q)
Q

Note that B is a bilinear form.

Definition 11. A bounded linear operator L : X — Y that is linear that satisfies:

I :=sup [[L(z)]y < oo
o)l x <1

For linear operators, boundedness is the same as continuity.

Definition 12. A bounded linear functional on X is a bounded linear operator L :
X—->R

Notation: If u* is a bounded linear functional we’ll often write (u*, x) for the evalua-
tion of u* at x.

[w*]] = sup (u",z)
e <1
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Definition 13. The dual of a Banach Space X is the set of bounded linear functionals
on X. Notation: X*

Theorem 13 (Riesz Representation Theorem). Assume H is a Hilbert space with
inner product (-, -).

For every bounded linear functional u* : H — R there exists a unique u € H such
that (u*,v) = (u,v)Vv € H and ||u*|| = |Ju|

Proof. Suppose u* € H*.
Let N be the nullspace of u*:

N={veH: {u",v) =0}

If N = H then (u*,—) = 0 so u must be 0. Assume N is a proper subspace. N must
be closed since u* is continuous.

Fix z € N+, (u*,2) #0.

Then Vx € H we have:

<u*,x - <“*’f”>z> = (u*,z) — (u*,z) =0

(u*, 2)

Thus, z — EZ*Q € N.

(-5 -
— (@0:2) = f P

We just take u = wz
Uniqueness: if (v*, z) = (u1,2) = (u2, z) then (u; —ug,x) = 0, choose x = u; — ug to
deduce that u; = us.
Ju*|| = sup (u*,z) = sup (u,2) < sup |lullg|zllaz < |ulla
llzll<1 llzll<1 lzlI<1

On the other hand,

u, u u
nw=(’)=<m,>Suw
Tl T
Thus [Jul] = Ju]

Solving a PDE [finally]

Poisson: Find a weak solution to —Au = f where f € L?(2) in Q and u = 0 on 9
We seek u € Hi () satisfying

B(u,v):/VUondx:/fvdeveHé(Q)
Q Q

Recall: By Poincaré’s inequality, an inner product for H} can be taken as:

(w,v) gz = /QVu~Vvdx

We seek u such that:

(w,v)p = /vadev € Hy(Q)
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Existence of unique u follows from Riesz Representation. We just need to show that
v [, fvde is a bounded linear functional on Hg ().
It is obviously linear.

sup / fode < sup | fllzelollze < cp- 1]z
Q

<1 <1
ol g < el g <

Where ¢, is the Poincaré constant: [u? < ¢, [|Vul*Vu € H}

Wednesday, 9/25/2024

Last time, we used Riesz Representation Theorem to get existene of a weak solution
to Lu = f in  and v = 0 on 02

for Lu = —%(aij(x)umi) =f

a;; elliptic.

Weak formulation: seek u € H}(Q) such that:

Blu,v] = / iUz, Ve AT = / fodz Vv e HY(Q)
Q Q

For —Au = f we seek u such that Blu,v] = [, Vu - Vv where Blu,v] = (u,v) g1 (q)
How do we obtain a weak solution for

Lu = 661‘3 (aij(z)ug,) + bi(z)uy, +c(z)u=f

Consider:

Blu,v] = / iUz, Va; + by (T)Uz,v + c(w)uv dz
Q

Not symmetric so not an inner product but that’s not the only problem. Consider
1-dim.

" —u=1 Q=(0,n)
u(0) = u(m) = 0.

Suppose u solves this.
Multiply the ODE by sin x and integrate.

s s
/ —sinx-u”—sinm-udxz/ sinzdxr =2
0 0

Note

Us s ™
/ —sinz - v’ dz = [—sinz - u']§ — / cosz - u' dz = [—cosz - ul) + / sinz - udx
0 0 0
Therefore, by plugging it into the original argument,

0=2

Thus we don’t have solutions!
Today: Lax-Milgram Lemma

Theorem 14 (Lax-Milgram Lemma). Assume B : H x H — R is a bilinear form on
a hilbert space H. Suppose,

i) Ja > 0 such that B(u,v) < allu| - ||v||Vu,v € H
ii) 38 > 0 such that Blu,u] > B|ul?
Then we have the same conclusion as Riesz: Vf € H*3lu € H such that Blu,v] =

(fyv)Vvoe H

24



Proof. For any fixed u € H consider the map v — Blu,v].

It is a bounded linear functional in H.

Apply Riesz Representation: for each fixed u there exists unique w € H such that
Blu,v] = (w,v)Vv.

We write Au = w

Then Blu,v] = (Au,v)

Claim: A: H — H is linear, bounded, 1-1

Linearity: Blciui + caus,v] = (A(ciug + caus),v)

= ¢1 Bluy,v] + caBlug, v] = ¢1 A(u1,v) + caA(ua, v).

A is bounded since ||Au||? = (Au, Au) = Blu, Au] < afjul|||Au||

A is 1-1 since B||u|? < Blu,u] = (Au,u) < || Aul||ju]|

So Bllull < || Al

So, if u # 0 we have Au # 0 so 0 is the only element in the kernel, so it is 1-1.
Claim: range of A, R(A) is closed.

Consider {w;} C R(A). Suppose w; — w. IH{u;} C H so that Au; = w,

Since w; are cauchy, u; are cauchy:

lw; — wi | = [[Au; — Aug|| = Blluj — ux|

— u; are cauchy. So u; — u € H and by continuity Au; — Au = w and thus
R(A) is closed.

Claim: R(A) = H.

If not, apply projection lemma. Jw € R(A) L so that w # 0.

ﬁ”uHQ < B[w,w] = (Aw’w)

Since Aw € R(A) we have the inner product is 0 and thus w = 0.
Now, let f € H* be any bounded linear functional. Apply Riesz to show that there
exists unique w € H such that (f,v) = (w,v) = (Au,v) = Blu,v] for unique u.

O

Theorem 15. For Lu = —%(aij(aj)u%) +b;(z)uy, +c(x)u with a;; elliptic and with
g5, bi, cE LOO(Q)

Then there exists a number v > 0 such that Vu >~ :

a weak HE () solution exists to:

Lu+ pu = fin Q
u =0 on ON

Vf e L3()

Proof. We just apply Lax-Milgrim
We will prove:

1) 1Blu, v]| < allull g llvllm
i) Blu,u] +[ullz: = Bllull,
First Condition: Need to check Blu,v] < a|ul|ga[|v]|gy for some o
Blu,v] = / @i (T) Uy, Vg, b5 (T) g, v + c(x)uv dz
Q
< Blu,v] < / 2 M|Vul| Vo] + nM|Vaul|v] + M|u|[v] do
Q
< 0 Ml|ull gy 0]l sy + Ml gy o]l 2 + Ml g2 ]|v]l 2
Apply Poincaré
< allull g [|v]

So we have the first condition.
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Now we check the second condition.
Blu,u] = /Qaij (2) s, sy + bi(T) Uz, u + c(2)u” da
Use the fact that a;; is elliptic, meaning a;;(x)¢;¢; > 0|¢|?
> 9/9 Vul? = nM|Vullu| — Mluf dz

We don’t have to worry about the —M|u|? because we can choose . We need to deal
with —nM |Vul|ul.
Recall that AM-GM implies:

1
2 2 2
e“a +74€2b > ab

1
> 9/ |Vul|* —nM <5|Vu|2 + 2u|2> — M|u?| dx
Q 4e

M
29/ (1= nde) |Vl — (M + 2L 12 da
Q 4e?

We can choose ¢ so that nMe = g and then choose appropriate . So we’re done.
O

Theorem 16. For L as defined, Vu > yVf € L?(Q) there exists a unique weak
solution to L,u = f,u =0 on 02 where L, =L + pu

Proof. Lax-Milgrim: By, [u,v] :== Blu,v] + p [ uv so L, has inverse. O

Functional Analysis

Definition 14 (Adjoint). Given a bounded linear operator on Hilbert spaces

A:H — H H is a Hilbert space
The adjoint of A is the bounded linear operator A* : H — H defined by:

(z,A%y) = (Az,y) Vo,ye€ H

If A= A* we say A is self-adjoint.
Example: If H = R" then A is a matrix and A* is the transpose.

Definition 15 (Compact bounded linear operator). Let X,Y be Banach spaces. A
bounded linear operator K : X — Y is compact if for every sequence {z;} C X such
that ||z;||x is uniformly bounded then there exists a subsequence and y € Y such
that:

Kz —y

Example: Suppose X = C([0,1]) and Y = C*([0,1]). Vf € X define K f = u provided
u solves v = f on (0,1) and u(0) = 0,%'(0) = 0. We have a formula:

uw) = [ [ st asay

Suppose || f;llc(o,1) < M. Then,

uj@):/;/()yfj(s)dsdy

luj| < M
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i <| [ Hioas| < ar
0

[l =115l <M
Apply Arzela Ascoli to find:

Cl

Ujp, — UQ

Thus K must be compact.

Theorem 17 (Fredhome Alternative). Assume K : H — H is a compact operator
on a Hilbert space. Then either:

i) The homogeneous equation  — Kz = 0 has a non-trivial solution. OR
ii) Yy € H,3lz € H such that z — Kx =y

Proof. There are 4 steps.
Step 1: Instead of x — Kz we write S := I — K. N(S) denotes the nullspace of S.
Claim: 3C such that:

dist(xz, N(S)) < C||Sz||Vx € H

Proof: Suppose we cannot find such a C. Then we can find a sequence {Z} C H
such that:

dist(Zx, N(S)) = k|| Szl
Replace with z = ”ngikn Then ||Szk|| = 1 and
dy, = dist(zg, N(S)) — o0

Thus, we can find {y;} C N(S) such that:

di < |z — yll < 2dg

define z; == H;"':y’“ and so ||zl = 1.
k=Y |l
But [|Sz4]l = L |Sz — Syell = LSzl = £ >0
Therefore Sz, — 0
K is compact, so we have subsequence Kzy, — yo € H.
Szkj —0 = 2z, — Kz; — 0 and since szj — yo we have zx, — yo.

Since Szx; = 0 we have Syo = 0 by continuity. Thus yo € N(S5)

. . . Tk, —Yk;
However, dist(zx,, N(S)) = infyenes)|l25, — vl = infyen(s) ‘ Tty — yH
= o7 PEven ) low, = @llae, — vl +yo)l
EN(S)
1 dr; 1
Z oy =, 1@k N(9)) 2 5 = 3

21, converges to something in N (S) but is a set distance away from N(S), which is
impossible. Thus we have proved the claim.

Monday, 9/30/2024

Step 2: Claim: Let R(S) = range of S. Then, R(S) is a closed subspae of H.

Proof: Consider a sequence {z} C H so that Sz, — y for some y. We must show
that y € R(S).

From step 1, define dj, = dist(zy, N(S)) < C||Szk| = ||yl

dy; is uniformly bounded.

By projection theorem, we can find:

27



dr = ||z — ykll  yx = closest point to z in N(S).
———
W

Then [Jwg|| < const.

Since K is compact, Kwg;, — wo € H

Thus, Sz, =z, — Kz, — y

Thus, zx, — y + wo

Since S is continuous, S(y + wo) =y

So, y € R(S).

Step 3: If N(S) = {0} then R(S) = H.

Let R; = range of S7[= S(S(--- S(H)))].

By Step 2, {R;} is a sequence of closed subspaces. Furthermore, it is non-increasing.
We claim that it eventually stabilizes.

Suppose, for contradiction, the sequence keeps decreasing.

By projection theorem, VjJy; € R; such that |jy;|| = 1 and dist(y;, Rj11) > 3.
Let n > m. We look at Ky, — Ky,.

Kym_Kyn:(I_S)ym_(l_s)yn:ym_( SYm — Syn =+ Yn )
ERm+1 ERy+1CRm41 E€ER,CRm41

Thus, [|[Kym — Kya| > 3.

This contradicts the compactness of K.

Therefore, 3k such that R; = R;Vj > k.

So, assume N(S) = {0}. Let y € H.

We have S*y € Ry, = Rpq1.

Therefore, S*y = S*¥+1z for some x.

