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This is dedicated to Sobolev Spaces, which we apply to Elliptic (linear) PDE.
Last part of the course is in a different direction. We talk about applying this to
Parabolic/Hyperbolic PDE.
Also Schauder Theory
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There are very explicit formula for certain PDE. For example D’Alembert, Poisson
etc.
Weak Solutions to PDE: There is some notion of solution that doesn’t have the
requisite number of derivatives in the classical calculus sense. So we lower our notion
of what a solution is.
ex. Conservation law: Burger’s Equation: ut + uux = 0, u(x, 0) = u0(x). If we try to
solve this for −∞ < x < ∞, t > 0, we have method of characteristics that attempts
to give us explicit formula (solution will be constant along lines of slope 1

u0
), but

there is trouble for general u0. These lines an bump into each other, so in that point
our solution has to equal two different numbers.

Figure 1: Burger’s Equation

Can also happen that a classical solution does exists, BUT it is easiest to find a weak
solution.
- Find a weak solution
- Show it’s classical (regularity theory)
For linear elliptic PDE’s ex. Laplace’s Equation,

∆u = ux1x1
+ · · ·+ uxnxn

= 0
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in Ω ⊂ Rn

A weak solution satisfies the equation obtained through multiplication by a test func-
tion C∞

c and integrate by parts
ie take any ϕ ∈ C∞

c (Ω)´
Ω
ϕ∆u = 0

= −
´
Ω
∇ϕ · ∇u+

´
∂Ω
ϕ∇u · ν

Note that the second term is integrated over the boundary. So it goes to 0
So, if:

ˆ
Ω

∇ϕ · ∇u = 0∀ϕ ∈ C∞
c

We say u weakly solves Laplace’s equation because it requires only one derivative (not
two).

Definition 1 (Weak Derivative). A locally integrable function u [notationally u ∈
L1
loc(Ω)] has a weak xi derivative v if v is locally integrable and´
Ω
uϕxi dx = −

´
Ω
vϕ dx for all ϕ ∈ C∞

c (Ω)

u and v can be terrible near the boundary but ϕ vanishes so we don’t care!
Recall: Multi-inde notation
If u : Rn → R and α = (α1, . . . , αn) where αj is non-negative integer then,

Dαu =
∂|α|

∂α1
x1 . . . ∂

αn
xn

eg in R3 for α = (1, 2, 1) then Dαu = ux1x2x2x3

Definition 2. Given u, v ∈ L1
loc(Ω),Ω ⊂ Rn and α a multi-index, we say v is the

weak αth derivative of u if integration by parts works:
if
´
Ω
uDαϕ dx = (−1)|α|

´
Ω
vϕ dx,∀ϕ ∈ C∞

c (Ω)

If we are define weak anything, if our weak thing actually happened to be good,
we want it to satisfy the strong definition as well! For example if differentiation is
allowed, then integration by parts would actually work. So, if u were smooth, then
our derivative would actually satisfy the solution, since

ˆ
Ω

(Dαu− v)ϕ dx = 0

So Dαu = v almost everywhere.
Recall: u ∈ Lp(Ω), p > 0 if

´
|u|p dx <∞

u ∈ Lp
loc(Ω) if ∀Ω1 ⊂⊂ Ω,

´
Ω1

|u|p dx <∞

Sobolev Spaces

Definition 3 (Sobolev Spaces). Fix 1 ≤ p ≤ ∞ and a non-negative integer k. Let
Ω ⊂ Rn be open.
Then the Sobolev space W k,p(Ω) consists of all functions u ∈ L1

loc(Ω) such that for
every multi-index α with |α| < k, Dαu exists weakly and lies in Lp(Ω).

Example 1: Consider ũ(x) = |x|. Doesn’t have a derivative. What about weak
derivative?

Claim: u has weak 1st derivative v(x) =

{
−1, if x < 0;

1, if x > 0;

We verify that using test function.
Let ϕ ∈ C∞

c (R)

LHS =

ˆ ∞

−∞
v(x)ϕ(x) dx = −

ˆ 0

−∞
ϕ(x) dx+

ˆ ∞

0

ϕ(x) dx

RHS = −
ˆ ∞

−∞
ũ(x)ϕ′(x) dx =

ˆ 0

−∞
xϕ′(x) dx−

ˆ ∞

0

xϕ′(x) dx
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By applying IBP

RHS = −
ˆ 0

−∞
ϕ(x) dx+

ˆ ∞

0

ϕ(x) dx

[boundary terms don’t matter because either x or ϕ vanishes]
Since |x| is locally integrable for any p, ũ ∈W 1,p

loc (R) for all p
Example 2: Consider the Heaviside function

u(x) =

{
1, if x > 0;

0, if x < 0;

Is NOT going to be weakly differentiable!

Wednesday, 8/28/2024

Sobolev Space W k,p(Ω)

u ∈W k,p(Ω) if
Dαu ∈ Lp weakly for all α such that |α| ≤ k
This is a normed space.

∥u∥Wk,p(Ω) =

∑
|α|≤k

ˆ
Ω

|Dαu|p
 1

p

If p = ∞ we just take the sup norm.
We have convergence: {uj} ⊂W k,p(Ω) converges in W k,p

to u ∈W k,p(Ω) if |uj − u|Wk,p(Ω) → 0 as j → ∞

Definition 4. W k,p
0 (Ω) := closure in W k,p(Ω)-norm of C∞

o (Ω)

Remark: W k,p(Ω) and W k,p
0 (Ω) are Banach spaces [normed, complete [since Lp is

complete]]
For p = 2 we don’t usually use W k,2(Ω). We use Hk(Ω). H is for Hilbert. This is a
Hilbert space [there exists an inner product].

(u, v)Hk(Ω) :=
∑
|α|≤k

ˆ
Ω

DαuDαv

Hölder’s inequality implies:∣∣∣∣ˆ
Ω

DαuDαv

∣∣∣∣ ≤ ∥Dαu∥L2∥Dαv∥L2

Let’s go back to the example.
Let u(x) be the heaviside function, 0 for negative, 1 for positive. Is it weakly differ-
entiable? Is it in some sobolev space?
Is u ∈W k,p(R) for some k and p? Does u have a weak solution?
Answer: No! We use contradiction.
Suppose there is such a v ∈ L1

loc(R) such that IBP holds:

ˆ
R
uϕ′ dx = −

ˆ
R
vϕ dx

for all ϕ ∈ C∞
c (R)

Then,
´∞
0
ϕ′(x) dx = −

´∞
−∞ vϕ dx

Therefore, ϕ(0) =
´∞
−∞ v(x)ϕ(x) dx

We use this for contradiction. Consider a sequence {ϕj} of test functions so that
ϕj(0) = 1 for all j and 0 ≤ ϕj(x) ≤ 1 for all x.
Further suppose that the support for ϕj shrinks to the origin.
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ϕj(0) = 1 = −
ˆ
R
vϕj dx

Now, vϕj → 0 pointwise a.e.
|vϕj | ≤ |v| ∈ L1

loc

This gives us the desired contradiction.
Notice: ϕ(0) =

´
v(x)ϕ(x) is true for the ‘function’ dirac delta. This is not really a

function, this is a distribution.
Moral of the story: We can’t have too big of a discontinuity [here we have a jump
discontinuity] and still be in Sobolev spaces.
Example: f(x) = 1

|x|α for x ∈ B(0, 1) = {x ∈ Rn : |x| < 1} and α > 0

For which k, p, n, α is f ∈W k,p(B(0, 1))?
Question 1: Is this in any Lp space? If no then game over.
Is f ∈ Lp(B(0, 1))

ˆ
B(0,1)

1

|x|αp
dx =

ˆ 1

0

ˆ
∂B(0,r)

1

|x|αp
dS dr

=

ˆ 1

0

1

rαp
µ(∂B(0, r)) dr

= ωn

ˆ 1

0

1

rαp
rn−1 dr = ωn

ˆ 1

0

r−αp+n−1 dr

So, f ∈ Lp if αp ≤ n
Note that |Dαf | ≤ Lp for |α| = 1 provided (α+ 1)p ≤ n
Is f weakly differentiable for |α| = 1?
Consider ϵ < 1

ˆ
B(0,1)\B(0,ϵ)

fϕxi
dx =

ˆ
B(0,1)\B(0,ϵ)

∇ · (0, 0, fϕ, 0, 0) dx−
ˆ
B(0,1)\B(0,ϵ)

ϕfxi
dx

ˆ
B(0,1)\B(0,ϵ)

fϕxi
dx = −

ˆ
B(0,1)\B(0,ϵ)

ϕfxi
dx+

ˆ
∂(B(0,1)\B(0,ϵ))

fϕνi dS

Note that the outer normal dissapears, we only have the inner normal.

ˆ
∂(B(0,1)\B(0,ϵ))

fϕνi dS =

ˆ
∂B(0,ϵ)

fϕνi dS

Setting ϵ→ 0 we see that the integral converges. Also,

∣∣∣∣∣
ˆ
∂(B(0,1)\B(0,ϵ))

fϕνi dS

∣∣∣∣∣ ≤
ˆ
∂B(0,ϵ)

|fϕνi| ≤ c

ˆ
∂B(0,ϵ)

|f |dS ≤ c

ϵα
ωnϵ

n−1 → 0

provided n− 1 ≥ α
So,

ˆ
B(0,1)

fϕxi
dx = −

ˆ
B(0,1)

ϕfxi
dx

So f is weakly differentiable for |α| = 1
(See Appendix 5 in Evans)
Mollification:
There are lot of situation in PDE where you have a function and you don’t know how
nice is it in terms of derivative. So you convolve it so that it is nice and take some
limit.
Let η satisfy η ∈ C∞

c (Rn)
Suppose η ≡ 0 for |x| ≥ 1´
Rn η(x) dx = 1
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Suppose η is radial, η = η(|x|) just a function of radial distance
Note that there is no such analytic function. But there are infinitely differentiable
ones.
Define ηϵ := ϵ−nϵ(xϵ )
So we rescale the function.
Then given u ∈ L1

loc(?) we define the mollification

uϵ(x) = u ∗ ηϵ =
ˆ
u(x− y)ηϵ(y) dy =

ˆ
u(y)ηϵ(x− y) dy

Friday, 8/30/2024

Given Ω ⊂ Rn, open, bounded
∀ϵ define {x ∈ Ω : dist(x, ∂Ω) > ϵ} = Ωϵ

Let η ∈ C∞
c (Rn) such that

0 ≤ ϵ ≤ 1 and
´
B(0,1)

η(x) dx = 1 and supp(η) ⊂ B(0, 1)

Define ηϵ(x) := ϵ−nη(xϵ )

Then, supp(ηϵ) ⊂ B(0, ϵ)

ˆ
B(0,ϵ)

ηϵ(x) dx = ϵ−n

ˆ
B(0,ϵ)

η(
x

ϵ
) dx =

ˆ
B(0,1)

η(x) dx = 1

Theorem 1. Given f ∈ L1
loc(Ω) define fϵ := ηϵ ∗ f for x ∈ Ωϵ

fϵ(x) =

ˆ
Ω

ηϵ(x− y)f(y) dy

Then, i: fϵ(x) is infinitely differentiable.
ii: fϵ → f pointwise a.e.
iii: If f is continuous then fϵ → f uniformly on compact subsets of Ω
iv: If for 1 ≤ p <∞, f ∈ Lp(Ω) then fϵ → f in Lp(Ω). Also true for f ∈ Lp

loc

Proof. (i): Convolution is a child, and it inherits the nicest properties of the parent.
ηϵ is nicer.
Idea: it is legal to bring derivatives inside the integral.

fϵ(x+ hei)− fϵ(x)

h
=

ˆ
Ω

[
ηϵ(x+ hei − y)− ηϵ(x− y)

h

]
f(y) dy

Stuff in brackets converges uniformly in y to ηϵxi
(x − y) using Taylor remainder

theorem.
Then Lebesgue Dominated Convergence finishes the job.
(iii) Fix K ⊂ Ω where K compact.
∀x ∈ K we have |fϵ(x)− f(x)| =

∣∣´
Ω
(ηϵ(y)f(x− y)) dy − f(x)

∣∣
=

∣∣∣∣ˆ
Ω

ηϵ(y) [f(x− y)− f(x)] dy

∣∣∣∣
≤
ˆ
Ω

ηϵ(y) |f(x− y)− f(x)| dy

Since K is compact, f is uniformly continuous on K.
So, ∀β > 0 we have ϵ0 such that ∀ϵ < ϵ0 such that ∀x, y such that |y| < ϵ we have
|f(x− y)− f(x)| < β
So,

≤
ˆ
Ω

ηϵ(y)β dx = β
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What is the relevance to Sobolev spaces?
Often we are going to try to prove some estimates. We want to prove some inequalities.
Then, we mollify and prove it for the mollification. If we mollify a Sobolev function,
we get an approximation.

Theorem 2 (Local Approximation Away from ∂Ω). Assume u ∈ W k,p(Ω) [aka
function has k’th weak derivatives which are locally integrable in order p]. Define
uϵ = ηϵ ∗ u in Ωϵ = {x ∈ Ω : dist(x, ∂Ω) > ϵ}
THen, uϵ ∈ C∞(Ωϵ)

And uϵ → u in W k,p
loc (Ω)

Proof. Note infinite derivative we already have by property of mollification.
Fix the multi-index α suh that |α| ≤ k.
Claim 1: Dαuϵ = ηϵ ∗Dαu
In other words, mollification and derivatives commute.
To see this, consider x ∈ Ωϵ

Dαuϵ = Dα

ˆ
Ω

ηϵ(x− y)u(y) dy

=

ˆ
Ω

Dα
xηϵ(x− y)u(y) dy

= (−1)|α|
ˆ
Ω

Dα
y ηϵ(x− y)u(y) dy

= (−1)|α|(−1)|α|
ˆ
Ω

ηϵ(x− y)Dαu(y) dy

= ηϵ ∗Dαu

proving the claim.
Now, fix V ⊂ Ω with open V ⊂ Ω (V ⊂⊂ Ω )
Apply previous theorem, item iv and the claim
Dαuϵ → Dαu in Lp(V ) for all α such that |α| ≤ k

Theorem 3 (Global Approximation). Theme:
Sobolev can be approximated by smooth sobolev
Let Ω ⊂ Rn be open, bounded. Assume u ∈W k,p(Ω) for 1 ≤ p <∞
Then, ∃{um} ⊂ C∞(Ω)∩W k,p(Ω) [infinitely smooth AND sobolev] such that um → u
in W k,p(Ω). Meaning:

lim
m→∞

∥um − u∥Wk,p(Ω) → 0

Idea of Proof:
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We have a bunch of Ωi with
⋃∞

i=1 Ωi = Ω
Use a partition of unity {ϕi} so that

∑
ϕi(x) = 1, mollify.

Proof is on Evans.

Wednesday, 9/4/2024

Traces

We are going to solve PDEs using Sobolev spaces. We typically specify boundary
conditions in PDEs. But in first glance, since Sobolev functions are defined upto a
set of measure zero, it seems ill suited to dealing with boundary conditions [since
boundary ∂Ω has measure 0].
How to define boundary values for a Sobolev functions?
We are going to establish an inequality for smooth function.

Theorem 4. Assume ∂Ω is C1 surface1. Then ∃ a bounded linear operator T :
W 1,p(Ω) → Lp(∂Ω) for 1 ≤ p <∞ such that:

i) Tu = u|∂Ω if u ∈W 1,p(Ω) ∩ C(Ω)

ii) ∥Tu∥Lp(∂Ω) ≤ C ∥u∥W 1,p(Ω) for some C = C(p,Ω)

Proof. Outline:

1) Fix x0 ∈ ∂Ω. Suppose ∂Ω is ‘flat’ near x0. In fact, define ball B centered at x0
such that inside B, ∂Ω is flat.

[insert picture]

Then we can define x′ = (x1, · · · , xn−1). If the last coordinate is positive, we
are inside Ω.

Inside B, ∂Ω is flat. we can define B′ ⊂ B centered at x0.

Let ζ ∈ C∞
0 (B) so that ζ ≡ 1 on B′ and ζ ≥ 0.

Define Γ := ∂Ω ∩B′.

Assume u ∈ C1(Ω).

ˆ
Γ

|u|p dx′ ≤
ˆ
{xn=0}∩B

ζ|u|p dx′

= −
ˆ
{xn=0}∩B

(0, · · · , 0, ζ|u|p) · (0, · · · , 0,−1) dx′

We are almost set up for divergence theorem. Since ζ = 0 on the boundary of
B, we actually have the whole boundary! Applying the divergence theorem, we
get:

= −
ˆ
B∩Ω

∂

∂xn
[ζ(x)|u(x)|p] dx

= −
ˆ
B∩Ω

[
ζxn

|u|p + ζp|u|p−1 u

|u|
uxn

]
dx

= −
ˆ
B∩Ω

[
ζxn

|u|p + ζp|u|p−1 sgn(u)uxn

]
dx

Now we use Young’s Inequality.

1meaning ∂Ω can be described as the graph of a C1 function.
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Theorem 5 (Young’s Inequality). For any a, b > 0 and p, q such that 1
p+

1
q = 1,

we have:

ab ≤ ap

p
+
bq

q

We are estimating abolute value, so we can take absolute value. Using Young’s
inequality on a = |uxn

| and b = |u|p−1,

ˆ
Γ

|u|p dx′

≤
ˆ ∞

B

[
|ζxn

||u|p + p|ζ|
[
(|u|p−1)p/(p−1)

p/(p− 1)
+

|uxn |p

p

]]
dx

≤ C

ˆ
B∩Ω

[|u|p + |∇u|p] dx ≤ C

ˆ
Ω

[|u|p + |∇u|p] dx

Now, ∂Ω ∈ C1 means, centered at any point x0 ∈ ∂Ω ∂Ω can be written as a
graph xn = f(x′) where |f |C1 is bounded.2

Therefore, Ball inside of which ∂Ω is a graph has radius R depending on C1

norm.

2) For the next step, we flatten the boundary of Ω by a change of variables.

[insert picture]

[insert picture 2]

Change variables: y = (y′, yn).

Set y′ = x′

yn := xn − f(x′)

y = G(x).

So, yn = 0 means xn = f(x′), which means we’re on the graph.

We can think of this in terms of the Inverse Function Theorem. What is the
Jacobian of G?

Jac(G) = det∇G = det

 I 0
...

−fx1
− fx2

− · · · − fxn−1
1

 = 1

So, G−1 is C1.

Then, |∇G| ≤ C(∂Ω) and |∇(G−1) ≤ C(∂Ω)|.
u is a given function. We can define a new function that has a flat boundary
which we can use instead of u.

Define ũ(y) := u(G−1(y)).

Then, u(x) = ũ(G(x))

Suppose G(Γ) = G̃.

Then, Step 1 implies,

ˆ
Γ̃

|ũp| dy′ ≤ C

ˆ
shaded region

[|ũ|p + |∇ũ|p] dy

Where the shaded region is {x | xn > f(x′), x ∈ BR}. Now,

2|f |C1 = sup |f |+ sup |∇f |
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|∇ũ(y)| ≤
∣∣Du · ∇(G−1)

∣∣ ≤ C |∇u|

Continuing,

ˆ
Γ̃

|ũp| dy′ ≤ C

ˆ
shaded region

[|ũ|p + |∇ũ|p] dy

=⇒
ˆ
Γ

|u|p dx′ ≤ C

ˆ
Ω∩BR

[|u|p + |∇u|p] dx ≤ C

ˆ
Ω

[|u|p + |∇u|p] dx

Which finishes Step 2.

3) Decompose ∂Ω into NR pieces, and add them up using Step 2.

Since ∂Ω is compact, NR < N(∂Ω).

[insert picture]

We have: ∀u ∈ C1(Ω),

ˆ
∂Ω

|u|p dS ≤ C(p,Ω)

ˆ
Ω

[|u|p + |∇u|p] dx

Now, suppose u ∈ W 1,p(Ω). Approximate u in W 1,p norm by {um} ⊂ W 1,p(Ω) ∩
C1(Ω). Then,

∥um − ul∥Lp(∂Ω)︸ ︷︷ ︸
cauchy sequence

≤ C ∥um − uL∥pW 1,p

RHS → 0, so LHS → 0 for m, l ≫ 1.
Therefoe, ∃Tu ∈ Lp(∂Ω) which is the limit of this cauchy sequence.

Friday, 9/6/2024

A few comments about traces.
Last time: If u ∈W 1,p(Ω) for 1 ≤ p <∞ and ∂Ω ∈ C1 , we can define the trace of u
on ∂Ω, Tu ∈ Lp(∂Ω) and ∃C = C(p,Ω) such that,

∥Tu∥Lp(∂Ω) ≤ C ∥u∥W 1,p(Ω)

Recall: W k,p
0 (Ω) = closure of C∞

c (Ω) in the W k,p norm.
Suppose k = 1, u ∈W 1,p

0 (Ω). Then, Tu = 0 on ∂Ω

Also, if k > 1 and u ∈ wk,p
0 (Ω), we have Tu = 0.

In fact, T (Dαu) = 0∀α such that |α| ≤ k − 1.

Calculus of Variations

Our objects of interest are functionals.
Consider an integral functional of the form:

E(u) =

ˆ
Ω

L(x, u,∇u) dx

We use E because this often denotes Energy. It comes from physics often.
In that case, we call L an energy density. It is also often called the energy density.
A fundamental problem is:
Determine the infimum of E among all functions u in an admissible set A .
We define:

m := inf
u∈A

E(u)
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“First Variation of E”
This is the ‘calculus of variations’ version of a derivative.
If Ω ⊂ Rn and u : Ω → R,

L = L(x, z, p)

where: x is a point in Ω ⊂ Rn

z ∈ R [we put u here]
p ∈ Rn [we put ∇u here]
We put u in E, but we purtrube it a little bit.
Suppose u ∈ A , and v such that u+ tv ∈ A for |t| small.
E(u+ tv)
Then, t 7→ E(u+ tv) is a function R → R. We take derivative and set t = 0

d

dt

∣∣∣∣
t=0

E(u+ tv) = δE(u; v)

Note: if u is a minimum of E, i.e. E(u) = m, then the first variation δE(u; v) = 0 for
all v such that u+ tv ∈ A .

Definition 5. u is called a critical point of E in A if δE(u; v) = 0∀v such that
u+ tv ∈ A .

Question: What is true about a critical point u of an integral functional of form (∗)?

