

M623 Geometric Topology I

Taught by: Dr. James Davis
Written by: Thanic Nur Samin

Monday, 8/25/2025

Textbook: *Characteristic Classes* by Milnor and Stasheff. Hereafter referred by MS.

Read Chapter 1 and 2 of MS.

Definition (n -manifold). Two different variants: embedded and abstract.

Abstract: (M, \mathcal{A}) where \mathcal{A} is an atlas.

Embedded: $M \subset \mathbb{R}^A$. Here, $A = \text{index set}$, $\mathbb{R}^A = \text{func}(A, \mathbb{R})$ with the product topology.

M Hausdorff space, $U \subset M$ open, $V \subset \mathbb{R}^n$ open.

Chart $\phi : U \xrightarrow{\sim} V$ homeomorphism.

Parameterization (ptz) $h : V \xrightarrow{\sim} U$

We want some calculus.

Let open $V \subset \mathbb{R}^n$.

A function $f : V \rightarrow \mathbb{R}$ is *smooth* if all partials of all orders exist: $\frac{\partial^k f}{\partial x_{i_1} \cdots \partial x_{i_p}}$.

$f : V \rightarrow \mathbb{R}^A$ is *smooth* if f_α smooth $\forall \alpha \in A$.

$$\begin{array}{ccc} V & \xrightarrow{f} & \mathbb{R}^A & \xrightarrow{pr_\alpha} & \mathbb{R} \\ & \curvearrowright & & & \curvearrowright \\ & & f_\alpha & & \end{array}$$

We can go from abstract manifold to embedded manifold.

Let $A = C^\infty(M, \mathbb{R})$.

$M \xrightarrow{i} \mathbb{R}^A$ where $i(x) = (f \mapsto f(x))$.

We can go to the reverse direction easily once we have all the definitions.

Definition. Two charts $(\phi_1 : U_1 \rightarrow V_1)$ and $(\phi_2 : U_2 \rightarrow V_2)$ are compatible (or smoothly compatible) if $\phi_2 \circ \phi_1^{-1}$ is smooth. Explicitly,

$\phi_1(U_1 \cap U_2) \xrightarrow{\phi_2 \circ \phi_1^{-1}} \phi_2(U_1 \cap U_2)$ needs to be smooth.

Definition. Parameterization $h : V \rightarrow U$ is *smooth* (assume $M \subset \mathbb{R}^A$) if:

$$V \xrightarrow{h} U \hookrightarrow M \hookrightarrow \mathbb{R}^n$$

is smooth.

and has rank n . ie, $\forall v \in V$ the Jacobian:

$$dh = \left(\frac{\partial_\alpha h}{\partial x_j}(v) \right)$$

has rank n .

eg $x \mapsto x^3$ is a parameterization which is not smooth, since the Jacobian has rank 0 at 0.

Now we can properly define manifolds.

Definition (Embedded Smooth n -Manifold). $M \subset \mathbb{R}^A$ so that $\forall x \in M$ there exists a smooth rank n parameterization $h : V \rightarrow U \ni x$.

We assume M is Hausdorff.

We can now define a Category of Embedded Manifolds.

Definition (Category of Embedded Manifolds). Embmfld.

Objects: embedded $M \subset \mathbb{R}^A$ of dim n for some n .

Morphisms: Smooth Maps (has to be defined carefully, restricting in Euclidean space).

Diffeomorphism = invertible morphism.

Let $(M \subset \mathbb{R}^A), (N \subset \mathbb{R}^B)$. $f : M \rightarrow N$ is smooth if *locally smooth*, meaning $\forall x \in M, \exists$ smooth parameterization $h : V \rightarrow U \ni x$ such that $V \rightarrow U \hookrightarrow M \xrightarrow{f} N \rightarrow \mathbb{R}^B$ is smooth.

Now we can define abstract manifold independend of embedded manifolds.

Definition (Abstract Manifold). Let M be Hausdorff. An n -atlas on M is a set $\mathcal{A} = \left\{ \phi_\alpha : U_\alpha \xrightarrow{\sim} V_\alpha \subset \mathbb{R}^n \right\}$ of compatible n -charts such that $\{U_\alpha\}$ covers M .

Atlas \mathcal{A} and \mathcal{A}' are compatible if all charts are.

Fact: Every atlas is contained in a unique maximal atlas.

Then an abstract manifold is (M, \mathcal{A}) with a maximal n -atlas.

Wednesday, 8/27/2025

Recall: embedded n -manifold $M \subset \mathbb{R}^A$: $\forall x \in M, \exists$ smooth, rank n parameterization $h : V \rightarrow U \subset M$ such that $x \in U$. We assume M is Hausdorff.

Abstract n -manifold: (M, \mathcal{A}) where \mathcal{A} is an n -atlas, so $\mathcal{A} = \{\text{charts } \phi_\alpha : U_\alpha \xrightarrow{\cong} V_\alpha\}$ such that $\{U_\alpha\}$ cover M and $\{\phi_\alpha\}$ smoothly compatible. We assume M is Hausdorff.

Remark. If we have an abstract manifold we have a surjective map $\coprod V_\alpha \xrightarrow{\coprod \phi_\alpha^{-1}} M$.

Then we can define $M \cong \coprod V_\alpha$. This gives us another definition of a manifold.

Exercise. Define smooth $f : (M, \mathcal{A}) \rightarrow (N, \mathcal{B})$.

Not hard, just annoying to get the definitions right!

Theorem 1. Categories of abstract manifolds and embedded manifolds are equivalent.

$$\text{EmbMflds} \simeq \text{absMflds}$$

Recall equivalent categories:

Definition. Categories \mathcal{C} and \mathcal{D} are equivalent (Notation: $\mathcal{C} \simeq \mathcal{D}$): If there are functors $\mathcal{C} \xrightarrow{F} \mathcal{D}$ and $\mathcal{D} \xrightarrow{G} \mathcal{C}$ such that $F \circ G$ and $G \circ F$ are naturally isomorphic to the respective identities.

We need some more definitions.

Definition. A skeleton of \mathcal{C} is $\text{Sk } \mathcal{C} \subset \mathcal{C}$ is a full subcategory $\forall c \in \mathcal{C}, \exists! c' \in \text{Sk } \mathcal{C}$ such that $c \cong c'$.

$\mathcal{A} \subset \mathcal{B}$ is full if $\forall a, a' \in \text{Ob } \mathcal{A}, \mathcal{A}(a, a') \xrightarrow{\cong} \mathcal{B}(a, a')$

For example, let \mathcal{C} = finite sets. Then $\text{Sk } \mathcal{C} = \{1\}, \{1, 2\}, \{1, 2, 3\}, \dots$

Theorem 2. $\mathcal{C} \simeq \mathcal{D} \iff \text{Sk } \mathcal{C} \cong \text{Sk } \mathcal{D}$.

Note that $\mathcal{C} \simeq \text{Sk } \mathcal{C}$ so one direction is trivial.

Lemma 3 (1.1). Let h and h' be smooth rank n on $M \subset \mathbb{R}^A$. Then $h^{-1} \circ h'$ is smooth (thus a diffeomorphism).

Let V and V' be the domain of h and h' respectively. Then $h^{-1} \circ h' : (h')^{-1}(V \cap V') \rightarrow h^{-1}(V \cap V')$

Corollary 4. $\mathcal{A} = \{h^{-1} \mid h \text{ parameterization}\}$ is n -atlas on M .

This gives us $\text{EmbMflds} \rightarrow \text{AbstMflds}$.

Proof. This is the proof of lemma 1.1, lemma 3 in the notes.

Assume $V = V'$. WTS: $(h')^{-1}V \rightarrow h^{-1}(V)$ is smooth.

For $x \in V$ choose $\alpha_1, \dots, \alpha_n \in A$ such that $\det \left(\frac{\partial \alpha_i}{\partial x_j}(x) \right) \neq 0$.

We have:

$$\begin{array}{ccc} M & \xhookrightarrow{\quad} & \mathbb{R}^A \\ h \uparrow & & \downarrow \text{pr}_{\alpha_1 \dots \alpha_n} \\ V & \xrightarrow{\quad} & \text{subset of } \mathbb{R}^n \end{array}$$

Then, by the inverse function theorem, the dotted map is locally invertible.

$$h^{-1} \circ h' = (pr \circ inc \circ h)^{-1} \circ inc \circ pr \circ h' \text{ near } h^{-1}x.$$

□

Given abstract (M, \mathcal{A}) , let $A = C^\infty(M, \mathbb{R})$ smooth functions.

$$i : M \rightarrow \mathbb{R}^A, x \mapsto (f \rightarrow f(x)).$$

Let $M_1 = i(M)$.

Lemma 5 (1.5). $M_1 \subset \mathbb{R}^A$ is EmbMfld. $M \xrightarrow{i} M_1$ is diffeomorphism.

Definition of tangent vector, tangent space and tangent bundle

Definition (Tangent Vector). is velocity vector of a curve.

We have defined morphisms. Consider the embedded case: suppose we have smooth $\gamma : \mathbb{R} \rightarrow M \subset \mathbb{R}^A$. Then,

$$\gamma'(0) = \lim_{h \rightarrow 0} \frac{\gamma(h) - \gamma(0)}{h} \in \mathbb{R}^A$$

is a tangent vector

Definition (Tangent Space). Suppose $x \in M \subset \mathbb{R}^A$, an n -dim embedded manifold. $T_x M$ = tangent space of M at x . This is:

$$\{\gamma'(0) \mid \gamma(0) = x\} \subset \mathbb{R}^A$$

an n -dim subspace.

We are going to bundle this together.

Definition (Tangent Bundle). $TM = \{(x, v) \in M \times \mathbb{R}^A \mid v \in T_x M\}$.

By definition, $TM \subset M \times \mathbb{R}^A$ so this is in fact a topological space.

We have a projection map $TM \xrightarrow{\pi} M$ by $(x, v) \mapsto x$.

Remark. Fibers of π , $\pi^{-1}(x)$ are vector spaces: $\pi^{-1}(x) = T_x M$.

Then, $TM = \bigcup_{x \in M} \{x\} \times T_x M$.

Abuse of notation lets us write this as $\bigcup T_x M$.

Thus, tangent bundle is in fact a bundle of tangents.

What about abstract manifolds (M, \mathcal{A}) ?

We can define TM as follows:

- $M \subset \mathbb{R}^{C^\infty(M, \mathbb{R})}$.
- $TM = \underline{\bigsqcup}_{\sim} V_\alpha \times \mathbb{R}^n$

- $T_x M$ = velocity vector of curves.
- derivations.

Suppose we have smooth function between manifolds $f : M \rightarrow N$. $\forall x \in M$ we can define linear $df_x : T_x M \rightarrow T_{f(x)} N$, $\gamma'(0) \mapsto (f \circ \gamma)'(0)$. df_x is a map between vector spaces, so it is a linear transformation. It is the ‘Jacobian’.