Therefore, S*(y — Sz) = 0.

Since N(S) = {0} we have y = Sz.

Step 4. If R(S) = H then N(S) = {0}.

Let NN; := nullspace of S7. Now, N. ; is a non-decreasing sequence of closed subspaces.
Claim: 3k such that N; — NiVj > k. Argue by contradiction as before.

Assume R(S) = H.

Yy € N, S*y = 0 and furthermore 3z, such that y = Sx;. Repeating, y = S*x.
So, S?kz = 0. Since null space stabilzes after k we have S¥z = 0. Therefore y = 0.
Thus N, = {0} = N(S) = {0}.

In case ii why is (I — K)~! bounded?

Use Step 1: dist(z, N(5)) < C||Sz|| = C||(I — K)z|

For ii we have N(S) = {0} so:

[[z]] < C| S]]
Writing Sz =y,

I(7 = K) yll < Cllyl
O
Given a bounded linear operator T': H — H [could be a normed linear space as well],
Definition 16. The resolvent set of T is:
p(T) ={AeR:T — M is bijective}
The spectrum of T is:
o(T) =R\ p(T)
We can substitute real for complex.
Definition 17. A € o(T) is called an eigenvalue of T if 3z € H such that Tz = Az.

Note: (o(T) \ {eigenvalues}) is called the continuous spectrum.

28



Wednesday, 10/2/2024
Lu = —(auy,)s, + 0 (2)ug, + c(z)u
a’ = a’",a" (x)¢ > 0|¢,0 > 0
a, bt ce L™
Recall that adjoint is defined by

(A:L'ay) = (.TC, A*ay)

Can we find the adjoint of L?
Formal Adjoint of L : L*

(Lu,v)p2 = (u, L*v) 2
(Lu,v)3 = / —(aijuumi)zjv + b'ug, v + cuv da
Q
= / a7 ug, g, — div(vb)u + cuv dz
Q

= / f(aijvzi)vmj u — by, cxdr = / —bivg, — b, — bl v+cvds
Q Q

Define that to be L*v
Lemma: R(I+ K)= NI+ K*)

Proof. we N(I+ K*)o,

= (z,I+ K w=0)Vze H

— (I+K)z,w)=0Vx € H

> we RI+K) L. 0

Theorem 18. For L as defined, for  C R” bounded, 92 € C!, then either:
i) 3 weak H}(Q) solution to Lu = 0,u = 0 on 99.
i) Vf € L2(Q)3! weak H}(Q) solution to Lu = f,u = 0 on 9

Furthermore if ¢ holds thereen Lu = f,u = 0 on 02 has a weak solution <=
(f,v)rz = OVv such that L*v = 0,v = 0 in 99Q.

Example: —u” — u = sinz and u(0) = u(w) = 0.
Here Lu = —u" — u. We found A solution.
Note that L has non-trivial nullspace. sinx is in the nullspace.

/sin:r -sinx #0
Theorem not applicable.

Proof. Recall 3y > 0 such that

B, [u,v] = Blu,v] —|—W/qu

where:

B(u,v) == / (a7 g, Vg, + bug, v + cuv) do
Q
We can apply Lax-Milgrim to obtain a unique weak solution to L,u = f where

Lou = Lu+ ~yu. ch that: So B,[u,v] = (f,v)Vv € H}()
We say L;l = v if this holds.
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We seek a function u € H}(Q2) such that:

By [u,v] = (f,v)r2 +v(u,v) 2

We want u such that:
—1 — —
w=L7N(f +7w) = L3 (F) +vL5 (w)
~——
=h

Note: L;l : L2 — H} or L;l L
Let h = L7'(f).
So we're trying to solve u — ’yL,?l(u) =h.
Define K := 'yL;l
So we want to solve (I — K)u = h
K:L? - L2
We want to use Lax Milgrim. Why must K be bounded?
Let g € L*(Q), 2 K(g) = Ly (9) = u
1K (9)lmg = llyul Ho- By lu,v] = (g,v) Vo.
Pick v = u then,

B, fuu] > Blul%y
Bllull® < Byfu,u] = (g,u) < lgllzellullz < Collgllze ull g

VBllull g < vCpligllre

~C
1K (92 < CIE (D < —Flgllre

p

Claim: K : L? — L? is compact.
Let {gx} C L?|gx] < C.

||K(9k)HHg < é||gk||L2 < const
By Rellich-Kondrachov,

L2
K(gk;) > W

Now, apply Fredholme alternative. Then, Vh € L?3! solution u to (I — K)u = h or
else the nullspace of (I — K*) is non-trivial.

(I — K)u =h <= u weakly solution to Lu = f

Then apply the Lemma.

Friday, 10/4,/2024

Recall: Given a bounded linear operator T': H — H, the resolvent set:
p(T) ={X € R: T — Al is bijective}

Then the spectrum of T is:

o(T) =R\ p(T)

A € o(T) is an eigenvalue if 3z € H such that (T'— Al)z = 0.
{A € o(T) : X is not an eigenvalue} is called the continuous spectrum.
Now, what if T'= K compact, linear operator?
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We have seen that I — K has a nontrivial nullspace or else it is invertible, and (I—K)~1
is bounded.

Further, we have seen that for A # 0 either I — %K has a nontrivial nullspace or it is
invertible.

Then, (I — +K)~! is bounded.

Nontrivial nullspace implies A is an eigenvalue of K.

Thus, K compat = no continuous spectrum [except perhaps 0].

Theorem 19. A compact operator K : H — H possesses at most a countable set of
eigenvalues having no limit pointsexcept possibly 0.
Furthermore, Each eigenvalue has a finite multiplicity [dim N (K — AI) is finite].

Proof. Suppose not. Then we have an accumulation point 3{\,} of eigenvalues such
that A\, = A € (RU{%o0}) \ {0} and a sequence of linearly independent eigenvectors
Tn-

Let M,, = span{xy,--- ,x,}.

M, is a closed subspace.

Projection Lemma — 3{y,} C M,, \ M, so that ||y,| = 1, dist(yn, My—1) >
Let Sy = M — K.

For n > m: we have:

1
5

M Ky — AN Ky = Yo — A S0 Yn — Ym + At So Ym = Yn + 2

Claim: z € M,,_1. To prove this, note that z is sum of elements of M,,_.
Ym S Mm g Mn—1~

Write y, = Y7, ¢jz;

Sann = Ml —K) (2?21 ijj) =30 (Ancimi—cAzg) = Y0 (Ancjas — ¢ Ajz;))
Thus Sy, yn € M,,—1

Also Sy, Ym € Myp—1 € Mp_;.
Now, ¥, = A\, L Ky,.

Therefore, ||\, 'Ky, — A\ Kyml|| >
A Ky — 22 Kyml| > 3.

1
3

If \,,, approaches finite value, by taking m, n large enough we get || Ky, — Kym|| > %.
Contradiction.
If we have an infinite limit then LHS approaches 0 which is also not possible.

O

Theorem 20. i) 3 an at most countable set ¥ C R such that Lu = Au+ f in
and u = 0 on 9N has a solutio Vf € L? provided \ # X.

ii) If ¥ is infinite then writing ¥ = {A,}, A1 < Ay < -+ then A\, — oc.

iii) If X € ¥ then Lu = Mu+ f for f € L? with u = 0 on 9 is solvable <=
(f,v)r2 = 0Vv € N(L* — XI).

Recall: u is a weak solution to Lu = Au in Q,u =0 on 0Q <= Blu,v] = AM(u,v)Vv €
HLQ).

Where Blu,v] = [, a5 (2)ta,Ve; + bi(2)uqz, v+ c(z)uv da.

Now, Blu,v] = Au,v) <= By[u,v] = Blu,v] +7 [uv = (v + A)(u,v).

Where v is sufficiently large to make B.[u,v] > B||u\|§{é

So u solves (P) <=

w=L7 (A +7)u)

A A
(:>u:'yL;1( —;_Wu): :’yKuwhereK:q/L,;l

Thus, u solves P < (K — ﬁ]) u = 0.
Then the only posssible limit point of eigenvalues of K is 0 <= only possible limit

point of eigenvalues of L = co.
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Monday, 10/7/2024

Weak Convergence

Given a banach space X let X* be the space of bounded linear functionals.
Given z* € X*:

[&*[lx- = sup (2", )
ol x <1

Definition 18. We say {z,,} C X converges weakly to z € X if:
Va* e X*, (%, zn) — (2%, z)
Notation: z,, X T
Example: for 1 < p < oo If X = LP(Q) then when % + % =1 we have X* = L9(x).

LP
Uy — U Means:

VUELq,/unvdx%/uvdx
Q Q

Facts:
oI, T = I, >
o z, =z and |z, — ||| = xn ==
oz, =1z = |z,| <M for some M.

Definition 19. A reflexive Banach space X is one such that:

(X7 =X
Example: LP(Q2) for 1 < p < o0

If X is reflexive and [|z,|| < M then 3{z,,},2 € X such that z,,, — x.
If £, = x then liminf,,_, ||z,| > ||z||-

Proof. If x* € X*,|z*|| <1 then,
lim inf||z,| > liminf(z*, 2,) = (z*, x)
n—oo n—oo
We see our aswer by taking sup over all ||z*|| < 1. O

Basic Question:

Suppose u € H*(Q) is a weak solution to Lu = f in § where L is an elliptic operator
and f € L? [eg —Au = f]. Can one argue that u is better than H'({2)?

A (formal) calculation suggesting that this isn’t a ridiculous question:

Suppose u : R™ — R is smooth and compactly supported and solving —Awu = f for
felr?

00 > frdx = / (Au)?dx = V- (Vu)Audz
R[X n Rﬂ.
=— Vu~V(Au)dm——/ u 0 (Ug,z,) dz
 Jrn N TR

:/ Up,z; Uz, z; dz :/ |D2u|2 dz
RTL Rﬂ,

So we have control over all second derivatives of u.
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Difference Quotients

Definition 20. Given u : % — R given h € R given k € 1,--- ,n, define:
CR»

u(x + heg) — u(x)
h

We want to bound the difference quotient of the derivative to control the second
derivaive.

Lemma 1: For 1 < p < oo, let u € WHP(Q) for Q C R™. Then VQ' CC Q and for h
such that 0 < |h| < dist(£', 92) we have:

DZ =

IDRull Loy < e, llzr o)

Proof. First assume u € C1(Q) N WHP(Q).

1 h
Diu(z) = E/o Ug (T, T+ S, -+ ,xy) ds

vl N
Di@P < s [ rrae) ([ Ceasepde
Holder 0 0
1 h
|Dju(z)[P dz < */ / |tg, (- 2 + 5+ )P dsde
o h Jidist(z,00)>n} Jo

[ e azas = o,
Fublnl

Now we approximabe by C' functions.
O

Lemma 2: Let u € LP(Q) for 1 < p < oo and suppose for some k € {1,--- ,n}, AM
such that

| Djull Loy < M
VO CC Q,Vh such that dist(€Y,8Q) > h. Then,

ey |lr ) < M

Proof. 3{h;} — 0,3v € LP(Q) such that:

h, LP(Q
D,’u A()v

[We are using diagonalization. We cannot directly go near 9Q but by making h; — 0
and taking subsequences, we get the convergence for whole €.

Furthermore, by lower semicontinuity of [|-|z» under weak convergence: |[v[|z»(q) <
M.

Must still sho v is the weak k’th derivative of u.

Fix ¢ € C}(Q).
hm /cZ)Dh’udx—/(b’de

We have:
Now we do integration by parts on difference quotient. We also have:

/¢D udx—/(b ( x+h€:) (x)) dz

For first term, let y = x + hjey.

) by, [ e,
supp(¢+h;ex) h; supp(¢) hj
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uly)dy = — | D" (y)uly)dy

—h; Q

-/ oy = hyer) = 00)
Q
Now let h; — 0

= lim /gf)D Tudr = — /gf)mkudx

h;—0

Thus v is the weak x;, derivative of u.