0 =
d

dt

∣∣∣∣
t=0

E(u+ tv)

=
d

dt

∣∣∣∣
t=0

ˆ
Ω

L(x, u+ tv,∇u+ t∇v) dx

=

ˆ
Ω

∂L
∂z

(x, u,∇u)v +
n∑

j=1

∂L

∂pj
(x, u,∇u)vxj

 dx

=

ˆ
Ω

[
∂L

∂z
(x, u,∇u)v +∇pL · ∇xv

]
dx

Applying IBP,

=

ˆ
Ω

∂L
∂z

(x, u,Du)−
n∑

j=1

∂

∂xj

(
∂

∂pj
L(x, u,∇u)

) v dx
+

ˆ
∂Ω

v∇pL(x, u,∇u) · ν dS

Now, suppose all allowable v’s are included in C∞
c (Ω) functions. That would make

the boundary term 0. Then, since we can choose v however we want, the big integral
is 0.

n∑
j=1

∂

∂xj

[
∂

∂pj
L(x, u,∇u)

]
=
∂L

∂z
(x, u,∇u)

This is a 2nd order PDE. This is called the Euler-Lagrange equation for E.

Example: Take E(u) =

ˆ
Ω

1

2
|∇u|2 +W (x, u) dx

Here L(x, z, p) = 1
2 |p|

2 +W (x, z)
Then, we find the Euler-Lagrangian.

∂L

∂pj
(x, z, p) =

∂

∂pj

[
1

2
|p|2 +W (x, u)

]
= pj
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∂L

∂pj
(x, u,∇u) = uxj

Also,

∂L

∂z
(x, z, p) =

∂W

∂z
(x, z)

So, the Euler-Lagrangian equation gives us:

n∑
j=1

∂

∂xj
(uxj

) =
∂W

∂z
(x, u)

∆u =
∂W

∂z
(x, u)

This is a Nonlinear Poisson Equation.
Question: What should we choose A to be to make our life easiest?
We want integration by parts to be justified, but we want our topology to be weak
enough so that finding minimizers is easy.
In the previous example, we have integral of |∇u|2. So, ideally we want it to be L2.
So, in the example, best choice is H1(Ω).
How does one find a minimzer?
Direct Method: Our problem is, we want to find u ∈ A such that:

m := inf
u∈A

E(u)

Idea: We find a sequence {uj} [called a minimizing sequence]: so that {uj} ⊂ A and
E(uj) → m.
Step 1: Try to get a convergent subsequence of ujk → u∗ ∈ A . [Compactness]
In this step, if we choose A to be ‘too strong’, we lose. Ideally we want A to be
sequentally compact.
Step 2: E might not be continuous in this topology, then we don’t have E(u∗) = m.
So, we want lower semi-continuity.

lim inf
k→∞

E(ujk) ≥ E(u∗)

Then we have E(u∗) ≤ m.
This tells us that u∗ is a minimum.

Monday, 9/9/2024

Theorem 6 (Extension of Sobolev Functions). Assume Ω ⊂ Rn, open , bounded
with ∂Ω ∈ C1. Then, ∃C = C(p,Ω) and an extension E :W 1,p(Ω) →W 1,p(Rn) such
that:

i) Eu = u in Ω

ii) Eu has compact support

iii) ∥Eu∥W 1,p(Rn) ≤ C ∥u∥W 1,p(Ω)

Idea is, we can let a function down to zero ‘gently’ and extend that way.

Theorem 7 (Gagliardo - Nirenberg - Sobolev Inequality). Assume 1 ≤ p < n.
Then, there exists C = C(p, n) such that for every u ∈ C1

0 (Rn) [compactly supported
continuously differentiable function] one has the following inequality:

∥u∥Lp∗ (Rn) ≤ C ∥∇u∥Lp(Rn)

Where p∗ = np
n−p is the critical sobolev exponent.

Note that np
n−p = np−p2+p2

n−p = p+ p2

n−p > p.

11



Question: Where does p∗ come from?

Given u ∈ C1
0 (Rn), define:

uλ(x) := u(λx)

for λ > 0.
Suppose |u|Lq(Rn) ≤ C |∇u|Lp(Rn)

For which q could this be true? Consider the norm of the scaled function:

∥uλ∥Lq =

[ˆ
Rn

|u(λx)|q dx
] 1

q

=
1

λn/q

[ˆ
Rn

|u(y)|q dy
] 1

q

∥∇uλ∥Lp =

[ˆ
Rn

|∇xu(λx)|p dx
] 1

p

=
1

λ
n
p
(λp)

1
p︸ ︷︷ ︸

=λ
1−n

p

[ˆ
Rn

|∇yu(y)|p dy

] 1
p

Applying the same inequality,

1

λ
n
q

[ˆ
Rn

|u(y)|q dy
] 1

q

≤ Cλ1−
n
p

[ˆ
Rn

|∇u(y)|p dy
] 1

p

∥u∥Lq ≤ Cλ1−
n
p +n

q ∥∇u∥Lp ∀λ > 0

This means 1− n
p + n

q must be 0.
Therefore, q = p∗

So, if the theorem is true we must have the q.
Now we prove the theorem.

Proof. First take n = 3.
Take p = 1.

u(x) =

ˆ x1

−∞
ux1(y1, x2, x3) dy1

u(x) =

ˆ x2

−∞
ux2

(x1, y2, x3) dy2

u(x) =

ˆ x3

−∞
ux3

(x1, x2, y3) dy3

Therefore,

|u(x)| ≤
ˆ x1

−∞
|∇u(y1, x2, x3)| dy1

|u(x)| ≤
ˆ x2

−∞
|∇u(x1, y2, x3)| dy2

|u(x)| ≤
ˆ x3

−∞
|∇u(x1, x2, y3)| dy3

Multiplying, |u(x)|3

≤
[ˆ x1

−∞
|∇u(y1, x2, x3)| dy1

] [ˆ x2

−∞
|∇u(x1, y2, x3)| dy2

] [ˆ x3

−∞
|∇u(x1, x2, y3)| dy3

]
Therefore, |u(x)| 32 ≤

[ˆ ∞

−∞
|∇u(y1, x2, x3)| dy1

] 1
2

︸ ︷︷ ︸
=I1(x2,x3)

[ˆ ∞

−∞
|∇u(x1, y2, x3)| dy2

] 1
2

︸ ︷︷ ︸
=I2(x1,x3)

[ˆ ∞

−∞
|∇u(x1, x2, y3)| dy3

] 1
2

︸ ︷︷ ︸
=I3(x1,x2)

12



Integrating with respect to x1 and applying Hölder,

ˆ ∞

−∞
|u(x)| 32 dx1 ≤ (I1(x2, x3))

1
2

[ˆ ∞

−∞
I2(x1, x3) dx1

] 1
2
[ˆ ∞

−∞
I3(x1, x2) dx1

] 1
2

repeat for x2 and x3 and use the fact:

ˆ
|f ||g| ≤

[ˆ
f2
] 1

2
[ˆ

g2
] 1

2

We see that,

˚
R3

|u(x)| 32 dx ≤
[˚

R3

|∇u(x)| dx
] 3

2

Therefore, ∥u∥
L

3
2
≤ ∥∇u∥L1

For p = 1, n ≥ 3, same proof, but use ‘generalized Hölder inequality’ given by:

ˆ
|u1 · · ·um| ≤ ∥u1∥Lp1 · · · ∥um∥Lpm

provided 1
p1

+ · · ·+ 1
pm

= 1

Now, for any 1 < p < n, let v(x) = |u(x)|γ for some γ > 1
v ∈ C1

0 since u ∈ C1
0 . Use previous case [p = 1]. Note that, in that case, p∗ = n

n−1 .

Also note that, ∇v = γ|u|γ−1 sgn(u)∇u
Therefore |∇v| ≤ γ|u|γ−1|∇u|
Then, [ˆ

|v(x)|
n

n−1

]
≤
ˆ

|∇v(x)|

[ˆ
|u|

γn
n−1

]n−1
n

≤ γ

ˆ
|u|γ−1|∇u| ≤

Hölder
γ

[ˆ
|u|(γ−1) p

p−1

] p−1
p
[ˆ

|∇u|p
] 1

p

We pick γ = p(n−1)
n−p > 1. This gives us,

γn

n− 1
=

(γ − 1)p

p− 1
=⇒ γn

n− 1
= p∗

So we get: [ˆ
|u|p

∗
]n−1

n − p−1
p

≤ γ ∥∇u∥Lp

[ˆ
|u|p

∗
]n−p

np

≤ γ ∥∇u∥Lp

∥u∥Lp∗ ≤ γ∥∇u∥Lp

Wednesday, 9/11/2024

Theorem 8. Assume u ∈ W 1,p
0 (Ω) for Ω ⊂ Rn open, bounded, ∂Ω ∈ C1. Then, for

1 ≤ p < n there exists C = C(p, n,Ω) such that,

∥u∥Lp∗ ≤ C∥∇u∥Lp(Ω)

for p∗ = np
n−p

[Note that before we had condition u ∈ C1
0 (Rn), so this is a stronger theorem]

13



Proof. Extend u to be ũ ∈W 1,p(Rn) so that it is compactly supported
[insert picture here]
Then we approximate ũ by smooth functions {um} ⊂ C∞

0 (Rn).
Apply previous result to get:

∥um − uj∥Lp∗ ≤ C∥∇um −∇uj∥Lp → 0

Therefore, {um} is cauchy in Lp∗
(Ω).

So we have um
Lp∗ (Ω)→ u

To prove the inequality, we let m→ ∞ in the previous result.

Corollary: For 1 ≤ q ≤ p∗ and 1 ≤ p < n, ∃C = C(p, n,Ω) such that,

∥u∥Lq(Ω) ≤ C∥∇u∥Lp(Ω)

Proof. By Hölder,

∥v∥Lq ≤ C ′∥v∥Lp∗ ∀q < p∗

This is only half the story since we have p < n. What if p > n? What about p = n?

p = n case

Here u ∈W 1,n
0 (Ω)

Note that p∗ = np
n−p which is undefined. So we have problem. For that, we do:

Suppose ϵ > 0. Apply GNS inequality for pϵ = n− ϵ.

Then p∗ϵ = npϵ

n−pϵ
= n(n−ϵ)

ϵ . We have:

∥u∥Lp∗ϵ (Ω) < Cϵ∥∇u∥Ln(Ω)

Such an inequality exists for every ϵ. So, u is in every Lq(Ω) space for 1 ≤ q <∞.
Note that q = ∞ not necessary, there are counterexamples.
Corollary[Poincaré Inequality]: For Ω ⊂ Rn open, bounded and for 1 ≤ p < ∞ there
exists C = C(p, n,Ω) such that

∥u∥Lp(Ω) ≤ C(p, n,Ω)∥∇u∥Lp(Ω)

This is true for all u ∈W 1,p
0 (Ω).

This is weaker than previous inequalities, since p < p∗.

What if u ∈ W 1,p or u ∈ W 1,p
0 and Ω ⊂ Rn and p > n?

These functions are even better!
But first we need to talk about Hölder Continuous Functions.

Definition 6 (Hölder Quotient). Let 0 < α < 1. Define Hölder quotient:

[u]C0,α(Ω) = sup
x,y∈Ω,x̸=y

|u(x)− u(y)|
|x− y|α

Definition 7 (Hölder Space). u ∈ C0,α(Ω) if

∥u∥C0,α(Ω) := sup
x∈Ω

[
|u(x)|+ [u]C0,α(Ω)

]
<∞

This is a Banach Space.

14



Note: if u ∈ C0,α(Ω) then u is uniformly continuous.
Example: Suppose Ω = [0, 1] and u(x) = xβ for any β ∈ (0, α].
[graph]
It’s derivative goes to ∞ but it is still Hölder continuous.

Theorem 9 (Morrey’s Inequality). Assume n < p ≤ ∞. Then ∃C = C(p, n) such
that

∥u∥C0,γ (Rn) ≤ C∥u∥W 1,p(Rn)

for all u ∈ C1
0 (Rn) where γ = 1− n

p .

We can approximate so this is also true for u ∈W 1,p
0 (Ω).

Thus, when u ∈W 1,p
0 (Ω) we can say that u is in fact Hölder continuous.

Proof. We have to prove that both sup and the Hölder quotient are controlled by the
Sobolev norm.
Step 1: Claim: There exists C = C(n) such that ∀x ∈ Rn such that r > 0,

 
B(x,r)

|u(y)− u(x)| dy ≤ C

ˆ
B(x,r)

|∇u(y)|
|y − x|n−1

dy ∀u ∈ C1(Rn)

Proof of Claim: Fix x. Fix r. Fix w ∈ ∂B(0, 1). Then,

|u(x+ sw)− u(x)| =
∣∣∣∣ˆ s

0

d

dt
u(x+ tw) dt

∣∣∣∣ ≤ ˆ s

0

|∇xu(x+ tw)| · |w|︸︷︷︸
=1

dt

Integrating over all w ∈ ∂B(0, 1) we get

ˆ
w∈∂B(0,1)

|u(x+ sw)− u(x)|dSw ≤
ˆ
w∈∂B(0,1)

ˆ s

0

|∇xu(x+ tw)| dt dSw

=

ˆ s

0

ˆ
w∈∂B(0,1)

|∇xu(x+ tw)| tn−1 dSw︸ ︷︷ ︸
=dS on ∂B(0,t)

dt

Let y = x+ tw =⇒ t = |y − x|

=

ˆ
B(x,s)

|∇yu(y)|
|y − x|n−1

dy

≤
ˆ
B(x,r)

|∇yu(y)|
|y − x|n−1

dy

TBC

Friday, 9/13/2024

Continuing Morrey’s Inequality.
We had:

ˆ
∂B(0,1)

|u(x+ sw)− u(x)|dSw ≤
ˆ
B(x,r)

|∇u(y)|
|y − x|n−1

dy

Multiplying by sn−1,

ˆ
∂B(0,1)

|u(x+ sw)− u(x)|sn−1 dSw ≤
ˆ
B(x,r)

|∇u(y)|sn−1

|y − x|n−1
dy

Integrating over s from 0 to r,

ˆ r

0

ˆ
∂B(0,1)

|u(x+ sw)− u(x)|sn−1 dSw ds ≤
ˆ r

0

ˆ
B(x,r)

|∇u(y)|sn−1

|y − x|n−1
dy ds
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ˆ r

0

ˆ
∂B(x,s)

|u(y)− u(x)| dSy ds ≤
ˆ r

0

ˆ
B(x,r)

|∇u(y)|sn−1

|y − x|n−1
dy ds

ˆ
B(x,r)

|u(y)− y(x)| dy ≤ rn

n

ˆ
B(x,r)

|∇u(y)|
|y − x|n−1

dy

1

α(n)rn

ˆ
B(x,r)

|u(y)− y(x)| dy ≤ 1

nα(n)

ˆ
B(x,r)

|∇u(y)|
|y − x|n−1

dy

which is the claim.
Step 2: (Bounding sup |u|)
Fix x ∈ Rn.

|u(x)| =
 
B(x,1)

|u(x)| dy

≤
 
B(x,1)

|u(x)− u(y)| dy +
 
B(x,1)

|u(y)|dy

First term: apply step 1. Second term: apply Young’s inequality

|u(x)| ≤ C

ˆ
B(x,1)

|∇u(y)|
|y − x|n−1

dy + C

(ˆ
1

p
p−1 dy

) p−1
p

(ˆ
B(x,1)

|u(y)|p
) 1

p

(∗)

Now apply Hölder’s inequality on the first part:

ˆ
B(x,1)

1

|x− y|n−1
|∇u(y)|dy ≤

[ˆ
B(x,1)

[
1

|x− y|n−1

] p
p−1

dy

] p−1
p

We simplify:[ˆ
B(x,R)

[
1

|y − x|n−1

] p
p−1

dy

] p−1
p

=

[ˆ R

0

ˆ
∂B(0,s)

s(n−1) p
p−1 dS ds

] p−1
p

=

[ˆ R

0

s(n−1) p
p−1ω(n)sn−1 ds

] p−1
p

= C

[ˆ R

0

sn−1−(n−1) p
p−1 ds

] p−1
p

= C
[
Rn−(n−1) p

p−1

] p−1
p

= CRn p−1
p −(n−1) = CR1−n

p (∗∗)

Applying R = 1 on (∗∗) and substituting to ()∗),
|u(x)| ≤ C ∥∇u∥Lp(Rn)

Step 3: Bounding the Hölder quotient [u]C0,γ :
Fix x, y in Rn and let r = |x− y|.
Define W = B(x, r) ∩B(y, r).
[insert picture]

|u(x)− u(y)| =
 
z∈W

|u(x)− u(y)| dz

≤
 
W

|u(x)− u(z)| dz +
 
W

|u(y)− u(z)| dz

Now,

 
|u(x)− u(z)| dz ≤ 1

|W |

ˆ
B(x,r)

|u(x)− u(z)| dz

≤ C(n)

 
B(x,r)

|u(x)− u(z)| dz
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Applying the claim,

≤ C

ˆ
B(x,r)

|∇u(z)|
|x− z|n−1

dz

Applying Hölder and (∗),

≤ C ∥∇u∥Lp(Rn) r
1−n

p

So we’re done.

Theorem 10. Let Ω ⊂ Rn be bounded, open with ∂Ω ∈ C1. Assume n < p <∞.
Then, ∃C(n, p,Ω) such that: for every u ∈ W 1,p(Ω) one has u ∈ C0,γ(Ω) where
γ = 1− n

p and:

∥u∥C0,γ(Ω) ≤ C ∥u∥W 1,p(Ω)

So, if our Sobolev Lp space is better than our dimension, our function must be con-
tinuous, or even better, Hölder Continuous!
Actually, Sobolev Functions are defined upto a set of measure 0. So, we actually have
a continuous representative.

Proof. Extension Theorem

If we have W k,p we can have better statements.
Morrey and G-N-S inequalities can be concatenated.
[See Evans]
Example: Suppose u ∈W 2,2(Ω). Suppose Ω ⊂ R3 and bounded.

u ∈ H2(Ω) therefore uxj
∈W 1,2(Ω).

p = 2, n = 3. Use GNS. 2∗ = 3×2
3−2 = 6.

Thus, uxj
∈ L2∗ = L6.

Since also u ∈W 1,2, u ∈ L6.
Therefore, u ∈W 1,6 . We have jumped above the dimension, since p = 6, n = 3.
n < p so we can use Morrey.
=⇒ u ∈ C0,γ(Ω) where γ = 1− n

p = 1− 3
6 = 1

2 .

So, u ∈W 2,2 =⇒ u ∈ C0, 12 (Ω).

Monday, 9/16/2024

Definition 8 (continuously / compactly embedded). Given two Banach spaces X,Y
with X ⊆ Y we say X is continuously embedded in Y if ∃C > 0 such that:

∥x∥Y ≤ C∥x∥X∀x ∈ X

X is compactly embedded in Y if it is continuously embedded and every bounded
sequence in X is pre-compact in Y .
In other words, if every bounded sequence in X has a Y -convergent subsequence.
Typically people use X ⊂⊂ Y to denote this.

Theorem 11 (Rellich-Kondrachov Compactness). Let Ω ⊂ Rn open, bounded with
∂Ω ⊂ C1. If 1 ≤ p < n then W 1,p(Ω) ⊂⊂ Lq(Ω) for all q ∈ [1, p∗)
[here p∗ = np

n−p ]

Remark: We already have continuous embedding for q ∈ [1, p∗] by GNS inequality.

Theorem 12 (Hölder Generalization). Assume 1 ≤ s < r < t ≤ ∞ and 1 = rθ
s +

r(1−θ)
t for some θ ∈ (0, 1).

Then, if u ∈ Ls(Ω) ∩ Lt(Ω) then u ∈ Lr(Ω) and:

∥u∥Lr ≤ ∥u∥θLs∥u∥1−θ
Lt

17



Proof.

ˆ
Ω

|u|r =

ˆ
Ω

|u|rθ|u|(1−θ)r ≤
[ˆ

Ω

|u|rθ s
rθ

] rθ
s
[ˆ

Ω

|u|(1−θ)r t
r(1−θ)

] r(1−θ)
t

=

[ˆ
Ω

|u|s
] rθ

s
[ˆ

Ω

|u|t
] r(1−θ)

t

Proof of Rellich-Kondrachov. Assume ∥um∥W 1,p(Ω) < C0

Step 1: Mollify um ⇝ uϵm and argue that uϵm approximates um [uniformly in m] in
Lq.
Step 2: Apply Arzela-Ascoli to {uϵm} for each ϵ fixed.
Step 3: Use diagonalization argument. We control things when m is fixed, we control
things when ϵ is fixed so we can vary both.
First extend um to be compactly supported in V ′ ⊃ Ω. Still have ∥um∥W 1,p(V ′) < C̃0.

Now Mollify: uϵm := ηϵ ∗ um. ηϵ(x) = ϵ−nη
(
x
ϵ

)
with η ∈ C∞

0 and supp(η) ⊂ B(0, 1)
with

´
η = 1

Note uϵm is compactly supported. Say supp(uϵm) ⊂ V . V ′ ⊂ V .
Claim: {uϵm} converges as ϵ → 0 to um in Lq(Ω) uniformly in m. That is, we claim:
∀δ > 0 there exists ϵ0 > 0 such that ∀ϵ < ϵ0

∥uϵm − um∥Lq(V ) < δ

∀m.
To see this, first assume um is smooth.

uϵm(x)− um(x) =

ˆ
B(0,ϵ)

ηϵ(y) (um(x− y)− um(x)) dy

Let z = y
ϵ

=

ˆ
B(0,1)

η(z) [um(x− ϵz)− um(x)] dz

=

ˆ
B(0,1)

η(z)

ˆ 1

0

d

dt
um(x− ϵtz) dt dz

= −ϵ
ˆ
B(0,1)

η(z)

ˆ 1

0

∇um(x− ϵtz) · z dt dz

≤ ϵ

ˆ
V

ˆ
B(0,1)

ˆ 1

0

η(z)|∇um(x− ϵtz)| dt dz dx

Let y′ = x− ϵtz

= ϵ

ˆ
Ṽ

ˆ
B(0,1)

ˆ 1

0

η(z)|um(y′)| dtdz dy′

= ϵ

ˆ
Ṽ

|∇um(y′)| dy′

Apply Hölder:

≤ ϵC∥∇um∥Lp ≤ ϵ ˜̃C0

If um is not smooth then approximate um by ũm smooth such that ∥ũm−um∥W 1,p < δ
for all m.Then,

ˆ
V

|uϵm(x)− um(x)| dx ≤

ˆ
V

|uϵm(x)− ũm(x)| dx+

ˆ
V

|ũm(x)− um(x)| dx < δ + δ
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Now apply interpolation:

∥uϵm − um∥Lq(V ) ≤ ∥uϵm − ũm∥θL1∥ũm − um∥1−θ
Lp∗

Here s = 1, t = p∗
1
q = θ

1 + 1−θ
p∗

Recall GNS gave us ∥uϵm − um∥Lq(V ) ≤ C̃0

Wednesday, 9/18/2024

|uϵm| ≤
ˆ
V

ϵ−nη

(
x− y

ϵ

)
|um(y)| dy

≤ ϵ−n

ˆ
V

|um(y)| dy

≤ ϵ−n∥um∥W 1,p(V ) < constant

Note that

∇uϵm(x) =

ˆ
V

ϵ−n∇η
(
x− y

ϵ

)
1

ϵ
um(y) dy

|∇uϵm(x)| ≤
ˆ
V

ϵ−n

∣∣∣∣∇η(x− y

ϵ

)∣∣∣∣ 1ϵ |um(y)| dy

≤ ϵ−(n+1) sup |∇η|
ˆ

|um(y)|dy

≤ ϵn+1 sup |∇η|∥um∥W 1,p(V ) ≤ constant

Therefore, uϵm is equi-Lipschitz and thus equicontinuous.
Step 3:
Claim: We can find a subsequence {umj

} of the um so that:

lim sup
j,k→∞

∥umj
− umk

∥Lq(V ) < δ

Use step 1 to find ϵ such that ∥uϵm − um∥Lq(V ) <
δ
2 for all m.

