
M623 Geometric Topology I

Taught by: Dr. James Davis
Written by: Thanic Nur Samin

Monday, 8/25/2025

Textbook: Characteristic Classes by Milnor and Stasheff. Hereafter referred by MS.

Read Chapter 1 and 2 of MS.

Definition (n-manifold). Two different variants: embedded and abstract.

Abstract: (M,A) where A is an atlas.

Embedded: M ⊂ RA. Here, A = index set, RA = func(A,R) with the product topology.

M Hausdorff space, U ⊂M open, V ⊂ Rn open.

Chart ϕ : U
≈−→ V homeomorphism.

Parameterization (ptz) h : V
≈−→ U

We want some calculus.

Let open V ⊂ Rn.

A function f : V → R is smooth if all partials of all orders exist: ∂kf
∂xi1

···∂xip
.

f : V → RA is smooth if fα smooth ∀α ∈ A.

V RA R

fα

f prα

We can go from abstract manifold to embedded manifold.

Let A = C∞(M,R).

M
i−→ RA where i(x) = (f 7→ f(x)).

We can go to the reverse direction easily once we have all the definitions.

Definition. Two charts (ϕ1 : U1 → V1) and (ϕ2 : U2 → V2) are compatible (or smoothly compatible) if ϕ2 ◦ϕ−1
1

is smooth. Explicitly,

ϕ1(U1 ∩ U2)
ϕ2◦ϕ−1

1−−−−−→ ϕ2(U1 ∩ U2) needs to be smooth.
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Definition. Parameterization h : V → U is smooth (assume M ⊂ RA) if:

V U M Rnh

h

is smooth.

and has rank n. ie, ∀v ∈ V the Jacobian:

dh =

(
∂αh

∂xj
(v)

)

has rank n.

eg x 7→ x3 is a parameterization which is not smooth, since the Jacobian has rank 0 at 0.

Now we can properly define manifolds.

Definition (Embedded Smooth n-Manifold). M ⊂ RA so that ∀x ∈M there exists a smooth rank n parame-
terization h : V → U ∋ x.

We assume M is Hausdorff.

We can now define a Cateogry of Embedded Manifolds.

Definition (Category of Embedded Manifolds). Embmfld.

Objects: embedded M ⊂ RA of dimn for some n.

Morphisms: Smooth Maps (has to be defined carefully, restricting in Euclidean space).

Diffeomorphism = invertible morphism.

Let (M ⊂ RA), (N ⊂ RB). f :M → N is smooth if locally smooth, meaning ∀x ∈M, ∃ smooth parameterization

h : V → U ∋ x such that V → U ↪→M
f−→ N → RB is smooth.

Now we can define abstract manifold independend of embedded manifolds.

Definition (Abstract Manifold). Let M be Hausdorff. An n-atlas on M is a set A =
{
ϕα : Uα

≈−→ Vα ⊂ Rn
}

of compactible n-charts such that {Uα} covers M.

Atlas A and A′ are compatible if all charts are.

Fact: Every atlas is contained in a unique maximal atlas.

Then an abstract manifold is (M,A) with a maximal n-atlas.

Wednesday, 8/27/2025

Recall: embedded n-manifold M ⊂ RA: ∀x ∈M, ∃ smooth, rank n parameterization h : V → U ⊂M such that
x ∈ U . We assume M is Hausdorff.
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Abstract n-manifold: (M,A) where A is an n-atlas, so A = {charts ϕα : Uα
∼=−→ Vα} such that {Uα} cover M

and {ϕα} smoothly compatible. We assume M is Hausdorff.

Remark. If we have an abstract manifold we have a surjective map
∐
Vα

∐
ϕ−1
α

↠ M .

Then we can define M ∼=
∐
Vα

∼ . This gives us another definition of a manifold.

Exercise. Define smooth f : (M,A)→ (N,B).

Not hard, just annoying to get the definitions right!

Theorem 1. Categories of abstract manifolds and embedded manifolds are equivalent.

EmbMflds ≃ absMflds

Recall equivalent categories:

Definition. Categories C and D are equivalent (Notation: C ≃ D): If there are functors C F−→ D and D G−→ C
such that F ◦G and G ◦ F are naturally isomorphic to the respective identities.

We need some more definitons.

Definition. A skeleton of C is Sk C ⊂ C is a full subcategory ∀c ∈ C, ∃!c′ ∈ Sk C such that c ∼= c′.

A ⊂ B is full if ∀a, a′ ∈ ObA,A(a, a′)
∼=−→ B(a, a′)

For example, let C = finite sets. Then Sk C = {1}, {1, 2}, {1, 2, 3}, · · ·

Theorem 2. C ≃ D ⇐⇒ Sk C ∼= SkD.

Note that C ≃ Sk C so one direction is trivial.

Lemma 3 (1.1). Let h and h′ be smooth rank n onM ⊂ RA. Then h−1 ◦h′ is smooth (thus a diffeomorphism).

Let V and V ′ be the domain of h and h′ respectively. Then h−1 ◦ h′ : (h′)−1(V ∩ V ′)→ h−1(V ∩ V ′)

Corollary 4. A = {h−1 | h parameterization} is n-atlas on M .

This gives us EmbMflds→ AbstMflds.

Proof. This is the proof of lemma 1.1, lemma 3 in the notes.

Assume V = V ′. WTS: (h′)−1V → h−1(V ) is smooth.

For x ∈ V choose α1, · · · , αn ∈ A such that det
(
∂αi

∂xj
(x)

)
̸≡ 0.

We have:

M RA

V subset of Rn
prα1···αnh

Then, by the inverse function theorem, the dotted map is locally invertible.
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h−1 ◦ h′ = (pr ◦ inc ◦ h)−1 ◦ inc ◦ pr ◦ h′ near h−1x.

Given abstract (M,A), let A = C∞(M,R) smooth functions.

i :M → RA, x 7→ (f → f(x)).

Let M1 = i(M).

Lemma 5 (1.5). M1 ⊂ RA is EmbMfld. M
i−→M1 is diffeomorphism.

Definition of tangent vector, tangent space and tangent bundle

Definition (Tangent Vector). is velocity vector of a curve.

We have defined morphisms. Consider the embedded case: suppose we have smooth γ : R→M ⊂ RA. Then,

γ′(0) = lim
h→0

γ(h)− γ(0)
h

∈ RA

is a tangent vector

Definition (Tangent Space). Suppose x ∈ M ⊂ RA, an n-dim embedded manifold. TxM = tangent space of
M at x. This is:

{γ′(0) | γ(0) = x} ⊂ RA

an n-dim subspace.

We are going to bundle this together.

Definition (Tangent Bundle). TM =
{
(x, v) ∈M × RA | v ∈ TxM

}
.

By definition, TM ⊂M × RA so this is in fact a topological space.

We have a projection map TM
π−→M by (x, v) 7→ x.

Remark. Fibers of π, π−1(x) are vector spaces: π−1(x) = TxM .

Then, TM =
⋃
x∈M{x} × TxM .

Abuse of notation lets us write this as
⋃
TxM .

Thus, tangent bundle is in fact a bundle of tangents.

What about abstract manifolds (M,A)?

We can define TM as follows:

• M ⊂ RC∞(M,R).

• TM =
∐
Vα×Rn

∼
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• TxM = velocity vector of curves.

• derivations.

Suppose we have smooth function between manifolds f : M → N . ∀x ∈ M we can define linear dfx : TxM →
Tf(x)N , γ′(0) 7→ (f ◦ γ)′(0). dfx is a map between vector spaces, so it is a linear transformation. It is the
‘Jacobian’.

Then we have df : TM → TN such that df(x, v) = dfx(v).

We also have the chain rule: d(f ◦ g) = df ◦ dg

Friday, 8/29/2025

No class next week!

Manifold constructed by:

• open subset of Rn

• Subset double torus ⊂ R3

• Quotients: Pn = RPn = Sn/x ∼ −x

• Lie groups/ matrix group, eg closed subgroups of GLnR ⊂
open

MnR = Rn2

• Zero sets.

– regular values

– transversality

– smooth varieties

Definition. t0 ∈ R is a regular value of f :M → R if ∀x ∈ f−1t0, dfx is onto.

f−1(regular value) is a submanifold of M .

Consider Sn ⊂ Rn+1, and f : Rn+1 → R given by x 7→ x21 + · · ·+ x2n+1.

1 is a regular value f−11 = Sn.

Definition. Let f :M → N ⊃ X submanifold.

f ⋔ X, f is transverse to X if ∀m ∈ f−1X,Tf(m)N = Tf(m)X + dfm(TmM).
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Theorem 6. f−1X is a submmanifold of M .

Furthermore, dimN − dimX = dimM − dim f−1X.

In fact, ν(f−1X ↪→M)→ ν(X ↪→ N) as vector space isomorphism on fibers.

[insert picture later]

Now, suppose F is a topological space.

Definition. A fiber bundle with fiber F :

Let E
π−→ B be a continuous map suuch that ∀b ∈ B, ∃ open b ∈ U ⊂ B and:

U × F π−1U

U

h
≈

prU
π

h fiber preserving homeomorphism. ∀b′ ∈ U , F ∼= F × b′ ≈−→ Fb′ := π−1(b′).

Write:

F E

B

I Mob

S1

eg B × F → B trivial bundle.

Chapter 2 of MS

Definition. A real vector bundle ξ over B is:

ξ =

 E

B

π , ∀b ∈ B, π−1b = Fb is a fin. dim vector space.


Fb × Fb → F,R× Fb → F satisfies 8 axioms s.t.

∀b ∈ B,∃b ∈ U ⊂ B and n ≥ 0 and
U × Rn π−1U

U

h
≈

.

Rn ∼= b× Rn h−→
≈
π−1b is an isomorphism of vector spaces.
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If B is connected then n is constant.

‘rank n vector bundle’.

n-plane bundle.

Another thing MS does is write this: ξ =

E(ξ)

B(ξ)

π(ξ) for vector bundle which is very precise.

Isomorphism of vector bundles over B

.

Consider two bundles ξ and η and we have the homeomorphism

E(ξ) E(η)

B

≈

vector space isomorphism on the fibers.

Examples of vector bundles

We have the trivial bundle

B × Rn

B

Rn=Rn
B=εnB=

We have tangent bundles:

τM =


TM

M

π , TxM


Definition. M is parallelizable if τM is trivial.

S1 is paralellizable.

Lie groups are parallelizable eg S3.

S2, or S2n in general not parallelizable via the hairy ball theorem.

We also have normal bundles. Consider M ⊂ RN .

ν(M ⊂ Rn) = {(x, v) ∈M × Rn | x ∈M,v ∈ (TxM)⊥}

ν(S2 ↪→ S3)← S2 × R is trivial, the map is (x, tx)←[ (x, t).
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Tautological bundle over Pn: γ1n =

R E(γ1n)

Pn

Note that Pn = Sn/x ∼ −x = lines through O in Rn+1.

E(γ1n) =
{
({x,−x}, v) ∈ Pn × Rn+1 | v ∈ Rx

}
.

E(γ1n)
π−→ Pn, ({x,−x} 7→ {x,−x}). Essentially, point on line 7→ line.

This tautological bundle is non-trivial.

Monday, 9/8/2025

Last week was a break.

HWK: an exercise from ch2. (C, D, E are recommended).

Recall: a vector bundle ξ is

R E

B

π meaning fibers of π are k-dimensional vector spaces.

Definition. A section of ξ is actually a section of π.

s : B → E such that π ◦ s = idB .

Section looks like this:

Rk E

B

π
s

Section of TM =: vector field.

There’s also the zero section z : B → E given by b 7→ 0 ∈ π−1b.

E

B

π
z homotopy inverses.

Now we show there is some twisting.

E0 = E − z(B)

B

. B trivial implies E0
∼= B × (Rk \ e) ≃ B × Sk−1.

We have the tautological line bundle:
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R E = {([x], v) | v ∈ Rx} ⊂ Pn × Rn+1

Pn = Sn/x ∼ −x

We can think of it like (line,point on line) ∈ E.

For example, consider P 1. This gives us the open mobius strip.

Theorem 7 (2.1). γ1n is nontrivial for n ≥ 1.

Proof. E(γ1n)0 is connected ⇐⇒ ̸≃ Pn × S0.

Figure 1:

Definition. A metric on a vector bundle ξ is g : E ×B E → R such that ∀b ∈ B, π−1b× π−1b→ R is an inner
product.

Recall: pullback of

B

A C

β

α

is A×C B = {(a, b) | α(a) = β(b)} ⊂ A×B.

Also see: a vector bundle E → B needs all fibers to be vector spaces. For a metric we want them to be inner
product spaces.

A bundle with metric is often callled a Euclidean vector bundle.

Examples: A Riemannian manifold is TM with a smooth metric [g is smooth].

If Mn ⊂ RN we can use the inner product inherited from RN so it is a riemannian manifold.

eg the trivial bundle has a metric: (B × Rn)×B (B × Rn)→ Rn which looks like ((b, v), (b, w)) 7→ v · w.

If Mn ⊂ RN , TM =
{
(x, v) ∈M × RN | v = γ′(0), γ(0) = x

}
∥(x, v)∥ = ∥v∥, g((x, v), (x,w)) = v · w.

Then ∥·∥ : E → R≥0 given by ∥v∥ :=
√
g(v, v).

Theorem 8 (Exercises, ch2). Suppose B is paracompact. We can look at Isomorphism classes of Euclidean
vector bundles over B, forget the metric to get isomorphism classes of vector bundles over B:

{
iso class of euclidean
vector bundle over B

}
forget g−−−−−→

{
iso class of

vector bundle over B

}
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This is an isomorphism.

Definition. Sections s1, · · · , sn of rank n vector bundle given by

E

B

si are linearly independent (l.i) if ∀b ∈

B, {s1(b), · · · , sn(b)} is linearly independent in π−1(b).

Theorem 9 (2.2). rank n vector bundle ξ is trivial iff ξ has n l.i. sections.

Proof. =⇒ : si(b) := (b, ei) ∈ B × Rn.

⇐= : define f : B × Rn → E by (b,
∑
aiei) 7→

∑
aisi(b)

eg T 2 has 2 l.i. sections, thus TT 2 ∼= T 2 × R2.

Figure 2:

Wednesday, 9/10/2025

Chapter 3: New bundles

Homeowrk: pick up problems from chapter 3 (and chapter 2).

Abstract definition of bundle (Steenrod, see D-Kirk 5.2).

Let G be a topological group, F a space, G↷ F

Topological group meaning: G topological group means G is a group and a space such that G×G→ G, (a, b) 7→
ab and G→ G, a 7→ a−1 are continuous.

Action of G on F : G× F → F given by ef = f and (gg′)f = g(g′f).

Definition. A fiber bundle with structure group G and fiber F [(G,F )-bundle] is a map with:

Map

E

F

Atlas A = {ϕ : Uϕ × F
≈−→ π−1Uϕ}
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Transition functions Θ = {θϕ,ψ : Uϕ ∩ Uψ → G | ϕ, ψ ∈ A}

such that:

1) {Uϕ} open cover of B.

2) Fiber preserving homeomorphism:

the following diagram commutes:

Uϕ × F π−1Uϕ

Uϕ

≈

3) b ∈ Uϕ ∩ Uψ, f ∈ F =⇒ ψ(b, f) = ϕ(b, θϕ,ψ(b)f)

4) θϕ,ψ(b) = θϕ,χ(b)θχ,ψ(b)

Examples:

G trivial group implies the bundle is a trivial bundle,

B × F

B

G = GL(n,R), F = Rn gives us the rank n vector bundle. Let b ∈ B, choose ϕ, b ∈ Uϕ. Use the atlas to find
bijection π−1b ∼= Rn. This gives us a vector space on π−1b independent of the choice of Uϕ by the 3rd condition.

If the G-action on F is effective, meaning every non-trivial action does something, meaning there is f ∈ F such
that gf ̸= f for every g ∈ G \ {e}, then we don’t need condition 4.

If G = O(n) and F = Rn then we have a vector bundle with a metric.

If G = GL(n,R)+ and F is Rn then we have an oriented vector bundle.

If G = SF = Aut(F ) where F is discrete, then we have a cover.

For discrete G with F = G then we have a regular G-cover.

If G = Spin(n), F = Rn then we have a vector bundle with spin structure.

Now we start chapter 3. We can do a lot of things on vector spaces, like tensor products. This lets us do stuff
with vector bundles as well.

Some basic constructions involving vector bundles:

1) Restriction: Let ξ be a vector bundle, b ↪→ B. Then we can let ξ
∣∣
B
=

π−1B

B

ξ

E

B B

||

π
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2) Induced bundles (= Pullback bundle) Let ξ be a vector bundle, and B1
f−→ B. We can pullback the bundle

and get f∗ξ:

f∗E = B1 ×B E E

B1 B
f

in fact ξ
∣∣
B
= inc∗ ξ.

Definition. Bundle map g : η → ξ [both n-plane] is given by a commutative diagram which is isomorphism on
fibers:

E(η) E(ξ)

B(η) B(ξ)

g

g

Lemma 10 (3.1). η ∼= g∗ as vector bundle over B(η).

E(η) g∗E(ξ)

B(η)

≈

Proof. We just need to define the map.

E(η)→ B(η)×B(ξ) E(ξ)

e 7→ (π(e), g(e))

pullback stuff works for (G,F )-bundles.

Friday, 9/12/2025

Today we finish chapter 3.