Wednesday, 10/9/2024
Recall:

Dlu(z) = (x—i—hek) — u(x)

/Dkul 2)ug(z)dr = — /Dk us(z)uq (z) do
Lemma 1: Suppose 1 < p < oo. Let u € WHP(Q). Then, V' CC  such that
dist(QY',0Q) > |h| we have:
IDpull () < e, |l )

Lemma 2: Let u € LP(f2),1 < p < co. Assume IM > 0 such that Di'u € LP(Q') and
| Dl ooy < M Yk, CC Q such that dist(€,99) > |h].

Then u,, exists Vk and [|ug,, ||Lry < M.

Suppose Lu = — aq« (aij(x)ug,) + bi(x)ug, + c(z)u

Assume a;; ()¢ > 0|C%, aij = aj;

Assume a;; € C*(Q),b;,c € L>=(Q)

Theorem 21 (Interior Regularity). Assume u € H'(Q) weak solution to Lu = f in
Qfor f € L*(Q). Then u € HE () with:

[ull g2y < C(Q,9Q,0,---) (Hf”LQ(Q) + HUHLz(Q))
vQ' cc Q.

Proof. Consider Q' cc Q" cc Q

Let ¢ be a smooth cutoff function:
(=1in

¢(=0o0nQ\Q

0<¢<1

We have:

/ @i (T)Ug, Ve, + bi(@)ug,v + c(x)uv doe = / fvdzx
Q Q

Vv € H(Q)
Note that,

/Qaij(x)u;civmj +v+vdz:/gfvdx

Choose v = —D, " (¢2D}u)
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in Q' where ( =1 we have:

o (D,;h <u(x+he;z) u(x)))

_ (u(x — hey, + hey) — u(x — hey) — u(z + heg) + u(:c))
)

u(z + hey) + u(x — he) — 2u(x)
= — h2
Using this v, we get:

I:A;ﬂmmDﬁ«%mmn7@%Dﬁ@%7wDﬁ@%w@M
= —/Q D2 D) da
I::/;zﬁxamumg(g?Dgu%-+2g¢meZu)dx
= /Q (aij (@ + hew) Dy (ug,) + Di(aij)us,) ((PDyta, + 2(ps, Diu) da
= /Qg“zaij (z + her) Dy (uz,)DJt (ug,) + others da

> 0/ C?|DM(Vu)|? + others dx
Q

Write f == f — bjug, — cu € L2

Weak form becomes:
/aij(x)umivmj dz = / fodz
Q Q

‘We have:
o / 2| D! (V) da < / FDF (D) — agj(x + her)2CCe, Dl (uy,) Dl
Q Q

— Dy (aij) e, C* Dypug, — Dit(aij)ue,2((s, Diuda

Use ab < e2a” + 53b? to estimate terms 2,3,4.
<C [ (VD + |DE(V)lIVul +Vul D) ¢ da
Note: C' — 0o as Q" — Q since it involves the derivative of the cutoff function.
Monday, 10/14/2024
Recall: weak formulation:
/ iUz, Vg, AT = [ fv = biug, —cuvdx
Q Q
= / fodz, f € L*(Q)
Q
Choose: v = —D; " (¢2D}u)

Start with LHS.
We arrived at:
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LHS = /Q aij(z + hey) DR Dy (ug, )¢ da
+ /Q [am—(w + hew)2(Ce, DiuDy (uq, ) + Dit(aif)2¢Ce, Dit (u)ug,
D D0, )67 o
— LHS > G/Q\Dh(vu)Fg? dz

—C {/ | DD (V)| + [ Dyl |V + | DR (V)| |Vl dﬂﬁ}
Q

2
Now use (sa — 2—18b) >0 = ab<e2d?®+ ébz
Now use our lemmas.

LHS > 9/ |D"(Vu)|> — 2| DI (Vu)|? — C.|Vul|?
Pick e2 = &
LHS > g/ | DI (Vu)2¢? dx—CE/ |Vu|? de
Q Q

Now we estimate RHS with a little of L2 norm v + a lot of L2 norm f

By lemma 1:

[ < [19@ Dt
<C [ Dk + IDL(Vu)P da
vfda:§62/02+ce/f2

Pick e? = ¢

2
— Z/ ’D,(CVu)’ deC/(fQ—HVu\Q—i—uQ)dx
’ Q

< C/Q 72+ lullf o do

Apply Lemma 2
uw € HE (Q) and V' cC Q

[ 107 de < € (110 + o)

Finally, we need to replace ||u|%: with [lu[|?, on RHS.
Using a new cut-off function ¢ such that ¢ =0 on Q\ Q”, we have:

lulzzry < € (1 Weqny + Nl o)

Now go back to (x) weak formulation:
Choose v = C%u

/aijuri“ijQJraijUzi?CCm dw:/f@u
Q

Again, by ellipticity and ab < ea? + C.b?,
Choosing ¢ small in terms of 6,
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|Vu|* dz < C/ 2 +ude
Q/ Q//

so we're done!

Wednesday, 10/16/2024

Higher Interior Regularity

Suppose Lu = —(aijue,)z; + bi(2)us, + c(z)u

So far: Assume a;; elliptic, a;; € Ct, bj,c € C> f € L*(Q).

Then if u € H'() is a weak solution to Lu = f then v € HZ () and VQ' CC
Q3C(Y) such that:

l[ull 2oy < COQ)(1fllz2 + llullz2)

What if a;;, b;, ¢ are nicer, as is f? Then u should be nicer.
Idea: Consider the PDE satisfied (weakly) by u,, for some k € {1,--- ,n}.

0 0

f

_(aij(z)(uack)xi)xj - (aij (%)) (W ) + (03 () U, + 03 (T) (U, ),
+(c(@))zpu + c(2)tz, = fa,

This is not exactly allowed. So we express it weakly.
Then u,, weakly solves a new elliptic PDE.

Theorem 22. Let m = non-neg integer. Assume a;j,b;,c € C™T1(Q). Assume
f e H™(©)
Ten if u € H(Q) is a weak solution to Lu = f we have:

we H™2(Q)

loc

and VQ' cc Q

[ull gm+e(ny < CU[fllam + llullz2)
Proof. By induction. O

Boundary Regularity

Theorem 23. Take @ C R", open, bounded, 9Q € C2?. Take a;; elliptic, a;; €
Cl, b;,c € L.

Take f € L2

Then if u € H}(Q) is a weak solution to Lu = f in Q and v = 0 on 99 then,

u € H*(Q)
[ullrz) < CUfllze + llullz2)

Proof. First we assume the boundary is flat. If not we flatten the boundary
Suppose first that B(0,1) N Q = B(0,1) "R} = {z € R" | 2, > 0}.
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Omega

1/2

NI

{x_n=0}

Figure 2:

Let ¢ be a cutoff function.
¢eC™,(=1in B(0,3)
¢=0inR™\ B(0,1)

Blu,v] = /vav € Hy(Q)

Rewrite:

/ iUy, Vg, Ao = fv dz
Q Q
For |h| small take:

v=—D;"(¢*D}u)
for any ke {1,--- ,n—1}
To be a legal v for this, we need v € H}(Q) in light of the cut-off function and

Tr |aB(o,1)+ u=0
So we can use this v in *.
The rest of the proof is the same for interior regularity. We obtain:

| DRV r2(Bo1)+) < C (1 fllze + |lullr2)

Since difference quotients are uniformly bounded we must have weak derivatives.
= by lemma 2,

[t s | < C (Il 2 + llullL2)

for all 7, j except i = j = n.
How to control uz, 4,7

By interior regularity, Lu = f at a.e. z € Q.
We rewrite the PDE:

— AUy, z, = Z (aij(T)ug, )z, — bi(®)ug, —c(x)u+ f
(4,5)#(n,n)

We have || f]| < const(|| f]|z> + |lullz2)

const

0

= [|ua,a, || < (If 12 + llullz2)
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Friday, 10/18/2024

We have proved the theorem for flat portion of 0€2. For proving the general case, we
flatten the boundary.
Locally write 02 as a graph:

l'n:f(xla"' 7xn—1)fec2

We change variables.

yi=xzjj=1,---,n—1

Yn = Ty — f(xh s 7$n—1)
y=o(z)
[insert picture figure]
Then,
1 0 - 0
0 1 o 0
Do(x) = | . L
_fi’l _fﬂﬂz e 1

det DO = JP = 1.
By inverse function theorem, ® is invertible. Let ¥ = &1, Define:

By chain rule,

Weak form:

®(B(zo,R)NQ)

A1y, Uy,

- / S ())o(y) dy
&(B(z0,R)NQ)

Claim: wu solves an elliptic PDE weakly on a flat domain.
Define ag;(y) == aijq>§jj)<1>§j]?.
We’re done one we check that:

Gt = i, agunkm > 0|n|? Vo € R™

Firstly,

i =, 800 — a8 ~ 7

Zq i

Then let n € R™.

J Ti

armem = ai; @B W nn = a;; @Fn, Uy > 6/¢)?
Hg_/v
=&i =&j
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Let & = ®%)n;, and & = @Q}nl.
In| < [DY[|¢] < Caalé]

Therefore,

- 0
amem > 01612 > 07|77|2
90

So, this reduces to the case of flat boundary, which we have already proven.

Maximum Principles

Consider L in non-divergence form:

Lu = —Qgj (1')1141117 + bl(x)uﬂ?z + C(ZL’)U

Theorem 24 (Weak Maximum Principle). Assume u is a ‘nice classical solution’,
meaning u € C%(Q) N C(Q) for some bounded open Q C R™.
Further assume c¢(z) = 0 in the definition of L.

i) If Lu < 0 in Q then,

maxu = maxu
Q o0

ii) If Lu > 0 in € then,

min v = minw
Q

Remarks:

1) If Lu < 0 we call u a subsolution. If Lu > 0 we call u a supersolution.
2) If Lu = 0 then both maximum and minimum are achieved on the boundary.

3) A weak maximum principle does not preclude the max also being achieved inside
Q.

4) If ¢ # 0, the maximum principle may fail.

Example: If Q = (0,7) and Lu = —u” —u = 0 then a1; = 1,b; = 0,¢(z) = —1.
For Dirichlet boundary condition «(0) = u(7) = 0. Our answer can be sinx.
Then the maximum happens at 5 not in boundary for A > 0.

Monday, 10/21/2024
Recap:

Lu = —ai;(2) a0, + bi(ue, + c(x)u;

a;; uniformly elliptic ag;(x)&&; > 01€[%,0 > 0,a:; = aji.aij,b;, ¢ are continuous on
Q,Q C R™ is open bounded.
Then we have the weak maximum principle as shown above.

Proof. Case 1: Suppose Lu < 0 [strictly less than 0]. We proceed by contradiction to
show a strong maximum principle.

Suppose Jzg € 2 such that u(zo) = maxgu(x).

Consider Lu(zg). Note that u,,| =0 since Vu(zg) = 0. Thus,

Zo

Lu(wo) = —a;j(70)Ua;z,; (o)

Linear Algebra Fact: If a matrix A is symmetric positive definite then A can be

diagonalizable by an orthogonal matrix O so that OOT = I. Then,
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A, A >0

Assume u € C? and has a min at .
Change variables: y = z¢ + O(z — x¢). Then,

Uy,

i

Ug;z; = Uypy, Ori Oy

i (20) e, (w0) = Y | Y i (20)thy,y, Oki O

i | ki
= Uy | D aij(20) OOy
k,l 7

= Z Uyry, (OA)Oﬁuykyz (o) = MUy,y, + -+ + Antiy,y,
k.l

At a max, Uy, <0 for all j. Then Lu(xzg) > 0 which gives us the contradiction.
Case 2: Suppose Lu < 0. We pertrub L to get back to the first case. For example:

ut(x) = u(z) + e

+L(ee*™) < —eXay; (z)e + eby (z)Ae

= eXeM (= Aay1(z) + by (x)) < €™ (—OX + ||| 1)
Pick A big enough so that Lu® < 0. By case 1,

max u < max u(z) = maxuf(z) < maxu + emax e < maxu + ee*?
Q Q o9 o o9 09

) Q
where 2 C B(0, R). Let ¢ — 0 to finish the proof.

Now we try to make sense of the case ¢(z) > 0.