Apply Arzela-Ascoli for that ϵ to get subsequence umj such that:

lim sup
j,k→∞

∥uϵmj
− uϵmk

∥ → 0

=⇒ ∥uϵmj
− uϵmk

∥Lq(V ) = 0

Therefore,∥∥umj
− umk

∥∥
Lq(V )

≤
∥∥∥umj

− uϵmj

∥∥∥
Lq

+
∥∥∥uϵmj

− uϵmk

∥∥∥
Lq

+
∥∥uϵmk

− umk

∥∥
Lq

Take lim supj,k→∞ to see < δ
2 + 0 + δ

2 = δ

Then take δ = 1, 12 ,
1
4 · · · [subsequences of subsequences] to get umlk

Lq

→ u.

Remark: What if ∥um∥W 1,p(Ω) < C0 with n < p?
Morrey’s inequality gives us:

∥um∥C0,α ≤ constant

|um(x)− um(y)| ≤ C|x− y|α

Thus we also have equicontiunity.
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Elliptic PDE Definition

Suppose u = density, amount/volume, u = u(x, t), x ∈ R3.
Let Ω ⊂ R3 be any domain where the whole process is taking place.
Suppose we want to know the amount of stuff in Ω in time t. It is:

ˆ
Ω

u(x, t) dx

Now we ask: how does it change w.r.t. time?

d

dt

ˆ
Ω

u(x, t) dx

This depends on the stuff enterring or exiting [= flux accross ∂Ω] + sources/sinks.

What is flux? It must be a vector Q⃗(x, t) . So, total contribution of flux is:

−
ˆ
∂Ω

Q⃗(x, t) · ν dS

Plus sources/sinks density.

+

ˆ
Ω

F (x, t) dx

Thus we have,

d

dx

ˆ
Ω

u(x, t) dx = −
ˆ
∂Ω

Q⃗(x, t) · ν dS +

ˆ
Ω

F (x, t) dt

The choice of flux Q⃗ distinguishes different physical settings.
Let’s rewite our equation as 1 volume integral.

ˆ
Ω

[
ut(x, t) + div Q⃗(x, t)− F (x, t)

]
dx = 0

This is true for arbitrary Ω so we have:

ut = −div(Q⃗) + F

Naturally, we pick Q to model a diffusion process.
If there’s a lot of stuff ‘inside’ then stuff will go outside and vice versa. So, we can
take,

Q⃗ = −k∇u

Or more generally,

Q⃗ = −A(x)∇u

where A is positive definite 3× 3 matrix.
For Q = −k∇u we have:

ut = div(k∇u) + F = k∆u+ F

which is the heat equation.
For Q = −A(x)∇u,

ut = div(A(x)∇u) + F

This is a model where stuff ‘smooths out / settles down’.
As t→ ∞ we expect u(x, t) → ũ(x).
In that case, − div(A(x)∇u) = F .
If A has entries aij(x), then,
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div(A(x)∇u) =
∑
i,j

∂

∂xi
(aij(x)uxj

)

This is an elliptic operator [if aij = aji, A positive definite].
This is the divergence form.

Friday, 9/20/2024

Assume A is symmetric. We define the linear elliptic operator L by:

i) Lu = − ∂
∂xj

(aijuxi) + bi(x)uxi + c(x)u [divergence form elliptic operator]

ii) Lu = −aij(x)uxixj+bi(x)uxi+c(x)u [non divergence form] where bi : Ω → R, i =
1, · · · , n, c : Ω → R,Ω ⊂ Rn. If aij are C1 then aij(x)uxixj = ∂

∂xj
(aij(x)uxi)−(

∂
∂xj

aij(x)
)
uxi

Why elliptic? A = (aij) and aij(x)ξiξj ≥ θ|ξ|2 ∀ξ ∈ Rn for some θ > 0.

Definition 9. We say u ∈ H1
0 (Ω) [same as W 1,2

0 ] is a weak solution to the equation
Lu = f for some f ∈ L2(Ω) and u = 0 on ∂Ω [homogeneous Dirichlet condition] if:

ˆ
Ω

A∇u · ∇v dx+

ˆ
Ω

bi(x)uxi
v dx+

ˆ
Ω

c(x)uv dx =

ˆ
Ω

vf dx (∗)

for all v ∈ H1
0 (Ω).

Definition 10. We say u ∈ H1(Ω) is a weak solution to{
Lu = f, in Ω;

A∇u · ν∂Ω = 0, on ∂Ω

[Neumann boundary condition]
if (∗) holds for all v ∈ H1(Ω).

Suppose

ˆ
Ω

aij(x)uxi
vj + bi(x)uxi

v + cuv dx+

ˆ
∂Ω

vA∇u · ν dx =

ˆ
Ω

fv dx (∗∗)

why? Suppose u was a classical solution. Then integrating by part yields the second
equation.

Functional Analysis

Background on Hilbert Spaces
Recall: a Hilbert Space H is a Banach space [normed and complete] that posses an
inner product (·, ·)H such that ∥·∥ is inherited from the inner product.
Basically: complete space with inner product.
Example: Rn with dot product, L2(Ω) with (u, v)L2 =

´
Ω
uv dx

Or, H1(Ω) with (u, v)H =
´
Ω
uv dx+

´
Ω
∇u · ∇v dx

Or, most importantly, in H1
0 (Ω) we have (u, v)H1

0
=
´
Ω
∇u · ∇v dx

By Poincare, then C1∥u∥2H1 ≤ ∥u∥2
H1

0
=
´
Ω
|∇u|2 dx ≤ C2∥u∥2

Given u, v ∈ H we’ll say u is orthogonal to v if (u, v) = 0.
Given a subspace M ⊂ H, we’ll write M⊥ := {v ∈ H : (u, v) = 0∀u ∈M}

Proposition 1. Let M ⊂ H be a closed subspace of H. Then ∀x ∈ H,∃y ∈ M, z ∈
M⊥ such that x = y + z.
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Proof. Idea: y is the point closest to x in M .
Consider x /∈M . Define

d = inf
x′∈M

∥x− x′∥

Then there must be a sequence {yn} ⊂M such that ∥x− yn∥ → d.
Recall:

∥X − Y ∥2 + ∥X + Y ∥2 = 2∥X∥2 + 2∥Y ∥2

Pick X = x− yn, Y = x− ym. Then,

∥ym − yn∥2 + 4

∥∥∥∥x− 1

2
(yn + ym)

∥∥∥∥2 = 2∥x− yn∥2 + 2∥x− ym∥2

Therefore,

4d2 + ∥yn − ym∥2 ≤ 2∥x− yn∥2 + 2∥x− ym∥2

∥yn − ym∥2 ≤ 2∥x− yn∥2 + 2∥x− ym∥2 − 4d2

Taking limsup we see that {yn} is cauchy.
Define z = x− y. It is easy to see that z ∈M⊥.

Monday, 9/23/2024

Divergence from Linear Elliptic Operator

L(u) = − ∂

∂xj
(aij(x)uxi) + bi(x)uxi + c(x)u

Uniform ellipticity:
aij = aji symmetric
aij(x)ξiξj ≥ θ|ξ|2∀ξ ∈ Rn∀x ∈ Ω for some θ > 0.
Meaning minimum eigenvalue is uniformly bigger than some θ
Review: u ∈ H1

0 (Ω) is a weak solution to Lu = f in Ω for f ∈ L2(Ω) and u = 0 on
∂Ω if:

B(u, v) :=

ˆ
Ω

[
aij(x)uxi

vxj
+ bi(x)uxi

v + c(x)uv
]
dx =

ˆ
Ω

fv dx ∀v ∈ H1
0 (Ω)

u is a weak solution to Lu = f in Ω and A∇u · ν∂Ω = 0 on ∂Ω if

B(u, v) =

ˆ
Ω

fv dx ∀v ∈ H1(Ω)

Note that B is a bilinear form.

Definition 11. A bounded linear operator L : X → Y that is linear that satisfies:

∥L∥ := sup
∥x∥X≤1

∥L(x)∥Y <∞

For linear operators, boundedness is the same as continuity.

Definition 12. A bounded linear functional on X is a bounded linear operator L :
X → R

Notation: If u∗ is a bounded linear functional we’ll often write ⟨u∗, x⟩ for the evalua-
tion of u∗ at x.

∥u∗∥ = sup
∥x∥≤1

⟨u∗, x⟩
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Definition 13. The dual of a Banach SpaceX is the set of bounded linear functionals
on X. Notation: X∗

Theorem 13 (Riesz Representation Theorem). Assume H is a Hilbert space with
inner product (·, ·).
For every bounded linear functional u∗ : H → R there exists a unique u ∈ H such
that (u∗, v) = (u, v)∀v ∈ H and ∥u∗∥ = ∥u∥

Proof. Suppose u∗ ∈ H∗.
Let N be the nullspace of u∗:

N = {v ∈ H : ⟨u∗, v⟩ = 0}

If N = H then ⟨u∗,−⟩ = 0 so u must be 0. Assume N is a proper subspace. N must
be closed since u∗ is continuous.
Fix z ∈ N⊥, ⟨u∗, z⟩ ̸= 0.
Then ∀x ∈ H we have:〈

u∗, x− ⟨u∗, x⟩
⟨u∗, z⟩

z

〉
= ⟨u∗, x⟩ − ⟨u∗, x⟩ = 0

Thus, x− ⟨u∗,x⟩
⟨u∗,z⟩ ∈ N . (

x− ⟨u∗, x⟩
⟨u∗, z⟩

z, z

)
= 0

=⇒ (x, z) =
⟨u∗, x⟩
⟨u∗, z⟩

∥z∥2

=⇒ ⟨u∗, x⟩ =
(
⟨u∗, z⟩
∥z∥2

z, x

)
We just take u := ⟨u∗,z⟩

∥z∥2 z

Uniqueness: if ⟨u∗, x⟩ = (u1, x) = (u2, x) then (u1 − u2, x) = 0, choose x = u1 − u2 to
deduce that u1 = u2.

∥u∗∥ = sup
∥x∥≤1

⟨u∗, x⟩ = sup
∥x∥≤1

(u, x) ≤ sup
∥x∥≤1

∥u∥H∥x∥H ≤ ∥u∥H

On the other hand,

∥u∥ =
(u, u)

∥u∥
=

〈
u∗,

u

∥u∥

〉
≤ ∥u∗∥

Thus ∥u∥ = ∥u∗∥

Solving a PDE [finally]

Poisson: Find a weak solution to −∆u = f where f ∈ L2(Ω) in Ω and u = 0 on ∂Ω
We seek u ∈ H1

0 (Ω) satisfying

B(u, v) =

ˆ
Ω

∇u · ∇v dx =

ˆ
Ω

fv dx ∀v ∈ H1
0 (Ω)

Recall: By Poincaré’s inequality, an inner product for H1
0 can be taken as:

(u, v)H1
0
=

ˆ
Ω

∇u · ∇v dx

We seek u such that:

(u, v)H1
0
=

ˆ
Ω

fv dx ∀v ∈ H1
0 (Ω)
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Existence of unique u follows from Riesz Representation. We just need to show that
v 7→

´
Ω
fv dx is a bounded linear functional on H1

0 (Ω).
It is obviously linear.

sup
∥v∥

H1
0
≤1

ˆ
Ω

fv dx ≤ sup
∥v∥

H1
0
≤1

∥f∥L2∥v∥L2 ≤ cp · 1∥f∥L2

Where cp is the Poincaré constant:
´
u2 ≤ cp

´
|∇u|2 ∀u ∈ H1

0

Wednesday, 9/25/2024

Last time, we used Riesz Representation Theorem to get existene of a weak solution
to Lu = f in Ω and u = 0 on ∂Ω
for Lu = − ∂

∂xj
(aij(x)uxi) = f

aij elliptic.
Weak formulation: seek u ∈ H1

0 (Ω) such that:

B[u, v] :=

ˆ
Ω

aijuxi
vxj

dx =

ˆ
Ω

fv dx ∀v ∈ H1
0 (Ω)

For −∆u = f we seek u such that B[u, v] =
´
Ω
∇u · ∇v where B[u, v] = (u, v)H1

0 (Ω)

How do we obtain a weak solution for

Lu := − ∂

∂xj
(aij(x)uxi

) + bi(x)uxi
+ c(x)u = f

Consider:

B[u, v] =

ˆ
Ω

aijuxivxj + bi(x)uxiv + c(x)uv dx

Not symmetric so not an inner product but that’s not the only problem. Consider
1-dim.

−u′′ − u = 1 Ω = (0, π)

u(0) = u(π) = 0.
Suppose u solves this.
Multiply the ODE by sinx and integrate.

ˆ π

0

− sinx · u′′ − sinx · u dx =

ˆ π

0

sinxdx = 2

Note

ˆ π

0

− sinx · u′′ dx = [− sinx · u′]π0 −
ˆ π

0

cosx · u′ dx = [− cosx · u]π0 +

ˆ π

0

sinx · u dx

Therefore, by plugging it into the original argument,

0 = 2

Thus we don’t have solutions!
Today: Lax-Milgram Lemma

Theorem 14 (Lax-Milgram Lemma). Assume B : H ×H → R is a bilinear form on
a hilbert space H. Suppose,

i) ∃α > 0 such that B(u, v) ≤ α∥u∥ · ∥v∥∀u, v ∈ H

ii) ∃β > 0 such that B[u, u] ≥ β∥u∥2

Then we have the same conclusion as Riesz: ∀f ∈ H∗∃!u ∈ H such that B[u, v] =
⟨f, v⟩∀v ∈ H

24



Proof. For any fixed u ∈ H consider the map v 7→ B[u, v].
It is a bounded linear functional in H.
Apply Riesz Representation: for each fixed u there exists unique w ∈ H such that
B[u, v] = (w, v)∀v.
We write Au = w
Then B[u, v] = (Au, v)
Claim: A : H → H is linear, bounded, 1-1
Linearity: B[c1u1 + c2u2, v] = (A(c1u1 + c2u2), v)
= c1B[u1, v] + c2B[u2, v] = c1A(u1, v) + c2A(u2, v).
A is bounded since ∥Au∥2 = (Au,Au) = B[u,Au] ≤ α∥u∥∥Au∥
A is 1-1 since β∥u∥2 ≤ B[u, u] = (Au, u) ≤ ∥Au∥∥u∥
So β∥u∥ ≤ ∥Au∥
So, if u ̸= 0 we have Au ̸= 0 so 0 is the only element in the kernel, so it is 1-1.
Claim: range of A,R(A) is closed.
Consider {wj} ⊂ R(A). Suppose wj → w. ∃{uj} ⊂ H so that Auj = wj

Since wj are cauchy, uj are cauchy:
∥wj − wk∥ = ∥Auj −Auk∥ ≥ β∥uj − uk∥
=⇒ uj are cauchy. So uj → u ∈ H and by continuity Auj → Au = w and thus
R(A) is closed.
Claim: R(A) = H.
If not, apply projection lemma. ∃w ∈ R(A) ⊥ so that w ̸= 0.

β∥u∥2 ≤ B[w,w] = (Aw,w)

Since Aw ∈ R(A) we have the inner product is 0 and thus w = 0.
Now, let f ∈ H∗ be any bounded linear functional. Apply Riesz to show that there
exists unique w ∈ H such that ⟨f, v⟩ = (w, v) = (Au, v) = B[u, v] for unique u.

Theorem 15. For Lu = − ∂
∂xj

(aij(x)uxi
)+bi(x)uxi

+c(x)u with aij elliptic and with

aij , bi, c ∈ L∞(Ω).
Then there exists a number γ > 0 such that ∀µ ≥ γ :
a weak H1

0 (Ω) solution exists to:

Lu+ µu = f in Ω

u = 0 on ∂Ω

∀f ∈ L2(Ω)

Proof. We just apply Lax-Milgrim
We will prove:

i) |B[u, v]| ≤ α∥u∥H1
0
∥v∥H1

0

ii) B[u, u] + γ∥u∥2L2 ≥ β∥u∥2
H1

0

First Condition: Need to check B[u, v] ≤ α∥u∥H1
0
∥v∥H1

0
for some α

B[u, v] =

ˆ
Ω

aij(x)uxi
vxj

bi(x)uxi
v + c(x)uv dx

≤ B[u, v] ≤
ˆ
Ω

n2M |∇u||∇v|+ nM |∇u||v|+M |u||v|dx

≤ n2M∥u∥H1
0
∥v∥H1

0
+ nM∥u∥H1

0
∥v∥L2 +M∥u∥L2∥v∥L2

Apply Poincaré

≤ α∥u∥H1
0
∥v∥H1

0

So we have the first condition.
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Friday, 9/27/2024

Now we check the second condition.

B[u, u] =

ˆ
Ω

aij(x)uxiuxj + bi(x)uxiu+ c(x)u2 dx

Use the fact that aij is elliptic, meaning aij(x)ζiζj ≥ θ|ζ|2

≥ θ

ˆ
Ω

|∇u|2 − nM |∇u||u| −M |u|2 dx

We don’t have to worry about the −M |u|2 because we can choose γ. We need to deal
with −nM |∇u||u|.
Recall that AM-GM implies:

ε2a2 +
1

4ε2
b2 ≥ ab

≥ θ

ˆ
Ω

|∇u|2 − nM

(
ε|∇u|2 + 1

4ε2
|u|2
)
−M |u2| dx

≥ θ

ˆ
Ω

(1− nMε) |∇u|2 −
(
M +

nM

4ε2

)
|u|2 dx

We can choose ε so that nMε = θ
2 and then choose appropriate γ. So we’re done.

Theorem 16. For L as defined, ∀µ ≥ γ ∀f ∈ L2(Ω) there exists a unique weak
solution to Lµu = f, u = 0 on ∂Ω where Lµ := L+ µ

Proof. Lax-Milgrim: Bµ[u, v] := B[u, v] + µ
´
uv so Lµ has inverse.

Functional Analysis

Definition 14 (Adjoint). Given a bounded linear operator on Hilbert spaces

A : H → H H is a Hilbert space

The adjoint of A is the bounded linear operator A∗ : H → H defined by:

(x,A∗y) = (Ax, y) ∀x, y ∈ H

If A = A∗ we say A is self-adjoint.
Example: If H = Rn then A is a matrix and A∗ is the transpose.

Definition 15 (Compact bounded linear operator). Let X,Y be Banach spaces. A
bounded linear operator K : X → Y is compact if for every sequence {xj} ⊂ X such
that ∥xj∥X is uniformly bounded then there exists a subsequence and y ∈ Y such
that:

Kxjl → y

Example: Suppose X = C([0, 1]) and Y = C1([0, 1]). ∀f ∈ X define Kf = u provided
u solves u′′ = f on (0, 1) and u(0) = 0, u′(0) = 0. We have a formula:

u(x) =

ˆ x

0

ˆ y

0

f(s) ds dy

Suppose ∥fj∥C([0,1]) ≤M . Then,

uj(x) =

ˆ x

0

ˆ y

0

fj(s) dsdy

|uj | ≤M
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|u′j | ≤
∣∣∣∣ˆ x

0

fj(s) ds

∣∣∣∣ ≤M

∥u′′j ∥ = ∥fj∥ ≤M

Apply Arzela Ascoli to find:

ujk
C1

→ u0

Thus K must be compact.

Theorem 17 (Fredhome Alternative). Assume K : H → H is a compact operator
on a Hilbert space. Then either:

i) The homogeneous equation x−Kx = 0 has a non-trivial solution. OR

ii) ∀y ∈ H, ∃!x ∈ H such that x−Kx = y

Proof. There are 4 steps.
Step 1: Instead of x−Kx we write S := I −K. N(S) denotes the nullspace of S.
Claim: ∃C such that:

dist(x,N(S)) ≤ C∥Sx∥ ∀x ∈ H

Proof: Suppose we cannot find such a C. Then we can find a sequence {x̃k} ⊂ H
such that:

dist(x̃k, N(S)) ≥ k∥Sx̃k∥

Replace with xk = x̃k

∥Sx̃k∥ . Then ∥Sxk∥ = 1 and

dk := dist(xk, N(S)) → ∞

Thus, we can find {yk} ⊂ N(S) such that:

dk ≤ ∥xk − yk∥ ≤ 2dk

define zk := xk−yk

∥xk−yk∥ and so ∥zk∥ = 1.

But ∥Szk∥ = 1
dk
∥Sxk − Syk∥ = 1

dk
∥Sxk∥ = 1

dk
→ 0

Therefore Szk → 0
K is compact, so we have subsequence Kzkj

→ y0 ∈ H.
Szkj

→ 0 =⇒ zkj
−Kzkj

→ 0 and since Kzkj
→ y0 we have zkj

→ y0.

Since Szkj = 0 we have Sy0 = 0 by continuity. Thus y0 ∈ N(S)

However, dist(zkj
, N(S)) = infy∈N(S)∥zkj

− y∥ = infy∈N(S)

∥∥∥ xkj
−ykj

∥xkj
−ykj

∥ − y
∥∥∥

= 1
∥xkj

−ykj
∥ infy∈N(S)∥xkj − (y∥xkj − ykj∥+ yk︸ ︷︷ ︸

∈N(S)

)∥

≥ 1
∥xkj

−ykj
∥d(xkj , N(S)) ≥ dkj

2dkj
= 1

2

zkj
converges to something in N(S) but is a set distance away from N(S), which is

impossible. Thus we have proved the claim.