We can study construction of new vector bundles in the following ways:

a) Restriction: ξ
∣∣
B

for B ⊂ B ← E

b) Pullback : f∗ξ for B
f−→ B ← E

c) Product : ξ1 × ξ2.

Fb(ξ1)× Fb(ξ2) E(ξ1)× E(ξ2)

B(ξ1)×B(ξ2)
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eg T (M1 ×M2) = TM1 × TM2.

d) Whitney Sum: We keep the base space the same. Let ξ1, ξ2 be vector bundles over the same base space
B. Then we can define the whitney sum as the pullback of the diagonal map to the product:

ξ1 ⊕ ξ2 := ∆∗(ξ1 × ξ2)

B
∆−→ B ×B is b 7→ (b, b).

For example, in S2 ↪→ R3, the whitney sum of the tangent bundle and the normal bundle gives us the
trivial bundle: ε3S2 = TS2 ⊕ ν(S2 ↪→ R3).

e) Subbundles, Quotients and Orthogonal Complements: A subbundle η of ξ is E(η) ⊂ E(ξ) such that π
∣∣
E(η)

is a vector bundle.

Fb(η) Fb(ξ)

E(η) E(ξ)

B

In order to study quotient, we need bundle morphisms. We want the following diagram to be commutative
and also want the map to be linear on fibers:

E(η) E(ξ)

B(η) B(ξ)

Bundle morphism over B is different: we want the following commutative diagram to be linear on fibers:

E(η) E(ξ)

B

An example: suppose we have smooth f :M → N . Then we have bundle morphism:

M TN

M N

df

f

and the bundle morphism /M :

TM f∗TN

M

∼=

We can define quotient bundles from subbundles: subbundle η of ξ there exists quotient bundle ξ/η so
that Fb(ξ/η) are Fb(ξ)/Fb(η). We have bundle map over B ξ → ξ/η

Bundles /B fform abelian category. We have the SES:

0→ η → ξ → ξ/η → 0

We now define normal bundles. Normal bundle of submanifoldM of N is given by ν(M ↪→ N) =
(TN |

M)
TM .
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Figure 3:

If N ⊂ Rk (or N Riemannian metric space) then (TM)⊥ ⊂ TN
∣∣
M
.

(TM)⊥ TN
∣∣
M

ν(M ↪→ N)

∼=

We have (TN)M = TM ⊕ (TM)⊥.

If ξ is a bundle with metric and η is a subbundle then ξ = η ⊕ η⊥ and η⊥ ∼= ξ/η.

If B is paracompact [eg B ⊂W ] then bundles over B form an exact category [meaning all SES split].

Reason: consider the following SES:

0→ α→ β → γ → 0

Since B is paracompact we can give β a metric. α⊥ ≈−→ γ so it splits.

This tells us: if M ⊂ N and N has a Riemannian metric, then,

TN
∣∣
M

= TM ⊕ TM⊥ ∼= TM ⊕ ν(M ↪→ N).

Definition. Smooth f :M → N is a immersion/submersion if ∀x ∈M , dfx is injective/surjective.

For example, consider S1 → R2 given by ⃝→∞ is an immersion, since it’s locally an embedding.

TS2 → S2 is a submersion.

Let f :M → N be an immersion. Then, ν(f) = f∗TN
TM .

If N has a metric then TM ∼= TN
∣∣
M
⊕ ν(f).
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Tuesday, 9/16/2025

UCT, Cup and Cap Prodcuts

LetM be an abelian group. Then we have homology Hi(X,A;M) and cohomology Hi(X,A;N) abelian groups.

The cohomology Hi(X,A;N) is the cohomology of the following cochain complex: Hi(Hom(S•(X,A), N))

‘Cohomology eats homology’ via the following Kronecker Pairing :

⟨, ⟩ : Hi(X,A;N)⊗Hi(X,A;M)→ N ⊗Z M

[ϕ]⊗

[∑
i

kiσi ⊗mi

]
7→

∑
i

kiφ(σi)⊗mi

Now we do UCT. Let R = Z and M = Z-module, i.e. abelian group.

If X = RPn then the cellular chain complex of RPn is:

C•X = Z 2 n even−−−−−→
0 n odd

· · · → Z 2−→ Z 0−→ Z

Thus, if n odd, then HiRPn =


Z, if i = 0, n;

Z2, if i odd, 0 < i < n;

0, otherwise.

If coefficients are in Z2 then,

C•X ⊗ Z2
0−→ Z2

0−→ · · · 0−→ Z2

Thus Hi(RPn;Z2) = Z2 for 0 ≤ i ≤ n.

UCT states that the following is a split short exact sequence:

0→ HiX ⊗M → Hi(X;M)→ Tor(Hi−1X,M)→ 0

We can say three things about Tor:

Tor is a functor, Tor : Ab×Ab→ Ab.

If M,N are f.g. then Tor(M,N) ∼= (torsion M)⊗Z (torsion N)

Definition. Find an exact sequence of free groups as follows:

0→ F1 → F0 →M → 0

Then Tor(M,N) = H1(F1 ⊗N → F0 ⊗N).
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For example, Tor(Z2,Z2), we have following free groups:

0→ Z ×2−−→ Z mod 2−−−−→ Z2 → 0

Tensoring with Z2 to get the following: Z2
0−→ Z2. Then H1 is the kernel.

So, Tor(Z2,Z2) = Z2.

Now we go back to geometry.

Suppose we have space X such that Hi−1X = Z2⊕?

This gives us Hi(X)→ Z2 ⊂ Hi(X;Z2).

Geometrically, consider Hi(X;Z2)→ Tor(Hi−1(X);Z2).

If there is [a] ∈ Tor(Hi−1X;Z2) with 2a = ∂b then section given by [b]←[ [a]

UCT works even if we change Z with a PID. For any PID R we can talk about R-modulesM , then Hi(X;M) ∼=
Hi(X;R)⊗M ⊕ TorR(Hi−1(X;R),M).

We want the analogue of UCT for cohomology. This gives us the split exact sequence:

0→ Ext(Hi−1X,M)→ Hi(X;M)→ Hom(HiX,M)→ 0

Again, for n odd consider the chain complex:

C•RPn = Z 0−→ Z→ · · ·Z 2−→ Z 0−→ Z→ 0

For cochain complex we’d simply reverse the arrows:

C•RPn = Z 0←− Z← · · ·Z 2←− Z 0←− Z← 0

HiRPn = Z for i = 0, n and Z2 for 0 < i < n, n odd.

Hi(RPn;Z) = Z for i = 0, n and Z2 for 0 < i < n, n even.

We have: Ext(Free,M) = 0.

In general, Ext(A,B) is given by: resolve A, apply Hom(−, B) cohomolgy.

Suppose 0→ F1 → F0 → A→ 0.

Then, Hom(F1, B)
∂1

←− Hom(F0, B).

Thus Ext(A,B) = coker ∂1.

If A,B are finitely generated then Ext(A,B) ∼= (torsionA)⊗B.

Now, suppose R is a commutative ring.

Then Hi(X;R) = Hi(HomZ(X•X,R))

16



But might be more in the spirit of how we are doing this to do the following:

Hi(X;R) = Hi(HomR(S•(X;R), R))

For R-modules M ,

Hi(X;M) = Hi(HomZ(S•X,M)) = Hi(HomR(S•(X;R),M))

Then, H∗(X;R) is a graded commutative ring under the cup product.

H∗(X;R) is a graded commutative ring meaning we can write:

H∗(X;R) =
⊕

i≥0H
i(X;R) and we have Hi(X;R)⊗R Hj(X;R)→ Hi+j(X;R)

Commutative graded ring meaning α ∪ β = (−1)|α||β|β ∪ α.

For De Rham cohomology,

Hi
DR(M ;R)⊗Hj

DR(M ;R) we have α⊗ β 7→ [α ∧ β]

We also have: H∗(M ;R) is a graded module over H∗(M ;R) w.r.t. cap product.

For α ∈ Hi(M ;R) and z ∈ Hj(M ;R) then α ∩ z ∈ Hj−i(M ;R).

So, cap product by α eats i dimensions from z.

We also have ⟨α ∪ β, z⟩ = ⟨α, β ∩ z⟩.

If f : X → Y is continuous, we have a ring map f∗ : H∗(Y ;R)→ H∗(X;R) by f∗(α ∪ β) = f∗α ∪ f∗β.

Poincaré Duality: if Mn is closed and oriented and connected then HnM ∼= Z. Choose generator [M ] ∈ HnM .

Then we have isomorphism ∩[M ] : HiM
∼=−→ Hn−iM

Another fact:

HiM

torsion
⊗ Hn−iM

torsion
→ Z

is a nonsingular perfect pairing: α⊗ β is given by (α ∪ β)[M ] ∈ Z.

Recall A×B → Z is perfect ⇐⇒ A
∼=−→ Hom(B,Z) and B

∼=−→ Hom(A,Z) are isomorphism.

In CPn = e0 ∪ e2 ∪ · · · ∪ e2n we have H∗CPn ∼= Z[α]/αn+1, with degα = 2.

This is a truncated polynomial ring.

We can prove this by Poincaré duality and induction on n.

We also have Kunneth Theorem. If R is a field, then:

H∗(X;R)⊗H∗(Y ;R)
∼=−→ H∗(X × Y ;R)

It is only an injection for general ring.
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Wednesday, 9/17/2025

HWK due 9/29.

4 Exercises: 1 from Ch2, 1 from Ch3, 2 from Ch4.

Today we finish chapter 3, construction of bundles.

We skipped part f on Friday.

Vector Spaces Vector Bundle

V ⊗W ξ ⊗ η
Hom(V,W ) Hom(ξ, η)

V ∗ = Hom(V,R) ξ∗ = Hom(ξ, ϵ1B)
ΛkV Λkξ
Λ∗V Λ∗ξ

Table 1: Anythong we can do on Vector Spaces, we can do in Vector Bundles.

As for Hom(ξ, η) we assume base space is the same:

Hom(Rk,Rl) EHom(
k

ξ,
l
η)

B

Here EHom(ξ, η) = [roughly]
⋃
b∈B HomR(Fb(ξ), Fb(η))

:=
∐

open U⊂B, ξ|
U
, η|

U
trivial U ×Hom(Rk,Rl)/ ∼.

Cotangent Bundle

Let Mn be a smooth n-manifold.

Definition (Cotangent Bundle). Is dual to the tangent bundle: T ∗M := (TM)∗.

We can take exterior power to get differential k forms:

ΛkRn ΛkT ∗M

M

Differential k-form on M,ω ∈ Γ(ΛkT ∗M) smooth section.

Λ∗Rn → Λ∗T ∗M
↓
M

← wedge product.

In fact, Γ(Λ∗T ∗M) is a graded algebra, Ω∗M .

18



Chapter 4

Now we start on Characteristic Classes.

Definition (Stiefel-Whitney Classes). have these 4 axioms:

1) ∀ vector bundle ξ, assign wi(ξ) ∈ Hi(B(ξ);F2) so that w0(ξ) = 1 and wi(ξ) = 0 for i > n when ξ is a an
n-plane bundle.

2) Naturality : For continuous f : B′ → B(ξ), we have wi(f
∗ξ) = f∗(wi ξ) ∈ Hi(B;F2). [First one is the

pullback on the bundle, second one is the induced map on the cohomology.]

3) Whitney Sum Formula: If ξ, η are vector bundles over B we have: wk(ξ ⊕ η) =
∑
i+j=k wi(ξ) ∪ wj(η).

4) 0 ̸= w1(γ
1
1) ∈ H1(P 1;F2) = H1(S1;F2) = F2.

This sequence of cohomology classes is called the Stiefel-Whitney Classes.

Recall: γ11 for a mobius strip is the zero section, i.e. S1.

Milnor-Stasheff says naturality a bit differently. Recall: If

E(η) E(ξ)

B(η) B(ξ)

iso/fibers

f

then η = f∗ξ,wi(η) = f∗ wi(ξ).

Note: axioms 1 and 2 says wi are characteristic classes. Characteristic Classes are cohomology classes respecting
naturality. Meaning they respect nontriviality of bundles. Just like homology ‘classifies’ upto homotopy in a
sense, we need characteristic classes to capture the ‘twists’ in a vector bundle.

Axiom 1 and 2 implies:

Proposition 11 (1). ξ ∼= η =⇒ wi(ξ) = wi(η).

Recall that vector bundles are isomorphic if:

E(ξ) E(η)

B

∼=

Proof. f = id.

Proposition 12 (2). wi(ϵ
n
B) = 0 for i > 0.

Proof.

B × Rn Rn

B ptc

19



wi(ϵ
n
B) = wi(c

∗ϵnpt) = c∗ wi(ϵ
n
pt) ∈ Hi(pt;F2) = 0.

Thus, nontrivial Stiefel-Whitney Class implies nontrivial bundle.

Proposition 13 (3). If ϵ trivial then wi(ϵ⊕ η) = wi(η). In other words, wi stable characteristic classes.

Proposition 14 (4). If ξ is an n-plane bundle with k linearly independent sections, then k of them vanishes:

wn−k+1(ξ) = · · · = wn−1(ξ) = wn(ξ) = 0

Most interesting case is k = 1 contrapositive.

wn(ξ) ̸= 0 =⇒ ̸ ∃ nowhere zero section. Hairy ball theorem!

eg for n odd there exists a nowhere zero section of the tangent bundle TSn. Therefore, wn(TS
n) = 0.

Since n is odd n+ 1 is even, and we can switch the coordiantes in pairs:

x = (x1, · · · , xn) 7→ (x,−x2, x1, · · · ,−xn+1, xn) ∈ TSn ⊂ Sn × Rn+1

w4(TCP 2) ̸= 0, ̸ ∃ nowhere vanishing vector field on CP 2.

If Mn is a closed n-manifold then wn(TM
n) ≡ ξ(M) (mod 2).

Proof. The condition of k linearly independent section is equivalent to existence of a subbundle ϵkB ⊂ ξ.

Case 1: Suppose ξ has a metric.

Then ξ = ϵkB ⊕ (ϵkB)
⊥.

wi(ξ) = wi(ϵ
k⊥
B ) by proposition 3. Note that ϵk⊥B is a n− k bundle, axiom 1 implies the statement.

Case 2: B is a CW complex so B is paracompact which implies ξ has a metric.

General case: suppose
E(ξ)
↓
B

. Then ∃ CW-approximation B′ → B where B′ is a CW complex which is isomor-

phism on π∗ which is isomorphism in homology and cohomology. This reduces to case 2.

Friday, 9/19/2025

Recap: Stiefel-Whitney-Classes:

Suppose we have an n-plane bundle

Rn → E
↓
B


Then wiE = wi(ξ) ∈ Hi(B;F2).

We have some axioms:

20



1) w0(ξ) = 1,wi(ξ) = 0 for i > n

2) Naturality: if we have f : B′ → B then wi(f
∗ξ) = f∗ wi(ξ) ∈ Hi(B′;F2).

One way to rephrase it is as follows: f∗E is the pullback bundle in the following:

f∗E E

B′ B
f

Another way: if we have a bundle map:

E′ E

B′ B

which is an isomorphism on the fibers, then f∗E ∼= E′. We have E′ → B′ which is equal to f∗ξ.

In Milnor-Stasheff, if we have:

E(η) E(ξ)

B(η) B(ξ)

η → ξ in this case wi(η) = f∗ wi(ξ).

Note that properties 1 and 2 are called characteristic class on a bundle.

3) Whitney Sum formula: wk(ξ ⊕ η) =
∑
i+j=k wi(ξ) wi(η)

4) w1(γ
1
1) ̸= 0.

Recall proposition 3: if ϵ trivial then wi(ϵ⊕ η) = wi(η).

Proposition 4: obstruction to sections: If ξ has k-linearly independent sections then the top k Stiefel-Whitney
Classes vanish.

Whitney Sum Inverses

Definition. Suppose ξ ⊕ η = ϵN . Then ξ and η are whitney sum inverses of each other.

Example: Normal bundle and tangent bundle.

Fact: dimB <∞ implies every bundle has an inverse.

Observation: w∗(ξ) can be computed in terms of w∗(η).

0 = w1(ξ ⊕ η) = w1(ξ) + w1(η) =⇒ w1(ξ) = w1(η)

0 = w2(ξ ⊕ η) = w2(ξ) + w1(ξ) w1(η) + w2(η) =⇒ w2(ξ) = w1(η)
2 +w2(η)

In Milnor Stasheff, they define a new ring:
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H
∏
(B;F2) =

∏
i

Hi(B;F2)

This allows us to take infinite series:

w(ξ) = 1 + w1 ξ +w2 ξ + · · · ∈ H
∏
(B;F2)

Then we can rephrase the Whitney sum theorem as follows:

w(ξ ⊕ η) = w(ξ) ∪ w(η).

Lemma 15.
{
1 + a1 + a2 + · · · ∈ H

∏
(B;F2) | ai ∈ Hi(B;F2)

}
Proof. Due to ‘Euler’:

(1 + a1 + a2 + · · · )−1 = 1
1+(a1+a2+··· )

= 1 + (a1 + a2 + · · · ) + (a1 + a2 + · · · )2 + (a1 + a2 + · · · )3

= 1 + a1 + (a2 + a21) + (a3 + a31) + · · ·

Notation: Suppose w(ξ) ∈ H
∏
(B;F2) then we can have the formal multiplicative inverse: w(ξ) ∈ H

∏
(B;F2)

so that w(ξ)w(ξ) = 1

This gives us the following observation: ξ ⊕ η = ϵN gives us w(ξ) w(η) = 1 =⇒ w(ξ) = w(η).

eg H∗(P∞;F2) = F2[a] then we have canonical line bundle γ1 then w(γ1) = 1+a so (1+a)−1 = 1+a+a2+ · · ·
which has infinitely many terms so the inverse might not exist! The line bundle doesn’t have any whitney sum
inverse.