Theorem 25 (Weak max princ. for ¢(x) > 0). Assume u € C%(Q) N C(Q).
Assume c(x) > 0Vz € Q.

i) If Lu < 0 in ©Q then maxgu < maxgo u™
ii) If Lu > 0 in Q then mingu > —maxpo u~
Where u™(z) :== max(u(x),0),u" (x) = — min(u(x),0).

Note: If Lu = 0 had a solution, then maxg |u| = maxpq |u|
Example: Let Lu = —u” + (422 + 1)u.

b;=0,c(z) =42> +1>0

Q=(-1,1).

Consider u(z) = e — 4

u' = —2xe”
W = -2 4 dz2e

Lu= (2 —42%)e " 4+ (422 + 1)(e*" —4) =3e¢~*" — 1622 —4 < 0 on (—1,1)

Max of u comes in the origin, which is —3. But it is not at the boundary! We need
to be careful about the sign and positive part and negative parts.

3?2
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Proof. Let Q' = {z € Q: u(z) > 0}.

V=0 = u(z) <0in Q so we're done.

If Q' # & then we have:

[picture figure]

Let Ku = Lu — ¢(z)u, and K doesn’t have the ¢ term. So we can apply theorem 1
to .

maxu < maxu < maxu = r%aXUJr
Q o Q

Q o4 o
In 09 for the negative part u™ = 0 so we can ignore that boundary, we’re done!
O

Wednesday, 10/23/2024

Lemma 1 (Hopf Lemma). Assume u € C?(2)NCY(Q) and assume c(z) = 0 Suppose
Lu <0 in Q and Jzg € I such that:

u(zo) > u(zr)Ve € Qand

Q) satisfies an interior ball condition at xg, namely Jyg € Q,3r > 0 such that
B(yo,r) C Q with zg € 0B(yo, ).

Then %%(z0) > 0 where v = |i§:§3| [outer normal].

If ¢(x) > 0 then the same conclusion holds provided u(zg) > 0.

[pictures / fig bad example]

A sufficient condition for this to hold: if the boundary is given by a C? function [so
the curvature never gets too extreme] it is enough for the boundary to be Cs.

Note: 2% () > 0 is immediate since u(zo) > u(z)Va € Q.
So the significance is the strict inequality.

Proof. Define v(z) = e Aal® _ e*)"g, A > 0 to be specified later.

2
Ve, = —2z;e M7

i

waj = (4)\2l‘i$]‘ — 2)\5”')67)\'96'2

Lv = —a;(z)(4\ 22,2, — 2>\6ij)€_>\|r‘2 - ZAbi(x)xie_Mmlz + c(x)e_’\lg”‘2 - c(x)e_’\T2

= Lv < (—4N?0|z|® + 2A Tr A + 2A[b| L || + [c| =) e el —M
This is < 0 for some choice of A = A(0, 2, Tr A, |b| e, |c|L)
WLOG yo = 0. Consider the annulus:

{x:g<|x|<r}=A

[insert picture figure]
Je > 0 such that:

u(zg) > u(z) + ev(x) Vo € OB (0,

)

N3

since u(xzq) > maxap(o,z) U
On 9B(0,r):

u(zo) > u(z) + ev(x) = u(z)
Note L(u + ev — u(xp)):
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= ]gg + €<LOU - c(a;)go(:co) <0

And we’ve shown that u(x) + ev(z) — u(zg) < 0 on OA.
By weak maximum principle,

u(z) + ev(x) —u(zg) <0in A

Also note:
u(zo) +ev(zg) — u(xg) =0
Therefore,
0 (u(a) + ev(a) >0
7 (ul@) +ev(@ —u(xg)) >

0 0
= gu(aﬁo) > —sav(xo)
Note that v is a radial function so (—e)a%v(a:o) = 2eX(zo)e ™ > 0.
O

Theorem 26 (Strong Maximum Principle). Assume 2 C R" is open, bounded and
connected. Assume u € C%(Q) N CH(Q).
Suppose ¢ = 0.

i) If Lu < 0 in Q and if u attains its maximum over Q at an interior point, then
u = const.

i) If Lu > 0 in Q and if u attains its minimum over Q at an interior point then
u = const.

Proof. Let M == maxgu. Let S :={x € Q:u(x) = M}.
If S = Q we’re done.

If S = @ then we're done.

So suppose, by contradiction, S # ), &.

[insert picture]

Choose y € 2\ S so that:

dist(y, S) < dist(y, 092)

Draw the largest open ball B centered at y that doesn’t intersect .S.

Necessarily, 3zg € 0B N S.

Thus Q \ S satisfies an interior ball condition at x.

u(zo) > u(r)Ve € Q\ S.

We apply Hopf lemma.

The outer normal derivative 9%(zq) > 0.

This cannot be true, since 9%(z0) = Vu(zo) - v = 0 since Vu(zo) = 0 at an internal
max. O

Friday, 10/25/2024

Theorem 27 (Strong Maximum Principle with ¢(z) > 0). Assume 2 C R™, bounded
open with 9Q C C?. Assume u € C?(Q) N CY(Q).

i) If Lu <0 in 2, u achieves a non-negative max inside €2 then u = const.

ii) If Lu > 0 in Q, u achieves a non-positive min inside 2 then u = const.

Proof. Identical to ¢ = 0 case. O
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Uniqueness
For Lu = f,c(z) > 0,u = 0 on 02 we have seen a uniqueness result.

Theorem 28. 2 C R" open bounded an 9Q € C?.Suppose u; and uy both solve
Lu = f in Q with ¢(x) =0 and Vu - v = g on 02 where v = outer unit normal.
Then uy — us = const.

Proof. Let v := u; — us.
Then Lv = Lu; — Lug = f — f =01in Q.
Vv-v=Vu-v—Vuy-v=g—g=~00n 0N

By the max principle either v = const or v attains its max at a point xq € 9.
Then, v(zg) > v(z)Vr € Q.
We can use Hopf Lemma:

Vou(zg) -v >0
this is a contradiction, so we’re done. O]

Theorem 29. Assume Lu < f in a open connected bounded domain 2 C R™ and
assume c(z) > 0. -
Assume u € C?(Q) N C(Q2). Then,

maxu < maxu’ + Cy max fr
Q o2 Q

where C; depends on the coefficients of L and 2.
If Lu = f then we can say

max |u| < max |u| + C7 max | f|
Q o0 Q

Proof. We use a Barrier construction.
Without loss of generality let’s assume

Qc{zeR":0< z <d}

for some d.
Let Ku = Lu — cu = —a;j(0)Ug,z; + bi(2)uy, .
For A > 0 to be chosen let’s compute

K (M) = (—ap1 (x)A? + by )\ )e ™

< (—OA% 4 [b| e M)
— 0 (v - A'%“") e

< —ffor X large enough

Goal: Pick a v such that L(u —v) < 0,u —v < 0 on 0.
Pick v(z) = maxgq u™ + (%) maxg [
Lv=Kv+cv>Kv

maxg [

- TK(eMl) > max fT

Note: cv > 0 since ¢ > 0,v > 0.
Then, L(u —v) < f —max f* <0.
On 09,

u—v= u—][%%xwL — positive < 0
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By maximum principle,

max(u — v) < max(u —v)*t <0
Q o

Ad
Thus, u —v <0 = u < v < maxgou’ + - maxg fT.
. d
Choosing C1 = <5~ solves our problem. O

Recall that we had

lull 20y < C (1f1120) + llullL2 (@)

vQ ' Q,C=C(Q,Q).
If, for example Lu = f in Q and u = h on 02 then,

|u| < const(f,h)

Wednesday, 10/28/2024

[to be entered]

Eigenvalues and Eigenfunctions of Symmetric Ellip-
tic Operators

Lu = —(aij(2)uz, )z; + c(x)u

Qi = Qjq

ai;()6:&; = 0I¢%, 0> 0.

If we included b;(x)uy,; then (Lu,v)r2 = [ Lu-v # [uLv.

From our compact operator approach, we’ve seen that the set of eigenvalues {\;} is
either finite or A; — oo .

We also saw: for a;; = d;;, ¢ # 0, if there exists a minimizer of the Rayleigh quotient

Vul?d
A1 = inf M =R(u)

weH(Q)uzo [ u?dz

say, u1, and if u; is smooth, then u; is the 1st eigenfunction and \; is the smallest
eignevalue.

—Au; = Mug in Q and u; = 0 on 9.

Recall the computed:

d

— R tv) =0

i, (u1 + tv)

for any fixed v € H}.

Theorem 30. Given €2 C R™, bounded, open there exists a function u; minimizing
R(u) over all u € H}(Q),u # 0 Furthermore, u; is smooth and is the 1st eigenfunction.

1
Proposition 2. If u; L u then lim inf; oo [, [Vus)?da > [, [Vul? da.

1
Recall u,; . W means Vo € H?, (uj,v)gr = (u,v)g.
Proof. Note: Weakly convergent sequences are bounded. Therefore,
lujll ez < C.

L2
= Uy, — U
= [ujv— [w
1/2

Yo e H, vllgg = ([IVo?)
= SUP ||y <1 Vv Vuw.

So we're assuming u; — u.
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Fix any w so that [|w[[z; < 1. We have:

2
/ |Vu;|* dov > (/ Vu; - dex)
Q Q
Taking liminf;_,,

2 2
lim inf/ |Vu;|? dz > lim inf (/ Vu; - Vw dm) = (/ Vu - Vw dx)
j—oo Jo J—0 Q Q

Now take sup over all such w.

Proof of Theorem. We use the direct method.

inf R(u) = M\
u€H} (2),uz0
Note, for all ¢ # 0 constant we have R(cu) = R(u).
Thus, WLOG we can minimize R over the admissible set:
A={ue H(Q):u#0, [u?dz=1}.
Let {u;} C A such that R(u;) = [, [Vu,|? dz — A
{u;} is a minimizing sequence.
We know, [, [Vu;|*dz < Ay + 1.

Thus, [Jus|lgz < const
. H! L?
Thus, there exists subsequence {u;, } such that u;, = u,u;, = u for some u € H} ()

by Rellich-Kondrachov.

Thus, qu = limg_ 00 fu?k =1.
Thus, v € A.

Thus, by the proposition,

Alzlmnn?/|Vu“de2€/\Vude
k—o0 Q Q

If Lu = —Au+ ¢(x)u then,

R(u) = [ |Vul? + c(z)u.

liminf R(u;) > R(u)

J—00

Wednesday, 10/30/2024

Last time:
We found first eigenfunction u; solving

inf R(u)=XM
u€HG ()
uZ0
Where R(u) = ! \fvuz;F is the Rayleigh Quotient.
—Aul = )\1u1 in Q
uy; = 0 on 9N

Today: Higher eigenvalues and eigenfunctions.

Ao = inf R(u)
u%Hzé(Q)
u =1
jgzuulz()

In general, let 7, = {u € Hj(Q): [qu® =1, [quuj=0forj=1,--- ,n—1}
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Where u; minimizes infyeq; R(u) = A;.

o/; are also sobolev spaces. We can use the exact same proof via the Direct Method
to produce a minimizer.

Let {v;} be a miniizing sequence, meaning R(v;) — A2, {v;} C @, [[vjllm < A2 + 1.
Take Vi, FLI U2

Then vj, 53,

By lower semicontinuity, since liminfy o ||vj, |3 > [[uall g2

Thus R(u2) = A2

uz minimizes R(u) in o

Take first variation:

0 ug + tv)

= a( E /VuQ~Vvdx:)\2/uzvda:
t=0 Q Q

Yu € .
Let 0 be any element of H{(£2) not necessarily «%. Consider:

Vus - Vodax
Q

Write ¥ = ciuq + © where ¢; = [ uy da, b € .

/VUQ-VUdm:cl/VuQ~Vu1dx+/Vuz'Vde
Q Q Q

= 761/ U2AU1 dI+/ VUQ -Vodx
Q Q

:c1A1M+/Vu2~de
Q
:)\Q/Ug'f}dl'
Q
:)\2/U2ﬁd$‘FW
Q Q

= )\2/ uv dz Vo € H&
Q

So the identity holds outside the subspace. Not only for 2%, but for «7; by induction.
So we can find A; for j =1,2,3,---.