Monday, 9/30/2024

Step 2: Claim: Let R(S) = range of S. Then, R(S) is a closed subspae of H.
Proof: Consider a sequence {xk} ⊂ H so that Sxk → y for some y. We must show
that y ∈ R(S).
From step 1, define dk := dist(xk, N(S)) ≤ C∥Sxk∥ → ∥y∥.
dk is uniformly bounded.
By projection theorem, we can find:
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dk = ∥xk − yk︸ ︷︷ ︸
wk

∥ yk = closest point to xk in N(S).

Then ∥wk∥ ≤ const.
Since K is compact, Kwkj → w0 ∈ H
Thus, Sxkj = xkj −Kxkj → y
Thus, xkj

→ y + w0

Since S is continuous, S(y + w0) = y
So, y ∈ R(S).
Step 3: If N(S) = {0} then R(S) = H.

Let Rj = range of Sj [= S(S(· · ·S(H)))].
By Step 2, {Rj} is a sequence of closed subspaces. Furthermore, it is non-increasing.
We claim that it eventually stabilizes.
Suppose, for contradiction, the sequence keeps decreasing.
By projection theorem, ∀j∃yj ∈ Rj such that ∥yj∥ = 1 and dist(yj , Rj+1) ≥ 1

2 .
Let n > m. We look at Kym −Kyn.

Kym −Kyn = (I − S)ym − (I − S)yn = ym − ( Sym
∈Rm+1

− Syn
∈Rn+1⊂Rm+1

+ yn
∈Rn⊂Rm+1

)

Thus, ∥Kym −Kyn∥ ≥ 1
2 .

This contradicts the compactness of K.
Therefore, ∃k such that Rj = Rk∀j > k.
So, assume N(S) = {0}. Let y ∈ H.
We have Sky ∈ Rk = Rk+1.
Therefore, Sky = Sk+1x for some x.
Therefore, Sk(y − Sx) = 0.
Since N(S) = {0} we have y = Sx.
Step 4. If R(S) = H then N(S) = {0}.
Let Nj := nullspace of Sj . Now, Nj is a non-decreasing sequence of closed subspaces.
Claim: ∃k such that Nj −Nk∀j > k. Argue by contradiction as before.
Assume R(S) = H.
∀y ∈ Nk, S

ky = 0 and furthermore ∃x1 such that y = Sx1. Repeating, y = Skx.
So, S2kx = 0. Since null space stabilzes after k we have Skx = 0. Therefore y = 0.
Thus Nk = {0} =⇒ N(S) = {0}.
In case ii why is (I −K)−1 bounded?
Use Step 1: dist(x,N(S)) ≤ C∥Sx∥ = C∥(I −K)x∥
For ii we have N(S) = {0} so:

∥x∥ ≤ C∥Sx∥
Writing Sx = y,

∥(I −K)−1y∥ ≤ C∥y∥

Given a bounded linear operator T : H → H [could be a normed linear space as well],

Definition 16. The resolvent set of T is:

ρ(T ) = {λ ∈ R : T − λI is bijective}
The spectrum of T is:

σ(T ) = R \ ρ(T )
We can substitute real for complex.

Definition 17. λ ∈ σ(T ) is called an eigenvalue of T if ∃x ∈ H such that Tx = λx.

Note: (σ(T ) \ {eigenvalues}) is called the continuous spectrum.
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Wednesday, 10/2/2024

Lu := −(aijuxi
)xj

+ bi(x)uxi
+ c(x)u

aij = aji, aij(x)ζiζj ≥ θ|ζ|2, θ > 0

aij , bi, c ∈ L∞

Recall that adjoint is defined by

(Ax, y) = (x,A∗, y)

Can we find the adjoint of L?
Formal Adjoint of L : L∗

(Lu, v)L2 = (u, L∗v)L2

(Lu, v)2L =

ˆ
Ω

−(aijuuxi
)xj
v + biuxi

v + cuv dx

=

ˆ
Ω

aijuxi
uxj

− div(v⃗b)u+ cuv dx

=

ˆ
Ω

−(aijvxi
)vxj

u− bivxi
cx dx =

ˆ
Ω

−bivxi
− bixi

− bixi
v + cv dx

Define that to be L∗v
Lemma: R(I +K) = N(I +K∗)

Proof. w ∈ N(I +K∗)op
⇐⇒ (x, (I +K∗)w = 0) ∀x ∈ H
⇐⇒ ((I +K)x,w) = 0 ∀x ∈ H
⇐⇒ w ∈ R(I +K) ⊥.

Theorem 18. For L as defined, for Ω ⊂ Rn bounded, ∂Ω ∈ C1, then either:

i) ∃ weak H1
0 (Ω) solution to Lu = 0, u = 0 on ∂Ω.

ii) ∀f ∈ L2(Ω)∃! weak H1
0 (Ω) solution to Lu = f, u = 0 on ∂Ω

Furthermore if i holds thereen Lu = f, u = 0 on ∂Ω has a weak solution ⇐⇒
(f, v)L2 = 0∀v such that L∗v = 0, v = 0 in ∂Ω.

Example: −u′′ − u = sinx and u(0) = u(π) = 0.
Here Lu = −u′′ − u. We found ̸ ∃ solution.
Note that L has non-trivial nullspace. sinx is in the nullspace.

ˆ
sinx · sinx ̸= 0

Theorem not applicable.

Proof. Recall ∃γ > 0 such that

Bγ [u, v] = B[u, v] + γ

ˆ
Ω

uv

where:

B(u, v) :=

ˆ
Ω

(aijuxi
vxj

+ biuxi
v + cuv) dx

We can apply Lax-Milgrim to obtain a unique weak solution to Lγu = f where
Lγu = Lu+ γu. ch that: So Bγ [u, v] = (f, v)∀v ∈ H1

0 (Ω)
We say L−1

γ = u if this holds.
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We seek a function u ∈ H1
0 (Ω) such that:

Bγ [u, v] = (f, v)L2 + γ(u, v)L2

We want u such that:

u = L−1
γ (f + γu) = L−1

γ (f)︸ ︷︷ ︸
=h

+γL−1
γ (u)

Note: L−1
γ : L2 → H1

0 or L−1
γ : L2 → L2

Let h := L−1
γ (f).

So we’re trying to solve u− γL−1
γ (u) = h.

Define K := γL−1
γ

So we want to solve (I −K)u = h
K : L2 → L2.
We want to use Lax Milgrim. Why must K be bounded?
Let g ∈ L2(Ω), 1γK(g) = L−1

γ (g) =: u

∥K(g)∥H1
0
= ∥γu∥H1

0 . Bγ [u, v] = (g, v) ∀v.
Pick v = u then,

Bγ [u, u] ≥ β∥u∥2H1
0

β∥u∥2 ≤ Bγ [u, u] = (g, u) ≤ ∥g∥L2∥u∥L2 ≤ Cp∥g∥L2∥u∥H1
0

γβ∥u∥H1
0
≤ γCp∥g∥L2

∥K(g)∥L2 ≤ C∥K(g)∥H1
0
≤ γCp

p
∥g∥L2

Claim: K : L2 → L2 is compact.
Let {gk} ⊂ L2 ∥gk∥ ≤ C.

∥K(gk)∥H1
0
≤ C̃∥gk∥L2 ≤ const

By Rellich-Kondrachov,

K(gkj
)
L2

→W

Now, apply Fredholme alternative. Then, ∀h ∈ L2∃! solution u to (I −K)u = h or
else the nullspace of (I −K∗) is non-trivial.

(I −K)u = h ⇐⇒ u weakly solution to Lu = f

Then apply the Lemma.

Friday, 10/4/2024

Recall: Given a bounded linear operator T : H → H, the resolvent set:

ρ(T ) := {λ ∈ R : T − λI is bijective}

Then the spectrum of T is:

σ(T ) = R \ ρ(T )

λ ∈ σ(T ) is an eigenvalue if ∃x ∈ H such that (T − λI)x = 0.
{λ ∈ σ(T ) : λ is not an eigenvalue} is called the continuous spectrum.
Now, what if T = K compact, linear operator?
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We have seen that I−K has a nontrivial nullspace or else it is invertible, and (I−K)−1

is bounded.
Further, we have seen that for λ ̸= 0 either I − 1

λK has a nontrivial nullspace or it is
invertible.
Then, (I − 1

λK)−1 is bounded.
Nontrivial nullspace implies λ is an eigenvalue of K.
Thus, K compat =⇒ no continuous spectrum [except perhaps 0].

Theorem 19. A compact operator K : H → H possesses at most a countable set of
eigenvalues having no limit pointsexcept possibly 0.
Furthermore, Each eigenvalue has a finite multiplicity [dimN(K − λI) is finite].

Proof. Suppose not. Then we have an accumulation point ∃{λn} of eigenvalues such
that λn → λ ∈ (R∪{±∞}) \ {0} and a sequence of linearly independent eigenvectors
xn.
Let Mn = span{x1, · · · , xn}.
Mn is a closed subspace.
Projection Lemma =⇒ ∃{yn} ⊂Mn \Mn−1 so that ∥yn∥ = 1, dist(yn,Mn−1) ≥ 1

2 .
Let Sλ := λI −K.
For n > m: we have:

λ−1
n Kyn − λ−1

m Kym = yn − λ−1
n Sλnyn − ym + λ−1

m Sλmym = yn + z

Claim: z ∈Mn−1. To prove this, note that z is sum of elements of Mn−1.
ym ∈Mm ⊆Mn−1.
Write yn =

∑n
j=1 cjxj

Sλn
yn = (λnI−K)

(∑n
j=1 cjxj

)
=
∑n

j=1(λncjxj−cjλjxj) =
∑n−1

j=1 (λncjxj−cjλjxj)
Thus Sλn

yn ∈Mn−1

Also Sλm
ym ∈Mm−1 ⊆Mn−1.

Now, yn = λ−1
n Kyn.

Therefore, ∥λ−1
n Kyn − λ−1

m Kym∥ ≥ 1
2 .

λ−1
n ∥Kyn − λn

λm
Kym∥ ≥ 1

2 .

If λm approaches finite value, by taking m,n large enough we get ∥Kyn−Kym∥ ≥ λ
4 .

Contradiction.
If we have an infinite limit then LHS approaches 0 which is also not possible.

Theorem 20. i) ∃ an at most countable set Σ ⊂ R such that Lu = λu+ f in Ω
and u = 0 on ∂Ω has a solutio ∀f ∈ L2 provided λ ̸= Σ.

ii) If Σ is infinite then writing Σ = {λn}, λ1 ≤ λ2 ≤ · · · then λn → ∞.

iii) If λ ∈ Σ then Lu = λu + f for f ∈ L2 with u = 0 on ∂Ω is solvable ⇐⇒
(f, v)L2 = 0∀v ∈ N(L∗ − λI).

Recall: u is a weak solution to Lu = λu in Ω, u = 0 on ∂Ω ⇐⇒ B[u, v] = λ(u, v)∀v ∈
H1

0 (Ω).
Where B[u, v] =

´
Ω
aij(x)uxi

vxj
+ bi(x)uxi

v + c(x)uv dx.
Now, B[u, v] = λ(u, v) ⇐⇒ Bγ [u, v] := B[u, v] + γ

´
uv = (γ + λ)(u, v).

Where γ is sufficiently large to make Bγ [u, v] ≥ β∥u∥2
H1

0

So u solves (P ) ⇐⇒

u = L−1
γ ((λ+ γ)u)

⇐⇒ u = γL−1
γ

(
λ+ γ

γ
u

)
=
λ+ γ

γ
Ku where K = γL−1

γ

Thus, u solves P ⇐⇒
(
K − γ

γ+λI
)
u = 0.

Then the only posssible limit point of eigenvalues of K is 0 ⇐⇒ only possible limit
point of eigenvalues of L = ∞.
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Monday, 10/7/2024

Weak Convergence

Given a banach space X let X∗ be the space of bounded linear functionals.
Given x∗ ∈ X∗:

∥x∗∥X∗ := sup
∥x∥X≤1

⟨x∗, x⟩

Definition 18. We say {xn} ⊂ X converges weakly to x ∈ X if:

∀x∗ ∈ X∗, ⟨x∗, xn⟩ → ⟨x∗, x⟩

Notation: xn
X
⇀ x

Example: for 1 < p <∞ If X = Lp(Ω) then when 1
p + 1

q = 1 we have X∗ ∼= Lq(x).

un
Lp

⇀ u means:

∀v ∈ Lq,

ˆ
Ω

unv dx→
ˆ
Ω

uv dx

Facts:

• xn → x =⇒ xn ⇀ x

• xn ⇀ x and ∥xn∥ → ∥x∥ =⇒ xn → x

• xn ⇀ x =⇒ ∥xn∥ ≤M for some M .

Definition 19. A reflexive Banach space X is one such that:

(X∗)∗ = X

Example: Lp(Ω) for 1 < p <∞

If X is reflexive and ∥xn∥ ≤M then ∃{xnj}, x ∈ X such that xnj ⇀ x.
If xn ⇀ x then lim infn→∞∥xn∥ ≥ ∥x∥.

Proof. If x∗ ∈ X∗, ∥x∗∥ ≤ 1 then,

lim inf
n→∞

∥xn∥ ≥ lim inf
n→∞

⟨x∗, xn⟩ = ⟨x∗, x⟩

We see our aswer by taking sup over all ∥x∗∥ ≤ 1.

Basic Question:

Suppose u ∈ H1(Ω) is a weak solution to Lu = f in Ω where L is an elliptic operator
and f ∈ L2 [eg −∆u = f ]. Can one argue that u is better than H1(Ω)?
A (formal) calculation suggesting that this isn’t a ridiculous question:
Suppose u : Rn → R is smooth and compactly supported and solving −∆u = f for
f ∈ L2.

∞ >

ˆ
R⋉

f2 dx =

ˆ
Rn

(∆u)2 dx =

ˆ
Rn

∇ · (∇u)∆u dx

= −
ˆ
Rn

∇u · ∇(∆u) dx = −
ˆ
Rn

uxj

∂

∂xj
(uxixi) dx

=

ˆ
Rn

uxixj
uxixj

dx =

ˆ
Rn

|D2u|2 dx

So we have control over all second derivatives of u.
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Difference Quotients

Definition 20. Given u : Ω
⊂Rn

→ R given h ∈ R given k ∈ 1, · · · , n, define:

Dh
k :=

u(x+ hek)− u(x)

h

We want to bound the difference quotient of the derivative to control the second
derivaive.
Lemma 1: For 1 < p < ∞, let u ∈ W 1,p(Ω) for Ω ⊂ Rn. Then ∀Ω′ ⊂⊂ Ω and for h
such that 0 < |h| < dist(Ω′, ∂Ω) we have:

∥Dh
ku∥Lp(Ω′) ≤ ∥uxk

∥Lp(Ω)

Proof. First assume u ∈ C1(Ω) ∩W 1,p(Ω).

Dh
ku(x) =

1

h

ˆ h

0

uxk
u(x1, · · · , xk + s, · · · , xn) ds

|Dh
k (x)|p ≤

Hölder

1

hp

(ˆ h

0

1
p

p−1 dx

)p−1(ˆ h

0

|uxk
(· · · , xk + s, · · · )|p dx

)
ˆ
Ω′

|Dh
ku(x)|p dx ≤ 1

h

ˆ
{dist(x,∂Ω)>h}

ˆ h

0

|uxk
(· · ·xk + s · · · )|p ds dx

≤
Fubini

1

h

ˆ h

0

ˆ
Ω

|uxk
(x)|p dx ds = ∥uxk

∥pLp(Ω)

Now we approximabe by C1 functions.

Lemma 2: Let u ∈ Lp(Ω) for 1 < p < ∞ and suppose for some k ∈ {1, · · · , n}, ∃M
such that

∥Dh
ku∥Lp(Ω′) ≤M

∀Ω′ ⊂⊂ Ω,∀h such that dist(Ω′, ∂Ω) > h. Then,

∥uxk
∥Lp(Ω) ≤M

Proof. ∃{hj} → 0,∃v ∈ Lp(Ω) such that:

D
hj

k u
Lp(Ω)
⇀ v

[We are using diagonalization. We cannot directly go near ∂Ω but by making hj → 0
and taking subsequences, we get the convergence for whole Ω].
Furthermore, by lower semicontinuity of ∥·∥Lp under weak convergence: ∥v∥Lp(Ω) ≤
M .
Must still sho v is the weak k’th derivative of u.
Fix ϕ ∈ C1

0 (Ω).
We have:

lim
hj→0

ˆ
Ω

ϕD
hj

k u dx =

ˆ
Ω

ϕv dx

Now we do integration by parts on difference quotient. We also have:

ˆ
Ω

ϕD
hj

k u dx =

ˆ
Ω

ϕ(x)

(
u(x+ hjek)− u(x)

hj

)
dx

For first term, let y = x+ hjek.

=

ˆ
supp(ϕ+hjek)

ϕ(y − hjek)u(y)

hj
dy −

ˆ
supp(ϕ)

ϕ(x)u(x)

hj
dx
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= −
ˆ
Ω

ϕ(y − hjek)− ϕ(y)

−hj
u(y) dy = −

ˆ
Ω

D
−hj

k ϕ(y)u(y) dy

Now let hj → 0

=⇒ lim
hj→0

ˆ
Ω

ϕD
hj

k u dx = −
ˆ
Ω

ϕxk
u dx

Thus v is the weak xk derivative of u.

Wednesday, 10/9/2024

Recall:

Dh
ku(x) :=

u(x+ hek)− u(x)

h
ˆ
Dh

ku1(x)u2(x) dx = −
ˆ
D−h

k u2(x)u1(x) dx

Lemma 1: Suppose 1 < p < ∞. Let u ∈ W 1,p(Ω). Then, ∀Ω′ ⊂⊂ Ω such that
dist(Ω′, ∂Ω) > |h| we have:

∥Dh
ku∥Lp(Ω) ≤ ∥uxk

∥Lp(Ω)

Lemma 2: Let u ∈ Lp(Ω), 1 < p < ∞. Assume ∃M > 0 such that Dh
ku ∈ Lp(Ω′) and

∥Dh
ku∥Lp(Ω′) ≤M ∀k,∀Ω′ ⊂⊂ Ω such that dist(Ω′, ∂Ω) ≥ |h|.

Then uxk
exists ∀k and ∥uxk

∥Lp(Ω′) ≤M .

Suppose Lu := − ∂
∂xj

(aij(x)uxi) + bi(x)uxi + c(x)u

Assume aij(x)ζiζj ≥ θ|ζ|2, aij = aji
Assume aij ∈ C1(Ω), bi, c ∈ L∞(Ω)

Theorem 21 (Interior Regularity). Assume u ∈ H1(Ω) weak solution to Lu = f in
Ω for f ∈ L2(Ω). Then u ∈ H2

loc(Ω) with:

∥u∥H2(Ω′) ≤ C(Ω′,Ω, θ, · · · )
(
∥f∥L2(Ω) + ∥u∥L2(Ω)

)
∀Ω′ ⊂⊂ Ω.

Proof. Consider Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω

Ω′ Ω′′ Ω

Let ζ be a smooth cutoff function:
ζ ≡ 1 in Ω′

ζ ≡ 0 on Ω \ Ω′′

0 ≤ ζ ≤ 1
We have:

ˆ
Ω

aij(x)uxi
vxj

+ bi(x)uxi
v + c(x)uv dx =

ˆ
Ω

fv dx

∀v ∈ H1
0 (Ω)

Note that,

ˆ
Ω

aij(x)uxivxj + biuxi v + cu v dx =

ˆ
Ω

fv dx

Choose v = −D−h
k (ζ2Dh

ku)
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in Ω′ where ζ ≡ 1 we have:

v = −
(
D−h

k

(
u(x+ hek)− u(x)

h

))

= −
(
u(x− hek + hek)− u(x− hek)− u(x+ hek) + u(x)

−h2

)

= −
(
u(x+ hek) + u(x− hek)− 2u(x)

h2

)
Using this v, we get:

I =

ˆ
Ω

−aijuxi
D−h

k (ζ2Dh
ku)xi

− biuxi
D−h

k (ζ2)− cuD−h
k (ζ2Dh

ku) dx

= −
ˆ
Ω

fD−h
k (ζ2Dh

ku) dx

I =

ˆ
Ω

Dh
k (aijuxi)

(
ζ2Dh

kuxi + 2ζφxjD
h
ku
)
dx

=

ˆ
Ω

(
aij(x+ hek)D

h
k (uxi

) +Dh
k (aij)uxi

) (
ζ2Dh

kuxj
+ 2ζφxj

Dh
ku
)
dx

=

ˆ
Ω

ζ2aij(x+ hek)D
h
k (uxi

)Dh
k (uxj

) + others dx

≥ θ

ˆ
Ω

ζ2|Dh
k (∇u)|2 + others dx

Write f̃ := f − biuxi − cu ∈ L2.
Weak form becomes:

ˆ
Ω

aij(x)uxivxj dx =

ˆ
Ω

f̃v dx

We have:

θ

ˆ
Ω

ζ2|Dh
k (∇u)|2 dx ≤

ˆ
Ω

f̃D−h
k (ζ2Dh

ku)− aij(x+ hek)2ζζxj
Dh

k (uxi
)Dh

ku

−Dh
k (aij)uxi

ζ2Dh
kuxj

−Dh
k (aij)uxi

2ζζxj
Dh

ku dx

Use ab ≤ ε2a2 + 1
4ε2 b

2 to estimate terms 2,3,4.

≤ C

ˆ
Ω′′

(
|Dh

k (∇u)||Dh
ku|+ |Dh

k (∇u)||∇u|+ |∇u||Dh
ku|
)
ζ dx

Note: C → ∞ as Ω′′ → Ω since it involves the derivative of the cutoff function.

Monday, 10/14/2024

Recall: weak formulation:

ˆ
Ω

aijuxivxi dx =

ˆ
Ω

fv − biuxi − cuv dx

=:

ˆ
Ω

f̃v dx, f̃ ∈ L2(Ω)

Choose: v = −D−h
k (ζ2Dh

ku)
Start with LHS.
We arrived at:
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LHS =

ˆ
Ω

aij(x+ hek)D
h
kD

h
k (uxj

)ζ2 dx

+

ˆ
Ω

[
aij(x+ hek)2ζζxi

Dh
kuD

h
k (uxi

) +Dh
k (aij)2ζζxj

Dh
k (u)uxi

+Dh
k (aij)uxiD

h
k (uxj )ζ

2

]
dx

=⇒ LHS ≥ θ

ˆ
Ω

|Dh(∇u)|2ζ2 dx

−C
{ˆ

Ω

|Du
k ||Dh

k (∇u)|+ |Dh
ku||∇u|+ |Dh

k (∇u)||∇u| dx
}

Now use
(
εa− 1

2εb
)2 ≥ 0 =⇒ ab ≤ ε2a2 + 1

4ε2 b
2

Now use our lemmas.