Theorem 16 (Whitney Duality Theorem). Let Mn ⊂ RN be a smooth manifold. Then,

wi(TM) = wi
(
ν(M ↪→ RN )

)
Proof. (TM ⊕ ν(M ↪→ RN )) = TRN

∣∣
M

Lemma 17. Suppose we have a closed codim 1 manifold: Mn ⊂ Rn+1. Then w(TM) = 1.

So Stiefel-Whitney Classes give an obstruction to submanifolds of codimension 1.

Proof. TM ⊕ ν(M ↪→ Rn+1) is trivial, ν(M ↪→ Rn+1) gives nowhere zero section.

Corollary 18. Non-orientable submanifolds must have codimension at least 2.

Recall Pn = RPn = Sn/x ∼ −x =
Sn
+

x∼−x when x∈Sn−1 = lines in Rn+1 through 0.

Pn is a CW complex via the pushout:
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Sn−1 Pn−1

Dn Pn

P 0 ⊂ P 1 ⊂ · · · ⊂ Pn is the skeleton.

Essentially Pn = e0 ∪ e1 ∪ · · · ∪ en with ei ∼=
◦
Di.

Cellular chain complex:

C•(P
n;F2) = F2

0−→ · · · 0−→ F2

Cochain complex:

C•(Pn;F2) = F2 ← · · · ← F2

H∗(P
n;F2) = H∗(P ;F2) = {F2 : x ≤ n}

Next: H∗(Pn;F2) =
F2[a]
an+1 truncated polynomial ring.

Monday, 9/22/2025

We do some computations today.

Recall: Pn = Sn/x ∼ −x = e0 ∪ e1 ∪ · · ·︸ ︷︷ ︸
Pn−1

∪en

Then H∗(Pn;F2) =

{
F2, if ∗ ≤ n;
0, otherwise.

Let 0 ̸= a ∈ H1(Pn;F2).

Theorem 19. H∗(Pn;F2) =
F2[a]
an+1 , truncated polynomial ring.

Proof. Induction on n and Poincaré Duality.

It is true for n = 1.

Now suppose it is true for n− 1.

We have injection i : Pn−1 ↪→ Pn. Thus i∗ is a ring map isomorphism on dimension ≤ n− 1.

Thus a, a2, · · · , an−1 non-zero.

Question: do we have an ̸= 0?

We use Poincaré Duality to prove that.

Suppose [Pn] ∈ Hn(P
n;F2) ̸= 0.

23



Then we have: ∩[Pn] : Hn−1(Pn;F2)
∼−→ H1(P

n;F2).

Then ⟨an, [Pn]⟩ = ⟨an−1, a ∩ [Pn]⟩ ̸= 0 since UCT implies:

Hn−1(Pn;F2)
≈−→ Hom(Hn−1(P

n;F2),F2) by β 7→ (b 7→ ⟨β, b⟩) and both an−1 and a ∩ [Pn] are nonzero.

Now we can look at SW classses of γ1n and TPn.

Proposition 20. w(γ1n) = 1 + a ∈ H∗(Pn;F2).

Proof. True for n = 1 by axiom 4.

Now consider restriction: γ1n
∣∣
P 1 = γ11 .

By the axiom we have 1 + a = w(γ11) = i∗ w(γ1n).

Now let γ = γ1n = {{([x], v)} | v ∈ Rx} ⊂ Pn × Rn+1 be the tautological line bundle.

γ ⊂ ϵn+1
Pn =⇒ γ ⊕ γ⊥ = ϵn+1.

Therefore, w(γ⊥) = w(γ) = (1 + a)−1 = 1 + a+ · · ·+ an ∈ H∗(Pn;F2).

Thus γ⊥ has no nonzero sections.

Corollary 21. γ1∞ over P∞ has no W.SI.

Question: w(TPn) =?

Recall: G↷ X then orbit space X/G = X/x ∼ gx, Sn/C2 = Pn.

Theorem 22. i) TPn ⊕ ϵ1 = γ ⊕ · · · ⊕ γ︸ ︷︷ ︸
n+1

.

ii) w(TPn) = (1 + a)n+1 =
∑n
j=0

(
n+1
j

)
aj ∈ H∗(Pn;F2)

Proof. Apply the antipodal map to:

TSn ⊕ ν = ϵn+1 = ϵ1 ⊕ · · · ⊕ ϵ1 (∗)

To get the following:

TPn ⊕ ϵ = γ ⊕ · · · γ (∗∗)

where C2 ↷ Sn × Rn+1 by (x, v) 7→ (−x,−v).

Note: TPn = (TSn)/C2 since Sn is a covering space of TPn.

Note: ν(Sn ↪→ Rn+1) ∼= ϵ1Sn

Note: ν(Sn ↪→ Rn+1)/C2
∼= ϵ1Pn

Note: ϵ1Sn/C2
∼= γ since Sn×R

C2

∼= E(γ) by [(x, t)] 7→ ([x], tx)

This proves (∗∗).
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Now we prove i =⇒ ii.

w(Pn) = w(TPn ⊕ ϵ) = w((n+ 1)γ) = w(γ)n+1 = (1 + a)n+1

MS shows TPn ∼= Hom(γ, γ⊥).

Parallelizable Manifolds

Definition. A manifold Mn is parallelizable if TMn = ϵnM [i.e. if there exists n linearly independent vector
fields]

eg S2n is not parallelizable via the hairy ball theorem.

Lie Groups are parallelizable: note that TeG
n has basis e1, · · · , en, and for g ∈ G we have ℓg : G→ G given by

h 7→ gh.

We then have g 7→ (dℓg∗)(ei) giving n linearly independent vector fields.

Thus, wi(TM
n) ̸= 0 for i > 0 implies M is not a lie group.

S0, S1, S3, P 0, P 1, P 3(= SO(3)) are lie groups.

Wednesday, 9/24/2025

Corollary 23 (4.6i). wn(P
n) ̸= 0 ⇐⇒ n even.

(ii). w(Pn) = 1 ⇐⇒ n+ 1 = 2r

Corollary 24. n even implies Pn has no nowhere zero vector field.

Pn parallelizable [i.e. TPn trivial] implies n = 2r − 1.

Proof. 4.6i: wn(P
n) ̸= 0 ⇐⇒

(
n+1
n

)
an ̸= 0 ⇐⇒ n+ 1 ̸= 0 ⇐⇒ n+ 1 odd.

4.6ii: w(P 2r−1) = (1+a)2
r

= 1+a2
r

= 1 gives one direction. For other direction, if n+1 = 2rm for odd m > 1
then w(Pn) = (1 + a)2

rm = (1 + a2
r

)m = 1 +ma2
r

+ · · ·.

Theorem 25 (4.7 Stiefel). Suppose ∃ bilinear map p : Rn ×Rn → Rn without zero divisor [meaning p(x, y) =
0 =⇒ x = 0 or y = 0].

Then Pn−1 is parallelizabl [thus n = 2r].

e.g. R,C,H,O. Theorem by Adams states n = 1, 2, 4, 8.

Proof. Let {b1, · · · , bn} be basis for Rn. Define vi:

25



Rn Rn Rn
vi

p(−,b1) p(−,bi)

Then x ̸= 0 =⇒ p(x, b1), · · · , p(x, bn) are linearly independent, thus v1(x), · · · , vn(x) linearly independent.

Note that v1(x) = x.

Define linearly independent sections s2, · · · , sn of TPn−1.

si[x] = [x,pr(Rx)⊥(vi(x))] ∈ TPn−1 = (TSn−1)/C2.

Stiefel-Whitney Numbers

We want to prove the following theorem:

Theorem 26. A closed manifold is a boundary ⇐⇒ Stiefel-Whitney numbers are all zero.

We need to talk about first fundamental class.

If Mn is a closed connected manifold [since we have F2 coefficient we don’t worry about orientation] then the
fundamental class [M ] ∈ Hn(M ;F2) ∼= H0(M ;F2) = F2.

We dont really need connectedness. If Mn =M1⊔ · · ·⊔Mk where each Mj are connected then the fundamental
class [M ] = i1∗[M1] + · · ·+ ik∗[Mk] ∈ Hn(M ;F2) = Fk2 .

Definition. A partitition of n is r1, · · · , rn ∈ Z≥0 such that r1 + 2r2 + 3r3 + · · ·+ nrn = n.

Let Π(n) = set of partitions of n.

For example, Π(4) = {(0, 0, 0, 1), (0, 2, 0, 0), (1, 0, 1, 0), (2, 1, 0, 0), (4, 0, 0, 0)}
Definition (Stiefel-Whitney Number). Given (ri) ∈ Π(n) the Stiefel-Whitney Number is defined by:

wr11 · · ·wn
rn [M ] := ⟨w1(TM)r1 ∪ · · ·wn(TM)rn , [M ]⟩ ∈ F2

For example we find Stiefel-Whitney numbers of P 2.

w(P 2) = w(TP 2) = (1 + a)3 = 1 + a+ a2.

w2
1[P

2] = ⟨a2, P 2⟩ = 1

w2[P
2] = ⟨a2, P 2⟩ = 1

Thus P 2 is not the boundary of a 3-manifold.

We can see this more easily since the characteristic of P 2 is odd.

Friday, 9/26/2025

Homeowork Due Monday.

Ch2: 1 Exercise Ch3: 1 Exercise Ch4: 2 Exercise
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Manifolds with Boundary

Classic examples: disk Dn, cylinder Sn−1 × I

Definition. Local Model is the upper half-space Hn = {(x1, · · · , xn) ∈ Rn | x1 ≥ c}.

Definition. Let M ⊂ RA. An n-manifold with boundary such that ∀x ∈ M,∃ smooth homeomorphism
(parameterization) h : V → U where V ⊂ Hn and x ∈ U ⊂M open such that ∀y ∈ V, dhy : Rn → RA has rank
n.

Definition. IntM := {x ∈M | ∃nbhd U ∼= Rn}.

∂M :=M − IntM

M = ∂M ∪ IntM

Dn = Sn−1 ∪ IntDn

n-manifold is n-manifold with boundary.

manifold with nonempty interior is not a manifold.

M is an n-manifold with boundary =⇒ IntM is a n-manifold and ∂M is a n− 1 manifold.

M ≃ IntM .

Now consider tangent space:

Rn → TM = {(x, v) | x ∈M,v = γ′(0), γ(0) = x
↓ , γ : [0,∞)→M ∨ γ : (−∞, 0]→M}
M

Then TM
∣∣
∂
∼= T∂M ⊕ ϵ1 where ϵ1 is the outward poinitng normal, the nowhere zero section of TM

∣∣
∂
.

Poincaré-Lefschetz Duality

(PL duality).

Theorem 27. Hn(M,∂M ;F2) = F2.

Definition. Fundamental class [M ] ∈ Hn(M,∂M ;F2).

Theorem 28 (PL Duality). ∩[M ] : Hi(M,∂M ;F2)
≈−→ Hn−i(M ;F2).

∩[M ] : Hi(M,F2)
≈−→ Hn−i(M,∂M,F2).

Exercise: Work this out for Dn.

Furthermore, if we look at the long exact sequence of a pair:

Hn(M,∂M ;F2)
∂−→ Hn−1(∂M ;F2)→ Hn−1(M ;F2)

then ∂[M ] = [∂M ].

Theorem 29 (MS 4.9, Pontryagin). Suppose M is a compact n+ 1-manifold with boundary. Then the Stiefel
Whitney numbers of ∂M are 0.
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Proof. WLOG M is connected. Let ri ∈ Π(n) [thus
∑
i rii = n].

Then ⟨w1(T∂M)r1 ∪ · · ·wn(T∂M)rn , [∂M ](= ∂[M ])⟩

= ⟨δ(w1(T∂M)r1 · · ·wn(T∂M)rn), [M ]⟩.

Now, recall:

Hn(M ;F2)
i∗−→ Hn(∂M,F2)

δ−→ Hn+1(M,∂M ;F2)

WTS: w1(T∂M)r1 · · ·wn(T∂M)rn ∈ im i∗.

Note that it is equal to:

w1 (i
∗(TM))

r1 · · ·wn(i∗(TM))rn = i∗ (w1(TM)r1 · · ·wn(TM)rn)

Theorem 30 (P-Thom). A closed n-manifold is the boundary of a compact n-manifold iff all Stiefel Whitney
numbers vanish.

Note that all manifolds are boundary of a not necessarily compact manifold, just take M × [0,∞)

Definition (Bordism Groups). Two closed n-dimenstional manifolds M1,M2 are bordant if ∃ a compact Wn+1

manifold with boundary such that ∂W ∼=
diff

M1

∐
M2. W is called the cobordism.

Easy exercise: Bordism is an equivalence relation. Canonical example: Pant =⇒ S1 ∼ S1
∐
S1.

One can get a group Ωon = (bordism classes of closed n-manifold,
∐
).

This is called the unoriented bordism group.

Note that 2Ωon = 0 since ∂(M × I) =M
∐
M , −[M ] = [M ].

Theorem 31 (Collar Neighborhood). ∃ neighborhood U of ∂W and a diffeomorphism h : U
i−→ ∂W × [0,∞)

such that h(x, 0) for x ∈ ∂W .

Note that Ωo∗ is a graded ring with cartesian product.

n Ωno Π(n)

0 Z/2 pt 1
1 0 1
2 Z/2P 2 2
3 0 0
4 Z/2⊕ Z/2P 4, P 2 × P 2 5
5 Z/2 Wu-n-manifold SU(3)/SO(3) 7

Table 2: Bordism Group Calculations

Theorem 32 (PT Theorem).

Ωon
SW#
↣ (F2)

Π(n)
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Monday, 9/29/2025

Applications:

Let M →M is a k to 1 covering map with k odd. Then,

0 = [M ] ∈ Ωon ⇐⇒ 0 = [M ] ∈ Ωon

eg Lens spaces L(k) with k odd are boundaries.

Proof. Hn(M ;F2)
·k−→∼= Hn(M ;F2).

SW numbers of M = SW numbers of M .

MS poses the question:

Why is P 2k−1 a boundary?

Proof. First proof:

We explicitly calculate the SW numbers.

w(P 2k−1) = (1 + a)2k = (1 + a2)k.

Thus, for i odd, wi(P
2k−1) = 0.

Thus, since
∑
i iri is odd:

Taking mod 2→
∑
i odd ri is odd so some odd ri is nonzero. Thus, w

r1
1 · · ·w

r2k−1

2k−1 [P
2k−1] = 0.

Second proof:

If ∃ free C2-action on M then M is a boundary.

Proof: ∂(M ×C2
[1,−1]) =M ×C2

{−1, 1} =M .

Or:

S0 M

M

, change fiber D1 gives us

D1 W =M ×C2
[−1, 1]

M

which gives us ∂W =M .

Lens space L(4) with π1 = C4 then covered by P 2k−1.

Conjecture by Farrell/Yau:

Almost flat manifolds are boundaries.

Theorem 33 (Gromov). Almost flat ⇐⇒ infranil
def⇐⇒

nilmanifold
↓ finite cover
M

Nilmanifold is a simply connected lie group modulo a lattice. Example:

1 ∗ ∗
0 1 ∗
0 0 1

, lattice is where ∗ are
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integers.

Theorem 34 (D-Fang). Yes if finite cover is 2k-to-1.

N/Γ→M if 2k-to-1 implies M = ∂W .

Chapter 5

RP k−1 = lines in Rk. By lines we mean 1-dim spaces through the origin. Easier to think of Sk−1

x∼−x usually.

We have the tautological line bundle given by E(γ) = {(line, point on line)} ⊂ RP k−1 × Rk.

R E(γ)

P k−1

Instead of lines we can think about higher dimensional vector spaces through the origin which gives us the
Grassmanian.

Grassmanian or Grassmanian Manifold of n-planes in Rk

Notation: Gn(Rk) is the Grassmanian. Points are n-dim subspaces of Rk.

X ∈ Gn(Rk) =⇒ X = n-dim subspaces of Rk.

Example: planes through the origin in Rn.

We have a tautological n-plane bundle E(γn) = {point, point on plane}

Rn E(γn) = {(X, v) ∈ Gn(Rk)× Rk | v ∈ X}

Gn(Rk)

Suppose Mn ⊂ Rk. Then we have M → Gn(Rk), p 7→ TpM .

We in fact have a bundle map:

TM E(γn)

M Gn(Rk)

(p, v) (Tπ(v)M, v)

p TpM

We can do the same for the normal bundle.
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ν(M ↪→ Rk) E(γk−n)

M Gk−n(Rk)

Topology on Gn(Rk)

We need to find an atlas. What is the dimension?

Definition (Stiefel Manifold). Vn(Rk) = orthonormal n-frames in Rk

=
{
(v1, · · · , vn) ∈ Rk × · · ·Rk | vi · vj = δij

}
.

This is a closed, bounded subsset of (Rk)n =⇒ it is compact.

Thus this has a topology.

Now, we have an onto map q : Vn(Rk)↠ Gn(Rk) with q(v1, · · · , vn) = Span{v1, · · · , vn}.

Give Gn(Rk) the quotient topology, i.e. U ⊂ Gn(Rk) is open iff q−1U is open.

