\relax \@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces }}{9}{}\protected@file@percent } \@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces }}{10}{}\protected@file@percent } \@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces }}{14}{}\protected@file@percent } \@writefile{lot}{\contentsline {table}{\numberline {1}{\ignorespaces Anythong we can do on Vector Spaces, we can do in Vector Bundles.}}{18}{}\protected@file@percent } \@writefile{lot}{\contentsline {table}{\numberline {2}{\ignorespaces Bordism Group Calculations}}{28}{}\protected@file@percent } \@writefile{lot}{\contentsline {table}{\numberline {3}{\ignorespaces Schubert Symbol Dimensions}}{39}{}\protected@file@percent } \@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces Transverse}}{55}{}\protected@file@percent } \@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces Not transverse}}{55}{}\protected@file@percent } \@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces \(A \cdot B\) is not isotopy invariant in this case}}{57}{}\protected@file@percent } \@writefile{lof}{\contentsline {figure}{\numberline {7}{\ignorespaces Here \(A \cdot B = 1\)}}{58}{}\protected@file@percent } \@writefile{lof}{\contentsline {figure}{\numberline {8}{\ignorespaces Diagonal Map}}{62}{}\protected@file@percent } \@writefile{lof}{\contentsline {figure}{\numberline {9}{\ignorespaces Klein Bottle}}{68}{}\protected@file@percent } \gdef \@abspage@last{90}