LHS ≥ θ

ˆ
|Dh(∇u)|2 − ε2|Dh

k (∇u)|2 − Cε|∇u|2

Pick ε2 = θ
2

LHS ≥ θ

2

ˆ
Ω

|Dh
k (∇u)|2ζ2 dx− Cε

ˆ
Ω

|∇u|2 dx

Now we estimate RHS with a little of L2 norm v + a lot of L2 norm f̃
By lemma 1:

ˆ
v2 ≤

ˆ
|∇(ζ2Dh

ku)|2

≤ C

ˆ
|Dh

k |2 + |Dh
k (∇u)|2 dx

vf̃ dx ≤ ε2
ˆ
v2 + Cε

ˆ
f̃2

Pick ε2 = θ
4

=⇒ θ

4

ˆ
Ω′

∣∣∣D(
k∇u)

∣∣∣2 dx ≤ C

ˆ
Ω

(f2 + |∇u|2 + u2) dx

≤ C

ˆ
Ω

f2 + ∥u∥2H1(Ω) dx

Apply Lemma 2
u ∈ H2

loc(Ω) and ∀Ω′ ⊂⊂ Ω

ˆ
Ω′

|D2u|2 dx ≤ C
(
∥f∥2L2(Ω) + ∥u∥2H1(Ω)

)
Finally, we need to replace ∥u∥2H1 with ∥u∥2L2 on RHS.
Using a new cut-off function ζ such that ζ ≡ 0 on Ω \ Ω′′, we have:

∥u∥H2(Ω′) ≤ C
(
∥f∥2L2(Ω′′) + ∥u∥2H1(Ω′′)

)
Now go back to (∗) weak formulation:
Choose v = ζ2u

ˆ
Ω

aijuxiuxjζ
2 + aijuxi2ζζxi dx =

ˆ
f̃ ζ2u

Again, by ellipticity and ab ≤ εa2 + Cεb
2,

Choosing ε small in terms of θ,
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ˆ
Ω′

|∇u|2 dx ≤ C

ˆ
Ω′′
f2 + u2 dx

so we’re done!

Wednesday, 10/16/2024

Higher Interior Regularity

Suppose Lu := −(aijuxi)xj + bi(x)uxi + c(x)u
So far: Assume aij elliptic, aij ∈ C1, bi, c ∈ C∞ f ∈ L2(Ω).
Then if u ∈ H1(Ω) is a weak solution to Lu = f then u ∈ H2

loc(Ω) and ∀Ω′ ⊂⊂
Ω∃C(Ω′) such that:

∥u∥H2(Ω′) ≤ C(Ω′)(∥f∥L2 + ∥u∥L2)

What if aij , bi, c are nicer, as is f? Then u should be nicer.
Idea: Consider the PDE satisfied (weakly) by uxk

for some k ∈ {1, · · · , n}.

∂

∂xk
L(u) =

∂

∂xk
f

−(aij(x)(uxk
)xi

)xj
− (aij(x))xk

(uxk
)xi

+ (bi(x))xk
uxi

+ bi(x)(uxk
)xi

+(c(x))xk
u+ c(x)uxk

= fxk

This is not exactly allowed. So we express it weakly.
Then uxk

weakly solves a new elliptic PDE.

Theorem 22. Let m = non-neg integer. Assume aij , bi, c ∈ Cm+1(Ω). Assume
f ∈ Hm(Ω)
Ten if u ∈ H1(Ω) is a weak solution to Lu = f we have:

u ∈ Hm+2
loc (Ω)

and ∀Ω′ ⊂⊂ Ω

∥u∥Hm+2(Ω′) ≤ C(∥f∥Hm + ∥u∥L2)

Proof. By induction.

Boundary Regularity

Theorem 23. Take Ω ⊂ Rn, open, bounded, ∂Ω ∈ C2. Take aij elliptic, aij ∈
C1, bi, c ∈ L∞.
Take f ∈ L2.
Then if u ∈ H1

0 (Ω) is a weak solution to Lu = f in Ω and u = 0 on ∂Ω then,

u ∈ H2(Ω)

∥u∥H2(Ω) ≤ C(∥f∥L2 + ∥u∥L2)

Proof. First we assume the boundary is flat. If not we flatten the boundary
Suppose first that B(0, 1) ∩ Ω = B(0, 1) ∩ Rn

+ = {x ∈ Rn | xn > 0}.
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Figure 2:

Let ζ be a cutoff function.
ζ ∈ C∞, ζ ≡ 1 in B(0, 12 )
ζ ≡ 0 in Rn \B(0, 1)

B[u, v] =

ˆ
fv ∀v ∈ H1

0 (Ω)

Rewrite:

ˆ
Ω

aijuxi
vxj

dx =

ˆ
Ω

f̃v dx

For |h| small take:

v = −D−h
k (ζ2Dh

ku)

for any k ∈ {1, · · · , n− 1}
To be a legal v for this, we need v ∈ H1

0 (Ω) in light of the cut-off function and
Tr
∣∣
∂B(0,1)+

u = 0

So we can use this v in ∗.
The rest of the proof is the same for interior regularity. We obtain:

∥Dh
k (∇u)∥L2(B(0,1)+) ≤ C (∥f∥L2 + ∥u∥L2)

Since difference quotients are uniformly bounded we must have weak derivatives.
=⇒ by lemma 2,

∥uxixj
∥ ≤ C (∥f∥L2 + ∥u∥L2)

for all i, j except i = j = n.
How to control uxnxn

?
By interior regularity, Lu = f at a.e. x ∈ Ω.
We rewrite the PDE:

−annuxnxn =
∑

(i,j)̸=(n,n)

(aij(x)uxi)xj − bi(x)uxi − c(x)u+ f

︸ ︷︷ ︸
:=

˜̃
f

We have ∥ ˜̃f∥ < const(∥f∥L2 + ∥u∥L2)

=⇒ ∥uxnxn
∥ ≤ const

θ
(∥f∥L2 + ∥u∥L2)
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We have proved the theorem for flat portion of ∂Ω. For proving the general case, we
flatten the boundary.
Locally write ∂Ω as a graph:

xn = f(x1, · · · , xn−1) f ∈ C2

We change variables.

yj = xj j = 1, · · · , n− 1

yn = xn − f(x1, · · · , xn−1)

y = Φ(x)

[insert picture figure]
Then,

DΦ(x) =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
−fx1

−fx2
· · · 1


detDΦ = JΦ = 1.
By inverse function theorem, Φ is invertible. Let Ψ = Φ−1. Define:

ũ(y) := u(Ψ(y))

u(x) = ũ(Φ(x))

By chain rule,

uxi = ũyk
Φ(k)

xi

Weak form:

ˆ
Φ(B(x0,R)∩Ω)

aij(Ψ(y))ũuk
Φ(k)

xk
ṽyl

Φ(l)
xj︸ ︷︷ ︸

ãklũyk
ṽyl

+bi(Ψ(y))ũxk
Φ(k)

xi
+ c(Ψ(y))ũ

 · 1 dy

=

ˆ
Φ(B(x0,R)∩Ω)

f(ψ(y))ṽ(y) dy

Claim: ũ solves an elliptic PDE weakly on a flat domain.

Define ãkl(y) := aijΦ
(k)
xi Φ

(l)
xj .

We’re done one we check that:

ãkl = ãlk, ãklηkηl ≥ θ̃|η|2 ∀η ∈ Rn

Firstly,

ãlk = aijΦ
(l)
xi
Φ(k)

xj
= ajiΦ

(l)
xi
Φ(k)

xj
= ãkl

Then let η ∈ Rn.

ãklηkηl = aijΦ
(k)
xi

Φ(l)
xj
ηkηl = aij Φ

(k)
xi
ηk︸ ︷︷ ︸

=ξi

Φ(l)
xj
ηl︸ ︷︷ ︸

=ξj

≥ θ|ξ|2
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Let ξi = Φ
(k)
xi ηk and ξj = Φ

(l)
xj ηl.

Then, ξ = DΦη =⇒ (DΦ)−1ξ = η =⇒ DΨξ = η.

|η| ≤ |DΨ||ξ| ≤ CdΩ|ξ|

Therefore,

ãklηkηl ≥ θ|ξ|2 ≥ θ

C∂Ω
|η|2

So, this reduces to the case of flat boundary, which we have already proven.

Maximum Principles

Consider L in non-divergence form:

Lu := −aij(x)uxixj
+ bi(x)uxi

+ c(x)u

Theorem 24 (Weak Maximum Principle). Assume u is a ‘nice classical solution’,
meaning u ∈ C2(Ω) ∩ C(Ω) for some bounded open Ω ⊂ Rn.
Further assume c(x) ≡ 0 in the definition of L.

i) If Lu ≤ 0 in Ω then,
max
Ω

u = max
∂Ω

u

ii) If Lu ≥ 0 in Ω then,
min
Ω
u = min

∂Ω
u

Remarks:

1) If Lu ≤ 0 we call u a subsolution. If Lu ≥ 0 we call u a supersolution.

2) If Lu = 0 then both maximum and minimum are achieved on the boundary.

3) A weak maximum principle does not preclude the max also being achieved inside
Ω.

4) If c ̸≡ 0, the maximum principle may fail.

Example: If Ω = (0, π) and Lu = −u′′ − u = 0 then a11 = 1, b1 = 0, c(x) = −1.
For Dirichlet boundary condition u(0) = u(π) = 0. Our answer can be sinx.
Then the maximum happens at π

2 not in boundary for A > 0.

Monday, 10/21/2024

Recap:

Lu := −aij(x)uxixj + bi()uxi + c(x)ui

aij uniformly elliptic aij(x)ξiξj ≥ θ|ξ|2, θ > 0, aij = aji.aij , bi, c are continuous on
Ω,Ω ⊂ Rn is open bounded.
Then we have the weak maximum principle as shown above.

Proof. Case 1: Suppose Lu < 0 [strictly less than 0]. We proceed by contradiction to
show a strong maximum principle.
Suppose ∃x0 ∈ Ω such that u(x0) = maxΩ u(x).
Consider Lu(x0). Note that uxi

∣∣
x0

= 0 since ∇u(x0) = 0. Thus,

Lu(x0) = −aij(x0)uxixj
(x0)

Linear Algebra Fact: If a matrix A is symmetric positive definite then A can be

diagonalizable by an orthogonal matrix O so that OOT = I. Then,
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OAOT =

λ1 · · · 0
...

. . .
...

0 · · · λn


λ1, · · · , λn > 0

Assume u ∈ C2 and has a min at x0.
Change variables: y = x0 +O(x− x0). Then,

uxi
= uyk

Oki

uxixj = uykyl
OkiOlj

aij(x0)uxixj
(x0) =

∑
i,j

∑
k,l

aij(x0)uykyl
OkiOlj


=
∑
k,l

uykyl

∑
i,j

aij(x0)OkiOlj


=
∑
k,l

uykyl
(OA)OT

jluykyl
(x0) = λ1uy1y1

+ · · ·+ λnuynyn

At a max, uyjyj ≤ 0 for all j. Then Lu(x0) ≥ 0 which gives us the contradiction.
Case 2: Suppose Lu ≤ 0. We pertrub L to get back to the first case. For example:

uϵ(x) := u(x) + ϵeλx1

Luϵ = Lu︸︷︷︸
≤0

+L(ϵeλx1) ≤ −ϵλ2a11(x)eλx1 + ϵb1(x)λe
λx1

= ϵλeλx1(−λa11(x) + b1(x)) ≤ ϵeλx1(−θλ+ ∥b∥L∞)

Pick λ big enough so that Luϵ < 0. By case 1,

max
Ω

u ≤ max
Ω

uϵ(x) = max
∂Ω

uϵ(x) ≤ max
∂Ω

u+ ϵmax
∂Ω

eλx1 ≤ max
∂Ω

u+ ϵeλR

where Ω ⊂ B(0, R). Let ϵ→ 0 to finish the proof.

Now we try to make sense of the case c(x) ≥ 0.

Theorem 25 (Weak max princ. for c(x) ≥ 0). Assume u ∈ C2(Ω) ∩ C(Ω).
Assume c(x) ≥ 0∀x ∈ Ω.

i) If Lu ≤ 0 in Ω then maxΩ u ≤ max∂Ω u
+

ii) If Lu ≥ 0 in Ω then minΩ u ≥ −max∂Ω u
−

Where u+(x) := max(u(x), 0), u−(x) = −min(u(x), 0).

Note: If Lu = 0 had a solution, then maxΩ |u| = max∂Ω |u|
Example: Let Lu = −u′′ + (4x2 + 1)u.

bi ≡ 0, c(x) = 4x2 + 1 > 0
Ω = (−1, 1).

Consider u(x) = e−x2 − 4

u′ = −2xe−x2

u′′ = −2e−x2

+ 4x2e−x2

Lu = (2− 4x2)e−x2

+ (4x2 + 1)(e−x2 − 4) = 3e−x2 − 16x2 − 4 < 0 on (−1, 1)
Max of u comes in the origin, which is −3. But it is not at the boundary! We need
to be careful about the sign and positive part and negative parts.
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Proof. Let Ω′ = {x ∈ Ω : u(x) > 0}.
Ω′ = ∅ =⇒ u(x) ≤ 0 in Ω so we’re done.
If Ω′ ̸= ∅ then we have:
[picture figure]
Let Ku := Lu − c(x)u, and K doesn’t have the c term. So we can apply theorem 1
to Ω′.

Ku ≤ −c(x)u ≤ 0 in Ω′

max
Ω

u ≤ max
Ω′

u ≤ max
∂Ω′

u = max
∂Ω

u+

In ∂Ω for the negative part u+ ≡ 0 so we can ignore that boundary, we’re done!

Wednesday, 10/23/2024

Lemma 1 (Hopf Lemma). Assume u ∈ C2(Ω)∩C1(Ω) and assume c(x) ≡ 0 Suppose
Lu ≤ 0 in Ω and ∃x0 ∈ ∂Ω such that:
u(x0) > u(x)∀x ∈ Ωand
Ω satisfies an interior ball condition at x0, namely ∃y0 ∈ Ω,∃r > 0 such that
B(y0, r) ⊂ Ω with x0 ∈ ∂B(y0, r).
Then ∂u

∂ν (x0) > 0 where ν = x0−y0

|x0−y0| [outer normal].

If c(x) ≥ 0 then the same conclusion holds provided u(x0) ≥ 0.
[pictures / fig bad example]
A sufficient condition for this to hold: if the boundary is given by a C2 function [so
the curvature never gets too extreme] it is enough for the boundary to be C2.

Note: ∂u
∂ν (x0) ≥ 0 is immediate since u(x0) > u(x)∀x ∈ Ω.

So the significance is the strict inequality.

Proof. Define v(x) = e−λ|x|2 − e−λr2 , λ > 0 to be specified later.

vxi
= −2λxie

−λ|x|2

vxixj
= (4λ2xixj − 2λδij)e

−λ|x|2

Lv = −aij(x)(4λ2xixj − 2λδij)e
−λ|x|2 − 2λbi(x)xie

−λ|x|2 + c(x)e−λ|x|2 − c(x)e−λr2

=⇒ Lv ≤
(
−4λ2θ|x|2 + 2λTrA+ 2λ|b|L∞ |x|+ |c|L∞

)
e−λ|x2| −�����

c(x)e−λr2

This is < 0 for some choice of λ = λ(θ,Ω,TrA, |b|L∞ , |c|L∞)
WLOG y0 = 0. Consider the annulus:{

x :
r

2
< |x| < r

}
= A

[insert picture figure]
∃ε > 0 such that:

u(x0) ≥ u(x) + εv(x) ∀x ∈ ∂B
(
0,
r

2

)
since u(x0) > max∂B(0, r2 )

u
On ∂B(0, r):

u(x0) ≥ u(x) + εv(x) = u(x)

Note L(u+ εv − u(x0)):
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= Lu
≤0

+ εLv
<0

− c(x)u(x0)
≤0

< 0

And we’ve shown that u(x) + εv(x)− u(x0) ≤ 0 on ∂A.
By weak maximum principle,

u(x) + εv(x)− u(x0) ≤ 0 in A

Also note:

u(x0) + εv(x0)− u(x0) = 0

Therefore,

∂

∂ν
(u(x) + εv(x)− u(x0)) ≥ 0

=⇒ ∂

∂ν
u(x0) ≥ −ε ∂

∂ν
v(x0)

Note that v is a radial function so (−ε) ∂
∂ν v(x0) = 2ελ(x0)e

−λr2 > 0.

Theorem 26 (Strong Maximum Principle). Assume Ω ⊂ Rn is open, bounded and
connected. Assume u ∈ C2(Ω) ∩ C1(Ω).
Suppose c ≡ 0.

i) If Lu ≤ 0 in Ω and if u attains its maximum over Ω at an interior point, then
u ≡ const.

ii) If Lu ≥ 0 in Ω and if u attains its minimum over Ω at an interior point then
u ≡ const.

Proof. Let M := maxΩ u. Let S := {x ∈ Ω : u(x) =M}.
If S = Ω we’re done.
If S = ∅ then we’re done.
So suppose, by contradiction, S ̸= Ω,∅.
[insert picture]
Choose y ∈ Ω \ S so that:

dist(y, S) < dist(y, ∂Ω)

Draw the largest open ball B centered at y that doesn’t intersect S.
Necessarily, ∃x0 ∈ ∂B ∩ S.
Thus Ω \ S satisfies an interior ball condition at x0.
u(x0) > u(x)∀x ∈ Ω \ S.
We apply Hopf lemma.
The outer normal derivative ∂u

∂ν (x0) > 0.

This cannot be true, since ∂u
∂ν (x0) = ∇u(x0) · ν = 0 since ∇u(x0) = 0 at an internal

max.

Friday, 10/25/2024

Theorem 27 (Strong Maximum Principle with c(x) ≥ 0). Assume Ω ⊂ Rn, bounded
open with ∂Ω ⊂ C2. Assume u ∈ C2(Ω) ∩ C1(Ω).

i) If Lu ≤ 0 in Ω, u achieves a non-negative max inside Ω then u ≡ const.

ii) If Lu ≥ 0 in Ω, u achieves a non-positive min inside Ω then u ≡ const.

Proof. Identical to c ≡ 0 case.
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Uniqueness

For Lu = f, c(x) ≥ 0, u = 0 on ∂Ω we have seen a uniqueness result.

Theorem 28. Ω ⊂ Rn open bounded an ∂Ω ∈ C2.Suppose u1 and u2 both solve
Lu = f in Ω with c(x) ≡ 0 and ∇u · ν = g on ∂Ω where ν = outer unit normal.
Then u1 − u2 ≡ const.

Proof. Let v := u1 − u2.
Then Lv = Lu1 − Lu2 = f − f = 0 in Ω.

∇v · ν = ∇u1 · ν −∇u2 · ν = g − g = 0on ∂Ω

By the max principle either v ≡ const or v attains its max at a point x0 ∈ ∂Ω.
Then, v(x0) > v(x)∀x ∈ Ω.
We can use Hopf Lemma:

∇v(x0) · ν > 0

this is a contradiction, so we’re done.

Theorem 29. Assume Lu ≤ f in a open connected bounded domain Ω ⊂ Rn and
assume c(x) ≥ 0.
Assume u ∈ C2(Ω) ∩ C(Ω). Then,

max
Ω

u ≤ max
∂Ω

u+ + C1 max
Ω

f+

where C1 depends on the coefficients of L and Ω.
If Lu = f then we can say

max
Ω

|u| ≤ max
∂Ω

|u|+ C1 max
Ω

|f |

Proof. We use a Barrier construction.
Without loss of generality let’s assume

Ω ⊂ {x ∈ Rn : 0 < x1 < d}

for some d.
Let Ku := Lu− cu = −aij(x)uxixj

+ bi(x)uxi
.

For λ > 0 to be chosen let’s compute

K(eλx1) = (−a11(x)λ2 + b1λ)e
λx1

≤ (−θλ2 + |b|L∞λ)eλx1

= −θ
(
λ2 − λ|b|L∞

θ

)
eλx1

≤ −θ for λ large enough

Goal: Pick a v such that L(u− v) ≤ 0, u− v ≤ 0 on ∂Ω.

Pick v(x) = max∂Ω u
+ +

(
eλd−eλx1

θ

)
maxΩ f

+

Lv = Kv + cv ≥ Kv

=
maxΩ f

+

θ
K(eλx1) ≥ max f+

Note: cv ≥ 0 since c ≥ 0, v ≥ 0.
Then, L(u− v) ≤ f −max f+ ≤ 0.
On ∂Ω,

u− v = u−max
∂Ω

u+ − positive ≤ 0

44



By maximum principle,

max
Ω

(u− v) ≤ max
∂Ω

(u− v)+ ≤ 0

Thus, u− v ≤ 0 =⇒ u ≤ v ≤ max∂Ω u
+ + eλd

θ maxΩ f
+.

Choosing C1 = eλd

θ solves our problem.

Recall that we had

∥u∥H2(Ω′) ≤ C
(
∥f∥L2(Ω) + ∥u∥L2(Ω)

)
∀Ω′ ⊂⊂′ Ω, C = C(Ω′,Ω).
If, for example Lu = f in Ω and u = h on ∂Ω then,

|u| ≤ const(f, h)

Wednesday, 10/28/2024

[to be entered]

Eigenvalues and Eigenfunctions of Symmetric Ellip-
tic Operators

Lu = −(aij(x)uxi
)xj

+ c(x)u
aij = aji
aij(x)ξiξj ≥ θ|ξ|2, θ > 0.
If we included bi(x)uxi

then (Lu, v)L2 =
´
Lu · v ̸=

´
uLv.

From our compact operator approach, we’ve seen that the set of eigenvalues {λj} is
either finite or λj → ∞ .
We also saw: for aij = δij , c ̸= 0, if there exists a minimizer of the Rayleigh quotient

λ1 := inf
u∈H1

0 (Ω),u̸≡0

´
Ω
|∇u|2 dx´
Ω
u2 dx

= R(u)

say, u1, and if u1 is smooth, then u1 is the 1st eigenfunction and λ1 is the smallest
eignevalue.
−∆u1 = λ1u1 in Ω and u1 = 0 on ∂Ω.
Recall the computed:

d

dt

∣∣∣∣
t=0

R(u1 + tv) = 0

for any fixed v ∈ H1
0 .