Lemma 35 (5.1). Gn(Rk) is a compact smooth manifold of dimension n(k − n). Furthermore, there is a
diffeomorphism Gn(Rk)→ Gk−n(Rk) by X 7→ X⊥.

Wednesday, 10/1/2025

O(n)→ Vn(Rk) Stiefell, On n

↓ q

Gn(Rk) = n planes in Rk, Grassmanian.

q(v1, · · · , vn) = Span(v1, · · · , vn).

Given Vn(Rk) ⊂ (Rk)n subspace topology.

We give Gn(Rk) quotient topology.

Lemma 36. Gn(Rk) is a compact smooth manifold of dimn(k − n).

Proof. hausdorff?

X ∈ Gn(Rk)

v ∈ Rk

d(x, v) =−1 d(x, v)

Vn(Rk)
q−→ Gn(Rk) −→ R

d(−, v) ◦ q continuous.

d(−, v) continuous.
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If X ̸= Y choose v ∈ Y −X.

Let d = d(X, v).

Separate X and Y by:

d(−, v)−1(−∞, d2 ) and d(−, v)
−1(d2∞)

Atlas? Euclidean Neighborhoods?

X ∈ Gn(Rk)

U = UX = {y ∈ Gn(Rk) | X⊥ = {0}} open and dense.

Γ : Hom(X,X⊥)→ U

f 7→ graph(f) ⊂ Rk = X ⊕X⊥(∼= X ×X⊥).

graph(f) := {v + f(v) | v ∈ x}

U Hom(X,X⊥) Rn(k−n)Γ−1

ϕ

∼=

Coordinates show ϕ is homeomorphism.

Atlas {(U, ϕ)}

ANother proof:

O(k) ↷ Gn(Rk) transitively, (A,X) 7→ AX

Isotopy at R× {0k−n}:

is O(n)×O(k − n).

Thus Gn(Rk) = O(k)/O(n)×O(k − n).

If G is a compact lie group and H is a closed subgroup then G/H is a manifold.

O(n) = O(n)×O(n−k)
O(n−k) Vn(Rk) O(k)/O(n− k)

Gn(Rk) O(k)/O(n)x,O(n− k)

=

=

Associated Rn bundle is γn.

E(γn) = Vn(Rk)×O(n) Rn.

Friday, 10/3/2025

Lemma 37 (5.2). The tautological bundle is a bundle:
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E(γnk ) {(X, v) | v ∈ X} ⊂ Gn(Rk)× Rk

Gn(Rk)

=

π

is a rank n v.b.

Proof. π−1X is a vector space: (X, v) + (X,w) = (X, v + w), c(X, v) = (X, cv).

We also want local triviality. Consider X ∈ Gn(Rk). Let U = {Y | Y ∩X⊥ = 0}.

U × Rn π−1U

U

h

is a fiberwise isomorphism where h is a homeomorphism.

Then U × Rn ∼= U × X by choosing a basis for X. Furthermore, U × X
Γ×idX←−−−− Hom(X,X⊥) × X and

Hom(X,X⊥)×X → π−1U by (f, v) 7→ (graph f, v + f(v)).

Lemma 38 (5.3). Any n-plane bundle ξ over a compact Hausdorff manifold, ∃ a bundle map to the tautological
bundle Gn(Rk):

E(ξ) E(γnk )

B Gn(Rk)

c̃

c

for k large.

So the tautological bundle is final.

Note that we knew this for embedded manifold and tangent bundle:

TM

M Gn(Rk)

p TpM

c is called ‘classifying group’ and γn is the universal bundle.

By defintion, a bundle map ξ → γnk is the same as a fiberwise isomorphism:

E(ξ) E(γnk )

B Gn(Rk)

which is by definition the same as a fiberwise monomorphism ĉ : E(ξ)→ Rk.
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Let Fb = π−1b. Then c(b) = ĉ(Fb)←[ ĉ.

Then c̃(e) = (ĉ(Fb), ĉ(e)).

Now we prove lemma 5.3.

Proof. Compact, so choose open cover U1, · · · , Ur of B such that ξ
∣∣
Ui

is trivial.

Choose open Wi ⊂ Vi ⊂ Ui such that W i ⊂ Vi, V i ⊂ Ui, and {Wi} and {Vi} still cover B.

Note that W i and B − Vi are disjoint closed sets. Thus ∃ continuous λi : B → [0, 1] such that λi(W i) =
1, λi(B − Vi) = 0 by Urysohn’s lemma.

ξ
∣∣
Ui

trivial ⇐⇒ fiberwise isomorphism hi : π
−1Ui → Rn by sections sj(b) 7→ ei.

Define ĉ : E(ξ)→ Rn ⊕ · · · ⊕ Rn︸ ︷︷ ︸
r times

.

ĉ(e) = (λ1(π(e))h1(e), · · · , λr(π(e))hr(e))

Corollary 39 (Not in MS). Every vector bundle ξ over a compact Hausdorff space B has a whitney sum
inverse.

What we need is a finite locally trivial cover. .

Let ξ = c∗(ξnk ). Consider ξ ⊕ c∗(γ⊥) = c∗(γ ⊕ γ⊥) = c∗(ϵkGn(Rk)) which is trivial.

Contrast this with the fact that γ1∞ has no whitney sum inverse.

Comment: k′ ≤ k =⇒
E(γnk′) E(γnk )

Gn(Rk
′
) Gn(Rk)

Theorem 40. If f, g : ξ → γnk bunndle maps then f ≃ g : ξ → γn2k.

So “classifying map unique upto homotopy.”

Proof. WTS: f̂ ≃ ĝ : E(ξ)→ R2k fiberwise monomorphism.

Special case: ∀e ∈ E(ξ),∀λ > 0, f̂(e) ̸= −λĝ(e). ht(e) = (1− t)f̂(e) + tĝ(e).

General case: define embeddings d0, d1, d2 : Rk → R2k.

d0(ei) = ei, d1(ei) = e2i−1, d2(ei) = e2i.

Then d0 ◦ f̂ ≃ d1 ◦ f̂ ≃ d2 ◦ ĝ ≃ d0 ◦ ĝ.

Monday, 10/6/2025

Recall lemma 5.3: all vector bundle ξ over compact hausdorff B there exists a bundle map:

34



E(ξ) E(γnk )

B Gn(Rk)

c̃

c

for k sufficiently large.

Theorem 41 (5.7). If B is compact Hausdroff and f, g : ξ → γnk are bundle maps, then f ≃ g : ξ → γn2k.

Recall the proofs required E(ξ)→ Rk fiber monomorphism.

Theorem 42 (Covering Homotopy Theorem). Slogan: “Homotopy Invariance of Pullback.”.

Suppose we have compact hausdorff manifolds and maps:

E(ξ′)

B B′f≃g

Then f∗ξ′ ∼= g∗ξ′.

We can ‘replace k by ∞ and compact hausdorff by paracompact Hausdorff.’

For 5.2, we use ∞ · n =∞.

For 5.7, we use ∞+∞ =∞.

5.3, 5.7 and CHT implies: B paracompact Hausdroff implies there is a bijection between homotopy classes
[B,Gn(R∞)] and [iso class of n-plane v.b. over B].

f 7→ f∗γn.

This is why the Grassmanian is a classifying space, it classifies all bundles.

e.g. for sphere B = Sl then πl(Gn(R∞)) =


Rn → E

↓
Sl


iso .

Let A be an abelian group and w ∈ H l(Gn(R∞), A).

Then we get characteristic class of n-plane bundle over B a CW complex. Recall CW complexes are paracompact
Hausdorff!

Thus, in order to get characteristic classes, we only need:

E(ξ) E(γn)

B Gn(R∞)c

Then the characteristic class is defined to be w(ξ) = c∗ w ∈ H l(B;A).
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Then if we have

E

B′ B
f

then f∗ w(ξ) = w(f∗ξ).

Theorem 43 (Future Theorem). H∗(Gn(R∞);F2) = F2[w1,w2, · · · ,wn].

For example, for n = 1, this theorem states that H∗(P∞,F2) = F2[a].

First we talk about R∞ and Gn(R∞). We talk about colimits for that.

Colimit

Consider Category C.

Definition. A directed system (ds):

X0 → X1 → X2 → X3 → · · ·

Definition. A cocone of a directed system is an object X with maps so that:

X0 X1 X2 X3 · · ·

X

Definition. A colimit of a directed system is an initial cocone:

X0 X1 X2 X3 · · ·

C

X

∃!

Colimits may not exist. If they exist they are unique upto isomorphism. We write C = colimn→∞Xn

Colimit is kind of a ‘generalized union’.

Colimits are generally ‘quotients of coproducts’.

In the category R-mod,

colimn→∞Xn =

⊕
nXn

⟨Xn − im(Xn)⟩

Thus R∞ := colimn→∞ Rn, if basis e1, e2, e3, · · · then almost all coordinates are zero: (a1, a2, · · · , an, 0, 0, · · · )

In Top or Set,

colimn→∞Xn =

∐
Xn

Xn ∼ im(Xn)
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Then Gn(R∞) = colimn→∞Gn(Rk) = set of n-planes in R∞ with a particular topology. In some sense, it is⋃
kGn(Rk).

Stiefel Manifolds

Recall: we have Stiefel Manifolds:

O(n) Vn(R∞) orthonormal n-frames in R∞

Gn(R∞)

Vn(R∞)×O(n) Rn = E(γn).

Theorem 44. Vn(R∞) is contractible. eg for n = 1 we have S∞ ≃ ∗.

We need some facts from algebraic topology:

1) VnR∞ is a CW complex and VnRk ⊂ VnR∞ are subcomplexes.

2) Whitehead’s Theorem: if X is CW then X ≃ ∗ ⇐⇒ π∗X = 0.

3) Given fibration
F → E

↓
B

(e.g. a (G,F )-bundle) there exists long exact sequence:

· · · → πiF → πiE → πiB → πi−1F → · · ·

Now we can prove the theorem:

Proof. 1 =⇒ πi(Vn(R∞)) = colimk→∞ πi(Vn(Rk))

3 =⇒ for i ≤ l, πiO(l)
≈−→ πiO(l + 1).

O(l) → O(l + 1) A
↓ ↓
Sl Ael+1

Then
O(k − n) → O(k) A

↓
Vn(Rk) Ae1, · · · , Aen

=⇒ i < k − n, πi(VnRk) = 0
(2)
=⇒ the theorem.

Monday, 10/13/2025

Note:

Schubert Symbol: σ = (σ1, · · · , σn).
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1 ≤ σ1 < · · · < σn.

Dimension d = d(σ) =
∑
i σi − i

Partition of d = σ − (1, 2, · · · , n).

Recap:

Gn(R∞) = BGL(n,R).

It is a classifying space.

Proof 1: representative object.

Proof 2:

O(n) Vn(R∞) ≃ ∗

Gn(R∞)

.

Thus Gn(R∞) = BO(n), BO(n) = BGL(n,R), O(n) ≃ GL(n,R).

Preview of Chapter 6/7:

• Find CW structure on GnR∞.

• Show mod 2 cellular chain complex has zero differentials. [So this is just like RP∞].

Then Hk(Gn(R∞);F2) = Ck(GnR∞)⊗ F2 = F# of k-cells
2 .

We use the following two definitions of CW-complexes.

Definition (Using Pushouts). A topological space X together with the filtration {Xn}∞n=0 called skeleton,
written (X, {Xn}∞n=0) so that,

X0 ⊂ X1 ⊂ · · · ⊂ X =

∞⋃
n=0

Xn

such that,

1) ∀n, ∃ pushout diagram:

∐
Sn−1 Xn−1

∐
Dn Xn

2) X = colimn→∞Xn.

Definition (Whitehead). Instead of a filtration we have a partition with cells eα.

Let X be a Hausdorff space. Consider ((X, {eα})) so that,

{eα} form partition of X. i.e. X =
⋃
α eα, eα ∩ eβ = ∅ so that,
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1) ∀α,∃ characteristic map χα : Dn → eα such that χα
∣∣ ◦
Dn

:
◦
Dn ≈−→ eα homeomorphism.

2) χα(S
n−1) ⊂ finite union of n− 1 cells.

3) B ⊂ X closed ⇐⇒ ∀α,B ∩ eα closed in eα.

We can get the skeleton from the cells in the following way: Xn =
⋃

dim eα≤n eα.

Also note 2′ alternate: eα − eα ⊂ finite union of n− 1 cells.

For skeleton to cell, note that Xn −Xn−1 is topologically
∐
n-cells eα.

We want to figure out the CW complex of the Grassmanian. This is connected to combinatorics.

Definition (Schubert Symbol). The cells will be indexed by Schubert Symbol, which will be increasing sequence
of integers: σ = (σ1, · · · , σn) so that 1 ≤ σ1 < σ2 < · · · < σn. This will index a ‘Schubert cell’ of GnRk if
σn ≤ k:

e(σ) =
{
X ∈ GnRk | ∀i,dim(X ∩ Rσi) = i,dim(X ∩ Rσi−1) = i− 1

}
So we have a dimension jump at Rσi .

dim e(σ) =
∑
i σi − i

Theorem 45 (6.4). (GnRk, {e(σ)}) is a CW complex [note: 1 ≤ σ1 < · · · < σn ≤ k], and dim e(σ) = d(σ).

It also holds for k =∞, i.e. GnR∞, {e(σ)} where 1 ≤ σ1 < · · · < σn is a CW complex.

Example: G1(R3). σ = (1), (2), (3).

Thus G1R3 = e0 ∪ e1 ∪ e2.

e(1) is the line given by the x-axis.

e(2) is the set of lines through origin in the xy-plane except the x-axis.

e(3) is the set of lines through origin that are not contained in xy-plane.

Now consider G2(R3).σ = (1, 2), (1, 3), (2, 3).

e(1, 2) is the xy-plane.

e(1, 3) are the planes with one basis x-axis, other basis not the y-axis.

e(2, 3) are the planes that doesn’t contain the x-axis.

Now consider G2(R4). Then σ = (1, 2)[d = 0], (1, 3)[d = 1], (1, 4)[d = 2], (2, 3)[d = 2], (2, 4)[d = 3], (3, 4)[d = 4].

σ dim, d = d(σ) σ − (1, 2, · · · , n)
(1) 0 0
(2) 1 1
(3) 2 2
(4) 3 3

(1357) 6 0 1 2 3

Table 3: Schubert Symbol Dimensions
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Corollary 46 (6.7). # of d-cells in GnRk = # of paritions of d into at most n integers ≤ k − n.

Wednesday, 10/15/2025

Chapter 7 assumes existence of SW classes satisfying axioms 1-4.

Abbreviate Gn = Gn(R∞). We have bundles:

Rn E(γn) Gn × R∞

Gn Gn(R∞)

⊂

:=

Notation: wk := wk(γ
n).

H∗X = H∗(X;F2). ‘F2-coefficients understood’.

Theorem 47 (7.1).
H∗Gn = F2[w1, · · · ,wn]

The free polynomial ring on generators of degs 1, 2, · · · , n.

⇐⇒ There is no polynomial relationship between them: if p is a polynomial in n variables and p(w1, · · · ,wn) =
0, we must have p ≡ 0.

⇐⇒ w1, · · · ,wn are algebraically independent.

Lemma 48. Recall γ1 is the tautological line bundle.

Let ξ = γ1 × · · · γ1︸ ︷︷ ︸
n times

.

i) w1(ξ), · · · ,wn(ξ) are algebraically independent.

ii) w1, · · · ,wn are algebraically independent.

Proof.

Rn E(ξ) = E(γ1)× · · · × E(γ1)

P∞ × · · · × P∞

H∗P∞ = F2[a] by Poincaré duality.

Thus H∗(P∞ × · · · × P∞) = H∗P∞ ⊗F2
· · · ⊗F2

H∗P∞ = F2[a1, · · · , an] by Künneth Theorem.

By exercise, w(ξ) = w(π∗
1γ

1 ⊕ · · · ⊕ π∗
nγ

1) =
∏
k w(π

∗
kγ

1) = (1 + a1) · · · (1 + an).

Then wk(ξ) = σk(a1, · · · , an) the k’th elementary symmetric function.

σ1, · · · , σn are algebraically independent [Newton].

ii follows from this. We have:
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E(ξ) E(γn)

P∞ × · · ·×P∞ Gn
c

Suppose p(w1, · · · ,wn) = 0. Apply c∗ to see p(w1(ξ), · · · ,wn(ξ)) = 0 =⇒ p = 0.

Now we finally prove theorem 7.1. We need to prove that the polynomials on SW classes generate the cohomol-
ogy.

Proof. We have:

F2[w1, · · · ,wn] ⊂ H∗(Gn)

Let F2[w1, · · · ,wn]d be the subspace of degree d polynomials on the w’s.

F2[w1, · · · ,wn]d ⊂ Hd(Gn)

Hd(Gn) is a subquotient of Cd(Gn). Meaning it is quotient of a subgroup / subgroup of a quotient [same thing].

Note that:

dimF2
F2[w1, · · · ,wn]d ≤ dimF2

Hd(Gn) ≤ dimF2
Cd(Gn)

We will show this is an equality.

Note that dimF2
F2[w1, · · · ,wn]d is the number of monomials wr11 · · ·wrnn of degree d, meaning we need r1 +

2r2 + · · ·+ nrn = d.

dimF2 C
d(Gn) is the number of schubert symbols 1 ≤ σ1 < σ2 < · · · < σn of dimension d, meaning d =

∑
i(σi−i).