By compact operator approach we know either finitely many A;s or else A\; — oo.
We claim that eigenvalues cannot have infinite multiplicity.

Note: we can have multiplicity > 1. But it must be always finite. Why?

Theorem 31. Multiplicity is finite.

Proof. Suppose false. Then we have {u;} so that R(u;) = X, [u} = 1, [ujup =
0,f |V’LLj|2 = X
By Kondrachov-Rellich,

for some w.
It cannot happen, since:

2 _ 2 2 o . _
/|sz - uy,, | —/ujl +uj, — 2ujuj, =2

so we have 2 = 0. Contradiction.

Theorem 32. {u;} form an orthonormal basis for L?(Q).

47



That is, Vo € L%, we have:

m

L2
v — E cju; — 0
j=1

as m — oo where ¢; == [u;v

In 1D, L(u) = —u”,u(0) = u(b) = 0.

We are looking at u”” + Au = 0. So our functions are:
u(z) = cos(ﬁx) + co sin(\f/\a:) =0.

u(0)=0 = ¢ =0.

u(h) =0 = sin(ﬁb) =0

2.2

So \//\jb:ﬂ'j — )\j:%

Friday, 11/1/2024

Proof. First assume v € H}(Q) [this is dense in L?(2) so proving in here is enough].
Define for m € ZT,

m
Um = E CiUj
Jj=1

Where ¢; = [, vu; d.

Let wy,, = v — vy,

We want to show w,,, — 0 in L? as m — oo.
For any k < m:

<wm,uk>L2:/wmukdx:/vukdxf/vmukdx:O
Q Q Q

=Cg =Cg
Thus, w,, is admissible for
: [Vul®
)\7n+1 = inf f 2
uu ;=0 fu
j=1,-m
uZ0
Thus,
Jo [Vw | dz
)\m-ﬁ-l S )
fQ wm d],‘

Also for k € {1,--- ,m}

/ Vw,, - Vug dx 18P —/ Wy Auyg, da = )\k/ Wt dr =0
Q Q Q

e /Vwm'Vukdx:O
Q

— /Vwm-vadxzo
Q

Since Vu,, = >, ¢; V.

Jj=1

/\Vv|2dx:/|va+Vwm\2dx:
Q Q

/|va|2dx+2/va~Vwmdx+/ |Vw, |* dz
) Q Q
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= /\Vwm|2dm§/|Vv|2dx
Q Q

/wfndm< /|Vwm|2d
Q m+1

me = 00 = ||wmllz — 0. O

dx

Remark. Can do the same procedure to the Neumann eigenvalues and eigenfunc-
tions. Only difference:

Vul|?d
M= delVUld Z' ’
wert(Q) [ou?dx
uZ0
Al = O,U1 = 1.
—Au = M\u in Q.
Vu-v =0 on 0.
)\2 = inf R(U)
u€H(Q)
jn u-1dz=0

Proposition 3. Let A1(Q) :=inf ¢ y1(q) R(u).
uZ0
Then if 7 C Q2 both open one has A1(Q2) < A2(€1).

Proof. Let u be any admissible function for A;(Q1). u € H}(Q) u # 0 Define comple-
tion for A;(Qg) via:

_ u, if x € Qyq;
0, if.’tGQQ\Ql.

Then u € H. But Rq,(2) = Ra, (u).
— )\1(91) > )\1(92)

Example of 2D eigenfunction

Take @ = (0,1) x (0,1).

—Au = A\u in Q.
u =0 on 90N

We use separation of variables.
Seek u(z,y) = F(x)G(y). Substitute into the PDE.

—F"(2)G(y) — F(x)G"(y) = A\F(2)G(y)

P G

F"(z) 4+ pF(z) =0

G"(y) + (A= w)G(y) =0

( )—sin(f:z:).

Then F(0) =0 ) so
kr = u=k?r?

— F(1
F(1)=0 = Jii=kn

49



For the second case, if A — p1 is negative we have exponential but we also need G(0) =
G(1) = 0 which is not possible. So it is not negative.

G(y) = sin (VX = uy)

Gl)=0 = VA—pu=ln
:}A:

p+ 122

- )\k,l = (k)2 +l2)7T2

where k,1 =1,2,3,---.

Smallest eigenvalue is A\ ; = 272, Multiplicity is 1.

But for higher ones, we can have multiplicity > 1. A; 2 = A2 with different eigen-
functions.

Monday, 11/4/2024

Recall that A1 := inf,c 1 (0),uz0 R(u) for Dirichlet Boundary Condition.

For Neumann, we minimize just over H?!.
Recall from example of Q = (0,1) x (0, 1):

ey =2 (k2 +1%)

eigenfunctions were uy ;(z,y) = sin(rkz) sin(wly)
Then A\ 2 = A2 ;1 multiplicity 2 eigenvalue.

Proposition 4. Any first Dirichlet eigenfunction does not vanish in €.

Proof. Let u; be any first eigenfunction. Then, Ay = R(uq).
|U1| S H(:]L

|V |ue |?| dz
R(Jur) = S50 2 — R(uy) = oy,

Thus, |u1] is also a first eigenfunction.

Apply sobolev elliptic regularity: |u;| is smooth.

Then, —A(|u1]) = A1|ua], |u1| = 0 on 9.

Then A(|uy|) < 0.

This is a superharmonic function.

Strong Minimum Principle = |u;| cannot achieve minimum inside €.

Thus, u; has no interior zeroes. O

Corollary 1. Every eigenfunction for Ay with k£ > 1 must vanish somewhere
Proposition 5. \; is always simple (multiplicity 1).

Proof. Suppose u; and u; are linearly independent first eigenfunctions. WLOG, u; >
0,u; > 0 in © and normalized so that [, u; dz = [, U dz = 1.

Let w = u; — u;. Then [, wdz = 0.

—Aw = Mw in Q and w = 0 in 9.

But 7 non-zero first eigenfunction that vanishes inside . Contradiction.

Schauder Theory

Ref: Gilberg-Trudinger, J.Jost
Holder spaces:

Definition 21 (Holder Quotient). for o € (0, 1):

u(x) —u
VR U1C) ()]
z,y€eN |z —yl
T#yY
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This is not a norm. We define a norm by:

fuleo.s = sup [u(a)| + [ulona)

[ulora ) = Z sup [DPu(z)| + Z [DPu] g
1Bl<k |8l=k

There are 2 sets of estimates in Schauder theory:

1) Very precise Holder estimates for Au = f when f € C°.

2) Use these to obtain similar estimates for Lu = f where L = general elliptic

operator.
Recall:
Fundamental solution to Laplace’s equation in n dim:
1
3 |z, ifn > 2
K(z) = ”1( —n)an
— In|z|, if n=2.
2

«,, = volume of unit ball in R".

[Evans had negative]

K(x) is just a radial solution to Au = 0.

K is singular at x = 0.

Newtonian Potential of a function f: Q2 — R given by:

wmwaAK@—mﬂw@

For nice enough f we can ‘differentiate under the integral sign’.
Ignoring constants, |K (z)| < |z[>~" or |K(z)| < In|z|

0K 1—n Li 1—
= — < n
P?K N a:- S ma
gl ="6 4 (g1 T | | O PTG e
’axiaxj o ™05 +a(m)lal T En = (g T | S 1

For all n K () is locally integrable.

1 1
/ |x\2*”dx:/ / TQ*”der:/ 7"2*”/ 1dSdr
B(0,1) 0 JoaB(o,r) 0 8B(0,r)
1

1
:/ TQ_"nanr"_ldr:/ nay,rdr < oo
0 0

Also, % is locally integrable.

0K !
/ dz ~ nozn/ I dr < 00
B(0,1) Ox; 0
However,
K !
/ dz ~ / r~"r""1dr ~ logarithmic singularity
B(0,1) | 02:07; 0
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Wednesday, 11/6/2024

We have the following basic estimates:

|K(2)| < Cla’™ (n > 2)
| Ko, ()] < Claf' 7"

|Kmimj| < Clz|™™

Newtonioan Potential of function f : 2 — R is given by:

w(x) = /Q K(x—y)f(y) da

Theorem 33 (A). Assume f integrable and bounded.
Then w is C! on Q and:

g, (2) = /Q K, (2 — y)f(y) dy

Proof. Let n be C! so that n(z) =0for 0 <z <1,n(x)=1forz>2and 0 <7y <2
for all x.

For e > 0 let ne(z) =1 (@)

Define

we(z) = /QK(JC —yme(r —y) fy)dy

Easy to justify:

e @) = [ 5 (Ko = e =) £5) dy

Also easiy: we — w uniformly in Q.

w—w, = /Q K(z —y)(1 - ne(z — ) f(y) dy

:/{ s }K(x—y)(l—ne(ﬂc—y))f(y)dy

Now consider:

We,, — /QKx,:(x —y)f(y)dy
B)

= /Q (8% (K(z —y)me(r —y)) — Kxi) fly)dy

- /QKM (z—y)(ne(z —y) — 1) f(y)dy

=I

T /Q K(z = y)ne,, (z —y) f(y)dy
1I

&

1 2e 1
ISC/ 7\f(y)ldy~c/ —dr = O(e)
{y:|ly—z|<2e} |$ — y|”—1 o rn—1

2 1
n<-c Tz [f(W)ldy = O(e)
€ {yre<|z—y|<2¢} |{E - y‘n 2
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h

w(z + he;) —w(x) = llgcl) we(x + he;) —we(x) = lg% ; we, (z + te;) dt

:AhAKIi(x+tei—y)f(y)dy

(+h61 //K (z +te; —y) f(y) dy

Let b — 0 to see wy, (z) = [, Ko, (z —y) f(y) dy.

Divide by h:

Theorem 34 (B). Let Q C R™ be open bounded. Let f € C%(Q).
Then w € C?(Q2), Aw = f and Yz € Q one has:

Waz; = /Q Kapa;( —y)(f(y) — f(@))dy = f(z) | Ka(z—y)v(y)dS (%)

Q0

where )¢ is any smooth bounded open set such that Q CC Qg and v is the outer unit
normal to g and f = 0 outside (2.

Proof. Let u(z) be RHS of (k).
Claim: u(z) is well defined.

True since:

| 1K @ =)~ @)l dy

c .
o [ ale = vl ay

5
1

N/ nladrw(sa
O,r.

For y ¢ Q we have |z — y| > 0.
This proves the claim

for y € Q,

Fix i. Let ve(z) = [, Ky y)ne(x —y) f(y) dy.
Theorem A :> Ve — wz umformly as € — 0.
For any j:
. (T — d
Ve, / axj —yne(z —y)) fy)dy

-/ axj (K (= y)ne(z —y)) f(y) dy

- /Q 0 (Koo = yhnela = 1) (F0) — F(@)) dy

o 0%;

Oaxj
_ 61@ (@ —y)ne(z —v)) (F(y) — f(2)) dy
Qo 0%
—f(x) QoaZj(K (@ —y)ne(z —y))dy
_ a%(}(x (@ — y)nez — ) (f() — f()dy
Qo J



(@) / (Ko — y) me(e — )y dy
Q0 N——

=1

= [ ST (Kea e — ) () — S()) dy

Qo J
1) [ K-y
Then,
ue) v, )| = [ K, (2= )| 170) — 7 ()] ly
{ly—=z|<2e}

+f ]V, (= )1 () — T ()] dy

{

e<|y—z|<2e} N~
<2

— €

2e 1 4 2 2e 1 4
~ [f]ca \/0 —nrarn dr + E/ T.ni—lrarn dT‘ = O(Ea)

r

Thus v, — u(z) uniformly as e — 0.

As in theorem A, wy, (z + hej) — wy, (x) = - - - and we're done.

Now we prove Aw = f.

Fixing z, take Qg = B(z, R) for large R [so that Q C B(z, R)]. Use (x) with i = j,
summing on ¢. This gives us the laplacian.