Then we have $df : TM \rightarrow TN$ such that $df(x, v) = df_x(v)$.

We also have the chain rule: $d(f \circ g) = df \circ dg$

Friday, 8/29/2025

No class next week!

Manifold constructed by:

- open subset of \mathbb{R}^n
- Subset double torus $\subset \mathbb{R}^3$
- Quotients: $P^n = \mathbb{R}P^n = S^n / x \sim -x$
- Lie groups/ matrix group, eg closed subgroups of $\text{GL}_n \mathbb{R} \underset{\text{open}}{\subset} M_n \mathbb{R} = \mathbb{R}^{n^2}$
- Zero sets.
 - regular values
 - transversality
 - smooth varieties

Definition. $t_0 \in \mathbb{R}$ is a regular value of $f : M \rightarrow \mathbb{R}$ if $\forall x \in f^{-1}t_0$, df_x is onto.

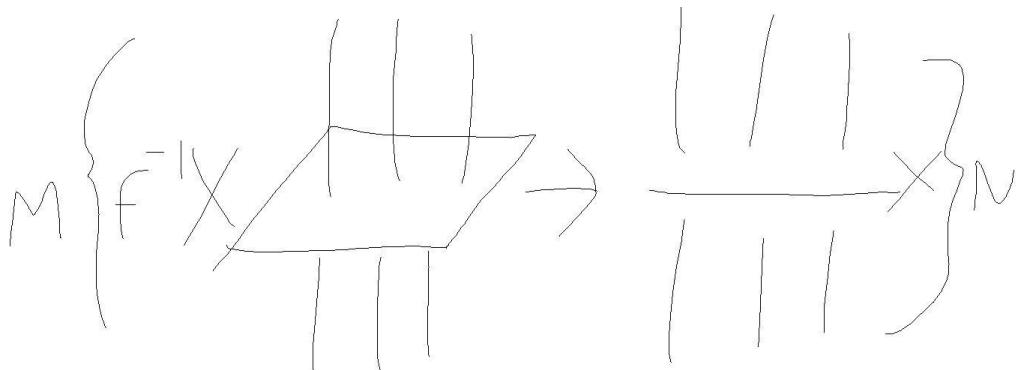
$f^{-1}(\text{regular value})$ is a submanifold of M .

Consider $S^n \subset \mathbb{R}^{n+1}$, and $f : \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ given by $x \mapsto x_1^2 + \dots + x_{n+1}^2$.

1 is a regular value $f^{-1}1 = S^n$.

Definition. Let $f : M \rightarrow N \supset X$ submanifold.

$f \pitchfork X$, f is *transverse* to X if $\forall m \in f^{-1}X$, $T_{f(m)}N = T_{f(m)}X + df_m(T_m M)$.



Theorem 6. $f^{-1}X$ is a submanifold of M .

Furthermore, $\dim N - \dim X = \dim M - \dim f^{-1}X$.

In fact, $\nu(f^{-1}X \hookrightarrow M) \rightarrow \nu(X \hookrightarrow N)$ as vector space isomorphism on fibers.

[insert picture later]

Now, suppose F is a topological space.

Definition. A fiber bundle with fiber F :

Let $E \xrightarrow{\pi} B$ be a continuous map such that $\forall b \in B, \exists$ open $b \in U \subset B$ and:

$$\begin{array}{ccc} U \times F & \xrightarrow{\begin{array}{c} h \\ \approx \end{array}} & \pi^{-1}U \\ & \searrow \text{pr}_U & \swarrow \pi \\ & U & \end{array}$$

h fiber preserving homeomorphism. $\forall b' \in U, F \cong F \times b' \xrightarrow{\cong} F_{b'} := \pi^{-1}(b')$.

Write:

$$\begin{array}{ccc} F & \longrightarrow & E \\ \downarrow & & \\ B & & \end{array}$$

$$\begin{array}{ccc} I & \longrightarrow & M\text{ob} \\ & & \downarrow \\ & & S^1 \end{array}$$

eg $B \times F \rightarrow B$ trivial bundle.

Chapter 2 of MS

Definition. A real vector bundle ξ over B is:

$$\xi = \left(\begin{array}{c} E \\ \downarrow \pi, \forall b \in B, \pi^{-1}b = F_b \text{ is a fin. dim vector space.} \\ B \end{array} \right)$$

$F_b \times F_b \rightarrow F, \mathbb{R} \times F_b \rightarrow F$ satisfies 8 axioms s.t.

$\forall b \in B, \exists b \in U \subset B$ and $n \geq 0$ and

$$\begin{array}{ccc} U \times \mathbb{R}^n & \xrightarrow{\begin{array}{c} h \\ \approx \end{array}} & \pi^{-1}U \\ & \searrow & \swarrow \\ & U & \end{array} .$$

$\mathbb{R}^n \cong b \times \mathbb{R}^n \xrightarrow[\approx]{h} \pi^{-1}b$ is an isomorphism of vector spaces.

If B is connected then n is constant.

'rank n vector bundle'.

n -plane bundle.

Another thing MS does is write this: $\xi = \begin{array}{c} E(\xi) \\ \downarrow_{\pi(\xi)} \\ B(\xi) \end{array}$ for vector bundle which is very precise.

Isomorphism of vector bundles over B

Consider two bundles ξ and η and we have the homeomorphism

$$\begin{array}{ccc} E(\xi) & \xrightarrow{\approx} & E(\eta) \\ & \searrow & \swarrow \\ & B & \end{array}$$

vector space isomorphism on the fibers.

Examples of vector bundles

We have the trivial bundle $\underline{\mathbb{R}^n} = \underline{\mathbb{R}_B^n} = \underline{\varepsilon_B^n} = \begin{array}{c} B \times \mathbb{R}^n \\ \downarrow \\ B \end{array}$

We have tangent bundles:

$$\tau_M = \left\{ \begin{array}{c} TM \\ \downarrow \pi \\ M \end{array}, T_x M \right\}$$

Definition. M is parallelizable if τ_M is trivial.

S^1 is parallelizable.

Lie groups are parallelizable eg S^3 .

S^2 , or S^{2n} in general not parallelizable via the hairy ball theorem.

We also have normal bundles. Consider $M \subset \mathbb{R}^N$.

$$\nu(M \subset \mathbb{R}^n) = \{(x, v) \in M \times \mathbb{R}^n \mid x \in M, v \in (T_x M)^\perp\}$$

$\nu(S^2 \hookrightarrow S^3) \leftarrow S^2 \times \mathbb{R}$ is trivial, the map is $(x, tx) \leftrightarrow (x, t)$.

$$\begin{array}{ccc} \mathbb{R} & \longrightarrow & E(\gamma_n^1) \\ \text{Tautological bundle over } P^n: \gamma_n^1 = & & \downarrow \\ & & P^n \end{array}$$

Note that $P^n = S^n/x \sim -x = \text{lines through } O \text{ in } \mathbb{R}^{n+1}$.

$$E(\gamma_n^1) = \{(\{x, -x\}, v) \in P^n \times \mathbb{R}^{n+1} \mid v \in \mathbb{R}x\}.$$

$$E(\gamma_n^1) \xrightarrow{\pi} P^n, (\{x, -x\} \mapsto \{x, -x\}). \text{ Essentially, point on line} \mapsto \text{line.}$$

This tautological bundle is non-trivial.

Monday, 9/8/2025

Last week was a break.

HWK: an exercise from ch2. (C, D, E are recommended).

$$\begin{array}{ccc} \mathbb{R} & \longrightarrow & E \\ \text{Recall: a vector bundle } \xi \text{ is} & & \downarrow \pi \text{ meaning fibers of } \pi \text{ are } k\text{-dimensional vector spaces.} \\ & & B \end{array}$$

Definition. A section of ξ is actually a section of π .

$$s : B \rightarrow E \text{ such that } \pi \circ s = \text{id}_B.$$

Section looks like this:

$$\begin{array}{ccc} \mathbb{R}^k & \longrightarrow & E \\ & \nearrow s & \downarrow \pi \\ & B & \end{array}$$

Section of TM =: vector field.

There's also the zero section $z : B \rightarrow E$ given by $b \mapsto 0 \in \pi^{-1}b$.

$$\begin{array}{ccc} E & & \\ z \nearrow \pi & & \\ B & & \end{array} \text{ homotopy inverses.}$$

Now we show there is some twisting.

$$\begin{array}{ccc} E_0 & = E - z(B) & \\ \downarrow & & . \text{ } B \text{ trivial implies } E_0 \cong B \times (\mathbb{R}^k \setminus e) \cong B \times S^{k-1}. \\ B & & \end{array}$$

We have the tautological line bundle:

$$\begin{array}{ccc}
R \longrightarrow E & = \{([x], v) \mid v \in \mathbb{R}x\} & \subset P^n \times \mathbb{R}^{n+1} \\
\downarrow & & \\
P^n & = S^n/x \sim -x &
\end{array}$$

We can think of it like (line, point on line) $\in E$.

For example, consider P^1 . This gives us the open mobius strip.

Theorem 7 (2.1). γ_n^1 is nontrivial for $n \geq 1$.

Proof. $E(\gamma_n^1)_0$ is connected $\iff \not\cong P^n \times S^0$. □

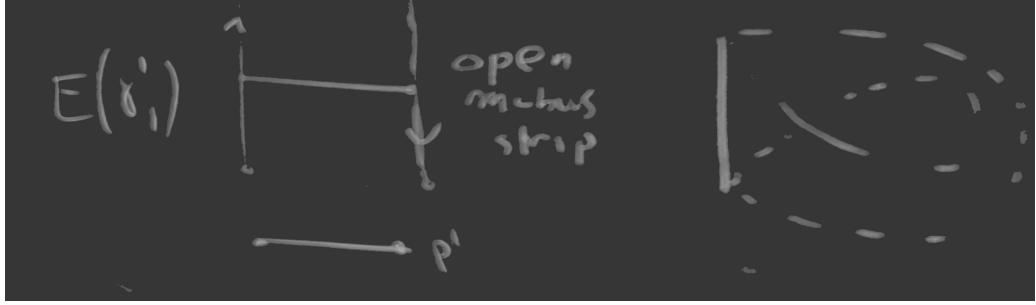


Figure 1:

Definition. A metric on a vector bundle ξ is $g : E \times_B E \rightarrow \mathbb{R}$ such that $\forall b \in B, \pi^{-1}b \times \pi^{-1}b \rightarrow \mathbb{R}$ is an inner product.

Recall: pullback of $\begin{array}{ccc} B & & \\ \downarrow \beta & \text{is } A \times_C B = \{(a, b) \mid \alpha(a) = \beta(b)\} \subset A \times B. \\ A \xrightarrow{\alpha} C & & \end{array}$

Also see: a vector bundle $E \rightarrow B$ needs all fibers to be vector spaces. For a metric we want them to be inner product spaces.

A bundle with metric is often called a Euclidean vector bundle.

Examples: A *Riemannian manifold* is TM with a smooth metric [g is smooth].