Theorem 30. Given Ω ⊂ Rn, bounded, open there exists a function u1 minimizing
R(u) over all u ∈ H1

0 (Ω), u ̸≡ 0 Furthermore, u1 is smooth and is the 1st eigenfunction.

Proposition 2. If uj
H1

⇀ u then lim infj→∞
´
Ω
|∇uj |2 dx ≥

´
Ω
|∇u|2 dx.

Recall uj
H1

⇀ u means ∀v ∈ H1, (uj , v)H1 → (u, v)H1 .

Proof. Note: Weakly convergent sequences are bounded. Therefore,
∥uj∥H1 < C.

=⇒ ujk
L2

→ u
=⇒

´
ujkv →

´
uv

∀v ∈ H1
0 , ∥v∥H1

0
=
(´

|∇v|2
)1/2

= sup∥w∥
H1

0
≤1

´
∇v · ∇w.

So we’re assuming uj ⇀ u.
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Fix any w so that ∥w∥H1
0
≤ 1. We have:

ˆ
Ω

|∇uj |2 dx ≥
(ˆ

Ω

∇uj · ∇w dx

)2

Taking lim infj→∞,

lim inf
j→∞

ˆ
Ω

|∇uj |2 dx ≥ lim inf
j→∞

(ˆ
Ω

∇uj · ∇w dx

)2

=

(ˆ
Ω

∇u · ∇w dx

)2

Now take sup over all such w.

Proof of Theorem. We use the direct method.

inf
u∈H1

0 (Ω),u̸≡0
R(u) =: λ1

Note, for all c ̸= 0 constant we have R(cu) = R(u).
Thus, WLOG we can minimize R over the admissible set:
A =

{
u ∈ H1

0 (Ω) : u ̸≡ 0,
´
Ω
u2 dx = 1

}
.

Let {uj} ⊂ A such that R(uj) =
´
Ω
|∇uj |2 dx→ λ1.

{uj} is a minimizing sequence.
We know,

´
Ω
|∇uj |2 dx < λ1 + 1.

Thus, ∥uj∥H1
0
≤ const

Thus, there exists subsequence {ujk} such that ujk
H1

⇀ u, ujk
L2

⇀ u for some u ∈ H1
0 (Ω)

by Rellich-Kondrachov.
Thus,

´
u2 = limk→∞

´
u2jk = 1.

Thus, u ∈ A.
Thus, by the proposition,

λ1 = lim inf
k→∞

ˆ
Ω

|∇ujk |2 dx ≥
ˆ
Ω

|∇u|2 dx

=⇒ R(u) = λ1

If Lu = −∆u+ c(x)u then,
R(u) =

´
|∇u|2 + c(x)u2.

lim inf
j→∞

R(uj) ≥ R(u)

Wednesday, 10/30/2024

Last time:
We found first eigenfunction u1 solving

inf
u∈H1

0 (Ω)
u̸≡0

R(u) = λ1

Where R(u) =
´
|∇u|2´
u2 is the Rayleigh Quotient.

−∆u1 = λ1u1 in Ω
u1 = 0 on ∂Ω
Today: Higher eigenvalues and eigenfunctions.

λ2 := inf
u∈H1

0 (Ω)´
u2=1´

Ω
uu1=0

R(u)

In general, let Am :=
{
u ∈ H1

0 (Ω) :
´
Ω
u2 = 1,

´
Ω
uuj = 0 for j = 1, · · · , n− 1

}
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Where uj minimizes infu∈Aj R(u) =: λj .
Aj are also sobolev spaces. We can use the exact same proof via the Direct Method
to produce a minimizer.
Let {vj} be a miniizing sequence, meaning R(vj) → λ2, {vj} ⊂ A2, ∥vj∥H1

0
< λ2 + 1.

Take vjk
H1

⇀ u2

Then vjk
L2→ u2

By lower semicontinuity, since lim infk→∞∥vjk∥H1
0
≥ ∥u2∥H1

0

Thus R(u2) = λ2
u2 minimizes R(u) in A2

Take first variation:

0 =
d

dt
(u2 + tv)

∣∣∣∣
t=0

=⇒
ˆ
Ω

∇u2 · ∇v dx = λ2

ˆ
Ω

u2v dx

∀v ∈ A2.
Let ṽ be any element of H1

0 (Ω) not necessarily A2. Consider:

ˆ
Ω

∇u2 · ∇ṽ dx

Write ṽ = c1u1 + v̂ where c1 =
´
ṽu1 dx, v̂ ∈ A2.

ˆ
Ω

∇u2 · ∇ṽ dx = c1

ˆ
Ω

∇u2 · ∇u1 dx+

ˆ
Ω

∇u2 · ∇v̂ dx

= −c1
ˆ
Ω

u2∆u1 dx+

ˆ
Ω

∇u2 · ∇v̂ dx

= c1λ1
�����ˆ
Ω

u2u1 dx+

ˆ
Ω

∇u2 · ∇v̂ dx

= λ2

ˆ
Ω

u2v̂ dx

= λ2

ˆ
Ω

u2v̂ dx+
��������
λ2

ˆ
Ω

u2(c1u1) dx

= λ2

ˆ
Ω

u2ṽ dx∀ṽ ∈ H1
0

So the identity holds outside the subspace. Not only for A2, but for Aj by induction.
So we can find λj for j = 1, 2, 3, · · ·.
By compact operator approach we know either finitely many λjs or else λj → ∞.
We claim that eigenvalues cannot have infinite multiplicity.
Note: we can have multiplicity > 1. But it must be always finite. Why?

Theorem 31. Multiplicity is finite.

Proof. Suppose false. Then we have {uj} so that R(uj) = λ,
´
u2j = 1,

´
ujuk =

0,
´
|∇uj |2 = λ.

By Kondrachov-Rellich,

ujl
L2

→ u

for some u.
It cannot happen, since:

ˆ
|ujl − ujl′ |

2 =

ˆ
u2jl + u2jl′ − 2ujlujl′ = 2

so we have 2 = 0. Contradiction.

Theorem 32. {uj} form an orthonormal basis for L2(Ω).
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That is, ∀v ∈ L2, we have:

v −
m∑
j=1

cjuj
L2

→ 0

as m→ ∞ where cj :=
´
ujv

In 1D, L(u) = −u′′, u(0) = u(b) = 0.
We are looking at u′′ + λu = 0. So our functions are:

u(x) = c1 cos
(√

λx
)
+ c2 sin

(√
λx
)
= 0.

u(0) = 0 =⇒ c1 = 0.

u(b) = 0 =⇒ sin
(√

λb
)
= 0

So
√
λjb = πj =⇒ λj =

π2j2

b2

Friday, 11/1/2024

Proof. First assume v ∈ H1
0 (Ω) [this is dense in L2(Ω) so proving in here is enough].

Define for m ∈ Z+,

vm =

m∑
j=1

cjuj

Where cj =
´
Ω
vuj dx.

Let wm := v − vm.
We want to show wm → 0 in L2 as m→ ∞.
For any k ≤ m:

⟨wm, uk⟩L2 =

ˆ
Ω

wmuk dx =

ˆ
Ω

vuk dx︸ ︷︷ ︸
=ck

−
ˆ
Ω

vmuk dx︸ ︷︷ ︸
=ck

= 0

Thus, wm is admissible for

λm+1 = inf´
uuj=0

j=1,··· ,m
u̸≡0

´
|∇u|2´
u2

Thus,

λm+1 ≤
´
Ω
|∇wm|2 dx´
Ω
w2

m dx

Also for k ∈ {1, · · · ,m}
ˆ
Ω

∇wm · ∇uk dx
IBP
= −

ˆ
Ω

wm∆uk dx = λk

ˆ
Ω

wmuk dx = 0

=⇒
ˆ
Ω

∇wm · ∇uk dx = 0

=⇒
ˆ
Ω

∇wm · ∇vm dx = 0

Since ∇vm =
∑m

j=1 cj∇uj .ˆ
Ω

|∇v|2 dx =

ˆ
Ω

|∇vm +∇wm|2 dx =

ˆ
Ω

|∇vm|2 dx+ 2

ˆ
Ω

∇vm · ∇wm dx+

ˆ
Ω

|∇wm|2 dx
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=⇒
ˆ
Ω

|∇wm|2 dx ≤
ˆ
Ω

|∇v|2 dx

ˆ
Ω

w2
m dx ≤ 1

λm+1

ˆ
Ω

|∇wm|2 dx ≤ 1

λm+1

ˆ
Ω

|∇v|2 dx

m2 → ∞ =⇒ ∥wm∥L2 → 0.

Remark. Can do the same procedure to the Neumann eigenvalues and eigenfunc-
tions. Only difference:

λ1 = inf
u∈H1(Ω)

u̸≡0

´
Ω
|∇u|2 dx´
Ω
u2 dx

λ1 = 0, u1 = 1.
−∆u = λ1u in Ω.
∇u · ν = 0 on ∂Ω.

λ2 = inf
u∈H1(Ω)´
Ω
u·1 dx=0

R(u)

Proposition 3. Let λ1(Ω) := infu∈H1
0 (Ω)

u̸≡0

R(u).

Then if Ω1 ⊂ Ω2 both open one has λ1(Ω2) ≤ λ2(Ω1).

Proof. Let u be any admissible function for λ1(Ω1). u ∈ H1
0 (Ω) u ̸≡ 0 Define comple-

tion for λ1(Ω2) via:

ũ(x) =

{
u, if x ∈ Ω1;

0, if x ∈ Ω2 \ Ω1.

Then ũ ∈ H1
0 . But RΩ2

(ũ) = RΩ1
(u).

=⇒ λ1(Ω1) ≥ λ1(Ω2).

Example of 2D eigenfunction

Take Ω = (0, 1)× (0, 1).

−∆u = λu in Ω.
u = 0 on ∂Ω
We use separation of variables.
Seek u(x, y) = F (x)G(y). Substitute into the PDE.

−F ′′(x)G(y)− F (x)G′′(y) = λF (x)G(y)

−F
′′(x)

F (x)
=
G′′(y)

G(y)
+ λ ≡ µ

F ′′(x) + µF (x) = 0

G′′(y) + (λ− µ)G(y) = 0

Then F (0) = 0 = F (1) so F (x) = sin
(√
µx
)
.

F (1) = 0 =⇒ √
µ = kπ =⇒ µ = k2π2
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For the second case, if λ−µ is negative we have exponential but we also need G(0) =
G(1) = 0 which is not possible. So it is not negative.

G(y) = sin
(√

λ− µy
)

G(1) = 0 =⇒
√
λ− µ = lπ

=⇒ λ = µ+ l2π2.

=⇒ λk,l = (k2 + l2)π2

where k, l = 1, 2, 3, · · ·.
Smallest eigenvalue is λ1,1 = 2π2. Multiplicity is 1.
But for higher ones, we can have multiplicity > 1. λ1,2 = λ2,1 with different eigen-
functions.

Monday, 11/4/2024

Recall that λ1 := infu∈H1
0 (Ω),u̸≡0 R(u) for Dirichlet Boundary Condition.

For Neumann, we minimize just over H1.
Recall from example of Ω = (0, 1)× (0, 1):

λk,l = π2(k2 + l2)

eigenfunctions were uk,l(x, y) = sin(πkx) sin(πly)
Then λ1,2 = λ2,1 multiplicity 2 eigenvalue.

Proposition 4. Any first Dirichlet eigenfunction does not vanish in Ω.

Proof. Let u1 be any first eigenfunction. Then, λ1 = R(u1).
|u1| ∈ H1

0 .

R(|u1|) =
´
Ω
|∇|u1|2| dx´
Ω
|u1|2 dx

= R(u1) = λ1.

Thus, |u1| is also a first eigenfunction.
Apply sobolev elliptic regularity: |u1| is smooth.
Then, −∆(|u1|) = λ1|u1|, |u1| = 0 on ∂Ω.
Then ∆(|u1|) ≤ 0.
This is a superharmonic function.
Strong Minimum Principle =⇒ |u1| cannot achieve minimum inside Ω.
Thus, u1 has no interior zeroes.

Corollary 1. Every eigenfunction for λk with k > 1 must vanish somewhere

Proposition 5. λ1 is always simple (multiplicity 1).

Proof. Suppose u1 and ũ1 are linearly independent first eigenfunctions. WLOG, u1 >
0, ũ1 > 0 in Ω and normalized so that

´
Ω
u1 dx =

´
Ω
ũ1 dx = 1.

Let w = u1 − ũ1. Then
´
Ω
w dx = 0.

−∆w = λ1w in Ω and w = 0 in ∂Ω.
But ∄ non-zero first eigenfunction that vanishes inside Ω. Contradiction.

Schauder Theory

Ref: Gilberg-Trudinger, J.Jost
Hölder spaces:

Definition 21 (Hölder Quotient). for α ∈ (0, 1):

[u]Cα(Ω) := sup
x,y∈Ω
x̸=y

|u(x)− u(y)|
|x− y|α
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This is not a norm. We define a norm by:

|u|C0,α := sup
Ω

|u(x)|+ [u]Cα(x)

|u|Ck,α(Ω) :=
∑
|β|≤k

sup
Ω

|Dβu(x)|+
∑
|β|=k

[Dβu]Cα

There are 2 sets of estimates in Schauder theory:

1) Very precise Hölder estimates for ∆u = f when f ∈ Cα.

2) Use these to obtain similar estimates for Lu = f where L = general elliptic
operator.

Recall:
Fundamental solution to Laplace’s equation in n dim:

K(x) :=


1

n(2− n)αn
|x|2−n, if n > 2;

1

2π
ln |x|, if n = 2.

αn = volume of unit ball in Rn.
[Evans had negative]
K(x) is just a radial solution to ∆u = 0.
K is singular at x = 0.
Newtonian Potential of a function f : Ω → R given by:

w(x) :=

ˆ
Ω

K(x− y)f(y) dy

For nice enough f we can ‘differentiate under the integral sign’.
Ignoring constants, |K(x)| ≤ |x|2−n or |K(x)| ≤ ln |x|∣∣∣∣∂K∂xi

∣∣∣∣ = ∣∣∣∣|x|1−n xi
|x|

∣∣∣∣ ≤ |x|1−n

∣∣∣∣ ∂2K∂xi∂xj

∣∣∣∣ = ∣∣∣∣|x|−nδij + xi(−n)|x|−n−1 xi
|x|

∣∣∣∣ = ∣∣∣∣ δij|x|n
− nxixj

|x|n+2

∣∣∣∣ ≤ |x|−n

For all n K(x) is locally integrable.

ˆ
B(0,1)

|x|2−n dx =

ˆ 1

0

ˆ
∂B(0,r)

r2−n dS dr =

ˆ 1

0

r2−n

ˆ
∂B(0,r)

1 dS dr

=

ˆ 1

0

r2−nnαnr
n−1 dr =

ˆ 1

0

nαnr dr <∞

Also, ∂K
∂xi

is locally integrable.

ˆ
B(0,1)

∣∣∣∣∂K∂xi
∣∣∣∣ dx ∼ nαn

ˆ 1

0

r1−nrn−1 dr <∞

However,

ˆ
B(0,1)

∣∣∣∣ ∂2K∂xi∂xj

∣∣∣∣ dx ∼
ˆ 1

0

r−nrn−1 dr ∼ logarithmic singularity
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Wednesday, 11/6/2024

We have the following basic estimates:

|K(x)| ≤ C|x|2−n (n > 2)

|Kxi
(x)| ≤ C|x|1−n

|Kxixj
| ≤ C|x|−n

Newtonioan Potential of function f : Ω → R is given by:

w(x) :=

ˆ
Ω

K(x− y)f(y) dx

Theorem 33 (A). Assume f integrable and bounded.
Then w is C1 on Ω and:

wxi
(x) =

ˆ
Ω

Kxi
(x− y)f(y) dy

Proof. Let η be C1 so that η(x) = 0 for 0 ≤ x ≤ 1, η(x) = 1 for x ≥ 2 and 0 ≤ η′ ≤ 2
for all x.
For ϵ > 0 let ηϵ(x) := η

(
|x|
ϵ

)
.

Define

wϵ(x) :=

ˆ
Ω

K(x− y)ηϵ(x− y)f(y) dy

Easy to justify:

wϵxi
(x) =

ˆ
Ω

∂

∂xi
(K(x− y)ηϵ(x− y)) f(y) dy

Also easiy: wϵ → w uniformly in Ω.

w − wϵ =

ˆ
Ω

K(x− y)(1− ηϵ(x− y))f(y) dy

=

ˆ
{y:|x−y|<2ϵ}

K(x− y)(1− ηϵ(x− y))f(y) dy

Now consider:

wϵxi
−
ˆ
Ω

Kxi(x− y)f(y) dy

=

ˆ
Ω

(
∂

∂xi
(K(x− y)ηϵ(x− y))−Kxi

)
f(y) dy

=

ˆ
Ω

Kxi
(x− y)(ηϵ(x− y)− 1)f(y) dy︸ ︷︷ ︸

=I

+

ˆ
Ω

K(x− y)ηϵxi
(x− y)f(y) dy︸ ︷︷ ︸

=II

I ≤ C

ˆ
{y:|y−x|<2ϵ}

1

|x− y|n−1
|f(y)|dy ∼ c

ˆ 2ϵ

0

1

rn−1
rn−1 dr = O(ϵ)

II ≤ 2

ϵ
C

ˆ
{y:ϵ<|x−y|<2ϵ}

1

|x− y|n−2
|f(y)| dy = O(ϵ)
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w(x+ hei)− w(x) = lim
ϵ→0

wϵ(x+ hei)− wϵ(x) = lim
ϵ→0

ˆ h

0

wϵxi
(x+ tei) dt

=

ˆ h

0

ˆ
Ω

Kxi
(x+ tei − y)f(y) dy

Divide by h:

w(x+ hei)− w(x)

h
=

1

h

ˆ h

0

ˆ
Ω

Kxi
(x+ tei − y)f(y) dy

Let h→ 0 to see wxi
(x) =

´
Ω
Kxi

(x− y)f(y) dy.

Theorem 34 (B). Let Ω ⊂ Rn be open bounded. Let f ∈ C0,α(Ω).
Then w ∈ C2(Ω),∆w = f and ∀x ∈ Ω one has:

wxixj =

ˆ
Ω0

Kxixj (x− y)(f(y)− f(x)) dy − f(x)

ˆ
∂Ω0

Kxi(x− y)νj(y) dS (∗)

where Ω0 is any smooth bounded open set such that Ω ⊂⊂ Ω0 and ν is the outer unit
normal to Ω0 and f ≡ 0 outside Ω.

Proof. Let u(x) be RHS of (∗).
Claim: u(x) is well defined.
True since:

ˆ
Ω0

|Kxixj
(x− y)||f(y)− f(x)|dy

for y ∈ Ω,

≤ [f ]Cα

ˆ
C

|x− y|n
|x− y|α dy

∼
ˆ δ

0

1

rn
rn−1rα dr ∼ δα

For y /∈ Ω we have |x− y| > 0.
This proves the claim.
Fix i. Let vϵ(x) :=

´
Ω
Kxi

(x− y)ηϵ(x− y)f(y) dy.
Theorem A =⇒ vϵ → wxi

uniformly as ϵ→ 0.
For any j:

vϵxj
(x) =

ˆ
Ω

∂

∂xj
(Kxi

(x− y)ηϵ(x− y)) f(y) dy

=

ˆ
Ω0

∂

∂xj
(Kxi(x− y)ηϵ(x− y)) f(y) dy

=

ˆ
Ω0

∂

∂xj
(Kxi(x− y)ηϵ(x− y)) (f(y)− f(x)) dy

+f(x)

ˆ
Ω0

∂

∂xj
(Kxi

(x− y)ηϵ(x− y)) dy

=

ˆ
Ω0

∂

∂xj
(Kxi

(x− y)ηϵ(x− y)) (f(y)− f(x)) dy

−f(x)
ˆ
Ω0

∂

∂yj
(Kxi(x− y)ηϵ(x− y)) dy

=

ˆ
Ω0

∂

∂xj
(Kxi(x− y)ηϵ(x− y)) (f(y)− f(x)) dy
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−f(x)
ˆ
∂Ω0

(Kxi
(x− y) ηϵ(x− y)︸ ︷︷ ︸

=1

)νj dy

=

ˆ
Ω0

∂

∂xj
(Kxi

(x− y)ηϵ(x− y)) (f(y)− f(x)) dy

−f(x)
ˆ
∂Ω0

Kxi(x− y)νj dy

Then, ∣∣∣u(x)− vϵxj
(x)
∣∣∣ = ˆ

{|y−x|<2ϵ}

∣∣Kxixj
(x− y)

∣∣ |f(y)− f(x)| dy

+

ˆ
{ϵ<|y−x|<2ϵ}

|η′ϵ|︸︷︷︸
≤ 2

ϵ

|Kxi(x− y)||f(y)− f(x)|dy

∼ [f ]Cα

ˆ 2ϵ

0

1

rn
rαrn−1 dr +

2

ϵ

ˆ 2ϵ

ϵ

1

rn−1
rαrn−1 dr = O(ϵα)

Thus vϵxj
→ u(x) uniformly as ϵ→ 0.

As in theorem A, wxi
(x+ hej)− wxi

(x) = · · · and we’re done.
Now we prove ∆w = f .
Fixing x, take Ω0 = B(x,R) for large R [so that Ω ⊂ B(x,R)]. Use (∗) with i = j,
summing on i. This gives us the laplacian.

∆w =
∑
i

wxixi
=

ˆ
B(x,R)

∆K(x− y)(f(y)− f(x)) dy︸ ︷︷ ︸
0 since K is harmonic

+f(x)

ˆ
∂B(x,R)

∇K(x− y) · ν dS

Also,

ˆ
∂B(x,R)

∇K · ν dS =

ˆ
∂B(x,R)

∂K

∂r
dS =

ˆ
∂B(x,R)

1

nα(n)Rn−1
dS = 1

So we’re done.

Friday, 11/8/2024

Recap:

K(x) =


1

αnn(2− n)
|x|2−n, if n > 2;

1

2π
log |x|, if n = 2.