M= = /| o ARy~ ) dy

0 since K is harmonic

+f(ac)/ VK(x—vy)-vdS
OB(z,R)

Also,
K 1
/ VK -vdS = a—dS: ————dS=1
9B(z,R) 9B(z,R) OT oB(z,r) "(n)R
So we’re done.
O

Friday, 11/8/2024
Recap:

N |x|2*", ifn>2;

K(z) = anpn(2 —n)

1 .

— log ||, if n = 2.

21

Newtonian potential of f in €:

w(z) = /Q K(z—y)f(y) dy

So far: if f € C%*(Q),0 < a < 1 then w € C?,Aw = f in Q. We have estimate of
derivative:

W, (&) = / Ko, (e — 9)(f0) — F@)dy — F() [ Kui(o - y)vy(y)dS

Qo
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Where g DD Q,090 smooth, f is extended to be 0 on g \

Note that if f is just continuous then w € C?.

This result, among other things, shows existence to Au = f in Q,u = g on 02 for
f €%, g e C° To show existence, it suffices to be able to solve Av =0 on 2 and
v = h on 9N for all h continuous ().

Why?

Let w = [, K(z —y) f(y) dy
We seek u of the form:

u=w+u
Au=0 in Q
u=g—w on Jf)

How to solve (x)?
When Q = B [a ball],

2
v = ! / R~ Jal h(y)dsS

wn-1 Jopg |2 —yl"
So we have explicit Poisson Integral formula.
What if 2 is not a ball? Many methods:
Calculus of variations: minimize [, [Vv|* dz
Perron’s method.

Theorem 35. Let B = B(xg, R), Bor = B(x0,2R) be 2 concentric balls in R”. Fix
R > 0. Then for f € C%%(Byr) we have

|w|c2.0(Byg) < Cla, R)|f|oo.e(Byg)

Proof. To control sup |wg,s;| in Bg:

|If() f(@)]

ly — x|

ars, ()] < /B Ko, Iyzlady+‘f(x) /8 Ko i()as

< [ i, =T, ol dy + s |f| gl
Bar | |

C
Rn 1
< C[flce / T—nr“r"_l dr < C(R)[f]c« + Csup|f]

0

Then we bound [we,«,]ce(By)-
Fix x and = in Bg.

Wg;x; (j) — Wg,z; (1‘)
_ /B (Koo, @ = 9)(f(0) = F(@) ~ Ko, (& = 9)(F() — f(2))) dy

—f(@) Ko (T —y)v; dSy + f(z) Ke (w = y)v; dSy
aBQR 8B2R

=I1+Ix+13+14

I = f(x) /8 K (=) = K (7 1) vy 45,

+(f(z) = f(2)) K., (@ —y)v; dS

OBaR
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= [hf <swlf] D K, (7 = y)| |2 — 7] S,
2R

Bar

+flealz —z|* - C(R)

for some = between x and T. D, is the directional derivative, we have used Mean
Value Theorem.

< csuplf] - %na(n)(?R)"‘Hx _ %+ C(R)[f]oe|z — 7°

< C(R)|fleoalz —2|*
Let § = |z — Z| and £ = 3 (z + 7).

Kaa; (¢ —y)(f(2) — fy)) dy

B(¢,0)NBar

+/ Kypo) (@ — 4)(f(y) — f(2)) dy
B(&,6)NBzr

Estimate first integral:

1
gcmm/" — Ly dy
B(¢,6)NBar |z —y

Notice that B(z, 26) D B(£,9).

1
Scmm/) |z — ] dy
B(z,24) |z — y

35 a “
<clile- [ L arsclrle (3) (&

lz—2z|

k:%ﬂ@ff@»L ey e lr =)

Iy = / (Kﬁﬂj (—y) = Kpu; (T — ZU)) (f(@) = fly) dy
Bar\B(§,9)

In I3, we are ‘outside’ of the ball B((,d) so x — y doesn’t get very small |z — y| > g.
So, when we integrate we have enough control to win.

In I, we apply mean value theorem with the third derivative: |D3K| < C|z|="~1.
Dividing by |z — Z| we finish the proof.

Monday, 11/11/2024

Last estimates on Au = f:
Last time:
If f € C%%(Byg) and w = Newtonian potential

w(z) = K(z —y)f(y)dy
Bar

then

‘w|02’“ < O(Q7R)|f‘CO=”(BzR)

Then suppose u is a C*® solution to Au = f in Bag.
Then u =w+v
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Av=01in BQR
[u|c2.0(Br) < [W]e20a(BR) + [Vc20(BR)

= |u|c2a(Br) < C|flcoeByr) + [Vc2e(Bsg)
Recall derivtive estimates of harmonic functions:
|D%v|p, < C(B, R)sup |v|
2R

B = any multi-index.
= |ulc2.a(Br) < Clflcoe,n) + sBup M
2R

Interim Schauder estimate Vo CC € bounded, open

= [ulc2.a(qy) < C(0, @) (|fcova(9) + Slép U|)
Cover €y with balls.

Theorem 36. [Boundary Holder Estimates] Assume u € C* soluton to Au = f in
Q,u =g on 9Q where f € C%*(Q),g € C**(Q) and 9 € C?*. Then,

[ul 2@ < C <|f|00,a(9) +19]c2.0 @) +sup |u>
Q

Philosophy: Flatten the boundary [we can do this since 9Q is C%¢].
Subtract off g to get zero dirichlet condition.
Then we work on % balls.

General Schauder Estimates

Theorem 37. Let Lu = a;juz,z; +0i(7)ug, +c(x)u, ayy = aji, aij(v)GC > MCPVC e
R"(A > 0).

Z |aij|co,a + Z |bi|co.a + |C|Co,a <A

i i
Proof. First step: Suppose a;; is constant.
Idea: Change variables to convert a;;ug,.; to Au.
Lu = ajjug,.;. a;j is positive definite symmetric so there exists S orthogonal [ST =

A1
571] so that S™1AS = D = where (A;;) = a;;.
An

Let y = S where z = (z1,- -+, zp).
Let v(y) = u(yS—1).
u(r) = v(xS) = Up, = vy, Sik = Uze; = Uy SikSj = Qijlge, =

— T — — D2y —
gy Sik@ijSji = Vyay Si@ijSjt = Qijlaie; = Dy, = DD = Avyy, +
AUy, , ,
Change variables again: let z; = /\;y; then 68? = %383,.2 = w(z) =u(y) =

A w. _
If u solves a;juz,.; = f then w solves A, = f.
Then we use old estimates for Poisson.

57



Wednesday, 11/13/2024

We finish Schauder today.

Lu = aj(2)Ug,e; + bi(2)Ue, + c(z)u.

We assume uniform ellipticity: aij = aji, a;(x)¢;¢ > 0|¢|* forsome 6 > 0,Vz € Q.
Also Hélder continuous coefficients.

Z |aij|co,a —+ Z |bi|CO,a =+ |C|CO,Q
%, i

So far, for L = a;jus,.; with a;; constants, we showed that interior Holder estimates
work via change of variables.

Lu=f,fe€C%(Q).

Then,

ulc2.a 0y < CQ,Q, A, 0)(| flco.q) + sup lul)  (¥)
vQ' cc Q.

Theorem 38. If Lu = f in Q, f € C%*(Q) then VQ' CC €, (x) holds.
Proof. Let xo € . Rewrite Lu = f.

i (T0)Uz,z; = f — bi(T)ua, — c(@)u + (aij(T0) — @ij (%)) Uz, z;

=: F(x)

Now estimate |F'|co.« to use the previous lemma.
Take Bg = B(zg, R) CC Q.
| flco.« is bounded from assumption.

lg(z2)(z2)—g(z1)h(z1)|
|w2—z1]

We use the following fact: [gh]ce = sup
Same way as the product rule, we can write:

lg(x2)[|h(z2) — h(z1)| N |h(z1)llg(z2) — g(z1)|

<su hlca + sup |h||g]ce
29 — 1] s — 21 plgl[n] [12[[g]

< sup

Then we can write:

[bita,]co < sup [bi|[uz,]co + sup |ua,
|bi’uzi|co,a < A‘U|Cl,a.

Similarly, |cu|co.« < Alu|co.a.
Finally,

[(aij(x0) — a4 (%)) ua,a;]c < suplag(zo) — ai;(2)|[D*u]ce + Asup |D?ul

< laijlce R*[D*ulce + Asup [ Dyl

This idea is called idea of freezing coefficient. We have variable coefficient, but we
can take a ball in which the coefficients don’t vary that much.

We have the following proposition:

Proposition 6. VedC, > 0 such that if u € C%*(£2) then,

[bi]ce

|u|cz < €lu|cz.a + Cesup |ul.

Proof. Suppose not. Then we can find € and {u;} such that

lujlcz > eluj|cza + jsup |uy]

Setting v; = quﬁ we have same ineqaulity with |v;|c2 = 1.
yare)
1
We have |vj|c2.a < 2. )
. c
Arzela-Ascoli = v;, = v.
Then |v|cz = 1.

But sup |v;| < % so sup |v| =0 so v = 0.
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We use this estimate to finish the proof.
Applying this,

|Flco.e < |f|coe + €u|cz.a + AR |u|c2.0 + Cesup |u

From previous lemma about constant coefficients,

[u|cz.a < C(|f|co.e + €u|gze + ARY|u|c2.0 + Cesup |ul)

We pick R small enough so that C; LR* < %
This choice just depends on A, 6,Q,Q’. So we can cover ' with finitely many balls.
O

Boundary Schauder Estimate

Theorem 39. Let 9Q € C*“ bounded, open. Assume f € C%%(Q),g € C>%(Q), L
as before. Assume u is a C%® solution to:

Lu= fin Q

u = g on Of)
Then 3C = C(Q, A, 0) such that:

[ulgza@m < C (Iflcw + lglc2.a +sup|u|>
Q

Proof. (Sketch) Subtract of g, so u = g + v and v is 0 on 9.

Then Lv = f — Lg.

Without any assumption on the sign of ¢, we need some norm of v on the RHS, since
we can have eigenfunctions so |u| can blow up as much as we want.

Proof works by flattening the boundary, working with half balls etc.

O
Friday, 11/15,/2024
Last time:
Lu = a;j(2)ug,z; + bi(T)ug, + c(x)u.
aij = aji, aij(2)CiC; > 0|¢I?
‘ai]‘|co,a(§) + Ibilco,a + IC(I)|CO,a <A
If u € C%%(Q) solves
Lu= fin Q,u =g on 0f)
(0Q € C?2, f € CY% g € C?*(Q)).
Then, 3K (Q, A, 0)
Ul ey < K <|fco,n +lglene +sup u|>
Q
Note: there might not always be a solution.
Theorem 40. Assume c¢(z) < 0 in Q. Then we have K(, A, ) such that
[ul c2.e @) < K (Iflcoe (@) + lglo2a () (%)
Proof. Recall if ¢(x) < 0 we saw that:
supu < const (sup | f| + sup |u|>
9} o0
This allows us to eliminate supg u from the given inequality. O
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Method of Continuity

Theorem 41. Under the previous assumptions (in particular ¢(xz) < 0), 3 a unique
solution u € C%® solving Lu = f in Q,u = g on 9.

Proof. By subtracting off g [u = v+ g], WLOG we can assume 0 boundary condition.
Then u solves Lu = f on Q,u =0 on 0f2.
Then our inequality becomes:

‘U|cz,a(§) < K|f‘coya(ﬁ)
For each t € [0,1] we define:

Liw=tLu+ (1 —t)Au

Since L is elliptic, A is elliptic, L, must also be elliptic. Directly, (ta;;(z) + (1 —
£)0i;)GiG; > (t0 + (1 = 1))[¢[* > min{1,0}(C|> V¢ € R.
Also,

|a§j,bi,c| <A+1

Thus means, since K depends on €2, A, 6 and we can choose same A, 6 for all L;, we
have the same K for all L;.

Goal: we want to show that L;u = f is solvable for ¢t = 1.

We already have Lou = f [simply Au = f] is uniquely solvable with (x) <=
fuloze < K| flove.

Let By = {u € C**(Q) : u =0 on 9Q}.

B2 = Co’a(ﬁ).