If $M^n \subset \mathbb{R}^N$ we can use the inner product inherited from \mathbb{R}^N so it is a riemannian manifold.

eg the trivial bundle has a metric: $(B \times \mathbb{R}^n) \times_B (B \times \mathbb{R}^n) \rightarrow \mathbb{R}^n$ which looks like $((b, v), (b, w)) \mapsto v \cdot w$.

If $M^n \subset \mathbb{R}^N$, $TM = \{(x, v) \in M \times \mathbb{R}^N \mid v = \gamma'(0), \gamma(0) = x\}$

$\|(x, v)\| = \|v\|, g((x, v), (x, w)) = v \cdot w$.

Then $\|\cdot\| : E \rightarrow \mathbb{R}_{\geq 0}$ given by $\|v\| := \sqrt{g(v, v)}$.

Theorem 8 (Exercises, ch2). Suppose B is paracompact. We can look at Isomorphism classes of Euclidean vector bundles over B , forget the metric to get isomorphism classes of vector bundles over B :

$$\left\{ \begin{array}{l} \text{iso class of euclidean} \\ \text{vector bundle over } B \end{array} \right\} \xrightarrow{\text{forget } g} \left\{ \begin{array}{l} \text{iso class of} \\ \text{vector bundle over } B \end{array} \right\}$$

This is an isomorphism.

Definition. Sections s_1, \dots, s_n of rank n vector bundle given by $\begin{array}{ccc} E & & \\ \downarrow s_i & & \\ B & & \end{array}$ are linearly independent (l.i) if $\forall b \in B, \{s_1(b), \dots, s_n(b)\}$ is linearly independent in $\pi^{-1}(b)$.

Theorem 9 (2.2). rank n vector bundle ξ is trivial iff ξ has n l.i. sections.

Proof. $\implies : s_i(b) := (b, \underline{e_i}) \in B \times \mathbb{R}^n$.

$\impliedby : \text{define } f : B \times \mathbb{R}^n \rightarrow E \text{ by } (b, \sum a_i e_i) \mapsto \sum a_i s_i(b)$ \square

eg T^2 has 2 l.i. sections, thus $TT^2 \cong T^2 \times \mathbb{R}^2$.

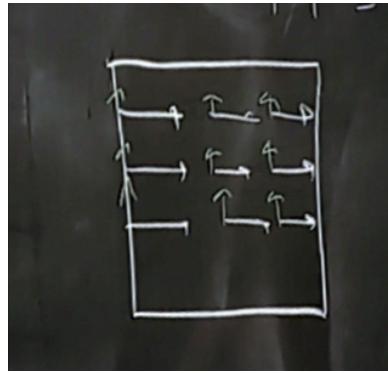


Figure 2:

Wednesday, 9/10/2025

Chapter 3: New bundles

Homeowrk: pick up problems from chapter 3 (and chapter 2).

Abstract definition of bundle (Steenrod, see D-Kirk 5.2).

Let G be a topological group, F a space, $G \curvearrowright F$

Topological group meaning: G topological group means G is a group and a space such that $G \times G \rightarrow G, (a, b) \mapsto ab$ and $G \rightarrow G, a \mapsto a^{-1}$ are continuous.

Action of G on F : $G \times F \rightarrow F$ given by $ef = f$ and $(gg')f = g(g'f)$.

Definition. A fiber bundle with structure group G and fiber F $[(G, F)\text{-bundle}]$ is a map with:

$$\begin{array}{ccc} & E & \\ \text{Map} & \downarrow & \\ & F & \end{array}$$

Atlas $\mathcal{A} = \{\phi : U_\phi \times F \xrightarrow{\cong} \pi^{-1}U_\phi\}$

Transition functions $\Theta = \{\theta_{\phi,\psi} : U_\phi \cap U_\psi \rightarrow G \mid \phi, \psi \in \mathcal{A}\}$

such that:

- 1) $\{U_\phi\}$ open cover of B .
- 2) Fiber preserving homeomorphism:

$$U_\phi \times F \xrightarrow{\approx} \pi^{-1}U_\phi$$

the following diagram commutes:

$$\begin{array}{ccc} & & \approx \\ U_\phi \times F & \xrightarrow{\quad} & \pi^{-1}U_\phi \\ \searrow & & \swarrow \\ & U_\phi & \end{array}$$

- 3) $b \in U_\phi \cap U_\psi, f \in F \implies \psi(b, f) = \phi(b, \theta_{\phi,\psi}(b)f)$
- 4) $\theta_{\phi,\psi}(b) = \theta_{\phi,\chi}(b)\theta_{\chi,\psi}(b)$

Examples:

$$B \times F$$

G trivial group implies the bundle is a trivial bundle,

$$\begin{array}{ccc} & & \downarrow \\ & & B \end{array}$$

$G = \text{GL}(n, \mathbb{R}), F = \mathbb{R}^n$ gives us the rank n vector bundle. Let $b \in B$, choose $\phi, b \in U_\phi$. Use the atlas to find bijection $\pi^{-1}b \cong \mathbb{R}^n$. This gives us a vector space on $\pi^{-1}b$ independent of the choice of U_ϕ by the 3rd condition.

If the G -action on F is *effective*, meaning every non-trivial action does something, meaning there is $f \in F$ such that $gf \neq f$ for every $g \in G \setminus \{e\}$, then we don't need condition 4.

If $G = \text{O}(n)$ and $F = \mathbb{R}^n$ then we have a vector bundle with a metric.

If $G = \text{GL}(n, \mathbb{R})^+$ and F is \mathbb{R}^n then we have an oriented vector bundle.

If $G = S_F = \text{Aut}(F)$ where F is discrete, then we have a cover.

For discrete G with $F = G$ then we have a regular G -cover.

If $G = \text{Spin}(n), F = \mathbb{R}^n$ then we have a vector bundle with spin structure.

Now we start chapter 3. We can do a lot of things on vector spaces, like tensor products. This lets us do stuff with vector bundles as well.

Some basic constructions involving vector bundles:

1) Restriction: Let ξ be a vector bundle, $\bar{b} \hookrightarrow B$. Then we can let $\xi|_{\bar{B}} =$

$$\begin{array}{ccc} & \pi^{-1}\bar{B} & \\ & \downarrow & \\ \xi & & \bar{B} \end{array}$$

$$\begin{array}{ccc} & & \xi \\ & \parallel & \\ & E & \\ & \downarrow \pi & \\ \bar{B} & \hookrightarrow & B \end{array}$$

2) Induced bundles (= Pullback bundle) Let ξ be a vector bundle, and $B_1 \xrightarrow{f} B$. We can *pullback* the bundle and get $f^*\xi$:

$$\begin{array}{ccc} f^*E = B_1 \times_B E & \longrightarrow & E \\ \downarrow & & \downarrow \\ B_1 & \xrightarrow{f} & B \end{array}$$

in fact $\xi|_{\overline{B}} = \text{inc}^* \xi$.

Definition. Bundle map $g : \eta \rightarrow \xi$ [both n -plane] is given by a commutative diagram which is isomorphism on fibers:

$$\begin{array}{ccc} E(\eta) & \xrightarrow{g} & E(\xi) \\ \downarrow & & \downarrow \\ B(\eta) & \xrightarrow{\bar{g}} & B(\xi) \end{array}$$

Lemma 10 (3.1). $\eta \cong \bar{g}^*$ as vector bundle over $B(\eta)$.

$$\begin{array}{ccc} E(\eta) & \xrightarrow{\approx} & \bar{g}^*E(\xi) \\ & \searrow & \swarrow \\ & B(\eta) & \end{array}$$

Proof. We just need to define the map.

$$E(\eta) \rightarrow B(\eta) \times_{B(\xi)} E(\xi)$$

$$e \mapsto (\pi(e), g(e))$$

□

pullback stuff works for (G, F) -bundles.

Friday, 9/12/2025

Today we finish chapter 3.

We can study construction of new vector bundles in the following ways:

- a) *Restriction*: $\xi|_{\overline{B}}$ for $\overline{B} \subset B \leftarrow E$
- b) *Pullback*: $f^*\xi$ for $\overline{B} \xrightarrow{f} B \leftarrow E$
- c) *Product*: $\xi_1 \times \xi_2$.

$$\begin{array}{ccc} F_b(\xi_1) \times F_b(\xi_2) & \longrightarrow & E(\xi_1) \times E(\xi_2) \\ & & \downarrow \\ & & B(\xi_1) \times B(\xi_2) \end{array}$$

eg $T(M_1 \times M_2) = TM_1 \times TM_2$.

d) *Whitney Sum*: We keep the base space the same. Let ξ_1, ξ_2 be vector bundles over the same base space B . Then we can define the whitney sum as the pullback of the diagonal map to the product:

$$\xi_1 \oplus \xi_2 := \Delta^*(\xi_1 \times \xi_2)$$

$B \xrightarrow{\Delta} B \times B$ is $b \mapsto (b, b)$.

For example, in $S^2 \hookrightarrow \mathbb{R}^3$, the whitney sum of the tangent bundle and the normal bundle gives us the trivial bundle: $\varepsilon_{S^2}^3 = TS^2 \oplus \nu(S^2 \hookrightarrow \mathbb{R}^3)$.

e) *Subbundles, Quotients and Orthogonal Complements*: A subbundle η of ξ is $E(\eta) \subset E(\xi)$ such that $\pi|_{E(\eta)}$ is a vector bundle.

$$\begin{array}{ccc} F_b(\eta) & \xhookrightarrow{\quad} & F_b(\xi) \\ \downarrow & & \downarrow \\ E(\eta) & \xhookrightarrow{\quad} & E(\xi) \\ & \searrow & \swarrow \\ & B & \end{array}$$

In order to study quotient, we need *bundle morphisms*. We want the following diagram to be commutative and also want the map to be linear on fibers:

$$\begin{array}{ccc} E(\eta) & \longrightarrow & E(\xi) \\ \downarrow & & \downarrow \\ B(\eta) & \longrightarrow & B(\xi) \end{array}$$

Bundle morphism over B is different: we want the following commutative diagram to be linear on fibers:

$$\begin{array}{ccc} E(\eta) & \longrightarrow & E(\xi) \\ & \searrow & \swarrow \\ & B & \end{array}$$

An example: suppose we have smooth $f : M \rightarrow N$. Then we have bundle morphism:

$$\begin{array}{ccc} M & \xrightarrow{df} & TN \\ \downarrow & & \downarrow \\ M & \xrightarrow{f} & N \end{array}$$

and the bundle morphism $/M$:

$$\begin{array}{ccc} TM & \xrightarrow{\cong} & f^*TN \\ & \searrow & \swarrow \\ & M & \end{array}$$

We can define quotient bundles from subbundles: subbundle η of ξ there exists quotient bundle ξ/η so that $F_b(\xi/\eta)$ are $F_b(\xi)/F_b(\eta)$. We have bundle map over B $\xi \rightarrow \xi/\eta$

Bundles $/B$ form abelian category. We have the SES:

$$0 \rightarrow \eta \rightarrow \xi \rightarrow \xi/\eta \rightarrow 0$$

We now define normal bundles. Normal bundle of submanifold M of N is given by $\nu(M \hookrightarrow N) = \frac{(TN|_M)}{TM}$.