We claim they are in bijection as follows:

rn + 1 < rn + rn−1 + 2 < · · · < rn + rn−1 + · · ·+ r1 − n

Thus all three dimensions are equal. Therefore,

F2[w1, · · · ,wn] = H∗Gn

Furthermore, we can deduce that ∂ ≡= 0 (mod 2) in C∗Gn.

Corollary 49. We have a classifying map:

H∗(Gn)
c∗−→ H∗(P∞ × · · · × P∞)

wk 7→ σk(a1, · · · , an)
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Thus, H∗(Gn) ∼= H∗(P∞ × · · · × P∞)Sn

c∗ is injective.

Theorem 50 (7.3 Uniqueness). If w(η) = 1 + w1(η) + · · · and w̃(η) = 1 + w̃1(η) + · · · satisfying axioms 1-4,
then w = w̃

Proof. Step 1: By axiom 4, w(γ11) = w̃(γ11).

Step 2: we have

E(γ11) E(γ1)

P 1 P∞c

Recall c∗ : H1P∞↣ H1P1 is an injection so w(γ1) = w̃(γ1).

Step 3: Set ξ = γ1 × · · · × γ1. Then w(ξ) = w̃(ξ).

To see this, ξ = π∗
1γ

1 ⊕ · · · ⊕ πn∗ γ1.

w(ξ) =
∏
i(1 + ai) = w̃(ξ).

Step 4: w(γn) = w̃(γn).

E(ξ) E(γn)

P∞ × · · · × P∞ Gn
c

c∗ is injective on H∗. w(ξ) = w̃(ξ) so c∗ w(ξ) = c∗w̃(ξ) =⇒ w(γn) = w̃(γn).

Step 5: w(η) = w̃(η) when B(η) is CW complex.

To see this, just check:

E(η) E(γn)

B(η) Gn

Step 6: w(η) = w̃(η) for alll η.

Take CW approximation:

E E(η)

B B(η)

w(E) = w̃(E) so w̃(η) = w̃(η).
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Friday, 10/17/2025

Existence of SW Classes following Thom

Uses two things: Thom isomorphism theorem and Steenrod squares.

F2-coefficients understood.

Consider a rank n vector bundle

Rn E

B

z .

Then we have

Rn − 0 E0 E − z(B)

B

=

z(B) zero section.

b ∈ B,Fb = π−1b, Fb0 = π−1b− {0}.

Remark. H∗(Fb, Fb0)
∼= H∗(Rn,Rn − 0) ∼= H∗(Dn, Sn−1) ∼= H̃∗(Dn/Sn−1) =

{
F2, if ∗ = n;

0, otherwise.

Theorem 51 (8.1, Thom). ∃!u ∈ Hn(E,E0) such that ∀b ∈ B,

i∗bu ̸= 0 ∈ Hn(Fb, Fb0) = F2.

∀k ∈ Z, HkE
≈−→ Hk+n(E,E0), x 7→ x ∪ u is an isomorphism.

‘Every bundle behaves like the trivial bundle’.

Corollary 52. Hi(E,E0) = 0 for i < n.

Definition. u ∈ Hn(E,E0) Thom class u = uE .

Theorem 53 (Thom Isomorphism). We have the following isomorphism:

ϕ : HkB → Hk+n(E,E0)

ϕ(X) = π∗x ∪ u

Exercise. Prove 8.1 for trivial bundle. [Use Künneth theorem]

What is ⟨u, relative cycle⟩? This is inner product Hk(E,E0) ⊗ Hk(E,E0) → F2. It ‘counts’ the number of
intersections with the zero sections.
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Steenrod Squares (Generalizes Cup Products)

Axioms:

1) Sqi : Hn(X,Y )→ Hn+i(X,Y ) homology of abelian groups ∀n, i ≥ 0.

2) ‘naturality’ f : (X,Y )→ (X ′, Y ′) then Sqi ◦f∗ = f∗ Sqi.

3) a ∈ Hn(X,Y ).

Sq0 a = a

Sqn a = a ∪ a
Sqi a = 0 when i > n

4) Cartan formula

Sqk(a ∪ b) =
∑
i+j=n

Sqi a ∪ Sqj b
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These axioms look like the axioms of SW classes.

Definition (SW Classes, Thom). Let ϕ be the Thom isomorphism. Then,

wi(ξ) = ϕ−1 Sqi ϕ(1) = ϕ−1 Sqi u

So, when n is the rank of the bundle,

u Sqi u

Hn(E,E0) Hn+i(E,E0)

H0B Hi(B)

1 wi(ξ)

ϕ−1

Sqi

Goal: SW classes satisfy axioms.

Total Steenrod square: Sq(a) = a+ Sq1 a+ Sq2 a+ · · ·+ Sqn a, a ∈ Hn(X,Y ).

Then Sq : H∗(X,Y )→ H∗(X,Y ),Sq = 1 + Sq1 +Sq2 + · · ·.

Cartan: Sq(a ∪ b) = Sq(a) ∪ Sq(b).

Axioms for SW classes:

Axiom 1: w0 ξ = 1,wi ξ = 0 for i > rank ξ follows from 3.

Axiom 2: Naturality:

E E′

B B′

f

f

f : (E,E0)→ (E′, E′
0).

Thom class is natural [meaning f∗uE′ = uE since f is isomorphism on fibers].

Thom isomorphism is natural: f∗ ◦ ϕE′ = ϕE ◦ f
∗
.

Thus, f
∗
wi(ξ

′) = f
∗
ϕ−1 Sqi ϕ(uE′) = ϕ−1

E f∗ Sqi ϕE′(uE′) = [some calculations] = wi(f
∗
ξ′).

Monday, 10/20/2025

Review: F2-coefficients understood. We have vector bundle ξ : Rn → E
π−→ B. We defined E0 = E − z(B), the

complement of the zero section. We defined the Thom class u = uE ∈ Hn(E,E0) so that i∗bu ̸= 0 ∈ Hn(Fb, Fb0)
for all b ∈ B.
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Thom isomorphism theorem: ϕE = ϕ : H∗B → H∗+n(E,E0) given by ϕ(x) = (π∗X) ∪ uE is an isomorphism.

Then we can define SW class of a bundle: wi ξ = ϕ−1 Sqi u.

Recall that Sqi : H∗(E,E0)→ H∗+i(E,E0).

We also have a total version: w(ξ) = ϕ−1 SquE where Sq = 1 + Sq1 +Sq2 + · · ·

Lemma 54. w(ξ ⊕ ξ′) = w(ξ) ∪ w(ξ′).

ALso recall we have the cross product: HiX ⊗HjY → Hi+j(X × Y ) by a⊗ b 7→ a× b.

This comes from: if we have an n-simplex on X × Y given by σ : ∆n → X × Y , then (a × b)(σ) = a(i(pX ◦
σ))b((pY ◦ σ)j) where we have the front i and back j face maps and pX , pY are projections.

Then, a× b = (p∗Xa) ∪ (p∗Y b) and a ∪ b = ∆∗(a× b).

Now, suppose we have two bundles ξ : Rn → E → B and ξ′ : Rn′ → E′ → B′.

Then we can have the cross version of the lemma:

Lemma 55 (X-lemma). w(ξ)× w(ξ′) = w(ξ × ξ′).

Claim: X-lemma implies the lemma.

Proof. w(ξ ⊕ ξ′) = w(∆∗(ξ × ξ′)) = ∆∗ w(ξ × ξ′) = ∆∗(w(ξ)× w(ξ′)) = w(ξ) ∪ w(ξ′).

Now we prove the X-lemma.

Proof. w(ξ × ξ′) = ϕ−1
E×E′(Sq(uE×E′)) = ϕ−1

E×E′(Sq(uE × uE′)).

Cartan =⇒ Sq(a ∪ b) = Sq∪ Sq b, applying ∆∗ we see that Sq(a× b)n = Sq×Sq b.

Thus, = Φ−1
E×E′(SquE × SquE′) = (ϕE × ϕE′)−1(SquE)× (SquE′).

= w(ξ)× w(ξ′).

Recall Axiom 4: w1(γ
1
1) ̸= 0. We want to prove that.

Proof. Let M be the Möbius strip. Then we have (E,E0). We also have (M,∂M). We can collapse the
boundary of the möbius strip to a point which gives us P2. i.e. we have:

H∗(E,E0)
≈−−−−−−−−−→

htpy invariance
H∗(M,∂M)

≈←−−−−−−
good pair

H∗(M/∂M, ∗) ∼= H∗(P2, ∗)

Recall E = E(γ11) ⊂ P2 × R3, [−1, 1]× R/ ∼, (x, t) ∼ (−x,−t).

uE ̸= 0 by definition and H1(E,E0) ∼= H1(P 2), u↔ a.

Then, Sq1 a = a ∪ a ̸= 0 =⇒ Sq1 u ̸= 0.

Thus, w1(γ
1
1) = ϕ−1(Sq1 uE) ̸= 0.
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Chapter 9

For this chapter, Z-coefficients understood.

We want to talk about orientation. Let V be a dimn vector space. Let V0 = V − {0}.

Definition. An orientation for V is a generator µV ∈ Hn(V, V0).

This corresponds to the linear algebra definition for V .

Orientation of V corresponds to ordered bases (b1, ..., bn) for V
(b1,··· ,bn)∼(b′1,··· ,b′n) if determinant of change of basis matrix is positive .

Then, the class of [b1, · · · , bn] maps to the orientation in homology given by σ : ∆n → V where σ(t0, · · · , tn) =∑n
i=1(ti − ti−1)bi.

Now suppose ξ : Rn → E → B is a vector bundle.

Definition. Orientation for ξ is an assignment b 7→ µFb
∈ Hn(Fb, Fb0 ;Z) that is ‘continuous in b’. Meaning,

∀b ∈ B, ∃(U, h) where b ∈ U and,

π−1U
h−→ U × Rn

∀x ∈ U,Fx → {x} × Rn ∼= Rn is o.p.

If there exists such an orientation we call ξ is orientizable.

Theorem 56 (Thom Isom, 9.1). Let ξ : Rn → E → B be an oriented vector bundle.

i) ∃!u = uE ∈ Hn(E,E0) such that ∀b, i∗bu ∈ Hn(Fb, Fb0)
∼= Z is a generator. We call u the Thom class.

ii) ϕ = ϕE : H∗B
≈−→ H∗+n(E,E0) given by ϕ(x) = π∗x ∪ u, this is the THom isomorphism.

Corollary 57. Hk(E,E0) = 0 for k < n.

Hn(E,E0) ∼= Z if B is path connected.

e.g. γ11 is path connected.

H1(E,E0;Z) = H1(P2;Z) = 0

Wednesday, 10/22/2025

Let ξ : Rn → E → B. Recall that an orientation on ξ is a ‘continuous assignment of a point’ b 7→ µFb
∈

Hn(Fb, Fb0 ;Z).

Equivalently, continuous assignment of [b1, · · · , bn] an equivalence class of ordered basis of Fb.

Mn manifold local homology

cont x µx ∈ Hn(M,M − x) ∼= Z
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Puzzle: Mn is smooth, orientable on M ↔ orientation on TM how?

Note that there is expx : TxM → M which is a diffeomorphism near x. Patch them up with orientation
preserving atlas on M . Meaning, (M,A) where transition maps Φβ ◦Φ−1

α are oritentation preserving, meaning
their determinant is positive.

orientation on M orientation on TM

o.p. atlas on M

Exercise 12A: w1(ξ) = 0 ⇐⇒ ξ orientable.

Theorem 58. ξ orientable ⇐⇒ w1(ξ) ∈ H1(B;F2) is 0.

Note that, ∀n,∃ two n-plane bundles over S1 given by ϵn and γ11 ⊕ ϵn−1.

bundles over S1 π0(GLn(R))
≈−−→
det
{±1}clutching

Bundles over I are trivial.

ξ : Rn → E → B homomorphism [orientation character] w̃ : π1B → {±1}.

ϵn E(γ)

I S1exp

E(γ) ∼= I×Rn

(0,v)∼(1,Av) where A ∈ GLn(R).

w̃[γ] =

{
+1, if γ∗ϵ trivial;

−1, if γ∗ϵ non-trivial.

Essentially, given a loop we walk around it to see if my right hand becomes my left hand.

By UCT and Hurewicz theorem,

H1(B;F2) ∼= Hom(H1B,F2) ∼= Hom(π1B, {±1})

w1(ξ)←→ w̃

They correspond for γ11 so they correspond for γ.

P∞ = G1(R∞)→ Gn(R∞) is isomorphism on π1. Meaning,

π1P∞ → π1Gn(R∞)
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by cellular approximation [they have the same 1-skeleton and thus 1-cells. Recall the 1-skeleton contains some
Schubert cells with dimension 1. So any path on Gn(R∞) is homotopic to one in G1(R∞)]. It is 1− 1 because
of w1.

Therefore, they correspond for γn. Thus, w⇝ w̃ for general ξ.

Milnor-Stasheff uses oriented grasmanian G̃n(R∞) to show that H1(G̃n(R∞);F2) = 0.

Theorem 59 (Thom Isomorphism Theorem). ξ : Rn → E → B. We have a Z-coefficient version and a
F2-coefficient version. In other words, we have a general manifold version and an oriented manifold version.

We can then state the theorem in a fancier way:

H∗(E,E0) is a free rank 1 module over H∗B with a generator [the thom class] in degn. This works for both Z
and F2 coefficients.

The module action is given by the cup product. For x ∈ H∗B and a ∈ H∗(E,E0), we can first take the pullback
π∗x of x into H∗E. Then,

x · a := (π∗x)︸ ︷︷ ︸
H∗E

∪ a︸︷︷︸
H∗(E,E0)

.

Then H∗B ∼= H∗+n(E,E0) = H∗B ∪ uE

Proof 1. We use the Serre Spectral Sequence. We look at the relative fibration:

(F, F0) (E,E0)

B

We then have the machine that computes the cohomology of the total space in terms of the cohomology of the
base with coefficients in the fiber:

E2 = Hp(B;Hq(F, F0)) =⇒ Hp+q(E,E0)

0

n H∗(F, F0)

0

[Take M622 for more information].

Friday, 10/24/2025

ξ : Rn → E → B

Theorem 60 (Thom Isomorphism). Here Z-coefficient if oriented, else F2.

Then H∗(E,E0) is free rank 1 module over H∗B. Generator uE ∈ Hn(E,E0).
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Theorem 61 (Thom Isomorphism). ϕ : H∗B
≈−→ H∗+n(E,E0), ϕ(y) = π∗y ∪ uE .

Theorem 62 (Thom Isomorphism for Homology).

H∗B
≈←− H∗+n(E,E0)

It is given by cap product with the Thom class.

We did first proof via spectral sequences.

Second proof: Mayer-Vietoris.

Proof. Case 1: Trivial bundle.

Here (E,E0) = B× (Rn,Rn0 ). In (E,E0) we have H
∗ = H∗B⊗H∗(Rn,Rn0 ) is free rank 1 by Künneth theorem.

Case 2: B = B′ ∪B′′ open cover. Assume Thom Isomorphism Theorem holds for ξ
∣∣
B′ , ξ

∣∣
B′′ and ξ

∣∣
B′∩B′′ .

Write B∩ := B′ ∩B′′. Let E∩ = π−1(B∩) and E∩
0 = π−1

0 (B∩).

Question: why is this a thom class?

We have the relative Mayer-Vietoris exact sequence:

· · · Hn(E,E0) Hn(E′, E′
0)⊕Hn(E′′

0 , E
′′
0 ) Hn(E∩, E∩

0 ) · · ·

u (u′, u′′) 0

Thus we must have u′ 7→ u∩ ←[ u′′.

Now we can use a 5-lemma argument:

HiB HiB′ ⊕HiB′′ HiB∩

Hi+n(E,E0) Hi+n(E′, E′
0)⊕Hi+n(E′′, E′′

0 ) Hi+n(E∩, E∩
0 )

ϕ∼= ϕ∼=

So, HiB
ϕ,∼=−−→ Hi+n(E,E0).

Case 3: Finite cover B = B1 ∪ · · · ∪Bk such that ξ
∣∣
Bi

is trivial for ∀i.

Use induction and Case 2: (B1 ∪ · · · ∪Bk−1) ∪Bk.

Thus Thom isomorphism holds if B is compact.

Case 4: General case. Then use limits. Too hard.

Proof. Third proof. Assume ξ is smooth n-bundle, B is a k-dimensional smooth closed manifold.

We can give ξ a metric ∥·∥ : E → R.
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Disk bundle D(E) = {e ∈ E | ∥e∥ ≤ 1}.

S(E) = {e ∈ E | ∥e∥ = 1}.

Then (D(E), S(E))→ (E,E0) gives isomorphism H∗ and H∗

D(E) is a compact manifold with ∂D(E) = S(E).

Let PDB and PDDE be Poincaré (Lefschetz) duality isomorphims. Define thom class to P-L dual of zero
section.

uE := PDDE(z∗[B]) ∈ Hn(DE,SE)

Here z is the zero section.

ϕ(y) = π∗y ∩ uE
claim
= PDDE(inc∗ PDBy).

For the claim see Bredon’s topology and geometry book page 369.
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Monday, 10/27/2025

Chapter 9

Consider an oriented vector bundle ξ :

Rn E

B

π .