Newtonian potential of f in Ω:

w(x) =

ˆ
Ω

K(x− y)f(y) dy

So far: if f ∈ C0,α(Ω), 0 < α < 1 then w ∈ C2,∆w = f in Ω. We have estimate of
derivative:

wxixj (x) =

ˆ
Ω0

Kxixj (x− y)(f(y)− f(x)) dy − f(x)

ˆ
∂Ω0

Kxi(x− y)νj(y) dS
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Where Ω0 ⊃⊃ Ω, ∂Ω0 smooth, f is extended to be 0 on Ω0 \ Ω
Note that if f is just continuous then w ∈ C2.
This result, among other things, shows existence to ∆u = f in Ω, u = g on ∂Ω for
f ∈ C0,α, g ∈ C0. To show existence, it suffices to be able to solve ∆v = 0 on Ω and
v = h on ∂Ω for all h continuous (∗).
Why?
Let w =

´
Ω
K(x− y)f(y) dy

We seek u of the form:

u = w + ũ

∆ũ = 0 in Ω

ũ = g − w on ∂Ω

How to solve (∗)?
When Ω = B [a ball],

v =
1

ωn−1

ˆ
∂BR

R− |x|2

|x− y|n
h(y) dS

So we have explicit Poisson Integral formula.
What if Ω is not a ball? Many methods:
Calculus of variations: minimize

´
Ω
|∇v|2 dx

Perron’s method.

Theorem 35. Let BR = B(x0, R), B2R = B(x0, 2R) be 2 concentric balls in Rn. Fix
R > 0. Then for f ∈ C0,α(B2R) we have

|w|C2,α(B2R) ≤ C(α,R)|f |C0,α(B2R)

Proof. To control sup |wxixj | in BR:

|wxixj (x)| ≤
ˆ
B2R

|Kxixj |
|f(y)− f(x)|

|y − x|α
|y − x|α dy +

∣∣∣∣f(x)ˆ
∂B2R

Kxi
(x− y)νj(y) dS

∣∣∣∣
≤
ˆ
B2R

|Kxixj |
|f(y)− f(x)|

|y − x|α
|y − x|α dy + sup

B2R

|f | C

Rn−1
nα(n)Rn−1

≤ C[f ]Cα

ˆ 2R

0

1

rn
rαrn−1 dr < C(R)[f ]Cα + C sup |f |

Then we bound [wxixj ]Cα(BR).
Fix x and x in BR.

wxixj
(x)− wxixj

(x)

=

ˆ
B2R

(
Kxixj

(x− y)(f(y)− f(x))−Kxixj
(x− y)(f(y)− f(x))

)
dy

−f(x)
ˆ
∂B2R

Kxi
(x− y)νj dSy + f(x)

ˆ
∂B2R

Kxi
(x− y)νj dSy︸ ︷︷ ︸

=I1+I2+I3+I4

I1 = f(x)

ˆ
∂B2R

(Kxi(x− y)−Kxi(x− y)) νj dSy

+(f(x)− f(x))

ˆ
∂B2R

Kxi
(x− y)νj dS
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=⇒ |I1| ≤ sup
B2R

|f |
ˆ
∂B2R

|DτKxi
(x̃− y)| |x− x| dSy

+[f ]Cα |x− x|α · C(R)

for some x̃ between x and x. Dτ is the directional derivative, we have used Mean
Value Theorem.

≤ c sup |f | · 1

Rn
nα(n)(2R)n−1|x− x|+ C(R)[f ]Cα |x− x|α

≤ C(R)|f |C0,α|x− x|α

Let δ = |x− x| and ξ = 1
2 (x+ x).

I2 =

ˆ
B(ξ,δ)∩B2R

Kxixj
(x− y)(f(x)− f(y)) dy

+

ˆ
B(ξ,δ)∩B2R

Kxixj (x− y)(f(y)− f(x)) dy

Estimate first integral:

≤ C[f ]Cα

ˆ
B(ξ,δ)∩B2R

1

|x− y|n
|x− y|α dy

Notice that B(x, 32δ) ⊃ B(ξ, δ).

≤ C[f ]Cα

ˆ
B(x, 32 δ)

1

|x− y|n
|x− y|α dy

≤ C[f ]Cα

ˆ 3
2 δ

0

1

rn
rαrn−1 dr ≤ C[f ]Cα

(
3

2

)α
 δ︸︷︷︸

|x−x|

α

I3 = (f(x)− f(x))

ˆ
B2R\B(ξ,δ)

Kxixj (x− y) dy

I4 =

ˆ
B2R\B(ξ,δ)

(
Kxixj

(x− y)−Kxixj
(x− y)

)
(f(x)− f(y)) dy

In I3, we are ‘outside’ of the ball B(ζ, δ) so x− y doesn’t get very small |x− y| ≥ δ
2 .

So, when we integrate we have enough control to win.
In I4 we apply mean value theorem with the third derivative: |D3K| ≤ C|x|−n−1.
Dividing by |x− xα| we finish the proof.

Monday, 11/11/2024

Last estimates on ∆u = f :
Last time:
If f ∈ C0,α(B2R) and ω = Newtonian potential

ω(x) =

ˆ
B2R

K(x− y)f(y) dy

then

|w|C2,α ≤ C(α,R)|f |C0,α(B2R)

Then suppose u is a C2,α solution to ∆u = f in B2R.
Then u = w + v
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∆v = 0 in B2R

|u|C2,α(BR) ≤ |w|C2,α(BR) + |v|C2,α(BR)

=⇒ |u|C2,α(BR) ≤ C|f |C0,α(B2R) + |v|C2,α(B2R)

Recall derivtive estimates of harmonic functions:

|Dβv|BR
≤ C(β,R) sup

B2R

|v|

β = any multi-index.

=⇒ |u|C2,α(BR) ≤ C|f |C0,α(B2R) + sup
B2R

|u|

Interim Schauder estimate ∀Ω0 ⊂⊂ Ω bounded, open

=⇒ |u|C2,α(Ω0) ≤ C(Ω0, α)

(
|f |C0,α(Ω) + sup

Ω
|u|
)

Cover Ω0 with balls.

Theorem 36. [Boundary Hölder Estimates] Assume u ∈ C2,α soluton to ∆u = f in
Ω, u = g on ∂Ω where f ∈ C0,α(Ω), g ∈ C2,α(Ω) and ∂Ω ∈ C2,α. Then,

|u|C2,α(Ω) ≤ C

(
|f |C0,α(Ω) + |g|C2,α(Ω) + sup

Ω

|u|

)

Philosophy: Flatten the boundary [we can do this since ∂Ω is C2,α].
Subtract off g to get zero dirichlet condition.
Then we work on 1

2 balls.

General Schauder Estimates

Theorem 37. Let Lu := aijuxixj +bi(x)uxi +c(x)u, aij = aji, aij(x)ζiζj ≥ λ|ζ|2∀ζ ∈
Rn(λ > 0). ∑

i,j

|aij |C0,α +
∑
i

|bi|C0,α + |c|C0,α ≤ Λ

Proof. First step: Suppose aij is constant.
Idea: Change variables to convert aijuxixj

to ∆u.
Lu = aijuxixj

. aij is positive definite symmetric so there exists S orthogonal [ST =

S−1] so that S−1AS = D̃ =

λ1 . . .

λn

 where (Aij) = aij .

Let y = xS where x = (x1, · · · , xn).
Let v(y) = u(yS−1).
u(x) = v(xS) =⇒ uxi = vyk

Sik =⇒ uxixj = vykyl
SikSjl =⇒ aijuxixj =

vykyl
SikaijSjl = vykyl

ST
kiaijSjl =⇒ aijuxixj = D̃klvykyl

= D̃D2v = λ1vy1y1 +
· · ·λnvynyn

Change variables again: let zi =
√
λiyi then ∂2

∂z2
i
= 1

λi

∂2

∂y2
i

=⇒ w(z) = v(y) =⇒
∆zw.
If u solves aijuxixj

= f then w solves ∆z = f̃ .
Then we use old estimates for Poisson.
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Wednesday, 11/13/2024

We finish Schauder today.
Lu := aij(x)uxixj

+ bi(x)uxi
+ c(x)u.

We assume uniform ellipticity: aij = aji, aij(x)ζiζj ≥ θ|ζ|2 forsome θ > 0,∀x ∈ Ω.
Also Hölder continuous coefficients.∑

i,j

|aij |C0,α +
∑
i

|bi|C0,α + |c|C0,α

So far, for L = aijuxixj with aij constants, we showed that interior Hölder estimates
work via change of variables.
Lu = f, f ∈ C0,α(Ω).
Then,

|u|C2,α(Ω′) ≤ C(Ω,Ω′,Λ, θ)(|f |C0,α(Ω) + sup
Ω

|u|) (∗)

∀Ω′ ⊂⊂ Ω.

Theorem 38. If Lu = f in Ω, f ∈ C0,α(Ω) then ∀Ω′ ⊂⊂ Ω, (∗) holds.

Proof. Let x0 ∈ Ω′. Rewrite Lu = f .

aij(x0)uxixj
= f − bi(x)uxi

− c(x)u+ (aij(x0)− aij(x))uxixj

=: F (x)

Now estimate |F |C0,α to use the previous lemma.
Take BR := B(x0, R) ⊂⊂ Ω.
|f |C0,α is bounded from assumption.

We use the following fact: [gh]Cα = sup |g(x2)(x2)−g(x1)h(x1)|
|x2−x1|α

Same way as the product rule, we can write:

≤ sup
|g(x2)||h(x2)− h(x1)|

|x2 − x1|α
+

|h(x1)||g(x2)− g(x1)|
|x2 − x1|α

≤ sup |g|[h]Cα + sup |h|[g]Cα

Then we can write:
[biuxi

]Cα ≤ sup |bi|[uxi
]Cα + sup |uxi

|[bi]Cα

|biuxi |C0,α ≤ Λ|u|C1,α .
Similarly, |cu|C0,α ≤ Λ|u|C0,α .
Finally,
[(aij(x0)− aij(x))uxixj

]Cα ≤ sup |aij(x0)− aij(x)|[D2u]Cα + Λsup |D2u|
≤ [aij ]CαRα[D2u]Cα + Λsup |D2u|
This idea is called idea of freezing coefficient. We have variable coefficient, but we
can take a ball in which the coefficients don’t vary that much.
We have the following proposition:

Proposition 6. ∀ϵ∃Cϵ > 0 such that if u ∈ C2,α(Ω) then,

|u|C2 ≤ ϵ|u|C2,α + Cϵ sup |u|.

Proof. Suppose not. Then we can find ϵ and {uj} such that

|uj |C2 > ϵ|uj |C2,α + j sup |uj |

Setting vj :=
uj

|uj |C2
we have same ineqaulity with |vj |C2 = 1.

We have |vj |C2,α ≤ 1
ϵ .

Arzela-Ascoli =⇒ vjl
C2

→ v.
Then |v|C2 = 1.
But sup |vj | < 1

j so sup |v| = 0 so v ≡ 0.
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We use this estimate to finish the proof.
Applying this,

|F |C0,α ≤ |f |C0,α + ϵ|u|C2,α + ΛRα|u|C2,α + Cϵ sup |u|
From previous lemma about constant coefficients,

|u|C2,α ≤ C (|f |C0,α + ϵ|u|C2,α + ΛRα|u|C2,α + Cϵ sup |u|)
We pick R small enough so that C;LRα ≤ 1

2 .
This choice just depends on Λ, θ,Ω,Ω′. So we can cover Ω′ with finitely many balls.

Boundary Schauder Estimate

Theorem 39. Let ∂Ω ∈ C2,α bounded, open. Assume f ∈ C0,α(Ω), g ∈ C2,α(Ω), L
as before. Assume u is a C2,α solution to:

Lu = f in Ω

u = g on ∂Ω

Then ∃C = C(Ω,Λ, θ) such that:

|u|C2,α(Ω) ≤ C

(
|f |C0,α + |g|C2,α + sup

Ω

|u|

)
Proof. (Sketch) Subtract of g, so u = g + v and v is 0 on ∂Ω.
Then Lv = f − Lg.
Without any assumption on the sign of c, we need some norm of u on the RHS, since
we can have eigenfunctions so |u| can blow up as much as we want.
Proof works by flattening the boundary, working with half balls etc.

Friday, 11/15/2024

Last time:
Lu = aij(x)uxixj

+ bi(x)uxi
+ c(x)u.

aij = aji, aij(x)ζiζj ≥ θ|ζ|2

|aij |C0,α(Ω) + |bi|C0,α + |c(x)|C0,α < Λ

If u ∈ C2,α(Ω) solves

Lu = f in Ω, u = g on ∂Ω

(∂Ω ∈ C2,α, f ∈ C0,α, g ∈ C2,α(Ω)).
Then, ∃K(Ω,Λ, θ)

|u|C2,α(Ω) ≤ K

(
|f |C0,α + |g|C2,α + sup

Ω

|u|

)
Note: there might not always be a solution.

Theorem 40. Assume c(x) ≤ 0 in Ω. Then we have K(Ω,Λ, θ) such that

|u|C2,α(Ω) ≤ K
(
|f |C0,α(Ω) + |g|C2,α(Ω)

)
(∗)

Proof. Recall if c(x) ≤ 0 we saw that:

sup
Ω

u ≤ const

(
sup |f |+ sup

∂Ω
|u|
)

This allows us to eliminate supΩ u from the given inequality.
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Method of Continuity

Theorem 41. Under the previous assumptions (in particular c(x) ≤ 0), ∃ a unique
solution u ∈ C2,α solving Lu = f in Ω, u = g on ∂Ω.

Proof. By subtracting off g [u = v+ g], WLOG we can assume 0 boundary condition.
Then u solves Lu = f on Ω, u = 0 on ∂Ω.
Then our inequality becomes:

|u|C2,α(Ω) ≤ K|f |C0,α(Ω)

For each t ∈ [0, 1] we define:

Ltu := tLu+ (1− t)∆u

Since L is elliptic, ∆ is elliptic, Lt must also be elliptic. Directly, (taij(x) + (1 −
t)δij)ζiζj ≥ (tθ + (1− t))|ζ|2 ≥ min{1, θ}|ζ|2 ∀ζ ∈ R.
Also,

|atij , bi, c| ≤ Λ + 1

Thus means, since K depends on Ω,Λ, θ and we can choose same Λ, θ for all Lt, we
have the same K for all Lt.
Goal: we want to show that Ltu = f is solvable for t = 1.
We already have L0u = f [simply ∆u = f ] is uniquely solvable with (∗) ⇐⇒
|u|C2,α ≤ K|f |C0,α .
Let B1 := {u ∈ C2,α(Ω) : u = 0 on ∂Ω}.
B2 := C0,α(Ω).
Then, for any t, Lt : B1 → B2.
And also, ∥Ltu∥B2

≤ C1∥u∥B1
. Crucially, C1 does not depend on t.

By (∗) we know that ∥u∥B1
≤ K∥Ltu∥B2

.
Again, K independent of t.
Note that (∗) =⇒ ∀t, Lt is one-to-one since Ltu1 = Ltu2 = f, u1 = u2 = 0 on ∂Ω
implies ∥u1 − u2∥ ≤ 0.
Suppose for some τ ∈ [0, 1] we know Lτ was onto. Then we can talk about the inverse:

L−1
τ : B2 → B1

is well defined.
Then ∀t ∈ [0, 1], ∀f ∈ B2, Ltu = f ⇐⇒ Lτu = f + (Lτ − Lt)u
= f + (τ − t)Lu+ [(1− τ)− (1− t)]∆u = f + (t− τ)(∆u− Lu)
⇐⇒ u = Lτ−1f + (t− τ)L−1

τ (∆− L)u =: Tu.
Here T : B1 → B1 and we seek a fixed point.
We want to apply contraction mapping theorem.
Let u, v ∈ B1.

|Tu− Tv|B1 = |t− τ |
∣∣L−1

τ (∆− L)(u− v)
∣∣
B1

≤ |t− τ |K (|∆|B1
+ |L|B1

) |u− v|B1

≤ |t− τ |K · 2C1|u− v|B1

We can pick t close enough to τ so that |t− τ |K · 2C1 ≤ 1
2 [just pick |t− τ | = 1

4KC1
]

Then T is a contraction mapping.
For τ = 0 the laplacian is indeed 1-1, onto. Thus, there exists unique solution for
t ≤ 1

4KC1
.

We can keep going like this until we reach 1 since K and C1 doesn’t depend on t or
τ .
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Monday, 11/18/2024

Calculus of Variations

Basic problem:

inf
u∈A

ˆ
Ω

L(x, u, δu) dx︸ ︷︷ ︸
=:E(u)

A minimizer will solve a PDE [typically nonlinear].
Roughly: a minimzer of E will have “derivative” 0. This property leads to a minimizer
solving (weakly) a PDE known as the Euler-Lagrange Equation associated with E.
There are 2 notions of “derivative”:
1. Gateaux derivative (generalization of a directional derivative).

Definition 22 (Gateaux Derivative). Let E : X → R where X is a Banach space.
The Gateaux derivative of E at u ∈ X denoted by E′(u) ∈ X∗ is defined through the
property:

∀h ∈ X : lim
t→0

1

t
[E(u+ th)− E(u)− ⟨E′(u), th⟩] = 0

To compute a Gateaux derivative, we have:

d

dt

∣∣∣∣
t=0

E(u+ th)

2. Frechét Derivative (generalization of differentiable)

Definition 23 (Frechét derivative). E is Frechét differentiable at u if ∃E′(u) ∈ X∗

such that:

lim
∥h∥→0
h∈X

E(u+ h)− E(u)− ⟨E′(u), h⟩
∥h∥X

= 0

Examples:

i) E(u) = 1
2

´
Ω
|∇u|2 dx =⇒ d

dt

∣∣
t=0

E(u + th) = 1
2

d
dt

∣∣
t=0

|∇u + t∇h|2 =
1
2

d
dt

∣∣
t=0

(|∇u|2 + 2t∇u · ∇h+ t2|∇h|2) = ∇u · ∇h.

ii) E(u) = 1
p

´
Ω
|∇u|p dx

d

dt

∣∣∣∣
t=0

1

p

ˆ
Ω

|∇u+ t∇h|p dx =

ˆ
Ω

|∇u+ t∇h|p−1 (∇u+ t∇h)
|∇u+ t∇h|

· ∇h dx
∣∣∣∣
t=0

=

ˆ
Ω

|∇u|p−2∇u · ∇h dx

Then u weakly solves:

−∇ ·
(
|∇u|p−2∇u

)
= 0

iii) Plateau Problem / Soap Film Problem: E(u) =
´
Ω

√
1 + |∇u|2 dx, u

∣∣
∂Ω

= g.
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Figure 3:

d

dt

∣∣∣∣
t=0

E(u+ th)

=
d

dt

∣∣∣∣
t=0

ˆ
Ω

√
1 + |∇u|22t∇u · ∇h+ t2|∇h|2 dx =

ˆ
Ω

∇u · ∇h√
1 + |∇u|2

dx

Thus a critical point u weakly solves:

∇ ·

(
∇u√

1 + |∇u|2

)
= 0

This is called the minimal surface equation.

The LHS is called the mean curvature of the graph of u.

iv) Cahn-Hilliard Problem: E(u) =
´
Ω

1
2 |∇u|

2 + 1
4 (u

2 − 1)2 dx. Model for phase
transition. Also called Modica-Mortola problem.(

inf´
Ω
u dx=0

E(u)

)

forces a “phase transition”.

d

dt

∣∣∣∣
t=0

E(u+ th) =
d

dt

∣∣∣∣
t=0

ˆ
Ω

1

2
|∇u+ t∇h|2 + 1

4
((u+ th)2 − 1)2 dx

=

ˆ
Ω

∇u · ∇h+
1

2
((u+ th)2 − 1)(2(u+ th))hdx

=

ˆ
Ω

∇u · ∇h+ (u2 − 1)uh dx

Weak form of ∆u = u3 − u, called the Allen-Cahn equation.

In general, ∆u = f(x, u) is called a semilinear Poisson equation.
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Wednesday, 11/20/2024

Notation:
X = Banach Space
E′(u) ∈ X∗

Alternative notation: for u, v ∈ X we have δE(u; v) for u, v ∈ X [alternative to
⟨E′(u), v⟩]
2nd variation: (Gateaux):

d2

dt2

∣∣∣∣
t=0

E(u+ tv)

Notation: δ2E(u; v) for u, v ∈ X.
Proceding formally:
By ‘Taylor’s Theorem’:

E(u+ tv) ‘=’ E(u) + δE(u; v) +
1

2
δ2E(u; v)t2 + · · ·

If u is a minimum, u is a critical point. Thus δE(u; v) = 0∀t.
Then, since E(u) ≤ E(u+ tv) it follows that δ2E(u; v) ≥ 0∀v.
We have done this calculation ‘formally’. Now we make it concrete.

Definition 24. If u is a critical point and δ2E(u; v) ≥ 0∀v we say u is a stable critical
point.
u is strictly stable if for some v > 0 we have:

δ2E(u; v) ≥ c|v|2X
∀v ∈ X.

Proposition 7. A minimizer is stable.

Definition 25. We say u is a local minimizer of E if ∃δ > 0 such that E(u) ≤ E(v)
provided |u− v|X < δ.

Proposition 8. A local minimizer is stable.

Example 1. E(u) =
´
Ω

1
2 |∇u|

2 + f(x, u) dx.

E(u+ tv) =

ˆ
Ω

1

2
|∇u|2 + t∇u · ∇v + t2

2
|∇v|2 + f(x, u+ tv) dx

δE(u; v) =

ˆ
Ω

∇u · ∇v + fz(x, u)v dx

Whee f = f(x, z) with z ∈ R.

δ2E(u; v) =

ˆ
Ω

|∇v|2 + fzz(x, u)v
2 dx

Suppose u is a critical point.

δE(u; v) = 0

ˆ
Ω

∇u · ∇v + fz(x, u)v dx = 0

=⇒
ˆ
Ω

(−∆u+ fz(x, u)) v dx = 0

This is true for all v so we need ∆u = fz(x, u)weakly.
Note that fzz ≥ 0∀z is enough to gurantee that δ2E(u; v) ≥ 0.
Thus, if z 7→ f(x, z) convex for all x then u is stable.
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Direct Method

Suppose we want to find:

m := inf
u∈A

E(u)

Where:

E(u) =

ˆ
Ω

L(x, u,∇u) dx

Step 0: We want m > −∞.
Consider a minimizing sequence {uj} ⊂ A so that E(uj) → m.
Step 1: Compactness: Arguethat u ∈ A emerges as a limit of a subsequence of {uj}.
Step 2: Lower Semi-Continuity (LSC):

lim inf
j→∞

E(uj) ≥ E(u)

Then we have E(u) ≤ m =⇒ E(u) = m.
Here, compactness generally comes from energy bound: E(uj) < m+ 1∀j.
We also perhaps have the fact that u ∈ A.