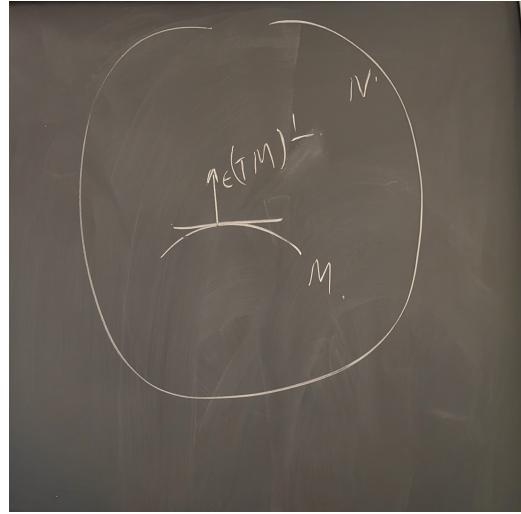


Figure 3:

If $N \subset \mathbb{R}^k$ (or N Riemannian metric space) then $(TM)^\perp \subset TN|_M$.

$$(TM)^\perp \longrightarrow TN|_M \longrightarrow \nu(M \hookrightarrow N)$$

\cong

We have $(TN)_M = TM \oplus (TM)^\perp$.

If ξ is a bundle with metric and η is a subbundle then $\xi = \eta \oplus \eta^\perp$ and $\eta^\perp \cong \xi/\eta$.

If B is paracompact [eg $B \subset W$] then bundles over B form an exact category [meaning all SES split].

Reason: consider the following SES:

$$0 \rightarrow \alpha \rightarrow \beta \rightarrow \gamma \rightarrow 0$$

Since B is paracompact we can give β a metric. $\alpha^\perp \xrightarrow{\cong} \gamma$ so it splits.

This tells us: if $M \subset N$ and N has a Riemannian metric, then,

$$TN|_M = TM \oplus TM^\perp \cong TM \oplus \nu(M \hookrightarrow N).$$

Definition. Smooth $f : M \rightarrow N$ is a immersion/submersion if $\forall x \in M$, df_x is injective/surjective.

For example, consider $S^1 \rightarrow \mathbb{R}^2$ given by $\bigcirc \rightarrow \infty$ is an immersion, since it's locally an embedding.

$TS^2 \rightarrow S^2$ is a submersion.

Let $f : M \rightarrow N$ be an immersion. Then, $\nu(f) = \frac{f^* TN}{TM}$.

If N has a metric then $TM \cong TN|_M \oplus \nu(f)$.

Tuesday, 9/16/2025

UCT, Cup and Cap Products

Let M be an abelian group. Then we have homology $H_i(X, A; M)$ and cohomology $H^i(X, A; N)$ abelian groups.

The cohomology $H^i(X, A; N)$ is the cohomology of the following cochain complex: $H^i(\text{Hom}(S_\bullet(X, A), N))$

‘Cohomology eats homology’ via the following *Kronecker Pairing*:

$$\langle , \rangle : H^i(X, A; N) \otimes H_i(X, A; M) \rightarrow N \otimes_{\mathbb{Z}} M$$

$$[\phi] \otimes \left[\sum_i k_i \sigma_i \otimes m_i \right] \mapsto \sum_i k_i \varphi(\sigma_i) \otimes m_i$$

Now we do UCT. Let $R = \mathbb{Z}$ and $M = \mathbb{Z}$ -module, i.e. abelian group.

If $X = \mathbb{R}P^n$ then the cellular chain complex of $\mathbb{R}P^n$ is:

$$C_\bullet X = \mathbb{Z} \xrightarrow[0 \ n \text{ odd}]{2 \ n \text{ even}} \cdots \rightarrow \mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{0} \mathbb{Z}$$

$$\text{Thus, if } n \text{ odd, then } H_i \mathbb{R}P^n = \begin{cases} \mathbb{Z}, & \text{if } i = 0, n; \\ \mathbb{Z}_2, & \text{if } i \text{ odd, } 0 < i < n; \\ 0, & \text{otherwise.} \end{cases}$$

If coefficients are in \mathbb{Z}_2 then,

$$C_\bullet X \otimes \mathbb{Z}_2 \xrightarrow{0} \mathbb{Z}_2 \xrightarrow{0} \cdots \xrightarrow{0} \mathbb{Z}_2$$

Thus $H_i(\mathbb{R}P^n; \mathbb{Z}_2) = \mathbb{Z}_2$ for $0 \leq i \leq n$.

UCT states that the following is a split short exact sequence:

$$0 \rightarrow H_i X \otimes M \rightarrow H_i(X; M) \rightarrow \text{Tor}(H_{i-1} X, M) \rightarrow 0$$

We can say three things about Tor:

Tor is a functor, $\text{Tor} : \text{Ab} \times \text{Ab} \rightarrow \text{Ab}$.

If M, N are f.g. then $\text{Tor}(M, N) \cong (\text{torsion } M) \otimes_{\mathbb{Z}} (\text{torsion } N)$

Definition. Find an exact sequence of free groups as follows:

$$0 \rightarrow F_1 \rightarrow F_0 \rightarrow M \rightarrow 0$$

Then $\text{Tor}(M, N) = H_1(F_1 \otimes N \rightarrow F_0 \otimes N)$.

For example, $\text{Tor}(\mathbb{Z}_2, \mathbb{Z}_2)$, we have following free groups:

$$0 \rightarrow \mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} \xrightarrow{\text{mod } 2} \mathbb{Z}_2 \rightarrow 0$$

Tensoring with \mathbb{Z}_2 to get the following: $\mathbb{Z}_2 \xrightarrow{0} \mathbb{Z}_2$. Then H_1 is the kernel.

So, $\text{Tor}(\mathbb{Z}_2, \mathbb{Z}_2) = \mathbb{Z}_2$.

Now we go back to geometry.

Suppose we have space X such that $H_{i-1}X = \mathbb{Z}_2 \oplus ?$

This gives us $H_i(X) \rightarrow \mathbb{Z}_2 \subset H_i(X; \mathbb{Z}_2)$.

Geometrically, consider $H_i(X; \mathbb{Z}_2) \rightarrow \text{Tor}(H_{i-1}(X); \mathbb{Z}_2)$.

If there is $[a] \in \text{Tor}(H_{i-1}X; \mathbb{Z}_2)$ with $2a = \partial b$ then section given by $[b] \leftrightarrow [a]$

UCT works even if we change \mathbb{Z} with a PID. For any PID R we can talk about R -modules M , then $H_i(X; M) \cong H_i(X; R) \otimes M \oplus \text{Tor}^R(H_{i-1}(X; R), M)$.

We want the analogue of UCT for cohomology. This gives us the split exact sequence:

$$0 \rightarrow \text{Ext}(H_{i-1}X, M) \rightarrow H^i(X; M) \rightarrow \text{Hom}(H_iX, M) \rightarrow 0$$

Again, for n odd consider the chain complex:

$$C_{\bullet} \mathbb{R}P^n = \mathbb{Z} \xrightarrow{0} \mathbb{Z} \rightarrow \cdots \mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \rightarrow 0$$

For cochain complex we'd simply reverse the arrows:

$$C^{\bullet} \mathbb{R}P^n = \mathbb{Z} \xleftarrow{0} \mathbb{Z} \leftarrow \cdots \mathbb{Z} \xleftarrow{2} \mathbb{Z} \xleftarrow{0} \mathbb{Z} \leftarrow 0$$

$H_i \mathbb{R}P^n = \mathbb{Z}$ for $i = 0, n$ and \mathbb{Z}_2 for $0 < i < n, n$ odd.

$H^i(\mathbb{R}P^n; \mathbb{Z}) = \mathbb{Z}$ for $i = 0, n$ and \mathbb{Z}_2 for $0 < i < n, n$ even.

We have: $\text{Ext}(\text{Free}, M) = 0$.

In general, $\text{Ext}(A, B)$ is given by: resolve A , apply $\text{Hom}(-, B)$ cohomolgy.

Suppose $0 \rightarrow F_1 \rightarrow F_0 \rightarrow A \rightarrow 0$.

Then, $\text{Hom}(F_1, B) \xleftarrow{\partial^1} \text{Hom}(F_0, B)$.

Thus $\text{Ext}(A, B) = \text{coker } \partial^1$.

If A, B are finitely generated then $\text{Ext}(A, B) \cong (\text{torsion } A) \otimes B$.

Now, suppose R is a commutative ring.

Then $H^i(X; R) = H^i(\text{Hom}_{\mathbb{Z}}(X_{\bullet} X, R))$

But might be more in the spirit of how we are doing this to do the following:

$$H^i(X; R) = H^i(\text{Hom}_R(S_\bullet(X; R), R))$$

For R -modules M ,

$$H^i(X; M) = H^i(\text{Hom}_\mathbb{Z}(S_\bullet X, M)) = H^i(\text{Hom}_R(S_\bullet(X; R), M))$$

Then, $H^*(X; R)$ is a graded commutative ring under the cup product.

$H^*(X; R)$ is a graded commutative ring meaning we can write:

$$H^*(X; R) = \bigoplus_{i \geq 0} H^i(X; R) \text{ and we have } H^i(X; R) \otimes_R H^j(X; R) \rightarrow H^{i+j}(X; R)$$

Commutative graded ring meaning $\alpha \cup \beta = (-1)^{|\alpha||\beta|} \beta \cup \alpha$.

For De Rham cohomology,

$$H_{\text{DR}}^i(M; \mathbb{R}) \otimes H_{\text{DR}}^j(M; \mathbb{R}) \text{ we have } \alpha \otimes \beta \mapsto [\alpha \wedge \beta]$$

We also have: $H_*(M; R)$ is a graded module over $H^*(M; R)$ w.r.t. cap product.

For $\alpha \in H^i(M; R)$ and $z \in H_j(M; R)$ then $\alpha \cap z \in H_{j-i}(M; R)$.

So, cap product by α eats i dimensions from z .

We also have $\langle \alpha \cup \beta, z \rangle = \langle \alpha, \beta \cap z \rangle$.

If $f : X \rightarrow Y$ is continuous, we have a ring map $f^* : H^*(Y; R) \rightarrow H^*(X; R)$ by $f^*(\alpha \cup \beta) = f^*\alpha \cup f^*\beta$.

Poincaré Duality: if M^n is closed and oriented and connected then $H_n M \cong \mathbb{Z}$. Choose generator $[M] \in H_n M$.

Then we have isomorphism $\cap[M] : H^i M \xrightarrow{\cong} H_{n-i} M$

Another fact:

$$\frac{H^i M}{\text{torsion}} \otimes \frac{H^{n-i} M}{\text{torsion}} \rightarrow \mathbb{Z}$$

is a nonsingular perfect pairing: $\alpha \otimes \beta$ is given by $(\alpha \cup \beta)[M] \in \mathbb{Z}$.