Definition. Euler Class e(ξ) ∈ Hn(B;Z) is the image of the Thom class:

Hn(E,E0) HnE HnB

u e(ξ)

π∗

∼=

∈ ∈

Three uses:

Proposition 63 (11.12). Mn closed, oriented manifold then,

⟨e(TM), [M ]⟩ = χ(M)

Where χ is the Euler characteristic.

Proposition 64. Euler class is the first obstruction to the existence of a nowhere zero section.

Thus, dimB < n =⇒ ξ has a nowhere zero section.

dimB = n, e(ξ) = 0 =⇒ ξ has a nowhere zero section.

Thus, Mn closed, oriented, χ(M) = 0 =⇒ ∃ nowhere zero vector field.

If Xn ⊂M2n closed, oriented then,

⟨e(ν(X ↪→M)), i∗[X]⟩ = self intersection # of X

= X ·X = ⟨PDM [X], [X]⟩

For example, ⟨e(CPn ↪→ CP 2), [CP 1]⟩ = 1

Non-oriented clase:

⟨e(ν(X ↪→M)), i∗[X]⟩ = X ·X mod 2.

Example: consider M = RP 2.
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[We pertrube a bit since considering the intersection doesn’t really make sense]

Then e(ξ) mod 2 = wn(ξ).

Note that X ·X mod 2 = X ·X ′ mod 2.

Basic Properties, Milnor-Stasheff 9.2

i) 9.2 e(ξ) is natural. i.e. It is a characteristic class. If f : ξ′ → ξ is a bundle map [meaning there is an
isomorphism on the fibers]

E′ E

B′ B

f̃

f

Then e(f∗ξ) = f∗e(ξ).

ii) 9.3 ξ reversing orientation on ξ gives us e(ξ) = −e(ξ).

iii) 9.4 n odd =⇒ 2e(ξ) = 0, ξ ∼= ξ [oriented vector bundle]. v 7→ −v, then e(ξ) =
9.2

e(ξ) = −e(ξ).

If Mn is closed and oriented, then ξ(Mn) = 0, e(TM) = 0.

χ(RP 2) = 1, e(TRP 2) ̸= 0

So, if HnB is torsion free and n is odd, then e(ξ) = 0.

If e(ξ) ̸= 0, n odd then e(ξ) ∈ Hn(B) has order 2. Thus there exists a nontrivial torsion summand of HnB.

Question: does there exists unique oriented ξ : Rn → E → B with n odd so that e(ξ) ̸= 0?

Proposition 65. 9.4. 12 : e(ξ) = ϕ−1(u ∪ u).

Proof. ϕ(e(ξ)) = π∗e(ξ) ∪ u = u
∣∣
E
∪ u = u ∪ u.
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u u u ∪ u

Hn(E,E0)⊗Hn(E,E0;F2) H2n(E,E0;F2)

HnE ⊗Hn(E,E0;F2)

u
∣∣
E

u

Proposition 66. Hn(B;Z)→ Hn(B,F2) has e(ξ) 7→ wn(ξ).

Proof. e(ξ) 7→ ϕ−1(u ∪ u) = ϕ−1(Sqn u) = wn(ξ)

Proposition 67 (9.6). a) e(ξ × ξ′) = e(ξ)× e(ξ′).

b) e(ξ ⊕ ξ′) = e(ξ) ∪ e(ξ′).

Proof. a) Follows from uE×E′ = uE × uE′ .

b) Apply ∆∗ to a.

Proposition 68 (9.7). If ξ has a nowhere zero section then e(ξ) = 0.

Proof. If B is paracompact we can choose a metric. Then, ξ = ϵ1 ⊕ (ϵ1)⊥ → e(ξ) = 0 ∪ e((ϵ1)⊥) = 0.

We use CW approximation for general case.

In general, e(ξ ⊕ ϵ1) = 0. Thus, the Euler class is not stable, in contrast to the Stiefel-Whitney classes, where
they are stable w.r.t. ‘adding’ trivial bundles.

Wednesday, 10/29/2025

Crash Course in Intersection Theory

• Transversality

• Isotopy invariance

• Intersection numbers

• Thom transversality theorem

• Tubular neighborhood theorem

• Explicit PD

• Alg Int # = Gem Int #.
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Transversality

Consider submanifolds A,B of M .

Definition. A ⋔ B [A and B intersect Transfversly] means ∀x ∈ A ∩B, TxA+ TxB = TxM .

Figure 4: Transverse

Figure 5: Not transverse

Theorem 69. A ⋔ B. Then,

• A ∩B is a manifold.

• ν(A ∩B ↪→ A) ∼= ν(B ↪→M)
∣∣
A∩B .

Furthermore, dimA− dimA ∩B = dimM − dimB.

Recall that ν(B ↪→M) = (TB)⊥ ⊂ TM
∣∣
B
.

ν(B ↪→M) =
TM |

B

TB .
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Theorem 70. All submanifolds A,B where A is isotopic to A′, A′ ⋔ B.

Slogan: “Transversality is generic”. i.e. it is a dense open condition.

We can pertrube A to make it transverse.

Recall isotopy means homotopy through embeddings.

Intersection Numbers

Assume now that An ⋔ Bk ⊂Mn+k.

This implies that TxA⊕ TxB = TxM . Assume further that |A ∩B| <∞. e.g. M is compact.

Then we can define the mod 2 interserction number: |A ∩B| mod 2.

Now assume A,B,M are all oriented.

For x ∈ A ∩B we can define:

ϵx =

{
+1, if orientation of TxA⊕ TxB and TxM match;

−1, otherwise.

A ·B =
∑

x∈A∩B
ϵx .

There M = T 2, A ·B = 1− 1 + 1.

Theorem 71. A,B,M are closed then A ·B is isotopy invariant.

First Proof. ‘Geometric’
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Second Proof. ‘Homological’.

A ·B = ⟨PDM [A] ∪ PDM [B], [M ]⟩ ∈ Z

Observe that A not transverse to B can derive that A ·B := A′ ·B′.

Consider M = R2, A = S1 and B = I. Then, A ·B is not isotopy invariant.

Figure 6: A ·B is not isotopy invariant in this case

Suppose ∂M ̸= ∅, submanfiold A of F is called proper if ∂A = A ∩ ∂M .

Theorem 72. If An, Bk are proper submanifolds of Mn+k where B is closed and A,M are compact, and
suppose that A ⋔ B, then A ·B is isotopy invariant.
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Figure 7: Here A ·B = 1

Corollary 73. For closed A,B ⊂M,A ·B is isotopy invariant.

Warning: A,B ⊂M proper then A ·B is not isotopy invariant.

Theorem 74 (Thom Intersection Theorem). Suppose we have a smooth bundle ξ : Rn → E → Bk with metric
on ξ and B closed.

Recall that the thom class uE = PDEz∗[B] ∈ Hn(DE,SE) = Hn(E,E0) where z is a zero section.

If An ⊂ D(E) is a proper compact submanifold, then,

A · z(B) = ⟨uE , z∗[B]⟩ ∈

{
Z, if oriented;

F2, otherwise.

Proof. After isotopy of A, assume ∃ neighborhood of z(B) such that each component A ∩ V lies in a fiber.
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Friday, 10/31/2025

We are moving on to chapter 11.

Let Mn ⊂ An+k submanifold.

Theorem 75 (11.1 Tubular Neighborhood Theorem). ∃ embedding ν(M ↪→ A) ↪→ A which is ‘identity’ on M .

Proof. (When A is compact): Give TM a metric. Consider exp : TM →M as follows:

exp(v) = γ′(1) where γ : [0, 1]→M geodesic where γ(0) = π(v) and γ′(c) = v

We start at the base point and run in the direction of v.

∃ϵ > 0 such that exp
∣∣ ◦
Dϵ(ν) ↪→ A.

Note that E(ν) ∼=
◦
Dϵ(v) by scaling.

E(ν) ↪→ A, (−ϵ, ϵ) ∼= R.

Corollary 76 (11.2). If M is losed in A then restriction maps are isomorphisms:

H∗(A,A−M)
∼=−−−−−→

excision
H∗(N,N −M)

∼=−−−→
TMT

H∗(E(ν), E(ν)0)

Here N is the tubular neighborhood: im(E(ν) ⊂ A).

Definition. Thom class uM ∈ Hn(A,A−M) maps to uν .

uM ∈ Hn(−;F2)

uM ∈ Hn(−;Z) if ν is oriented, e.g. A,M are oriented.

Remark. X ⋔M . [x] ∈ Hn(A,A−M).

⟨uM , [x]⟩ ∈M ·X.
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Theorem 77 (11.3).

Hk(A,A−M)
i∗−→ HkA

j∗−→ HkM

a) If M is closed in A then,

j∗i∗uA =

{
wk(ν)
e(ν)

}
if ν is

{
oriented

}
b) If M ⊂ A but closed in manifolds,

i∗uM = PD[M ] ∈

{
Hk(A;F2), if ;

HkA, if A and M both oriented.

Proof. b: explicit Poincaré Duality: Poincaré Dual of submanifold in the image of Thom class of its normal
bundle.

HnA HkA

[M ] imuM

∈

a: oriented case ‘Essentially definition of Euler class’

uM

Hk(N,N −M) Hk(A,A−M) HkA

Hk(E(ν), E(ν)0) Hk(E(ν)) HkM

uν e(U)

TNT

∼= i∗

j∗

∼=

In the non-oriented case, with F2-coefficients, need:

Hk(E(ν), E(ν)0;F2) Hk(M ;F2)

uν wk(ν)

[See 95]

Applications:

Corollary 78 (11.3a). =⇒ Cor 11.4. Mn ⊂ Rn+k closed subset then,

0 = wk(ν) = wk(TM).

If M ⊂ Rnk is oriented, then e(ν) = 0.
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Recall that w(ξ) w(ξ) = 1.

w(ξ) = w(ξ)−1 = 1
1+(w1 +w2 +··· )

= 1 + (w1 +w2 + · · · ) + (w1 +w2 + · · · )2 + · · ·

Recall Mn ↪→ Rn+k immersion implies wl(TM) = 0 for l > k.

When n = 2l, w(TPn) = 1 + a+ an.

w(TPn) = 1 + a+ · · ·+ an.

Therefore, RPn does not immerse into R2n−2.

We can go down one further dimension RPn doesn’t embed in R2n−1. In particular, RP 2 ̸↪→ R3.

Now, consider the open Möbius strip M .

M ↪→ R3 but w1(TM) ̸= 0 =⇒ w1(TM) ̸= 0

This means M ̸↪→ R3 as closed subset.

Monday, 11/3/2025

Chapter 11

Goals: Euler class of a closed manifold integrated over the whole manifold is the Euler characteristic:

⟨e(T ), [M ]⟩ = χ(M)

Another goal: Wu’s formula for wk(TM).

Review:

Euler class e(ξ) ∈ Hn(B;Z) is the image of the Thom class:

u ∈ Hn(E,E0)→ HnE
π∗

←−∼= HnB ∋ e(ξ)

Submanifold Mn ⊂ An+k.

11.2: If M is closed in A, then,

uν ∈ Hk(E(ν), E(ν)0) ∼=
T.N.T.

Hk(N,N −M)
∼=←− Hk(A,A−M) ∋ uM

Milnor-Stasheff class uM as u′.

Intution for uM : ⟨uM , [X]⟩ =M ·X.

11.3: uM ∈ Hk(A,A−M)
i∗−→ HkA

j∗−→ HkM
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a) M closed in A implies uM 7→ wk(ν). ν oriented implies uM 7→ e(ν).

b) M,A closed manifolds implies uM 7→ PDA[M ].

Application of 11.3(b): Xk ⋔Mn ⊂ A, all closed and oriented. In that case,

M ·X = ⟨uM , [X]⟩ = ⟨PD[M ], X⟩ = ⟨PD[M ] ∪ PD[X], [A]⟩, the algebraic intersection number.

In the case An+k closed and oriented, then, we have algebraic integral pairing:

HnA

tor
⊗ HkA

tor
→ Z

a⊗ b 7→ ⟨a ∪ b, [A]⟩

Choose Z-basis {ek}, that gives us ⟨ei ⊗ ej , [A]⟩. It’s a symmetric matrix, and P.D. implies det = ±1.

Tangent Bundle

‘Normal bundle of the diagonal bundle is the tangent bundle of the manifold.’

Define diagonal map ∆ :M →M ×M,∆(x) = (x, x).

Figure 8: Diagonal Map

Consider curve α : R→M ×M . Then we in fact have two maps: α = (α1, α2) where αi : R→M .

Therefore, T (M ×M) = TM × TM .

Notice that for any curve γ : R→M we can find a new curve (γ(t), γ(−t)) : R→M ×M .

These give us lemma 11.5

Lemma 79 (11.5). ∃ bundle map:
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v (v,−v)

TM ν(∆(M) ↪→M ×M)

M M ×M∆
∼=

Therefore TM = ν(∆ ↪→M ×M).

Now we jump into the algebraic topology.

Hn(M ×M,M ×M −∆M)→ Hn(M ×M)

u∆M 7→ u′′

Here u′′ is the ‘diagonal cohomology class’. u′′ = PDM×M [∆].

Lemma 80 (11.8). (1× a) ∪ u′′ = (a× 1) ∪ u′′ for a ∈ H∗M .

Sketch. ∆M ↪→M ×M is symmetric in the two factors.

Lemma 81 (11.9). When M is closed, if we take the ‘slant product’ then u′′/[M ] = 1 ∈ H0M

Proof ommitted.

Products

Recall: Cup products ↔ cross products. Implies cohomology is a ring.

Cap products imply homology is a module over cohomology ring. It corresponds to ‘slant prduct’.

/ : Hp+q(X × Y )⊗HqY → HpX

a⊗ z 7→ a/z

It is supposed to be like a fraction.

It is also related to the cross product: (a× b)/β = ⟨b, β⟩a.

This can work as a definition if coefficients are in a field. Theorem for general coefficients.

Definition (Slant Product). At the cochain level: take f ∈ Hp+q(X×Y ) and σ : ∆q → Y , then for any p-chain
τ ,

(f/σ)(τ) = f(pσ × τ)

[Note: this is not quite right]
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Wednesday, 11/5/2025

Recap:

Slant product / : Hp+q(X × Y )⊗HqX → HpY . p⊗ β 7→ p/β.

Main idea: if a ∈ HpX, b ∈ HqY then (a× b)/β = ⟨b, β⟩a.

−/β is H∗X-linear: ((a× 1) ∪ p)/β = a ∪ (p/β).

If M is oriented assume field coefficient F . Otherwise assume F2-coefficients.

Now assume that Mn is closed and smooth. Hn(M ×M,M ×M −∆) ∋ u∆, the thom class of the diagonal.
u∆ maps to u′′ ∈ Hn(M ×M). It is called the diagonal cohomology class, which is the Poincaré dual to ∆M .

Recall when n ∈ dimB − dimA, we have Hn(B,B − A) ∼= Hn(E(ν), E(ν)0) where ν is the normal bundle by
excision and tubular neighborhood theorem.

11.8: ∀a ∈ H∗M, (a× 1) ∪ u′′ = (1× a) ∪ u′′, symmetry.

11.9: u′′/[M ] = 1 ∈ H0M .

Proof omitted.

11.10: Duality Theorem: ∀ basis b1, · · · , br forH∗M there exists dual basis b#1 , · · · , b#r so that ⟨bi∪b#j , [M ]⟩ = δij .

11.11 u′′ =
∑
i(−1)|bi|bi × b

#
i ∈ Hn(M ×M).

11.10 ⇐⇒ I : H∗M ⊗F H∗M → F given by a ⊗ b 7→ ⟨a ∪ b, [M ]⟩ is a perfect pairing, thus dimHpM =
dimHn−pM = dimHn−pM .

Suppose A,B are Λ-modules where Λ is a commutative ring. then A ⊗Λ B → C is perfect pairing if A
≈−→

Hom(B,C) and B
≈−→ Hom(A,C). In our example the perfect pairing comes from the bilinear map.

Proof. We prove 11.10 and 11.11.

By Künneth theorem we can write Hn(M ×M) ∋ u′′ = b1 × c1 + · · ·+ br × cr.

11.8 =⇒ (a× 1) ∪ u′′ = (1× a) ∪ u′′. By taking slat with fundamental class,

((a× 1) ∪ u′′)/[M ] = ((1× a) ∪ u′′)/[M ]

a ∪ (u′′/[M ]) = (1× a) ∪
(∑

j bj × cj
)
/[M ]

a =
(∑

j(−1)|a||bj |(1 ∪ bj)× (a ∪ cj)
)
/[M ].

a =
∑
j(−1)|a||bj |⟨a ∪ cj , [M ]⟩bj .

Now take a = bi. The bi are a basis. Therefore, taking a = bi we see:

bi =
∑
j

(−1)|bi||bj |⟨bi ∪ cj , [M ]⟩ = δij

Define b#j = (−1)bjcj .
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⟨bi ∪ b#j , [M ]⟩ = δij

u′′ =
∑
i(−1)|bi|bi × b

#
i

When M = RP 2, u′′ = 1× a2 + a× a+ a2 × 1 ∈ H2(R2 × RP 2).

Corollary 82. When Mn is closed, smooth and oriented, ⟨e(TM), [M ]⟩ = χ(M).

When Mn is closed and smooth, ⟨wn(TM), [M ]⟩ ∼= χξ(M) mod 2,

Proof. Oriented case: claim e(TM) = ∆∗u′′.

uTM e(TM)

Hn(TM, TM0) Hn(M ×M)

Hn(E(ν : ∆ ↪→M ×M), E(v)0) Hn(M ×M,M ×M −∆) H∗(M ×M)

u∆ u′′

∼=
∼=

∆∗

Let ∆′ be isotopic copy of ∆ such that ∆′ ⋔ ∆.