Then, for any ¢, L; : By — Bs.

And also, || Lu||g, < C1||ullB,. Crucially, Cy does not depend on t.

By (*) we know that |lul|p, < K||LulB,-

Again, K independent of t.

Note that (x) = Vt, L; is one-to-one since Liyuy = Liyug = f,u; = ug = 0 on 9N
implies |lu; — ug| < 0.

Suppose for some 7 € [0, 1] we know L, was onto. Then we can talk about the inverse:

L' By — By

is well defined.

Then Vt € [0,1],Vf € By, Liu = f < Lyu= f+ (L, — Lt)u
=f+(T—t)Lu+[(1—7)—(1—-t)]Au= f+ (t — 7)(Au — Lu)
— u=Lr'f+({t—7)L7'(A - L)yu=Tu.

Here T': By — B; and we seek a fixed point.

We want to apply contraction mapping theorem.

Let u,v € By.

|Tu —Tv|g =t — 7| L7 (A —L)(u—v)‘B1
<[t =7|K(|Alp, +[L|B,) [u—v|p,

< |t —7|K -2C1|u — v|p1

We can pick ¢ close enough to 7 so that |t — 7|K - 20y < 3 [just pick [t — 7| = ﬁ]
Then T is a contraction mapping.
For 7 = 0 the laplacian is indeed 1-1, onto. Thus, there exists unique solution for
< 1R
We can keep going like this until we reach 1 since K and Cy doesn’t depend on ¢ or
T.

O
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Monday, 11/18/2024

Calculus of Variations

Basic problem:

inf/L(x,u,(Su) dz
ueA Q

=E(u)
A minimizer will solve a PDE [typically nonlinear].
Roughly: a minimzer of F will have “derivative” 0. This property leads to a minimizer
solving (weakly) a PDE known as the Euler-Lagrange Equation associated with E.
There are 2 notions of “derivative”:
1. Gateaux derivative (generalization of a directional derivative).

Definition 22 (Gateaux Derivative). Let E : X — R where X is a Banach space.
The Gateaux derivative of F at u € X denoted by E’(u) € X* is defined through the
property:

VheX: tli_r}(l)% [E(u+ th) — E(u) — (E'(u), th)] =0

To compute a Gateaux derivative, we have:

d

— E th
pr (u+th)

t=0

2. Frechét Derivative (generalization of differentiable)

Definition 23 (Frechét derivative). E is Frechét differentiable at u if IE'(u) € X*
such that:

E(u+h) — E(u) — (E'(u), h)
lIn]|—0 |1 ]| x
heX

=0

Examples:

) Bu) = 3 [,|VuPde = &|_ Blu+th) = 33| _ |Vu+tVh? =
LAl (IVul? +2Vu- Vh + 22|Vh[2) = Vu- Vh.

2 dtlt
i) B(u) =3 [ |VulPdz
1
4 7/ |[Vu+ tVh|Pdz = / |Vu+ch|p_1M - Vhdzx
dt t=0 p O Q ‘VU -+ ch| t=0

= / |VulP~2Vu - Vhda
Q
Then u weakly solves:

—V - (|VulP2Vu) =0

iii) Plateau Problem / Soap Film Problem: E(u) = [, \/1+ |Vu|? dz, u|(,m =g.
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i

Figure 3:

E
¥ (u+th)

t=0

Vu-Vh

—dx
o 1+ |Vul?

d
= = / V1 +|Vul22tVu - Vh + 2|Vh|2 dz =
dt|,_Ja

Thus a critical point u weakly solves:

volYe ) _
V14 |Vu|?

This is called the minimal surface equation.

The LHS is called the mean curvature of the graph of u.

iv) Cahn-Hilliard Problem: E(u) = [, |Vu|?> + $(u* — 1)>dz. Model for phase
transition. Also called Modica-Mortola problem.

(IQ Efgi_oE(“))

1 1
/ 19w+ VAP 4 2w th)? = 12 da
1—0 /0 2 4

forces a “phase transition”.

d d
S| Butth) = <
a|,_ Pt =g

1

5 (u+ th)? = 1)(2(u + th))hdx

z/Vu-Vh—i—
Q

= / Vu-Vh+ (u? — 1)uhdz
Q

Weak form of Au = u? — u, called the Allen-Cahn equation.

In general, Au = f(z,u) is called a semilinear Poisson equation.
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Wednesday, 11/20/2024

Notation:
X = Banach Space
E'(u) € X*
Alternative notation: for w,v € X we have dFE(u;v) for u,v € X [alternative to
(E' (u),v)]
2nd variation: (Gateaux):
d2
— E(u+tv
de?|,_, ( )

Notation: §%E(u;v) for u,v € X.
Proceding formally:
By ‘Taylor’s Theorem’:

E(u+tv) ‘=" E(u) + dE(u;v) + %62E(u;v)t2 +--

If w is & minimum, v is a critical point. Thus dE(u;v) = 0V¢.
Then, since E(u) < E(u + tv) it follows that §2E(u;v) > 0Vo.
We have done this calculation ‘formally’. Now we make it concrete.

Definition 24. If u is a critical point and 62 E(u;v) > 0Vv we say u is a stable critical
point.
u is strictly stable if for some v > 0 we have:

2 E(u;v) > clvl%
Vv € X.
Proposition 7. A minimizer is stable.

Definition 25. We say u is a local minimizer of E if 36 > 0 such that E(u) < E(v)
provided |u —v|x < §.

Proposition 8. A local minimizer is stable.
Example 1. E(u) = [, 1|Vul? + f(z,u) dz.

1 t2
E(u+tv) = / §\Vu|2 +tVu-Vo+ 5|Vv|2 + f(z,u+tv)de
Q

OE(u;v) = / Vu-Vu+ f(z,w)vde
Q
Whee f = f(z,2) with z € R.
62E(u;v) = / Vo2 + foz(z,u)v? do
Q
Suppose wu is a critical point.
0E(u;v) =0
/ Vu-Vo+ f(z,u)vdr =0
Q
— / (—Au+ f.(z,u))vdr =0
Q
This is true for all v so we need Au = f,(x, u)weakly.

Note that f,, > 0Vz is enough to gurantee that §° E(u;v) > 0.
Thus, if z — f(z,z) convex for all z then w is stable.
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Direct Method

Suppose we want to find:
= inf K
= P
Where:

E(u):/QL(x,u,Vu)dx

Step 0: We want m > —oo.

Consider a minimizing sequence {u;} C A so that E(u;) — m.

Step 1: Compactness: Arguethat u € A emerges as a limit of a subsequence of {u;}.
Step 2: Lower Semi-Continuity (LSC):

liminf E(u;) > E(u)
J—0o0

Then we have E(u) < m = E(u) =m.
Here, compactness generally comes from energy bound: E(u;) < m + 1Vj.
We also perhaps have the fact that u € A.

Example 2. Suppose E(u) = [, |[Vu|? + p(z)u? dz where p > 1.
Then,

/|Vuj|2+u?dx<m+1
Q

SO, |’LL]'|H1 <vm + 1

Kondrachov-Rellich implies:

P X
Uj, > uVp <p =

No info about Vu;.
Ugp, 2R U = /Vuj,c ~Vvdx—>/ Vu-Vodz
Q Q

Bounded sequence in a reflexive Banach space (here a Hilbert Space) are weakly
compact.
The sobolev norm is weakly lower semi-continuous. Thus,

liminf/ \Vujk|2dx2/ |Vu|? de

under weak H' convergence.
So ten we can solve:

inf Vul? + p(z)u? dz
Lt vl i)
with p smooth, p(z) > 1.
m>0v
|U,j|H1 <m+1
Hl
Uy, — U
Ujp LS u for p< 2

k—o0

lim inf / (IVu [ + p(a)us, ) dz
Q

> [ 1Vul + pla)ud da
Q

Therefore v must be a minimum!
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Friday, 11/22/2024
Some facts about weak convergence in a reflexive banach space X:

o [lujllx <C = uy, >u
l e X*,(ﬁ,ujk> — (l,u)

o If u; X 4 then liminf, oo ||u;llx > [lullx

e Mazur’s Lemma: If K C X with K convex and closed under strong convergence
then K is weakly closed.

That is, if K convex and if V{u,;} C K : u; Xy = ue€ K,
thenujiu — uc K.

An example of weak convergence in L? :
1
1, ifo<z<-=:
- T2

Let p(z) = 1
2, ify<z<l

Extend periodically: p(z 4+ 1) = p(z)Vz € R:
Define: pg(z) = p(kx),k =1,2,3 for 0 <z < 1.
For ¢ smooth: we see:

1

lim pr(z)o(x)da = g /0 o(x) dx

k—oo Jo
Then py N %
Example 3. Let f(z, z) be continuous for z € 2, z € R where 2 C R™ open, bounded
and 0 < f(z,2)Vz € Q,Vz € R.
Let E(u) = [, 3|Vul® + f(z,u) dz
Define m := inf,,c 4 E(u)
Where A = {u € H(Q),u = g on 9Q}.
Assume 3G : Q — R such that G € H'(Q) and E(G) < oo and tr G = g on 0.
E(G) < oo condition implies m < oo.
In direct method, we want to make sure our admissible set isn’t empty!
Since f > 0 we also have m # —oo since m > 0.
Compactness:
{u;} C A, E(u;) = m.

1
/§|Vuj|2+f(a:,uj)dx<m+1 = /\Vuj|2dx<2m
Q Q

Now consider {u; — G} C H}(Q).
Poincaré —

/ luj — GI*dx < Cp/ |Vu; — VG|*> dz < const independent of j
Q Q

2
Thus, [, u7dz < const.

Thus, |Ju;|l g < const
1

— Ujp, — Uy
L? pointwise a.e.
Also, uj, = uy = uj, — Us
l
for some wu, € H!
Lower semicontinuity:

k—o0 k—o0

. . . . 1
liminf B(uj, ) = liminf /Q §|Vujkl I* + f(x,ug,,) de
1 2 . .
> [ Z|Vu,|*dz + liminf [ f(z,u;, )dz
Q 2 k—o0 9] !
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Fatou%cmma f( )pointwisc f(

L, Ujy,, C(,',u*)

f is continuous, so,

1
> [ 3IVu + flou) do = ()
Q

pointwise a.e. means there’s no gurantee of having desired result on the boundary
(which is a measure 0 set).
Claim: A is strongly closed under strong H' convergence.

Also,

A is convex.

1 1
Why closed? If {v;} C A, v, Ly = v; — G Lv-a.
What about the trace?

/ |U—G|2dx§/ |v—vj|2dx+/ lv; — G|? da
o0 o0 )
—_——

—0

SC’/ |v — ;> + |[Vv — Vo[ dz — 0
Q

Why convex?
Let v1,v3 € A

)\(1)1

My + (1= Nvg — G € Hy (D)

—G)+ (L= N)(v2 — G) € Hy(Q)

By Mazur, A is weakly closued.
ur € A.

Formally, u, is a weak solution of

Au, = fo(x,uy), us = g on 90

So f(x, z) being continuous is not enough.

Monday, 12/2/2024

What can go wrong with the direct method?

1)

m = infuea [, (3|Vul* —v?) dz with p > 2, A = Hj(Q). Here m = —oo.
To see this, consider ug € H}(Q),u # 0. Calling the functional E(u), we see
that E(uo) = [, 3|Vuo> — ufdz. Also, E(Aug) = [, 5|Vuo|> — Nufdz =
A [ A Vuel? — A~ 2uf da.

Aug € A for all A so we can send A — oo of —oo and m = —oo0.

It is not all over. We might find local minimizers, we might find saddle points.
But no global minimizer, so direct method might work.

m = infuea 3 [, |Vul>dz where A= {u € H}(Q) : [, u|P dz =1}

We definitely have m > 0.

What about compactness? If we take {u;} C A to be a minimizing sequence
then we can have 3 [, |[Vu;|*dz < m+ 1 so we can have l|wjll gz < const.

Compactness implies u;, H, ug so by Rellich-Kondrachov we have u;, L Ug
Vg < 2* = %

What if p > 2*7

Jq lujl? daz = 1V,

Lower semicontinuity implies liminf;_, [, [Vu;|*> dz > [, [Vuo|* da.