Recall $A \times B \rightarrow \mathbb{Z}$ is perfect $\iff A \xrightarrow{\cong} \text{Hom}(B, \mathbb{Z})$ and $B \xrightarrow{\cong} \text{Hom}(A, \mathbb{Z})$ are isomorphism.

In $\mathbb{C}P^n = e^0 \cup e^2 \cup \dots \cup e^{2n}$ we have $H^* \mathbb{C}P^n \cong \mathbb{Z}[\alpha]/\alpha^{n+1}$, with $\deg \alpha = 2$.

This is a truncated polynomial ring.

We can prove this by Poincaré duality and induction on n .

We also have Künneth Theorem. If R is a field, then:

$$H^*(X; R) \otimes H^*(Y; R) \xrightarrow{\cong} H^*(X \times Y; R)$$

It is only an injection for general ring.

Wednesday, 9/17/2025

HWK due 9/29.

4 Exercises: 1 from Ch2, 1 from Ch3, 2 from Ch4.

Today we finish chapter 3, construction of bundles.

We skipped part f on Friday.

Vector Spaces	Vector Bundle
$V \otimes W$	$\xi \otimes \eta$
$\text{Hom}(V, W)$	$\text{Hom}(\xi, \eta)$
$V^* = \text{Hom}(V, \mathbb{R})$	$\xi^* = \text{Hom}(\xi, \epsilon_B^1)$
$\Lambda^k V$	$\Lambda^k \xi$
$\Lambda^* V$	$\Lambda^* \xi$

Table 1: Anything we can do on Vector Spaces, we can do in Vector Bundles.

As for $\text{Hom}(\xi, \eta)$ we assume base space is the same:

$$\begin{array}{ccc} \text{Hom}(\mathbb{R}^k, \mathbb{R}^l) & \longrightarrow & E \text{Hom}(\xi, \eta) \\ & & \downarrow \\ & & B \end{array}$$

Here $E \text{Hom}(\xi, \eta) = [\text{roughly}] \bigcup_{b \in B} \text{Hom}_{\mathbb{R}}(F_b(\xi), F_b(\eta))$

$\coloneqq \coprod_{\text{open } U \subset B, \xi|_U, \eta|_U \text{ trivial}} U \times \text{Hom}(\mathbb{R}^k, \mathbb{R}^l) / \sim$.

Cotangent Bundle

Let M^n be a smooth n -manifold.

Definition (Cotangent Bundle). Is dual to the tangent bundle: $T^*M := (TM)^*$.

We can take exterior power to get differential k forms:

$$\begin{array}{ccc} \Lambda^k \mathbb{R}^n & \longrightarrow & \Lambda^k T^* M \\ & & \downarrow \vdots \\ & & M \end{array}$$

Differential k -form on M , $\omega \in \Gamma(\Lambda^k T^* M)$ smooth section.

$$\begin{array}{ccc} \Lambda^* \mathbb{R}^n & \rightarrow & \Lambda^* T^* M \\ & \downarrow & \leftarrow \text{wedge product.} \\ & M & \end{array}$$

In fact, $\Gamma(\Lambda^* T^* M)$ is a graded algebra, $\Omega^* M$.

Chapter 4

Now we start on Characteristic Classes.

Definition (Stiefel-Whitney Classes). have these 4 axioms:

- 1) \forall vector bundle ξ , assign $w_i(\xi) \in H^i(B(\xi); \mathbb{F}_2)$ so that $w_0(\xi) = 1$ and $w_i(\xi) = 0$ for $i > n$ when ξ is a n -plane bundle.
- 2) *Naturality*: For continuous $f : B' \rightarrow B(\xi)$, we have $w_i(f^*\xi) = f^*(w_i \xi) \in H^i(B'; \mathbb{F}_2)$. [First one is the pullback on the bundle, second one is the induced map on the cohomology.]
- 3) *Whitney Sum Formula*: If ξ, η are vector bundles over B we have: $w_k(\xi \oplus \eta) = \sum_{i+j=k} w_i(\xi) \cup w_j(\eta)$.
- 4) $0 \neq w_1(\gamma_1^1) \in H^1(P^1; \mathbb{F}_2) = H^1(S^1; \mathbb{F}_2) = \mathbb{F}_2$.

This sequence of cohomology classes is called the Stiefel-Whitney Classes.

Recall: γ_1^1 for a mobius strip is the zero section, i.e. S^1 .

Milnor-Stasheff says naturality a bit differently. Recall: If

$$\begin{array}{ccc} E(\eta) & \xrightarrow{\text{iso/fibers}} & E(\xi) \\ \downarrow & & \downarrow \\ B(\eta) & \xrightarrow{f} & B(\xi) \end{array}$$

then $\eta = f^*\xi$, $w_i(\eta) = f^* w_i(\xi)$.

Note: axioms 1 and 2 says w_i are *characteristic classes*. Characteristic Classes are cohomology classes respecting naturality. Meaning they respect nontriviality of bundles. Just like homology ‘classifies’ upto homotopy in a sense, we need characteristic classes to capture the ‘twists’ in a vector bundle.

Axiom 1 and 2 implies:

Proposition 11 (1). $\xi \cong \eta \implies w_i(\xi) = w_i(\eta)$.

Recall that vector bundles are isomorphic if:

$$\begin{array}{ccc} E(\xi) & \xrightarrow{\cong} & E(\eta) \\ & \searrow & \swarrow \\ & B & \end{array}$$

Proof. $f = \text{id}$. □

Proposition 12 (2). $w_i(\epsilon_B^n) = 0$ for $i > 0$.

Proof.

$$\begin{array}{ccc} B \times \mathbb{R}^n & \longrightarrow & \mathbb{R}^n \\ \downarrow & & \downarrow \\ B & \xrightarrow{c} & \text{pt} \end{array}$$

$$w_i(\epsilon_B^n) = w_i(c^* \epsilon_{pt}^n) = c^* w_i(\epsilon_{pt}^n) \in H^i(pt; \mathbb{F}_2) = 0.$$

Thus, nontrivial Stiefel-Whitney Class implies nontrivial bundle.

□

Proposition 13 (3). If ϵ trivial then $w_i(\epsilon \oplus \eta) = w_i(\eta)$. In other words, w_i stable characteristic classes.

Proposition 14 (4). If ξ is an n -plane bundle with k linearly independent sections, then k of them vanishes:

$$w_{n-k+1}(\xi) = \dots = w_{n-1}(\xi) = w_n(\xi) = 0$$

Most interesting case is $k = 1$ contrapositive.

$w_n(\xi) \neq 0 \implies \exists$ nowhere zero section. Hairy ball theorem!

eg for n odd there exists a nowhere zero section of the tangent bundle TS^n . Therefore, $w_n(TS^n) = 0$.

Since n is odd $n+1$ is even, and we can switch the coordinates in pairs:

$$\underline{x} = (x_1, \dots, x_n) \mapsto (\underline{x}, -x_2, x_1, \dots, -x_{n+1}, x_n) \in TS^n \subset S^n \times \mathbb{R}^{n+1}$$

$w_4(T\mathbb{C}P^2) \neq 0$, \exists nowhere vanishing vector field on $\mathbb{C}P^2$.

If M^n is a closed n -manifold then $w_n(TM^n) \equiv \xi(M) \pmod{2}$.

Proof. The condition of k linearly independent section is equivalent to existence of a subbundle $\epsilon_B^k \subset \xi$.

Case 1: Suppose ξ has a metric.

Then $\xi = \epsilon_B^k \oplus (\epsilon_B^k)^\perp$.

$w_i(\xi) = w_i(\epsilon_B^{k\perp})$ by proposition 3. Note that $\epsilon_B^{k\perp}$ is a $n-k$ bundle, axiom 1 implies the statement.

Case 2: B is a CW complex so B is paracompact which implies ξ has a metric.

General case: suppose \downarrow . Then \exists CW-approximation $B' \rightarrow B$ where B' is a CW complex which is isomorphism on π_* which is isomorphism in homology and cohomology. This reduces to case 2.

□

Friday, 9/19/2025

Recap: Stiefel-Whitney-Classes:

Suppose we have an n -plane bundle $\begin{pmatrix} \mathbb{R}^n & \rightarrow & E \\ & \downarrow & \\ & & B \end{pmatrix}$

Then $w_i E = w_i(\xi) \in H^i(B; \mathbb{F}_2)$.

We have some axioms:

1) $w_0(\xi) = 1, w_i(\xi) = 0$ for $i > n$

2) Naturality: if we have $f : B' \rightarrow B$ then $w_i(f^* \xi) = f^* w_i(\xi) \in H^i(B'; \mathbb{F}_2)$.

One way to rephrase it is as follows: $f^* E$ is the pullback bundle in the following:

$$\begin{array}{ccc} f^* E & \longrightarrow & E \\ \downarrow & & \downarrow \\ B' & \xrightarrow{f} & B \end{array}$$

Another way: if we have a bundle map:

$$\begin{array}{ccc} E' & \longrightarrow & E \\ \downarrow & & \downarrow \\ B' & \longrightarrow & B \end{array}$$

which is an isomorphism on the fibers, then $f^* E \cong E'$. We have $E' \rightarrow B'$ which is equal to $f^* \xi$.

In Milnor-Stasheff, if we have:

$$\begin{array}{ccc} E(\eta) & \longrightarrow & E(\xi) \\ \downarrow & & \downarrow \\ B(\eta) & \longrightarrow & B(\xi) \end{array}$$

$\eta \rightarrow \xi$ in this case $w_i(\eta) = f^* w_i(\xi)$.

Note that properties 1 and 2 are called characteristic class on a bundle.

3) Whitney Sum formula: $w_k(\xi \oplus \eta) = \sum_{i+j=k} w_i(\xi) w_j(\eta)$

4) $w_1(\gamma_1^1) \neq 0$.

Recall proposition 3: if ϵ trivial then $w_i(\epsilon \oplus \eta) = w_i(\eta)$.

Proposition 4: *obstruction to sections*: If ξ has k -linearly independent sections then the top k Stiefel-Whitney Classes vanish.

Whitney Sum Inverses

Definition. Suppose $\xi \oplus \eta = \epsilon^N$. Then ξ and η are whitney sum inverses of each other.

Example: Normal bundle and tangent bundle.

Fact: $\dim B < \infty$ implies every bundle has an inverse.