Then ∆′ ·∆ = ⟨e(ν), [∆]⟩ − ⟨e(TM), [M ]⟩ = χ(M)

THus, χ(M) is the self intersection number of the diagonal ∆M ↪→M ×M

Corollary 83. If M has a nowhere zero vector field then χ(M) = 0.

Proof. Suppose otherwise. Then M has a non-zero vector field implies ∆M has a non-zero normal vector field.
“Flow” implies ∃∆′ such that ∆′ ∩∆ = ∅.
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Thus, χ(M) ̸= 0 =⇒ can’t comb hairy M .

Recall χ(M) = (−1)i dimHi(M,Q) =
∑
i(−1)i(#-of i-cells).

=
∑
i(−1)i dimHi(M,Fp).

Friday, 11/7/2025

Wu classes / Wu Formula / Wu Theorem

Coefficients in F2 understood.

Wu classes are polynomials of whitney classes.

v0 = w0 = 1

v1 = w1

v2 = w2
1 +w2

v3 = w1 w2.

They’re defined as following:

Definition (Total Wu Class).
v = v0 +v1 +v2 + · · ·

w = Sq v

i.e. v = Sq−1 w = (1 + Sq1 +Sq2 + · · · )−1 w.

Proposition 84 (Wu’s Formula, Execrise 8A). Sqk wm is ‘something in the cohomology of the Grassmanian’,
so it must be some polynomial over Stiefel Whitney Classes.

Sqk wm =
∑
i

(
k −m
i

)
wk−i wm+i

Hint on 8A:

H∗(Gn) ∼= H∗(Pm × · · · × Pm)Sn

wi 7→ σi(a1, · · · , an)

Compute Sqi using Cartan.

eg Sq1 w2 = w1 w2 +w3.

Computation:
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w = Sqv = (1 + Sq1 +Sq2 + · · · )(v0 + v1 + v2 + · · · )

Then, 1 = w0 = v0.

w1 = v1

w2 = Sq1 v1 +v2 =⇒ w2 = w2
1 +v2

w3 =���
Sq2 v1 + Sq1 v2 +v3 = Sq1 w2

1 +Sq1 w2 +v3

=
((((((((((((((

Sq0 w1 Sq
1 w1 +Sq1 w1 Sq

0 w1︸ ︷︷ ︸
cartan

+w1 w2 +w3︸ ︷︷ ︸
Wu Formula

+v3

Now, suppose we have Mn a closed n-manifold.

Theorem 85 (Wu Theorem). Let v(TM) be the total Wu class of a tangent bundle.

⟨v(TM) ∪ −, [M ]⟩ = ⟨Sq(−), [M ]⟩

i.e. if x ∈ Hn−kM then vk(TM) ∪ x = Sqk x.

i.e. ⟨vk(TM) ∪ x, [M ]⟩ = ⟨Sq(−), [M ]⟩.

Corollary 86. Let M ≃
h
M ′ be homotopy equivalent manifolds. Then, w(TM) = h∗ w(TM ′).

Sketch. Wu classes are determined by algebraic topology. Thus, homotopy equivalent implies same algebraic
topology which implies same Wu class which implies same Stiefel-Whitney class.

We can connect this to intersection forms.

Definition (Algebraic Intersection Form). IM : H∗M ⊗H∗M → F2.

IM (a⊗ b) = ⟨a ∪ b, [M ]⟩

We write a · b = IM (a⊗ b). By Poincaré duality it is a perfect pairing, thus it is a non-singular pairing.

Key application of Wu’s Theorem

Suppose n = 2k. M is a closed n-dimensional manifold.

⟨vk(TM) ∪ x, [M ]⟩ = ⟨Skk x, [M ]⟩ = ⟨x ∪ x, [M ]⟩

Thus, for x ∈ HkM :

vk(TM) · x = x · x .

Now we restrict to the middle dimensional homology.

ÎM : HkM2k ⊗HkM2k → F2
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Definition. ÎM is even if ∀a, ÎM (a⊗ a) = 0.

⇐⇒ if βi is a basis for HkM then the matrix (βi · βj) has even # on the diagonal.

Then,

Theorem 87 (Wu’s Theorem).

vk(TM
2k) = 0 ⇐⇒ ÎM is even

Example: Suppose n = 2. Then v1 = w1.

v1 = 0 ⇐⇒ M2 orientable ⇐⇒ ÎM is even (eg Torus).

Matrix:



[
0 1
1 0

]
. . . [

1 0
0 1

]


v1 ̸= 0 ⇐⇒ ÎM is odd. e.g. RP 1 · RP 1 = 1 in RP 2.

Let K be the Klein bottle. Then ÎK has matrix

[
0 1
1 1

]
since b · b = 1 and a · a = 0.

Figure 9: Klein Bottle

e.g. RP 4 : w1 ̸= 0,w2 = 0, v2 ̸= 0 thus RP 2 · RP 2 = 1.

Further example: CP 1 · CP 1 = 1.

Corollary 88. Orientable 4-manifold: ÎM is even ⇐⇒ w2(TM) = 0 ⇐⇒ v2(TM) = 0.

To prove Wu’s theorem we need an additional lemma:

Lemma 89 (11.3).
w(TM) = Sq(u′′)/[M ]

Where u′′ ∈ Hn(M ×M) the diagonal cohomology class dual to ∆M .

Proof. We assume the lemma is true. In that case,
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IM is perfdect pairingm thus non-singular, thus ∃!v̂ ∈ H∗M such that ⟨v̂∪−, [M ]⟩ = ⟨Sq(−), [M ]⟩ : H∗M → F2.

WTS: v̂ = v(TM).

WTS: Sq v̂ = w(TM).

Choose basis bi for H
∗M and dual basis b♯i i.e. bi · b

♯
j = δij [11.10]

Then, 11.11 =⇒ u′′ =
∑
i bi × b

♯
i .

11.10: v̂ =
(∑

i v̂ · b
♯
i

)
bi =

∑
i⟨Sq(b

♯
i), [M ]⟩bi

=⇒ Sq v̂ =
∑
i⟨Sq(b

♯
i), [M ]⟩Sq bi

Cartan and 11.11 implies,

Sq v̂ =
∑
i(Sq(bi)× Sq(b♯i))/[M ] = Sq(u′′)/[M ] = w(TM).

Monday, 11/10/2025

Recap: Wu classes: Sq v = w.

Wu formula:

Sqk wm =
∑
i

(
k −m
i

)
wk−i wk+i

Using these, we can find out: v1 = w1, v2 = w2
1 +w2, v3 = w1 w2.

Wu’s Theorem: If M is a closed manifold and x ∈ H∗(M ;F2) then,

⟨v(TM) ∪ x, [M ]⟩ = ⟨Sqk(x), [M ]⟩

Corollary 90. If k > dimM
2 then vk(TM) = 0.

Proof. ∀x ∈ Hn−k(M ;F2)

⟨vk(TM) ∪ x, [M ]⟩ = ⟨Sqk(x), [M ]⟩ = ⟨0, [M ]⟩ = 0

If k = dimM
2 then ⟨vk(TM) ∪ x, [M ]⟩ = ⟨x ∪ x, [M ]⟩ which is the ‘self intersection’ number.

Application to 3-manifolds

Let M3 be closed, wi = wi(M), vi = vi(TM).

Theorem 91. a) All SW numbers of M3 vanish.
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b) M3 orienatable implies w1 = w2 = w3 = 0.

Proof. dimM
2 =⇒ v2 = 0, v3 = 0. Then w2

1 = w2 and w1 w2 = 0. So w3
1 = 0. χ(M3) = 0 =⇒ w3 = 0 [recall

χ(Mn) ≡ ⟨wn(TM), [M ]⟩ (mod 2), apply PD].

For part b: w1 = 0 =⇒ w2 = 0,w3 = 0.

a + Thom’s theorem =⇒ M3 = ∂W 4 compact, i.e. every 3-manifold is the boundary of a compact 4-manifold.

b + obstruction theorem =⇒ oriented closed 3-manifold M3 has trivial tangent bundle, “paralellizable”
[Problem 12-13].

Gysin Sequence

It’s a long exact sequence. Consider the vector bundle

Rn E

B

π .

a) ∃ LES:

· · · → Hj−n(B;F2)
−∪wn−−−−→ Hj(B;F2)

π♯

−→ Hj(E0;F2)→ Hj−n+1(B;F2)→ · · ·

b) If oriented, ∃ LES:

· · · → Hj−n −∪e−−−→ HjB → HjE0 → Hj−n+1B → · · ·

c) If oriented with metric,

· · · → Hj−nB
−∪e−−−→ HjB → Hj(S(E))→ · · ·

Recall, suppose we have a trivial bundle. H∗E0 = H∗(B × (Rn − 0)) = H∗(B × Sn−1) = H∗B ⊕ H∗+n−1B
[Künneth]. Since in trivial bundle, − ∪ e is 0 this works!

Proof. b: LES of pair (E,E0):

Hj(E,E0) HjE HjE0 Hj+1(E,E0)

Hj−n HjB

Hj−nB

∼= −∪u
−∪u|

E ∼=

∼=
−∪e

2nd proof: SSS tp

S1 E

S2

.

Classified by e ∈ H2(S2). eg E = S3, S1 × S2, Ln lens spaces, e = 0, 1, n.
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Corollary 92 (12.3). Any 2-fold cover
B̃

B

π implies: ∃ξ =
R E

B

such that,

SE B̃

B

∼=

and LES:

· · · → Hj−1(B;F2)
−∪w1−−−−→ Hj(B;F2)→ Hj(B̃,F2)→ · · ·

‘Smith exact sequence, Hatcher’

Proof. Let E := B̃×R
(x,t)∼(x′,−t)

Where π(x) = π(x′), x ̸= x′.

Use Gysin. e.g.

S2

P 2

or

T 2

K2

.

G̃n(Rn+k) = oriented n-planes in Rn+k. This is Vn(Rn+k)/SO(n).

Vn(Rn+k) = {(v1, · · · , vn) | vi ∈ Rn+k; vi · vj = δij} ⊂ Rn+k × · · · × Rn+k

SO(n) = {A ∈MnR | AAt = I, detA = 1}.

G̃n G̃n(R∞) BSO(n)

Gn Gn(R∞) BO(n)

double cover

= =

= =

Then we will have 12.3 (Gysin):

H∗(G̃n;F2) = F2[w2,w3, · · · ]

Friday, 11/14/2025

Today: G̃n and C vector bundles.

Definition (Oriented Grassmanian). G̃n(Rn+k) = oriented n-planes in Rn+k

=
Orthonormal n-frames in Rn+k

Orientation Preserving Rigit motions
=
Vn(Rn+k)
SO(n)
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Then there’s a double cover:

G̃n(Rn+k)

Gn(Rn+k)

The double cover is not trivial. k > 0, G̃n(Rn+k) is connected.

There is a tautological bundle over this space.

E(γ̃n)

G̃n(Rn+k)

Definition 1: E(γ̃n) ⊂ G̃n(Rn+k)× Rn+k.

Definition 2: Pullback:

E(γ̃n) E(γn)

G̃n(Rn+k) Gn(Rn+k)

G̃n = Gn(R∞) = colim
k→∞

G̃n(Rn+k)

Theorem 93.

E(γ̃n)

G̃n

classifies oriented vector bundles over B CW. i.e.

[B, G̃n]

 iso class of
oriented n-planes

bundles /B


f f∗γ̃n

H∗(G̃n)→ H∗B. Here G̃n classifying space, γ̃n universal bundle.

Proof. First: If ξ oriented then any bundle map ξ → γn lifts uniquely to o.p. bundle map ξ → γ̃n

Second: Presentation

SO(n) Vn(R∞) ∗

G̃n

≃
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Then G̃n = BSO(n) = BGL+
n (R).

G̃n
π−→ Gn: non-trivial 2-fold cover. Let γπ be the associated line bundle to the double cover.

H1(Gn,F2) = F2. This is w1.

Therefore, w1(γπ) = w1(γn).

We can change the fiber:

G̃n ×C2 R

S0 G̃n R E(γπ)

Gn Gn

=

Recall 12.3: Gysin sequence for γπ.

0−→ Hj−1(Gn;F2)
−∪w1−−−−→ Hj(Gn;F2)→ Hj(G̃n;F2)

0−→ Hj(Gn;F2)
−∪w1−−−−→

H∗(Gn;F2) = F2[w1, · · · ,wn]. This is a polynomial ring, so multiplying by w1 is injective.

Thus, − ∪ w1 is injective.

Theorem 94 (12.4). H∗(G̃n;F2)/⟨w1⟩ = F2[w2, · · · ,w3]

Remark: there also exists Euler class e(γ̃n) ∈ Hn(G̃n;Z)

If we have an oriented v.b. ξ, then e(ξ) ∈ Hn(B;Z). n odd means 2e(ξ) = 0.

Q(Davis): Find example where e(ξ) ̸= 0, n odd.

A(Mandell): ξ = γ̃3, oriented grassmanian of 3-planes in R∞.

e(γ̃3) ∈ H3(G̃3;Z)

0 ̸= e(γ̃3)
mod−−−→ w3 = w3(γ̃3) ̸= 0.

Puzzles:

1. What 2-dimensional real planes in Cn are complex lines?

2. P176:

real

oriented complex
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Cn-bundle

w Cn E

B

π

MS Definition, of Steenrod GLn(C,Cn)-bundle

Complex projective space CPn = G1(Cn+1).

Complex Grassmanian Gn(Cn+k)

Tautological bundle:

Cn E(γn) Gn(Cn+k)× Cn+k

Gn(Cn+k)

⊂

Universal bundle:

Cn E(γn)

Gn(C∞)

H∗(GnC∞) characterstic classes, Cn-bundle.

H∗(GnC∞,Z) = Z[c1, c2, · · · , cn] are called Chern Classes.

|ci| = 2i.

Cn-bundle R2n-bundle

w w
∣∣
R

Definition. A complex structure on ξ : Rn → E → B is a bundle map:

E(ξ) E(ξ)

B

J

such that J2 = − id. i.e. J(J(v)) = −v.

complex vector bundle real vector bundle with complex structure
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Monday, 11/17/2025

1. Spin(n)→ SO(n)

2. BoH Periodicity:

πiO =



Z/2, if i ≡ 0(8);

Z/2, if i ≡ 1(8);

0, if i ≡ 2(8);

Z, if i ≡ 3(8);

0, if i ≡ 4(8);

0, if i ≡ 5(8);

0, if i ≡ 6(8);

Z, if i ≡ 7(8);

π1U =

{
0, if i ≡ 0(2);

Z, if i ≡ 1(2).

3. Splitting principal

L1 ⊕ · · · ⊕ Ln E

B′ B
f

f∗ injective.

Homotopy

πi(X,x0) = [(Si, ∗), (X,x0)].

i = 0 : π0 ↔ path-component of X.

i ≥ 2: Abelian group.

Suppose X is path connected.

Path γ : I → X with γ∗ : πi(X, γ(0))
≈−→ πi(X, γ(1)). So we can omit x0 from the definition. We can go wrong

sometimes, but we won’t worry about it.

Addition structure:
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πiGLn(R) = Vectn(S
i+1) isomorphisom classes.

Vectn(S
i+1) is

Rn E

Si+1

Proof 1. Clutching.

ξ
∣∣
Hi+1

+

and ξ
∣∣
Hi+1

−
are trivial. ξ is given, Si → GLn(R) by gluing.

Proof 2.

GLn EGLn ∗

BGLn

≃

Then Vectn(S
i+1)

C.S.
= πi+1BGLn ∼=

LES
πiGLn

In general [X,BG] ∼= Iso class of (G,F )-bundle /X.

Classifying Spaces

We have the following groups:

SO(n) GL+
n (R)

O(n) GLn(R)

GL+
n (R) corresponds to orientable bundles.

O(n) corresponds to metrics.

Claim: the horizontal maps are homotopy equivalent
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Proof. Polar decomposition: A ∈ GLn(R) =⇒ A = PO where P is ‘positive’ [i.e. symmetric and positive
definite] and O ∈ O(n).

Then O(n) is a deformation retract of GLn by

((1− t)P + tI)O

Corollary 95. BO(n) ≃ BGLn R

Every bundle over CW-complex admit a metric / unique upto isometry.

Theorem 96. SO(n) is path-connected, π0 O(n)
≈−→ [det]{±1}.

Proof. Pick 0 ̸= a ∈ Rn. Look at reflection through a⊥. Call it Ra.

Then Ra : Rn → Rn, Ra
∣∣
a⊥

= id, Ra(a) = −a.

First, if O ∈ O(n) then O is a product of reflection.

Second, if S ∈ SO(n) then S is a product of even number of reflection.

Third, if a, b are linearly independent then Ra ≃ Rb via Rta+(1−t)b.

Fourth, RaRb ≃ RaRa = id.

This proves the problem. Note that AAt = 1 =⇒ (detA)2 = 1 =⇒ detA ∈ {±1}.

Then SO(n) is path-connected and O(n) has two path components.

Wednesday, 11/19/2025

Let R =


−1

1
. . .

1


Then we have the following split exact sequence:

1 SO(n) O(n) {±1} 1

R −1

det

Then O(n) = SO(n)⋊ {±1}.