However, no gurantee that lim; o [, |u;[? dz = [, [uo|? dx.
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1
3) m = inf,ewra(o,1) / (W) = 1)* + u*da.
0

=E(u)
We have m > 0.
Let u; be a minimizing sequence. Then E(u;) — m.
Compactness = E(u;) < m+ 1.

Then ||u;|lw1.4 < const.

i i :
Ujy, Uy = uj, — up for g < 4*.

But we don’t necessarily have lower semicontinuity.

YANIAN

Figure 4:

here v’ = %1 so we don’t have problem. Minimizing: we make it as small as
ppossible.

0 = liminf; ,o E(u;) < E(0)

uj—\u():O

Let p(x) T, if0<x<1;
[§] xTr) =
P 2_p, ifl<z<2

And periodic so p(x + 2) = p(x).
Define p,(z) = ep(2)

1
Then p. Lo

2 2
Note: p. LN 0, pL 5o

1 Notions of Convexity
1) A set Dis convex if p,ge€ D = Ap+ (1 —N)ge DVAe (0,1).

2) Convex functions: let D be a convex set. Then f: D — R is convex if f(Ap +
(L=Na) < Af(p) + (1= A)f(q)Vp,q € DVA € (0,1)

Characterizations of convex functions:

Proposition 9. if f is twice differentiable on D C R™ where D is convex, then f
convex if D?f is positive definite, eg

ETD%f(x)¢ > 0VE € R\ {0}Vz € D
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Proposition 10. If f: D — R is convex and differentiable then Vp,q € D

fl@) > f(p) + Df(p) - (¢ —p)

Graph of f lies above every tangent plane!

Figure 5:

Wednesday, 12/4/2024

One more troubling example where direct method seems to fail.
This is one of the most famous problems in calculus of variations!

m = ini/ﬁl—}— |Vul? dz
ue Q

Where A = {u cu—Ge Wy (Q) :} where G € W11(Q) given [just way of phrasing
the boundary conditions].

Let {u;} be a minimizing sequence. We know —oco < m < E(G) < oo. Then
E(u;) — m.

Question: Do we have compactness?

/\/1+|Vuj|2dx<m+1
Q

= [[Vullpr <m+1

What about |Ju;j||z1? We can say u; — G € W' so Poincaré = |lu; — G||p1 <
IVu; — VG| < const = ||uj||w11 < const.

L' is not reflexive. So we don’t have any W1 weakly convergent subsequence!
What aboout W*2? We don’t have L? bound, so we can’t control |lu;||z1 by E(u;)!

Sufficient Conditions for Success of the Direct Method

Theorem 42. Let  C R", open, bounded. Consider the lagrangian L = L(z, z, p)
for x € Q,2 € R,p € R” be C? and convex in p, meaning for every z € , z € R, the
map p — L(z,z,p) is convex. Also assume L is bounded below.

1,
Then if w; W' 4 for some 1 < q < oo one has lower semicontinuity:
liminf | L(z,uj, Vu;)de > / L(z,u, Vu)dz
Example 4.
E(u) = / @i (2, U)Ug, Uy, A
Q

Here assume matrhix A(x,z) with entries a;; is positive definite Vo € Q, z € R”.
L(z,z,p) = ai;j(z, 2)pip;  (*).
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Proof. Special Case:

Assume L = L(p) and L(p) > 0 . Fix € > 0 and define Q. == {x € Q: |Vu| < 1/¢}
Convexity = [, L(Vu;)dx > [, L(Vu)+ V,L(Vu) - (Vu; — Vu) dz.

On Q. , ’

IVpL(Vu)| o < sup |VpL(p)| < Ce

Ip|<1/e
Also,
1
oo>/ [Vul?!dz > —|Q\ Q]
Q\Q. €l
= |Q\ Q] —>0ase—0
Note:

lim V,L(Vu) - Vu; de = / V,L(Vu) - Vudz
Q.

J—00 QE

V,L(Vu) lives in L so in particular it lives in L where % + % =1.
By (*) we have:

liminf E((u)) > liminf [ L(Vu;)dz > /

j—o0 j—o0 Q. Q.

L(Vu)dz = / xa. L(Vu(z)) dz
Q
=[ L(Vu)da
Up to now, € was fixed.

pointwise a.e.
— L(

Xe(x)L(Vu(z)) Vu(z))

Also monotonically. By monotone convergence theorem, setting ¢ — 0 we reach the
result.
O

In fact, convexity is necessary as well. Suppose Jp1,p2 € R™ such that:

L(Apy + (1 = A)p2) > AL(p1) + (1 = A)L(p2)
Same idea as oscillating between 1 we build u; such that Vu; oscilates between p;
and po.
Then, Vu; B3+ (1 — X)p2 = ug for some A € (0,1). Then,

lim inf L(Vuj)dx</L(Vu0)d:E

Friday, 12/6/2024

Last time: For 1 < g < 0o: ¥(z,2) € Q@ x Rp— L(z, z,p) is convex

Iff Vu; Wi u,

liminf/ L(z,u;, Vu;)dx > / L(z,u, Vu) dx
We also had the theorem: Assuming the convexity condition, the following are nec-
essary and sufficient for direct method to work:

Suppose G € W14(Q) satisfies the Dirichlet condition.

Also, E(G) = [, L(z,G,VG) dz < cc.

Coercivity condition: L((x,z,p)) > c1]p|? — ca.

Then 3 minimizer for:

m= inf E(u)
u—GEW, *(Q)
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Direct Method. Let {u;} be minimizing sequence, E(u;) — m.
—cy < cl/ [Vu;|? —codr < E(uj)m < +1
Q

co+m—+1
905120 < 22

oincaré

P
|lu; —Gllra < Cp||Vuj — VG| re < const.

= |[Juj|lwr.a < const
wla
= Uj, — U.
Convexity = weak lowersemicontinuity therefore E(u) < liminf;_, E(u;) =m
O

SE(u;v) = 0o € Wy with some extra assumptions.
Assuming we have these assumptions, we have (in the Gateaux sense):

4
at

/ L(z,u+tv,Vu+tVv)dz =0
t=0JQ

_ . >

— Lpp, (2,0, Vu) Ug,z; = Lo(2,u, Vu) + Ly, L(w,u, Vu) + Ly, . (2, u, V) ug,
——_— —

=ai; (z,u(z), Vu(z))
ai; is positive definite from strict convexity. So this is elliptic! But it is nonlinear.

Theorem 43. Assume L = L(z,p) [so not on Vu] for z € Q,p € R". Assume L is
smooth. Assume 6 > 0 such that L, , (z,p)&&; > 0|¢[*VE € R™ forall z € Q,Vp € R”
it is uniformly convex].

Then there exists at most one minimizer to

m = inf E(u) where E(u) = / L(z,u, Vu)dz
u—GeEW, 1(Q) Q

Proof. Suppose u1,us are both minimizers.

Then E(u1) = m = E(u2).

Let v := “14%2 Note: v must be admissible since v — G € Wy .

Taylor’s theorem = Vp1,p2 € R", L(x,p2) = L(x,p1) + V,pL(z,p1) - (p2 — p1) +
3(p2 —p1)T D2 L(x, p)(p2 — p1)-

Choose p; = vv = m and po = Vug.

E(w) = [o L(z, Vuy)dz > [, L(z, Vv) + V,L(z, Vo) - Y1-Y82 (g

+30 [, W dz

Similarly, E(uz) > E(v) + [, VpL(z, Vo) - Y22¥0 dg 4 & [0 |Vuy — Vuy > da
Adding,

2m > 2B(v) + ¢ [, |Vus — Vui|>dz = E(v) < m which is a contradiction.

An example of non-uniqueness:

E(u) = / %|Vu|2 + %(u2 —1)2dz
Q

m = inf,c 1) E(u).

Euler-Lagrangian Equation: Au = u? —u in Q and u = 0 on 99.
Note: u =0 is a critical point!

Is it a minimizer? Sometimes it is, sometimes it isn’t.

Let’s compute the 2nd variation of F at u = 0.
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d? 1
82E(u;v) = — / ~|Vu+tVo)? + ((u+tv)? = 1)*de
At |,_y Jo 2
d2
= [ |Vv)* + — -~ dx
/Q dt? |,
When v = 0 we have:
d? 1 2 d? 1
— | S (0+tw)?—1)" = —| = (' —2%* +1) = —0?
dez|,_, 4 dez|,_, 4
Therefore, 82E(0;v) = [, |[Vo|* —vidz > [, \v? — v? da
2
Since Ay = inf, e 1 fﬂflvv# and exists due to Poincaré.
Q

If we pick v := first eigenfunction of —Awv; = Ajvy,v; = 0 on 9.

Then, 62°E(0;v1) = [, (A1 — 1)vide

Then 0 will be unstable provided A\; < 1.

Therefore, 0 is definitely not the minimizer.

However, there definiely exists a minimizer u* by the direct method.

Since E(—u*) = E(u*), —u* must also be a minimizer! Thus there exsits at least 2
minimizers. So we have non-uniqueness of minimizers.

Monday, 12/9/2024

Final @ Wednesday 10:20-12:20, RH104

Constrained Variational Problems

General Problem:
inf £
S
A includes some constraints in addition to Sobolev and boundary condition, such as:
J(u) = 0,u(z)Sh(z), |Vu(z)| <1 ete.
How does a constraint affect the Euler Lagrange equation?
example: infyea 3 [, [Vul>dz where A = {u € H{(Q) : J(u) = 0} where J(u) =

Jo G(u(z)) da.
We will assume G : R — R smooth. We assume the bound |G(2)] < C(]z]? + 1).

1) A minimizer exists: {u;} = min. seq C A.
Jo IVu;? de < 2m + 1.
Jouide < Cp [ |Vuy|* dz

l|lujll g1 < const.

1 L2
Uj, — UQ, Uj), — Up-
liminfr oo [q [V, > dz > [ [Vug|? da.
We need to verify if ug is admissible.
Since [, G(u;)dz < [, (clu;]? + 1) dz, by dominated convergence theorem we
have [, G(ug)dz = 0.

Strategy: We want to find a differential equation that the minimizer must solve.
We get Euler Lagrangian equation from differentiating the curve t — wu + tw.
But u + tv is not admissible.

We want to build a curve of competitors and differenitate along that curve to
get a new criticality condition.

Suppose g = G'.
We assume that |[{z € Q: g(ug(z)) # 0}] > 0.
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We select any w € Hg () such that [, g(uo(z))w(z) dz # 0.
For this w, for 7,0 € R and any v € H}(2), define:

j(r,0) = J(ug + 70 + ow)

We’re looking for an admissible curve.

7(0,0) = J(ug) since ug € A.

We want to use Implicit Function Theorem.

% = a@T Jo Glug + v+ ow) dx = [, g(ug + 70 + ow)v dz

% = [ 9(uo + 70+ cw)wdzx

Since [¢, g(uo(z))w(x)dz # 0,

%(O, 0) # 0. Thus we can use implicit function theorem! 3o (7) for |7| small so
that j(r,o(7)) = 0.

Now we can compute first variation:

d )
&|_ i) =0

Jr(7,0(7)) + jo(7,0(7))0’ (1) = 0

Thus, o' (0) = ~= 0

_ ffﬂ g(ug)v dx
fQ g(ug)w dz

Here’s the curve of competitors:

V(r) = up + 710+ o(T)w € AV|7|small

d 1

— = VV|2d
dTT_02/9| " dz
1

= / (Vug 4+ 7Vv + o(1)Vw, Vug + 7V + o(7)Vw) dz
Q

0= —
2

or

7=0

0= / Vug - Vv + Vug - Vwe'(0) dz
Q

Jo Vuo - Vw da

OZ/Vu Vvd:c—/gu vdx
Q 0 Q ( O) fgzg(UO)de

0= / Vug - Vo — Ag(uo)v da LL _Aup = Ag(up)in
Q

—Aug = Ag(up) in €2 is a nonlinear eigenvalue problem.

72