Observation: $w_*(\xi)$ can be computed in terms of $w_*(\eta)$.

$$0 = w_1(\xi \oplus \eta) = w_1(\xi) + w_1(\eta) \implies w_1(\xi) = w_1(\eta)$$

$$0 = w_2(\xi \oplus \eta) = w_2(\xi) + w_1(\xi) w_1(\eta) + w_2(\eta) \implies w_2(\xi) = w_1(\eta)^2 + w_2(\eta)$$

In Milnor Stasheff, they define a new ring:

$$H^\Pi(B; \mathbb{F}_2) = \prod_i H^i(B; \mathbb{F}_2)$$

This allows us to take infinite series:

$$w(\xi) = 1 + w_1 \xi + w_2 \xi + \dots \in H^\Pi(B; \mathbb{F}_2)$$

Then we can rephrase the Whitney sum theorem as follows:

$$w(\xi \oplus \eta) = w(\xi) \cup w(\eta).$$

Lemma 15. $\{1 + a_1 + a_2 + \dots \in H^\Pi(B; \mathbb{F}_2) \mid a_i \in H^i(B; \mathbb{F}_2)\}$

Proof. Due to ‘Euler’:

$$\begin{aligned} (1 + a_1 + a_2 + \dots)^{-1} &= \frac{1}{1 + (a_1 + a_2 + \dots)} \\ &= 1 + (a_1 + a_2 + \dots) + (a_1 + a_2 + \dots)^2 + (a_1 + a_2 + \dots)^3 \\ &= 1 + a_1 + (a_2 + a_1^2) + (a_3 + a_1^3) + \dots \end{aligned}$$

□

Notation: Suppose $w(\xi) \in H^\Pi(B; \mathbb{F}_2)$ then we can have the formal multiplicative inverse: $\bar{w}(\xi) \in H^\Pi(B; \mathbb{F}_2)$ so that $w(\xi)\bar{w}(\xi) = 1$

This gives us the following observation: $\xi \oplus \eta = \epsilon^N$ gives us $w(\xi)w(\eta) = 1 \implies w(\xi) = \bar{w}(\eta)$.

eg $H^*(\mathbb{P}^\infty; \mathbb{F}_2) = \mathbb{F}_2[a]$ then we have canonical line bundle γ^1 then $w(\gamma^1) = 1 + a$ so $(1 + a)^{-1} = 1 + a + a^2 + \dots$ which has infinitely many terms so the inverse might not exist! The line bundle doesn’t have any whitney sum inverse.

Theorem 16 (Whitney Duality Theorem). Let $M^n \subset \mathbb{R}^N$ be a smooth manifold. Then,

$$w_i(TM) = \bar{w}_i(\nu(M \hookrightarrow \mathbb{R}^N))$$

$$\text{Proof. } (TM \oplus \nu(M \hookrightarrow \mathbb{R}^N)) = T\mathbb{R}^N|_M$$

□

Lemma 17. Suppose we have a closed codim 1 manifold: $M^n \subset \mathbb{R}^{n+1}$. Then $w(TM) = 1$.

So Stiefel-Whitney Classes give an obstruction to submanifolds of codimension 1.

Proof. $TM \oplus \nu(M \hookrightarrow \mathbb{R}^{n+1})$ is trivial, $\nu(M \hookrightarrow \mathbb{R}^{n+1})$ gives nowhere zero section.

□

Corollary 18. Non-orientable submanifolds must have codimension at least 2.

Recall $P^n = \mathbb{R}P^n = S^n/x \sim -x = \frac{S^n}{x \sim -x \text{ when } x \in S^{n-1}} = \text{lines in } \mathbb{R}^{n+1} \text{ through 0.}$

P^n is a CW complex via the pushout:

$$\begin{array}{ccc}
S^{n-1} & \longrightarrow & P^{n-1} \\
\downarrow & & \downarrow \\
D^n & \longrightarrow & P^n
\end{array}$$

$P^0 \subset P^1 \subset \cdots \subset P^n$ is the skeleton.

Essentially $P^n = e^0 \cup e^1 \cup \cdots \cup e^n$ with $e^i \cong \overset{\circ}{D^i}$.

Cellular chain complex:

$$C_{\bullet}(P^n; \mathbb{F}_2) = \mathbb{F}_2 \xrightarrow{0} \cdots \xrightarrow{0} \mathbb{F}_2$$

Cochain complex:

$$C^{\bullet}(P^n; \mathbb{F}_2) = \mathbb{F}_2 \leftarrow \cdots \leftarrow \mathbb{F}_2$$

$$H_*(P^n; \mathbb{F}_2) = H^*(P; \mathbb{F}_2) = \{\mathbb{F}_2 : x \leq n\}$$

Next: $H^*(P^n; \mathbb{F}_2) = \frac{\mathbb{F}_2[a]}{a^{n+1}}$ truncated polynomial ring.

Monday, 9/22/2025

We do some computations today.

Recall: $P^n = S^n/x \sim -x = \underbrace{e^0 \cup e^1 \cup \cdots}_{P^{n-1}} \cup e^n$

Then $H^*(P^n; \mathbb{F}_2) = \begin{cases} \mathbb{F}_2, & \text{if } * \leq n; \\ 0, & \text{otherwise.} \end{cases}$

Let $0 \neq a \in H^1(P^n; \mathbb{F}_2)$.

Theorem 19. $H^*(P^n; \mathbb{F}_2) = \frac{\mathbb{F}_2[a]}{a^{n+1}}$, truncated polynomial ring.

Proof. Induction on n and Poincaré Duality.

It is true for $n = 1$.

Now suppose it is true for $n - 1$.

We have injection $i : P^{n-1} \hookrightarrow P^n$. Thus i^* is a ring map isomorphism on dimension $\leq n - 1$.

Thus a, a^2, \dots, a^{n-1} non-zero.

Question: do we have $a^n \neq 0$?

We use Poincaré Duality to prove that.

Suppose $[P^n] \in H_n(P^n; \mathbb{F}_2) \neq 0$.

Then we have: $\cap[P^n] : H^{n-1}(P^n; \mathbb{F}_2) \xrightarrow{\sim} H_1(P^n; \mathbb{F}_2)$.

Then $\langle a^n, [P^n] \rangle = \langle a^{n-1}, a \cap [P^n] \rangle \neq 0$ since UCT implies:

$H^{n-1}(P^n; \mathbb{F}_2) \xrightarrow{\sim} \text{Hom}(H_{n-1}(P^n; \mathbb{F}_2), \mathbb{F}_2)$ by $\beta \mapsto (b \mapsto \langle \beta, b \rangle)$ and both a^{n-1} and $a \cap [P^n]$ are nonzero. \square

Now we can look at SW classses of γ_n^1 and TP^n .

Proposition 20. $w(\gamma_n^1) = 1 + a \in H^*(P^n; \mathbb{F}_2)$.

Proof. True for $n = 1$ by axiom 4.

Now consider restriction: $\gamma_n^1|_{P^1} = \gamma_1^1$.

By the axiom we have $1 + a = w(\gamma_1^1) = i^* w(\gamma_n^1)$. \square

Now let $\gamma = \gamma_n^1 = \{ \{([x], v) \} \mid v \in \mathbb{R}x \} \subset P^n \times \mathbb{R}^{n+1}$ be the tautological line bundle.

$\gamma \subset \epsilon_{P^n}^{n+1} \implies \gamma \oplus \gamma^\perp = \epsilon^{n+1}$.

Therefore, $w(\gamma^\perp) = \bar{w}(\gamma) = (1 + a)^{-1} = 1 + a + \dots + a^n \in H^*(P^n; \mathbb{F}_2)$.

Thus γ^\perp has no nonzero sections.

Corollary 21. γ_∞^1 over P^∞ has no W.SI.

Question: $w(TP^n) = ?$

Recall: $G \curvearrowright X$ then orbit space $X/G = X/x \sim gx, S^n/C_2 = P^n$.

Theorem 22. i) $TP^n \oplus \epsilon^1 = \underbrace{\gamma \oplus \dots \oplus \gamma}_{n+1}$.

ii) $w(TP^n) = (1 + a)^{n+1} = \sum_{j=0}^n \binom{n+1}{j} a^j \in H^*(P^n; \mathbb{F}_2)$

Proof. Apply the antipodal map to:

$$TS^n \oplus \nu = \epsilon^{n+1} = \epsilon^1 \oplus \dots \oplus \epsilon^1 \quad (*)$$

To get the following:

$$TP^n \oplus \epsilon = \gamma \oplus \dots \oplus \gamma \quad (**)$$

where $C_2 \curvearrowright S^n \times \mathbb{R}^{n+1}$ by $(x, v) \mapsto (-x, -v)$.

Note: $TP^n = (TS^n)/C_2$ since S^n is a covering space of TP^n .

Note: $\nu(S^n \hookrightarrow \mathbb{R}^{n+1}) \cong \epsilon_{S^n}^1$

Note: $\nu(S^n \hookrightarrow \mathbb{R}^{n+1})/C_2 \cong \epsilon_{P^n}^1$

Note: $\epsilon_{S^n}^1/C_2 \cong \gamma$ since $\frac{S^n \times \mathbb{R}}{C_2} \cong E(\gamma)$ by $[(x, t)] \mapsto ([x], tx)$

This proves (**).

Now we prove i \implies ii.

$$w(P^n) = w(TP^n \oplus \epsilon) = w((n+1)\gamma) = w(\gamma)^{n+1} = (1+a)^{n+1}$$

□

MS shows $TP^n \cong \text{Hom}(\gamma, \gamma^\perp)$.

Parallelizable Manifolds

Definition. A manifold M^n is *parallelizable* if $TM^n = \epsilon_M^n$ [i.e. if there exists n linearly independent vector fields]

eg S^{2n} is not parallelizable via the hairy ball theorem.

Lie Groups are parallelizable: note that $T_e G^n$ has basis e_1, \dots, e_n , and for $g \in G$ we have $\ell_g : G \rightarrow G$ given by $h \mapsto gh$.

We then have $g \mapsto (d\ell_{g*})(e_i)$ giving n linearly independent vector fields.

Thus, $w_i(TM^n) \neq 0$ for $i > 0$ implies M is not a lie group.

$S^0, S^1, S^3, P^0, P^1, P^3 (= \text{SO}(3))$ are lie groups.

Wednesday, 9/24/2025

Corollary 23 (4.6i). $w_n(P^n) \neq 0 \iff n$ even.

(ii). $w(P^n) = 1 \iff n+1 = 2^r$

Corollary 24. n even implies P^n has no nowhere zero vector field.

P^n parallelizable [i.e. TP^n trivial] implies $n = 2^r - 1$.

Proof. 4.6i: $w_n(P^n) \neq 0 \iff \binom{n+1}{n} a^n \neq 0 \iff n+1 \neq 0 \iff n+1$ odd.

4.6ii: $w(P^{2^r-1}) = (1+a)^{2^r} = 1+a^{2^r} = 1$ gives one direction. For other direction, if $n+1 = 2^r m$ for odd $m > 1$ then $w(P^n) = (1+a)^{2^r m} = (1+a^{2^r})^m = 1+m a^{2^r} + \dots$

□

Theorem 25 (4.7 Stiefel). Suppose \exists bilinear map $p : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}^n$ without zero divisor [meaning $p(x, y) = 0 \implies x = 0$ or $y = 0$].