π0 O(n) = {±1}.

SO(1) = {1},O(1) = {±1}.

SO(2) = S1,O(2) = S1 ⋊ {±1} the dihedral group.
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Lemma 97. SO(3) ∼= RP 3.

Proof 1. A ∈ SO(3). Then the characteristic polynomial is of degree 3. Thus, A has a real eigenvalue.

Since A ∈ SO(3) the eigenvalue λ = ±1.

Case 1: all eigenvalues are real.

−1 −1
−1

 /∈ SO(3).

Case 2: Other eigenvalues are non-real. Then λ = ±1, µ, µ with λµµ = 1 =⇒ λ = 1.

Thus, there exists ‘axis’ v such that Av = v with v = 1.

i.e. A is a rotation about axis v through angle 0 ≤ θ ≤ π.

SO(3)
≈−→ D3/ ∼= RP 3

A 7→ θ

π
v

Proof 2. S3 = unit quarternions = {a+ bi+ cj + dk | a2 + b2 + c2 + d2 = 1}.

Claim: S3 is a double cover of SO(3). We essentially have to prove that:

1 {±1} S3 SO(3) 1

z (bi+ cj + dk 7→ z(bi+ cj + dk)z)

Lemma 98 (Stability Lemma). Recall SO(n) ↪→ SO(n+ 1) ↪→ · · · by A 7→
[
A 0
0 1

]
.

a) πn−1 SO(n)↠ πn−1 SO(n+ 1)
≈−→ πn−1 SO(n+ 2)

≈−→

b) πn BSO(n)↠ πn BSO(n+ 1)
≈−→ πr BSO(n+ 2)

≈−→

Proof. Fiber bundle.

SO(n) SO(n+ 1) A

Sn A


0
...
0
1

 .

LES on π∗ and π1S
n = 0 for i < n.
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a) LES on π∗ and π1S
n = 0 for i < n.

b)

SO(n) ESO(n) ∗

BSO(n)

≃

πi BSO(n)
≈−→ πi−1 SO(n).

Example:

π1 SO(2) π1 SO(3) π1 SO(4)

TS2 0

≈

π1 SO(n) = Z2 for n > 2. π1 SO(2) = Z.

We define Spin(n) as connected double group of SO(n).

Spin(3) = S3.

0 {±1} S3 × S3 → SO(4) 1

(z, w) (v 7→ zwv)

∆

Spin(4) = S3 × S3.

Spin structure on ξ = Rn → E → B or vector bundle with metrics where B is path-connected.

PSO = {(e1, · · · , en) | π(ei) = π(ei) = π(ej), orthonormal}

Then we can define spin structure to Spinn. i.e.

principal Spin(n):

Spin(n) PSpin(n)

B

Furthermore,

PSpin ×Spin SO PSO

B

≈
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⇐⇒ the following happens:

P PSO

B

Spin SO

Pspin PSO

B

Deine: Spin(n) as conected double cover of Spin(n)

Theorem 99. ξ admits a spin structure ⇐⇒ w2 ξ = 0.

If ξ admits a spin structure then,

spin structures↔ H1(B;Z2)

Proof.

RP∞ BSpin(n)

B BSO(n)

Monday, 12/1/2025

Let ξ = Rn → E → B be oriented with metric.

Theorem 100. ξ admits a spin structure iff w2(ξ) = 0.

If so, spin structure on ξ ↔ H1(B;Z2).

Consider the frame bundle.

SO(n) = SO PSO {(e1, · · · , en) | p(ei) = p(ej), ei O.N.} ⊂ E × · · · × E

B

p

=

spin structure on ξ ↔ α ∈ H1(PSO;Z2) such that i∗α ̸= 0.

↔ α : π1PSO → Z2 such that α ◦ i ̸= 0.
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This gives rise to the double cover

Pspin

PSO

Given the fibration, we have the Serre 5-term exact sequence [with Z2-coefficients]

H1B H1PSO H1 SO H2B H2PSO

{0, g}

δ3

=

This is a consequence of the Serre Spetral Sequence.

Claim: δ3(g) = w2(ξ).

Proof: (i): δ3(g) ∈ H1B is a characteristic class for oriented vector bundle with metric [everything natural, we
have a pullback].

(ii): ‘universal case’:

SO(n) ESO(n) ∗

BSO(n) Ĝn

≃

=

0 H1(SO) H2(BSO(n))

(0, g) (0,w2)

≈

END OF SPIN!

Recall stability lemma:

πk O(k + 1) πk O(k + 2) πk O(k + 3)

πk+1 BO(k + 1) πk+1 BO(k + 2) πk+1 BO(k + 3)

=

≈

=

≈

=

≈

For example,

π1 O(2) π1 O(3) π1 O(4)

Z Z2 Z2

≈

=

Corollary: π2 O(k) = 0 for k ≫ 0.

Corollary 101. Let B be CW complex.

a)

ξ = Rn E

B

n > dimB.
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=⇒ ∃ nowhere zero secttion (⇐⇒ ξ = α⊕ ϵ).

b)

ξ, η = Rn E

B

n > dimB.

ξ ⊕ ϵ ∼= η ⊕ ϵ [stability isomorphism] =⇒ ξ ∼= η isomorphism.

Now we can define stably orthonormal group:

O = colimn→∞O(n)(=
⋃
n

O(n) with topology)

Then πk O = πk O(n) for n ≥ k + 2.

Then we have Bott periodicity

πk O =



Z2, if k ≡ 0(8);

Z2, if k ≡ 1(8);

0, if k ≡ 2(8);

Z, if k ≡ 3(8);

0, if k ≡ 4(8);

0, if k ≡ 5(8);

0, if k ≡ 6(8);

Z, if k ≡ 7(8).

πkU =

{
0, if k ≡ 0(2);

Z, if k ≡ 1(2).

For k ≤ 7, the generators are all Hopf bundles over Sk+1. There are 4 hopf bundles (reals, complex, quarternions,
octonions) and they correspond to the non-zero πk O.

Canonical example: k = 1.

S1 S3 (z1, z2)

CP 1 [z1 : z2] S2∼=

C E(γ1)

CP 1

S3 (z1, z2)

C ∪∞ z1/z2
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Theorem 102 (Splitting Principle). We can have splitting principles for real bundles ξ = Rn → E → B or
complex bundles Cn → E′ → B′.

Assume B,B′ are CW. Splitting principle says ∃ maps F
f−→ B,F ′ f ′

−→ B′ such that:

1) f∗E = L1 ⊕ · · · ⊕ Ln and f ′∗E′ = L′
1 ⊕ · · · ⊕ L′

n, i.e. direct sum of line bundles.

2) These maps are cohomology injections: f∗ : H∗(B;F2)↣ H∗(F ;F2), f
′∗ : H∗(B′;Z)→ H∗(F ′;Z).

idea: We can pretend every vector bundle is a sum of line bundle.

For existence of SW (and chern) classes:

Instead of Steenrod squares, we can try to take f∗ w(E) = w(L1) · · ·w(Ln).

These are just line bundles so we can define them by orientations.

Wednesday, 12/3/2025

Theorem 103 (One Step Splitting Principle). ∃f : P → B, f ′ : P ′ → B′ such that:

1) f∗E = L1 ⊕ E1, (f
′)∗E = L′

1 ⊕ E′
1.

2) H∗(f,F2), H
∗(f ;Z) are injective.

One step splitting principle implies splitting principle by induction.

P will be the projective bundle associated to B.

If V is a vector space we have P (V ) = lines in V = Gr1(V ).

Then we have projective bundles:

RPn−1 P (E)
⋃
P (Eb) = E0/e ∼ λe : λ ̸= 0

B

=

CPn−1 P (E′)

B′

f ′

We have the tautological line bundle:

R L1 {(l, e) | e ∈ l} ⊂ P (E)× E

P (E)

=
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L1 f∗E

P (E)

⊂

Assume B,B′ are CW. Then f∗E = L1 ⊕ (L⊥
1 ).

Theorem 104 (Leray-Hirsch, See Hatcher). Let a = w1(γ
′) ∈ H1(P (E);F2).

Let b = e(γ1) ∈ H2(P (E′))

Then H∗(P (E);F2) is a free H∗(B,F2)-mmodule with basis 1, a, a2, · · · , an−1.

H∗(PE′) is a free H∗B-module with basis 1, b, b2, · · · , bn−1

This implies 1-step S.P. f∗, f ′∗ are injective since {1} is linearly independent.

Grothendieck’s Definition of SW and Chern Classes

LH =⇒ an = sum of basis elements, bn = sum of basis elements.

an =
∑n
i=1 f

∗(ai)a
n−i

bn =
∑n
i=1 f

′∗(bi)b
n−i

Define wiE = ai ∈ H1(B;F2).

ciE
′ = −bi ∈ H2i(B′;Z).

Back to the splitting principle. What are F and F ′?

Flags

Suppose we have vector spae V where dimV = n.

Definition (Flag). F (V ) = {0 ⊊ V1 ⊊ · · · ⊊ Vn = V }

If V has an inner product then F (V ) ∼= F0(V ) = {V = L1 ⊕ · · · ⊕ Ln} where Li are orthogonal lines.

F = F (E), F ′ = F ′(E).

Why are SW classes F2 coefficient but Chern class Z-coefficient

This boils down to O(n) vs U(n).

We have:

(Z2)
n ↪→ O(n)

(S1)n ↪→ U(n)
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Then,

E(γ1)× · · · × E(γ1) E(γn)

RP∞ × · · · × RP∞ (BZ2)
n = B(Z2)

n BO(n) = GrnR∞=
g

E(γ1)× · · · × E(γ1) E(γn)

RP∞ × · · · × RP∞ (BS1)n = B(S1)n BU(n) = Grn Cn=
g

Theorem 105 (Borel).

H∗(BO(n);F2)
g∗

↣ H∗(RP∞ × · · · × RP∞;F2)

im g∗ = F2[a1, · · · , an]Sn .

H∗(BU(n);Z) ≈−→ Z[a1, · · · , an]Sn

This gives us another definition of SW classes and chern class.

g∗ wi(γ
n) = σi(a1, · · · , an) = σi(w1(γ

1), · · · ,wn(γ1))

(g′)∗ci(γ
n) = σ1(b1, · · · , bn)

Monday, 12/8/2025

Chern Classes MS Ch13-14

Recall C-vector bundles:

ω =

Cn E

B

.

This corresonds to a R2n-bundle with acomplex structure:

R2n R2n

E E

B

J

Where J2 = − Id
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Open U ⊂ Cn then TU ∼= U × Cn.

d
dt (t 7→ x+ tv)

∣∣
t=0
←[ (x, v)

U × Cn π−1U

U

≈

J0TU → TU, J0(x, v) = (x, iv)

Let f : U → U where U ⊂ Cn.

f is holomorphic if df ◦ J0 = J0 ◦ df [= analytic = Cauchy-Riemann eqn hold]

M a C-manifold of dimn definitions:

Definition (1). Space M with holomorphic atlas A = {ϕ : Vϕ → U ⊂ Cn} so that ϕ2 ◦ ϕ−1
1 is holomorphic.

Definition (2). M is a manifold of dim 2n with complex structure J : TM → TM such that ∀x ∈ M∃
neighborhood V and a diffeomorphism ϕ : V → U where dϕ ◦ J = J0 ◦ dϕ

Definition (Allmost Complex Manifold). An almost complex manifold is a smooth manifold on a smooth
structure on its tangent bundle.

Examples: Cn is a complex manifold.

CPn are complex manifolds.

Higher dimension torii: Cn/⟨Zn, iZn⟩ are complex manifolds.

CP 1 = S2 are complex manifolds.

Odd dimensional spheres cannot have complex structures.

Question: When do even dimensional spheres have complex/almost complex structures?

S4, S2n for 2n > 6 don’t have almost complex structures.

S6 has almost complex structure.

Axioms:

1) Ci(ω) = H2i(B;Z), C0(ω) = 1, C1(ω) = 0 for i > n.

2) Ci (f
∗ω) = f∗ciω.

3) Ck(ω ⊕ η) =
∑
i+j ci(ω) ∪ cj(η)

4) c1(γ
′) = −uCP 1 ∈ H2(CP 1).

These are called Hopf bundlles

Also 4′: cn(ω) = e(ωR)

C-v.s. maps to oriented v.s.: V → VR.
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(e1, · · · , en) 7→ (e1, ie1, e2, ie2, · · · , en, ien).

R

MnC M2nR

EndC(Cn) EndR

det · det

=

det

=

So GLn(C)→ GLn,+(R)

Theorem 106. H∗(GnC∞) = Z[c1(γn), · · · , cn(γn)]. Algebraically independent.

Existence of Chern Classes

1) Grothendieck: a ∈ H2P (E), an+1 = −
∑

chern classes ai.

2) Borel:

γ1 γ1

CP∞ × · · · × CP∞ GrnC∞c

.

c∗ : H∗Grn(C∞)→
mathbbZ[a1, · · · , an]Sn . Then ci ↔ σ1(a1, · · · , an).

3) MS: ci(ω) =

{
(π∗

0)
−1ci(ω0), if i < n;

e(ωR), if i = n.

Assume inductively that ciϕ is defined for rank ϕ < n.

ω0 =

Cn−1 E0 E − z(B)

B

π0

=

π∗
0ω has nowhere zero section s : E0 → E0 ×B E0 = π∗

0ω, v 7→ (v, v).

ϵ1 ⊂ π∗
0ω.

Then ω0 = π∗
0ω/ϵ

1.

Remark: if ω has a metric then π∗
0ω = ϵ1 ⊕ (ϵ1)⊥

Also, E0
f−→ P (E) then f∗γ1 is trivial.

Wednesday, 12/10/2025

Chern-Weil Theory

c1L =

[
i

2π
Ω

]
∈ H2

DRM

Ω is curvature of a metric connection
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Complex Theory of Connection

Let

Cn E

M

be a smooth C v.b. over a smooth (real) manifold.

Γ(E) = smooth section

E

M

s

Let Ωi(M ;E) be i-forms with values in E.

Ω0(M ;E) = Γ(E).

Ω1(M ;E) = Γ(T ∗M ⊗R E) = Γ(Hom(TM,E)).

C∞M = smooth M → R.

Ωi(M ;E) = Γ(ΛiT ∗M ⊗ E)

Definition. A connection on E is a C-linear map ∇ akin to derivative given by:

∇ : Ω0(M ;E)→ Ω1(M ;E)

which satisies the Liebniz law:

∇(fs) = df ⊗ s+ f∇s

Where s ∈ ΓE, f ∈ C∞M .

For X ∈ Γ(TM), section of tangent bundle is a vector field,

∇XΓ(E)→ Γ(E)

is kind of a ‘directional derivative’:

∇xs := ∇(s)X

Definition. A hermitian metric on E is a function ⟨, ⟩ : E ×M E → C. It is a fancy notation for the pullback:
given two points in a fiber we want a complex number. It is a C-inner product on fibers. The inner product
has to be hermitian.

Definition (Metric Connection). By picking two sections s, t note that ⟨s, t⟩ is a function M → C.

d⟨s, t⟩ = ⟨∇s, t⟩+ ⟨s,∇t⟩ ∈ Ω1(M ;C)

Local View

Lemma 107 (1). Consider trivial bundle (U × Cn)
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A connection is determined by matrix ωij ∈Mn(Ω
1(M ;C)) = Ω1(M ;MnC).

In case of a metric connection, (ωij) is skew hermitian.

For n = 1 in the metric case ω ∈ Ω1(M ; iR). In this case, locally, this is given by just a one-form.

ω = connection 1-form.

Proof. Let s1, · · · , sn be linearly independent section (orthonormal in metric case):

∇(si) =
∑

ωij ⊗ sj

∇(f1s1 + · · ·+ fnsn) =
∑

dfi ⊗ si + fi∇si

In the metric case since si are orthonormal, 0 = d⟨si, sj⟩ = ⟨∇si, sj⟩+ ⟨si,∇sj⟩ = ωij + ωji.

Lemma 108 (2). Every bundle has a connection.

Proof. Take a partition of unity ({Uα}, λα) on M so that E
∣∣
Uα

are trivial. Take ∇ =
∑
λα∇α.

Curvature of Connection

Consider

Cn E

M

with metric.

Curvature of connection:

Ω(∇) = Ω ∈ Ω2(M ; Hom(E,E))

If ∇ is metric then Ω ∈ Ω2(M ;Un)

Local Def: Ωij = dωij − ωik ∧ ωkj .

Global Def 1: Ωx,y(s) = ∇x∇ys−∇y∇xs−∇[x,y]s

Global Def 2: Ω = ∇ ◦∇.

Now we look at line bundles. Suppose we have a smooth line bundle

C L

M

with a metric.

Locally a connection is given by 1-form ω ∈ Ω1(U ; iR).

Ω = dω − ω ∧ ω ∈ Ω2(M ; iR).

Facts:
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1) 1. dΩ = 0 curv. closed

dΩ = d(dω)− (dω ∧ ω) + ω ∧ dω = 0.

[ 1iΩ] ∈ H
2
DRM = H2(M ;R)

2) Ω(∇)− Ω(∇′) = dβ

So, [ 1iΩ] is independent of connection.

3) [ 1iΩ] is a characteristic class.

=⇒ [ 1iΩ] = a(c1(L)) ∈ H2(M ;R) for some a ∈ R.

4) a = 1
2π . Compute for Hopf bundle:

C E(γ1) R2 E

CP 1 S2

Use Gauss Bonnet.
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