Example 2. Suppose E(u) =
´
Ω
|∇u|2 + p(x)u2 dx where p ≥ 1.

Then,

ˆ
Ω

|∇uj |2 + u2j dx < m+ 1

So, |uj |H1 <
√
m+ 1

Kondrachov-Rellich implies:

ujk
Lp

→ u∀p < p∗ =
2n

n− 2
, n ≥ 3

No info about ∇uj .

ujk
H1

⇀ u =⇒
ˆ
Ω

∇ujk · ∇v dx→
ˆ
Ω

∇u · ∇v dx

Bounded sequence in a reflexive Banach space (here a Hilbert Space) are weakly
compact.
The sobolev norm is weakly lower semi-continuous. Thus,

lim inf
k→∞

ˆ
Ω

|∇ujk |2 dx ≥
ˆ
Ω

|∇u|2 dx

under weak H1 convergence.
So ten we can solve:

inf
u∈H1(Ω)

ˆ
Ω

|∇u|2 + p(x)u2 dx

with p smooth, p(x) ≥ 1.
m ≥ 0✓
|uj |H1 < m+ 1

ujk
H1

⇀ u

ujk
Lp

→ u for p < 2n
n−2

lim inf
k→∞

ˆ
Ω

(
|∇ujk |2 + p(x)u2jk

)
dx

≥
ˆ
Ω

|∇u|2 + p(x)u2 dx

Therefore u must be a minimum!
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Friday, 11/22/2024

Some facts about weak convergence in a reflexive banach space X:

• ∥uj∥X < C =⇒ ujk
X
⇀ u

ℓ ∈ X∗, ⟨ℓ, ujk⟩ → ⟨ℓ, u⟩

• If uj
X
⇀ u then lim infj→∞∥uj∥X ≥ ∥u∥X

• Mazur’s Lemma: If K ⊂ X with K convex and closed under strong convergence
then K is weakly closed.

That is, if K convex and if ∀{uj} ⊂ K : uj
X→ u =⇒ u ∈ K,

then uj
X
⇀ u =⇒ u ∈ K.

An example of weak convergence in L2 :

Let ρ(x) =


1, if 0 ≤ x ≤ 1

2
;

2, if
1

2
< x ≤ 1.

Extend periodically: ρ(x+ 1) = ρ(x)∀x ∈ R:
Define: ρk(x) := ρ(kx), k = 1, 2, 3 for 0 ≤ x ≤ 1.
For ϕ smooth: we see:

lim
k→∞

ˆ 1

0

ρk(x)ϕ(x) dx =
3

2

ˆ 1

0

ϕ(x) dx

Then ρk
L2

⇀ 3
2 .

Example 3. Let f(x, z) be continuous for x ∈ Ω, z ∈ R where Ω ⊂ Rn open, bounded
and 0 ≤ f(x, z)∀x ∈ Ω,∀z ∈ R.
Let E(u) =

´
Ω

1
2 |∇u|

2 + f(x, u) dx
Define m := infu∈AE(u)
Where A = {u ∈ H1(Ω), u = g on ∂Ω}.
Assume ∃G : Ω → R such that G ∈ H1(Ω) and E(G) <∞ and trG = g on ∂Ω.
E(G) <∞ condition implies m <∞.
In direct method, we want to make sure our admissible set isn’t empty!
Since f ≥ 0 we also have m ̸= −∞ since m ≥ 0.
Compactness:
{uj} ⊂ A, E(uj) → m.

ˆ
Ω

1

2
|∇uj |2 + f(x, uj) dx < m+ 1 =⇒

ˆ
Ω

|∇uj |2 dx < 2m

Now consider {uj −G} ⊂ H1
0 (Ω).

Poincaré =⇒
ˆ
Ω

|uj −G|2 dx ≤ Cp

ˆ
Ω

|∇uj −∇G|2 dx ≤ const independent of j

Thus,
´
Ω
u2j dx ≤ const.

Thus, ∥uj∥H1 < const

=⇒ ujk
H1

⇀ u∗

Also, ujk
L2

→ u∗ =⇒ ujkl

pointwise a.e.→ u∗
for some u∗ ∈ H1

Lower semicontinuity:

lim inf
k→∞

E(ujkl
) = lim inf

k→∞

ˆ
Ω

1

2
|∇ujkl

|2 + f(x, ujkl
) dx

≥
ˆ
Ω

1

2
|∇u∗|2 dx+ lim inf

k→∞

ˆ
Ω

f(x, ujkl
) dx
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Fatou’s Lemma
=⇒ f(x, ujkl

)
pointwise→ f(x, u∗)

f is continuous, so,

≥
ˆ
Ω

1

2
|∇u∗|2 + f(x, u∗) dx = E(u∗)

pointwise a.e. means there’s no gurantee of having desired result on the boundary
(which is a measure 0 set).
Claim: A is strongly closed under strong H1 convergence.
Also, A is convex.

Why closed? If {vj} ⊂ A, vj
H1

→ v =⇒ vj −G
H1

→ v −G.
What about the trace?

ˆ
∂Ω

|v −G|2 dx ≤
ˆ
∂Ω

|v − vj |2 dx+

ˆ
∂Ω

|vj −G|2 dx︸ ︷︷ ︸
→0

≤ C

ˆ
Ω

|v − vj |2 + |∇v −∇vj |2 dx→ 0

Why convex?
Let v1, v2 ∈ A

λv1 + (1− λ)v2 −G ∈ H1
0 (Ω)

λ(v1 −G) + (1− λ)(v2 −G) ∈ H1
0 (Ω)

By Mazur, A is weakly closued.
u∗ ∈ A.

Formally, u∗ is a weak solution of

∆u∗ = fz(x, u∗), u∗ = g on ∂Ω

So f(x, z) being continuous is not enough.

Monday, 12/2/2024

What can go wrong with the direct method?

1) m := infu∈A
´
Ω

(
1
2 |∇u|

2 − up
)
dx with p > 2,A = H1

0 (Ω). Here m = −∞.
To see this, consider u0 ∈ H1

0 (Ω), u ̸≡ 0. Calling the functional E(u), we see
that E(u0) =

´
Ω

1
2 |∇u0|

2 − up0 dx. Also, E(λu0) =
´
Ω

λ
2 |∇u0|

2 − λpup0 dx =

λ2
´
Ω

1
2 |∇u0|

2 − λp−2up0 dx.

λu0 ∈ A for all λ so we can send λ→ ∞ of −∞ and m = −∞.

It is not all over. We might find local minimizers, we might find saddle points.
But no global minimizer, so direct method might work.

2) m := infu∈A
1
2

´
Ω
|∇u|2 dx where A =

{
u ∈ H1

0 (Ω) :
´
Ω
|u|p dx = 1

}
We definitely have m ≥ 0.

What about compactness? If we take {uj} ⊂ A to be a minimizing sequence
then we can have 1

2

´
Ω
|∇uj |2 dx < m+ 1 so we can have ∥uj∥H1

0
< const.

Compactness implies ujk
H1

⇀ u0 so by Rellich-Kondrachov we have ujk
Lq

→ u0
∀q < 2∗ = 2n

n−2 .

What if p ≥ 2∗?´
Ω
|uj |p dx = 1∀j.

Lower semicontinuity implies lim infj→∞
´
Ω
|∇uj |2 dx ≥

´
Ω
|∇u0|2 dx.

However, no gurantee that limj→∞
´
Ω
|uj |p dx =

´
Ω
|u0|p dx.
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3) m := infu∈W 1,4(0,1)

ˆ 1

0

((u′)2 − 1)2 + u2 dx︸ ︷︷ ︸
=E(u)

.

We have m ≥ 0.

Let uj be a minimizing sequence. Then E(uj) → m.

Compactness =⇒ E(uj) ≤ m+ 1.

Then ∥uj∥W 1,4 ≤ const.

ujk
W 1,4

⇀ u0 =⇒ ujk
Lq

→ u0 for q < 4∗.

But we don’t necessarily have lower semicontinuity.

Figure 4:

here u′ = ±1 so we don’t have problem. Minimizing: we make it as small as
ppossible.

0 = lim infj→∞E(uj) < E(0)

uj ⇀ u0 = 0

Let ρ(x) =

{
x, if 0 ≤ x ≤ 1;

2− x, if 1 < x < 2.

And periodic so ρ(x+ 2) = ρ(x).

Define ρϵ(x) = ϵρ(xϵ )

Then ρϵ
H1

⇀ 0.

Note: ρϵ
L2

→ 0, ρ′ϵ
L2

→ 0

1 Notions of Convexity

1) A set D is convex if p, q ∈ D =⇒ λp+ (1− λ)q ∈ D∀λ ∈ (0, 1).

2) Convex functions: let D be a convex set. Then f : D → R is convex if f(λp+
(1− λ)q) ≤ λf(p) + (1− λ)f(q) ∀p, q ∈ D∀λ ∈ (0, 1)

Characterizations of convex functions:

Proposition 9. if f is twice differentiable on D ⊂ Rn where D is convex, then f
convex if D2f is positive definite, eg

ξTD2f(x)ξ > 0 ∀ξ ∈ Rn \ {0}∀x ∈ D

67



Proposition 10. If f : D → R is convex and differentiable then ∀p, q ∈ D

f(q) ≥ f(p) +Df(p) · (q − p)

Graph of f lies above every tangent plane!

Figure 5:

Wednesday, 12/4/2024

One more troubling example where direct method seems to fail.
This is one of the most famous problems in calculus of variations!

m := inf
u∈A

ˆ
Ω

√
1 + |∇u|2 dx

Where A =
{
u : u−G ∈W 1,1

0 (Ω) :
}
where G ∈W 1,1(Ω) given [just way of phrasing

the boundary conditions].
Let {uj} be a minimizing sequence. We know −∞ < m ≤ E(G) < ∞. Then
E(uj) → m.
Question: Do we have compactness?

ˆ
Ω

√
1 + |∇uj |2 dx < m+ 1

=⇒ ∥∇uj∥L1 < m+ 1

What about ∥uj∥L1? We can say uj − G ∈ W 1,1
0 so Poincaré =⇒ ∥uj − G∥L1 <

∥∇uj −∇G∥L1 < const =⇒ ∥uj∥W 1,1 < const.
L1 is not reflexive. So we don’t have any W 1,1 weakly convergent subsequence!
What aboout W 1,2? We don’t have L2 bound, so we can’t control ∥uj∥H1 by E(uj)!

Sufficient Conditions for Success of the Direct Method

Theorem 42. Let Ω ⊂ Rn, open, bounded. Consider the lagrangian L = L(x, z, p)
for x ∈ Ω, z ∈ R, p ∈ Rn be C2 and convex in p, meaning for every x ∈ Ω, z ∈ R, the
map p 7→ L(x, z, p) is convex. Also assume L is bounded below.

Then if wj
W 1,q

⇀ u for some 1 < q <∞ one has lower semicontinuity:

lim inf
j→∞

ˆ
Ω

L(x, uj ,∇uj) dx ≥
ˆ
Ω

L(x, u,∇u) dx

Example 4.

E(u) =

ˆ
Ω

aij(x, u)uxiuxj dx

Here assume matrhix A(x, z) with entries aij is positive definite ∀x ∈ Ω, z ∈ Rn.
L(x, z, p) = aij(x, z)pipj (∗).
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Proof. Special Case:
Assume L = L(p) and L(p) ≥ 0 . Fix ϵ > 0 and define Ωϵ := {x ∈ Ω : |∇u| ≤ 1/ϵ}
Convexity =⇒

´
Ωϵ
L(∇uj) dx ≥

´
Ωϵ
L(∇u) +∇pL(∇u) · (∇uj −∇u) dx.

On Ωϵ ,

|∇pL(∇u)|L∞ ≤ sup
|p|≤1/ϵ

|∇pL(p)| ≤ Cϵ

Also,

∞ >

ˆ
Ω\Ωϵ

|∇u|q dx ≥ 1

ϵq
|Ω \ Ωϵ|

=⇒ |Ω \ Ωϵ| → 0 as ϵ→ 0

Note:

lim
j→∞

ˆ
Ωϵ

∇pL(∇u) · ∇uj dx =

ˆ
Ωϵ

∇pL(∇u) · ∇u dx

∇pL(∇u) lives in L∞ so in particular it lives in Lq′ where 1
q + 1

q′ = 1.

By (∗) we have:

lim inf
j→∞

E((u))︸ ︷︷ ︸
=
´
Ω
L(∇u) dx

≥ lim inf
j→∞

ˆ
Ωϵ

L(∇uj) dx ≥
ˆ
Ωϵ

L(∇u) dx =

ˆ
Ω

χΩϵ
L(∇u(x)) dx

Up to now, ϵ was fixed.

χϵ(x)L(∇u(x))
pointwise a.e.→ L(∇u(x))

Also monotonically. By monotone convergence theorem, setting ϵ → 0 we reach the
result.

In fact, convexity is necessary as well. Suppose ∃p1, p2 ∈ Rn such that:

L(λp1 + (1− λ)p2) > λL(p1) + (1− λ)L(p2)

Same idea as oscillating between ±1 we build uj such that ∇uj oscilates between p1
and p2.

Then, ∇uj
Lq

⇀ λp1 + (1− λ)p2 ≡ u0 for some λ ∈ (0, 1). Then,

lim inf
j→∞

ˆ
Ω

L(∇uj) dx <
ˆ
Ω

L(∇u0) dx

Friday, 12/6/2024

Last time: For 1 < q <∞: ∀(x, z) ∈ Ω× R p 7→ L(x, z, p) is convex

Iff ∀uj
W 1,q

⇀ u,

lim inf
j→∞

ˆ
Ω

L(x, uj ,∇uj) dx ≥
ˆ
Ω

L(x, u,∇u) dx

We also had the theorem: Assuming the convexity condition, the following are nec-
essary and sufficient for direct method to work:
Suppose G ∈W 1,q(Ω) satisfies the Dirichlet condition.
Also, E(G) =

´
Ω
L(x,G,∇G) dx <∞.

Coercivity condition: L((x, z, p)) ≥ c1|p|q − c2.
Then ∃ minimizer for:

m = inf
u−G∈W 1,q

0 (Ω)
E(u)
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Direct Method. Let {uj} be minimizing sequence, E(uj) → m.

−c2 ≤ c1

ˆ
Ω

|∇uj |q − c2 dx ≤ E(uj)m ≤ +1

∥∇uj∥Lq <
c2 +m+ 1

c1

∥uj −G∥Lq

Poincarë
≤ Cp∥∇uj −∇G∥Lq ≤ const.

=⇒ ∥uj∥W 1,q < const

=⇒ ujk
W 1,q

⇀ u.
Convexity =⇒ weak lowersemicontinuity therefore E(u) ≤ lim infj→∞E(uj) = m

δE(u; v) = 0∀v ∈W 1,q
0 with some extra assumptions.

Assuming we have these assumptions, we have (in the Gateaux sense):

d

dt

∣∣∣∣
t=0

ˆ
Ω

L(x, u+ tv,∇u+ t∇v) dx = 0

=⇒ · · · =⇒

− Lpipj
(x, u,∇u)︸ ︷︷ ︸

:=aij(x,u(x),∇u(x))

uxixj
= Lz(x, u,∇u) + Lpixi

L(x, u,∇u) + Lpiz(x, u,∇u)uxi

aij is positive definite from strict convexity. So this is elliptic! But it is nonlinear.

Theorem 43. Assume L = L(x, p) [so not on ∇u] for x ∈ Ω, p ∈ Rn. Assume L is
smooth. Assume θ > 0 such that Lpipj

(x, p)ξiξj ≥ θ|ξ|2 ∀ξ ∈ Rn for all x ∈ Ω, ∀p ∈ Rn

[it is uniformly convex].
Then there exists at most one minimizer to

m := inf
u−G∈W 1,q

0 (Ω)
E(u) where E(u) =

ˆ
Ω

L(x, u,∇u) dx

Proof. Suppose u1, u2 are both minimizers.
Then E(u1) = m = E(u2).
Let v := u1+u2

2 . Note: v must be admissible since v −G ∈W 1,q
0 .

Taylor’s theorem =⇒ ∀p1, p2 ∈ Rn, L(x, p2) = L(x, p1) + ∇pL(x, p1) · (p2 − p1) +
1
2 (p2 − p1)

TD2L(x, p̃)(p2 − p1).

Choose p1 = νv = ∇u1+∇u2

2 and p2 = ∇u1.
E(u1) =

´
Ω
L(x,∇u1) dx ≥

´
Ω
L(x,∇v) +∇pL(x,∇v) · ∇u1−∇u2

2 dx

+ 1
2θ

´
Ω

|∇u1−∇u2|2
4 dx

Similarly, E(u2) ≥ E(v) +
´
Ω
∇pL(x,∇v) · ∇u2−∇u1

2 dx+ θ
8

´
Ω
|∇u2 −∇u1|2 dx

Adding,
2m ≥ 2E(v) + θ

4

´
Ω
|∇u2 −∇u1|2 dx =⇒ E(v) < m which is a contradiction.

An example of non-uniqueness:

E(u) =

ˆ
Ω

1

2
|∇u|2 + 1

4
(u2 − 1)2 dx

m = infu∈H1
0 (Ω)E(u).

Euler-Lagrangian Equation: ∆u = u3 − u in Ω and u = 0 on ∂Ω.
Note: u ≡ 0 is a critical point!
Is it a minimizer? Sometimes it is, sometimes it isn’t.
Let’s compute the 2nd variation of E at u ≡ 0.
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δ2E(u; v) =
d2

dt2

∣∣∣∣
t=0

ˆ
Ω

1

2
|∇u+ t∇v|2 + ((u+ tv)2 − 1)2 dx

=

ˆ
Ω

|∇v|2 + d2

dt2

∣∣∣∣
t=0

· · · dx

When u ≡ 0 we have:

d2

dt2

∣∣∣∣
t=0

1

4

(
(0 + tv)2 − 1

)2
=

d2

dt2

∣∣∣∣
t=0

1

4

(
t4v4 − 2t2v2 + 1

)
= −v2

Therefore, δ2E(0; v) =
´
Ω
|∇v|2 − v2 dx ≥

´
Ω
λ1v

2 − v2 dx

Since λ1 := infv∈H1
0

´
Ω
|∇v|2 dx´
Ω
v2 dx

and exists due to Poincaré.

If we pick v := first eigenfunction of −∆v1 = λ1v1, v1 = 0 on ∂Ω.
Then, δ2E(0; v1) =

´
Ω
(λ1 − 1)v21 dx

Then 0 will be unstable provided λ1 < 1.
Therefore, 0 is definitely not the minimizer.
However, there definiely exists a minimizer u∗ by the direct method.
Since E(−u∗) = E(u∗), −u∗ must also be a minimizer! Thus there exsits at least 2
minimizers. So we have non-uniqueness of minimizers.

Monday, 12/9/2024

Final @ Wednesday 10:20-12:20, RH104

Constrained Variational Problems

General Problem:

inf
u∈A

E(u)

A includes some constraints in addition to Sobolev and boundary condition, such as:
J(u) = 0, u(x)≤≥h(x), |∇u(x)| ≤ 1 etc.
How does a constraint affect the Euler Lagrange equation?
example: infu∈A

1
2

´
Ω
|∇u|2 dx where A = {u ∈ H1

0 (Ω) : J(u) = 0} where J(u) =´
Ω
G(u(x)) dx.

We will assume G : R → R smooth. We assume the bound |G(z)| ≤ C(|z|2 + 1).

1) A minimizer exists: {uj} = min. seq ⊂ A.´
Ω
|∇uj |2 dx ≤ 2m+ 1.´

Ω
u2j dx ≤ Cp

´
Ω
|∇uj |2 dx

∥uj∥H1 < const.

ujk
H1

⇀ u0, ujk
L2

⇀ u0.

lim infk→∞
´
Ω
|∇ujk |2 dx ≥

´
Ω
|∇u0|2 dx.

We need to verify if u0 is admissible.

Since
´
Ω
G(uj) dx ≤

´
Ω
(c|uj |2 + 1) dx, by dominated convergence theorem we

have
´
Ω
G(u0) dx = 0.

Strategy: We want to find a differential equation that the minimizer must solve.
We get Euler Lagrangian equation from differentiating the curve t 7→ u + tv.
But u+ tv is not admissible.

We want to build a curve of competitors and differenitate along that curve to
get a new criticality condition.

Suppose g = G′.

We assume that |{x ∈ Ω : g(u0(x)) ̸= 0}| > 0.
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We select any w ∈ H1
0 (Ω) such that

´
Ω
g(u0(x))w(x) dx ̸= 0.

For this w, for τ, σ ∈ R and any v ∈ H1
0 (Ω), define:

j(τ, σ) := J(u0 + τv + σw)

We’re looking for an admissible curve.

j(0, 0) = J(u0) since u0 ∈ A.

We want to use Implicit Function Theorem.
∂j
∂τ = ∂

∂τ

´
Ω
G(u0 + τv + σw) dx =

´
Ω
g(u0 + τv + σw)v dx

∂j
∂σ =

´
Ω
g(u0 + τv + σw)w dx

Since
´
Ω
g(u0(x))w(x) dx ̸= 0,

∂j
∂σ (0, 0) ̸= 0. Thus we can use implicit function theorem! ∃σ(τ) for |τ | small so
that j(τ, σ(τ)) = 0.

Now we can compute first variation:

d

dτ

∣∣∣∣
τ=0

j(τ, σ(τ)) = 0

jτ (τ, σ(τ)) + jσ(τ, σ(τ))σ
′(τ) = 0

Thus, σ′(0) = −jτ (0,0)
jσ(0,0)

=
−
´
Ω
g(u0)v dx´

Ω
g(u0)w dx

Here’s the curve of competitors:

V (τ) := u0 + τv + σ(τ)w ∈ A∀|τ | small

0 =
d

dτ

∣∣∣∣
τ=0

1

2

ˆ
Ω

|∇V |2 dx

0 =
∂

∂τ

∣∣∣∣
τ=0

1

2

ˆ
Ω

(∇u0 + τ∇v + σ(τ)∇w,∇u0 + τ∇v + σ(τ)∇w) dx

0 =

ˆ
Ω

∇u0 · ∇v +∇u0 · ∇wσ′(0) dx

0 =

ˆ
Ω

∇u0∇v dx−
ˆ
Ω

g(u0)v dx

´
Ω
∇u0 · ∇w dx´
Ω
g(u0)w dx

0 =

ˆ
Ω

∇u0 · ∇v − λg(u0)v dx
IBP
=⇒ −∆u0 = λg(u0) in Ω

−∆u0 = λg(u0) in Ω is a nonlinear eigenvalue problem.
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