Then P^{n-1} is parallelizable [thus $n = 2^r$].

e.g. $\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}$. Theorem by Adams states $n = 1, 2, 4, 8$.

Proof. Let $\{b_1, \dots, b_n\}$ be basis for \mathbb{R}^n . Define v_i :

$$\mathbb{R}^n \xleftarrow{p(-, b_1)} \mathbb{R}^n \xrightarrow{p(-, b_i)} \mathbb{R}^n$$

v_i

Then $x \neq 0 \implies p(x, b_1), \dots, p(x, b_n)$ are linearly independent, thus $v_1(x), \dots, v_n(x)$ linearly independent.

Note that $v_1(x) = x$.

Define linearly independent sections s_2, \dots, s_n of TP^{n-1} .

$$s_i[x] = [x, \text{pr}_{(\mathbb{R}x)^\perp}(v_i(x))] \in TP^{n-1} = (TS^{n-1})/C_2.$$

□

Stiefel-Whitney Numbers

We want to prove the following theorem:

Theorem 26. A closed manifold is a boundary \iff Stiefel-Whitney numbers are all zero.

We need to talk about first fundamental class.

If M^n is a closed connected manifold [since we have \mathbb{F}_2 coefficient we don't worry about orientation] then the fundamental class $[M] \in H_n(M; \mathbb{F}_2) \cong H^0(M; \mathbb{F}_2) = \mathbb{F}_2$.

We don't really need connectedness. If $M^n = M_1 \sqcup \dots \sqcup M_k$ where each M_j are connected then the fundamental class $[M] = i_{1*}[M_1] + \dots + i_{k*}[M_k] \in H_n(M; \mathbb{F}_2) = \mathbb{F}_2^k$.

Definition. A partition of n is $r_1, \dots, r_n \in \mathbb{Z}_{\geq 0}$ such that $r_1 + 2r_2 + 3r_3 + \dots + nr_n = n$.

Let $\Pi(n)$ = set of partitions of n .

For example, $\Pi(4) = \{(0, 0, 0, 1), (0, 2, 0, 0), (1, 0, 1, 0), (2, 1, 0, 0), (4, 0, 0, 0)\}$

Definition (Stiefel-Whitney Number). Given $(r_i) \in \Pi(n)$ the Stiefel-Whitney Number is defined by:

$$w_1^{r_1} \cdots w_n^{r_n} [M] := \langle w_1(TM)^{r_1} \cup \cdots \cup w_n(TM)^{r_n}, [M] \rangle \in \mathbb{F}_2$$

For example we find Stiefel-Whitney numbers of P^2 .

$$w(P^2) = w(TP^2) = (1+a)^3 = 1+a+a^2.$$

$$w_1^2[P^2] = \langle a^2, P^2 \rangle = 1$$

$$w_2[P^2] = \langle a^2, P^2 \rangle = 1$$

Thus P^2 is not the boundary of a 3-manifold.

We can see this more easily since the characteristic of P^2 is odd.

Friday, 9/26/2025

Homeowork Due Monday.

Ch2: 1 Exercise Ch3: 1 Exercise Ch4: 2 Exercise

Manifolds with Boundary

Classic examples: disk D^n , cylinder $S^{n-1} \times I$

Definition. *Local Model* is the upper half-space $H^n = \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid x_1 \geq 0\}$.

Definition. Let $M \subset \mathbb{R}^A$. An *n-manifold with boundary* such that $\forall x \in M, \exists$ smooth homeomorphism (parameterization) $h : V \rightarrow U$ where $V \subset H^n$ and $x \in U \subset M$ open such that $\forall y \in V, dh_y : \mathbb{R}^n \rightarrow \mathbb{R}^A$ has rank n .

Definition. $\text{Int } M := \{x \in M \mid \exists \text{nbhd } U \cong \mathbb{R}^n\}$.

$$\partial M := M - \text{Int } M$$

$$M = \partial M \cup \text{Int } M$$

$$D^n = S^{n-1} \cup \text{Int } D^n$$

n -manifold is n -manifold with boundary.

manifold with nonempty interior is not a manifold.

M is an n -manifold with boundary $\implies \text{Int } M$ is a n -manifold and ∂M is a $n-1$ manifold.

$$M \simeq \text{Int } M.$$

Now consider tangent space:

$$\begin{array}{ccc} \mathbb{R}^n & \rightarrow & TM \\ & \downarrow & , \gamma : [0, \infty) \rightarrow M \vee \gamma : (-\infty, 0] \rightarrow M \\ & & M \end{array} = \{(x, v) \mid x \in M, v = \gamma'(0), \gamma(0) = x\}$$

Then $TM|_{\partial} \cong T\partial M \oplus \epsilon^1$ where ϵ^1 is the outward pointing normal, the nowhere zero section of $TM|_{\partial}$.

Poincaré-Lefschetz Duality

(PL duality).

Theorem 27. $H_n(M, \partial M; \mathbb{F}_2) = \mathbb{F}_2$.

Definition. Fundamental class $[M] \in H_n(M, \partial M; \mathbb{F}_2)$.

Theorem 28 (PL Duality). $\cap[M] : H^i(M, \partial M; \mathbb{F}_2) \xrightarrow{\cong} H_{n-i}(M; \mathbb{F}_2)$.

$$\cap[M] : H^i(M, \mathbb{F}_2) \xrightarrow{\cong} H_{n-i}(M, \partial M, \mathbb{F}_2).$$

Exercise: Work this out for D^n .

Furthermore, if we look at the long exact sequence of a pair:

$$H_n(M, \partial M; \mathbb{F}_2) \xrightarrow{\partial} H_{n-1}(\partial M; \mathbb{F}_2) \rightarrow H_{n-1}(M; \mathbb{F}_2)$$

then $\partial[M] = [\partial M]$.

Theorem 29 (MS 4.9, Pontryagin). Suppose M is a compact $n+1$ -manifold with boundary. Then the Stiefel-Whitney numbers of ∂M are 0.

Proof. WLOG M is connected. Let $r_i \in \Pi(n)$ [thus $\sum_i r_i i = n$].

Then $\langle w_1(T\partial M)^{r_1} \cup \cdots \cup w_n(T\partial M)^{r_n}, [\partial M] (= \partial[M]) \rangle$

$$= \langle \delta(w_1(T\partial M)^{r_1} \cup \cdots \cup w_n(T\partial M)^{r_n}), [M] \rangle.$$

Now, recall:

$$H^n(M; \mathbb{F}_2) \xrightarrow{i^*} H^n(\partial M, \mathbb{F}_2) \xrightarrow{\delta} H^{n+1}(M, \partial M; \mathbb{F}_2)$$

WTS: $w_1(T\partial M)^{r_1} \cup \cdots \cup w_n(T\partial M)^{r_n} \in \text{im } i^*$.

Note that it is equal to:

$$w_1(i^*(TM))^{r_1} \cup \cdots \cup w_n(i^*(TM))^{r_n} = i^*(w_1(TM)^{r_1} \cup \cdots \cup w_n(TM)^{r_n})$$

□

Theorem 30 (P-Thom). A closed n -manifold is the boundary of a compact n -manifold iff all Stiefel Whitney numbers vanish.

Note that all manifolds are boundary of a not necessarily compact manifold, just take $M \times [0, \infty)$

Definition (Bordism Groups). Two closed n -dimensional manifolds M_1, M_2 are *bordant* if \exists a compact W^{n+1} manifold with boundary such that $\partial W \xrightarrow[\text{diff}]{\cong} M_1 \coprod M_2$. W is called the *cobordism*.

Easy exercise: Bordism is an equivalence relation. Canonical example: $P^n \implies S^1 \sim S^1 \coprod S^1$.

One can get a group $\Omega_n^o = (\text{bordism classes of closed } n\text{-manifold}, \coprod)$.

This is called the unoriented bordism group.

Note that $2\Omega_n^o = 0$ since $\partial(M \times I) = M \coprod M, -[M] = [M]$.

Theorem 31 (Collar Neighborhood). \exists neighborhood U of ∂W and a diffeomorphism $h : U \xrightarrow{i} \partial W \times [0, \infty)$ such that $h(x, 0)$ for $x \in \partial W$.

Note that Ω_*^o is a graded ring with cartesian product.

n	Ω_n^o	$\Pi(n)$
0	$\mathbb{Z}/2$ pt	1
1	0	1
2	$\mathbb{Z}/2 P^2$	2
3	0	0
4	$\mathbb{Z}/2 \oplus \mathbb{Z}/2 P^4, P^2 \times P^2$	5
5	$\mathbb{Z}/2$ Wu- n -manifold $SU(3)/SO(3)$	7

Table 2: Bordism Group Calculations

Theorem 32 (PT Theorem).

$$\Omega_n^o \xrightarrow{\text{SW}\#} (\mathbb{F}_2)^{\Pi(n)}$$

Monday, 9/29/2025

Applications:

Let $M \rightarrow \overline{M}$ is a k to 1 covering map with k odd. Then,

$$0 = [M] \in \Omega_n^o \iff 0 = [\overline{M}] \in \Omega_n^o$$

eg Lens spaces $L(k)$ with k odd are boundaries.

Proof. $H_n(M; \mathbb{F}_2) \xrightarrow[\cong]{k} H_n(\overline{M}; \mathbb{F}_2)$.

SW numbers of M = SW numbers of \overline{M} . □

MS poses the question:

Why is P^{2k-1} a boundary?

Proof. First proof:

We explicitly calculate the SW numbers.

$$w(P^{2k-1}) = (1+a)^{2k} = (1+a^2)^k.$$

Thus, for i odd, $w_i(P^{2k-1}) = 0$.

Thus, since $\sum_i ir_i$ is odd:

Taking mod 2 $\rightarrow \sum_{i \text{ odd}} r_i$ is odd so some odd r_i is nonzero. Thus, $w_1^{r_1} \cdots w_{2k-1}^{r_{2k-1}} [P^{2k-1}] = 0$.

Second proof:

If \exists free C_2 -action on M then M is a boundary.

Proof: $\partial(M \times_{C_2} [1, -1]) = M \times_{C_2} \{-1, 1\} = M$.

$$\begin{array}{ccc} S^0 & \longrightarrow & M \\ \text{Or:} & \downarrow & \text{, change fiber } D^1 \text{ gives us} \\ & \overline{M} & \end{array} \quad \begin{array}{ccc} D^1 & \longrightarrow & W = M \times_{C_2} [-1, 1] \\ & \downarrow & \\ & \overline{M} & \end{array} \quad \begin{array}{l} \text{which gives us } \partial W = M. \end{array}$$

Lens space $L(4)$ with $\pi_1 = C_4$ then covered by P^{2k-1} . □

Conjecture by Farrell/Yau:

Almost flat manifolds are boundaries.

Theorem 33 (Gromov). Almost flat \iff infranil $\xrightarrow{\text{def}}$ $\begin{array}{c} \text{nilmanifold} \\ \downarrow \\ M \end{array}$ finite cover

Nilmanifold is a simply connected lie group modulo a lattice. Example: $\begin{bmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{bmatrix}$, lattice is where * are

integers.

Theorem 34 (D-Fang). Yes if finite cover is 2^k -to-1.

$N/\Gamma \rightarrow M$ if 2^k -to-1 implies $M = \partial W$.

Chapter 5

$\mathbb{R}P^{k-1} =$ lines in \mathbb{R}^k . By lines we mean 1-dim spaces through the origin. Easier to think of $\frac{S^{k-1}}{x \sim -x}$ usually.

We have the tautological line bundle given by $E(\gamma) = \{(line, point on line)\} \subset \mathbb{R}P^{k-1} \times \mathbb{R}^k$.

$$\begin{array}{ccc} \mathbb{R} & \longrightarrow & E(\gamma) \\ & & \downarrow \\ & & P^{k-1} \end{array}$$

Instead of lines we can think about higher dimensional vector spaces through the origin which gives us the Grassmannian.

Grassmannian or Grassmannian Manifold of n -planes in \mathbb{R}^k

Notation: $G_n(\mathbb{R}^k)$ is the Grassmannian. Points are n -dim subspaces of \mathbb{R}^k .

$X \in G_n(\mathbb{R}^k) \implies X = n$ -dim subspaces of \mathbb{R}^k .

Example: planes through the origin in \mathbb{R}^n .

We have a tautological n -plane bundle $E(\gamma^n) = \{point, point on plane\}$

$$\begin{array}{ccc} \mathbb{R}^n & \longrightarrow & E(\gamma^n) = \{(X, v) \in G_n(\mathbb{R}^k) \times \mathbb{R}^k \mid v \in X\} \\ & & \downarrow \\ & & G_n(\mathbb{R}^k) \end{array}$$

Suppose $M^n \subset \mathbb{R}^k$. Then we have $M \rightarrow G_n(\mathbb{R}^k), p \mapsto T_p M$.

We in fact have a bundle map:

$$\begin{array}{ccc} TM & \longrightarrow & E(\gamma^n) \\ \downarrow & & \downarrow \\ M & \longrightarrow & G_n(\mathbb{R}^k) \end{array}$$

$$(p, v) \longmapsto (T_{\pi(p)} M, v)$$

$$\begin{array}{ccc} \downarrow & & \downarrow \\ p & \longmapsto & T_p M \end{array}$$

We can do the same for the normal bundle.

$$\begin{array}{ccc}
\nu(M \hookrightarrow \mathbb{R}^k) & \longrightarrow & E(\gamma^{k-n}) \\
\downarrow & & \downarrow \\
M & \longrightarrow & G_{k-n}(\mathbb{R}^k)
\end{array}$$

Topology on $G_n(\mathbb{R}^k)$

We need to find an atlas. What is the dimension?

Definition (Stiefel Manifold). $V_n(\mathbb{R}^k)$ = orthonormal n -frames in \mathbb{R}^k

$$= \{(v_1, \dots, v_n) \in \mathbb{R}^k \times \dots \times \mathbb{R}^k \mid v_i \cdot v_j = \delta_{ij}\}.$$

This is a closed, bounded subset of $(\mathbb{R}^k)^n \implies$ it is compact.

Thus this has a topology.

Now, we have an onto map $q : V_n(\mathbb{R}^k) \rightarrow G_n(\mathbb{R}^k)$ with $q(v_1, \dots, v_n) = \text{Span}\{v_1, \dots, v_n\}$.

Give $G_n(\mathbb{R}^k)$ the quotient topology, i.e. $U \subset G_n(\mathbb{R}^k)$ is open iff $q^{-1}U$ is open.

Lemma 35 (5.1). $G_n(\mathbb{R}^k)$ is a compact smooth manifold of dimension $n(k - n)$. Furthermore, there is a diffeomorphism $G_n(\mathbb{R}^k) \rightarrow G_{k-n}(\mathbb{R}^k)$ by $X \mapsto X^\perp$.

Wednesday, 10/1/2025

$O(n) \rightarrow V_n(\mathbb{R}^k)$ Stiefel, On n

$$\downarrow q$$

$G_n(\mathbb{R}^k) = n$ planes in \mathbb{R}^k , Grassmannian.

$$q(v_1, \dots, v_n) = \text{Span}(v_1, \dots, v_n).$$

Given $V_n(\mathbb{R}^k) \subset (\mathbb{R}^k)^n$ subspace topology.

We give $G_n(\mathbb{R}^k)$ quotient topology.

Lemma 36. $G_n(\mathbb{R}^k)$ is a compact smooth manifold of dim $n(k - n)$.

Proof. hausdorff?

$$X \in G_n(\mathbb{R}^k)$$

$$v \in \mathbb{R}^k$$

$$d(x, v) =^{-1} d(x, v)$$

$$V_n(\mathbb{R}^k) \xrightarrow{q} G_n(\mathbb{R}^k) \rightarrow R$$

$$d(-, v) \circ q \text{ continuous.}$$

$$d(-, v) \text{ continuous.}$$

If $X \neq Y$ choose $v \in Y - X$.

Let $d = d(X, v)$.

Separate X and Y by:

$d(-, v)^{-1}(-\infty, \frac{d}{2})$ and $d(-, v)^{-1}(\frac{d}{2}, \infty)$

□

Atlas? Euclidean Neighborhoods?

$X \in G_n(\mathbb{R}^k)$

$U = U_X = \{y \in G_n(\mathbb{R}^k) \mid X^\perp = \{0\}\}$ open and dense.

$\Gamma : \text{Hom}(X, X^\perp) \rightarrow U$

$f \mapsto \text{graph}(f) \subset \mathbb{R}^k = X \oplus X^\perp (\cong X \times X^\perp)$.

$\text{graph}(f) := \{v + f(v) \mid v \in X\}$

$$U \xrightarrow{\Gamma^{-1}} \text{Hom}(X, X^\perp) \xrightarrow{\cong} \mathbb{R}^{n(k-n)}$$

ϕ

Coordinates show ϕ is homeomorphism.

Atlas $\{(U, \phi)\}$

ANother proof:

$O(k) \curvearrowright G_n(\mathbb{R}^k)$ transitively, $(A, X) \mapsto AX$

Isotopy at $\mathbb{R} \times \{0_{k-n}\}$:

is $O(n) \times O(k-n)$.

Thus $G_n(\mathbb{R}^k) = O(k)/O(n) \times O(k-n)$.

If G is a compact lie group and H is a closed subgroup then G/H is a manifold.

$$\begin{array}{ccc} O(n) = \frac{O(n) \times O(n-k)}{O(n-k)} & \longrightarrow & V_n(\mathbb{R}^k) & = & O(k)/O(n-k) \\ & & \downarrow & & \\ & & G_n(\mathbb{R}^k) & = & O(k)/O(n)x, O(n-k) \end{array}$$

Associated \mathbb{R}^n bundle is γ^n .

$E(\gamma^n) = V_n(\mathbb{R}^k) \times_{O(n)} \mathbb{R}^n$.

Friday, 10/3/2025

Lemma 37 (5.2). The tautological bundle is a bundle:

$$\begin{array}{ccc}
E(\gamma_k^n) & = & \{(X, v) \mid v \in X\} \subset G_n(\mathbb{R}^k) \times \mathbb{R}^k \\
& \downarrow \pi & \\
& G_n(\mathbb{R}^k) &
\end{array}$$

is a rank n v.b.

Proof. $\pi^{-1}X$ is a vector space: $(X, v) + (X, w) = (X, v + w)$, $c(X, v) = (X, cv)$.

We also want local triviality. Consider $X \in G_n(\mathbb{R}^k)$. Let $U = \{Y \mid Y \cap X^\perp = 0\}$.

$$\begin{array}{ccc}
U \times \mathbb{R}^n & \xrightarrow{h} & \pi^{-1}U \\
& \searrow & \swarrow \\
& U &
\end{array}$$

is a fiberwise isomorphism where h is a homeomorphism.

Then $U \times \mathbb{R}^n \cong U \times X$ by choosing a basis for X . Furthermore, $U \times X \xleftarrow{\Gamma \times \text{id}_X} \text{Hom}(X, X^\perp) \times X$ and $\text{Hom}(X, X^\perp) \times X \rightarrow \pi^{-1}U$ by $(f, v) \mapsto (\text{graph } f, v + f(v))$. \square

Lemma 38 (5.3). Any n -plane bundle ξ over a compact Hausdorff manifold, \exists a bundle map to the tautological bundle $G_n(\mathbb{R}^k)$:

$$\begin{array}{ccc}
E(\xi) & \xrightarrow{\tilde{c}} & E(\gamma_k^n) \\
\downarrow & & \downarrow \\
B & \xrightarrow{c} & G_n(\mathbb{R}^k)
\end{array}$$

for k large.

So the tautological bundle is final.

Note that we knew this for embedded manifold and tangent bundle:

$$\begin{array}{ccc}
TM & & \\
\downarrow & & \\
M & \longrightarrow & G_n(\mathbb{R}^k)
\end{array}$$

$$p \longmapsto T_p M$$

c is called ‘classifying group’ and γ^n is the universal bundle.

By defintion, a bundle map $\xi \rightarrow \gamma_k^n$ is the same as a fiberwise isomorphism:

$$\begin{array}{ccc}
E(\xi) & \longrightarrow & E(\gamma_k^n) \\
\downarrow & & \downarrow \\
B & \longrightarrow & G_n(\mathbb{R}^k)
\end{array}$$

which is by definition the same as a fiberwise monomorphism $\hat{c} : E(\xi) \rightarrow \mathbb{R}^k$.

Let $F_b = \pi^{-1}b$. Then $c(b) = \hat{c}(F_b) \hookleftarrow \hat{c}$.

Then $\tilde{c}(e) = (\hat{c}(F_b), \hat{c}(e))$.

Now we prove lemma 5.3.

Proof. Compact, so choose open cover U_1, \dots, U_r of B such that $\xi|_{U_i}$ is trivial.

Choose open $W_i \subset V_i \subset U_i$ such that $\overline{W}_i \subset V_i, \overline{V}_i \subset U_i$, and $\{W_i\}$ and $\{V_i\}$ still cover B .

Note that \overline{W}_i and $B - V_i$ are disjoint closed sets. Thus \exists continuous $\lambda_i : B \rightarrow [0, 1]$ such that $\lambda_i(\overline{W}_i) = 1, \lambda_i(B - V_i) = 0$ by Urysohn's lemma.

$\xi|_{U_i}$ trivial \iff fiberwise isomorphism $h_i : \pi^{-1}U_i \rightarrow \mathbb{R}^n$ by sections $s_j(b) \mapsto e_i$.

Define $\hat{c} : E(\xi) \rightarrow \underbrace{\mathbb{R}^n \oplus \dots \oplus \mathbb{R}^n}_{r \text{ times}}$.

$$\hat{c}(e) = (\lambda_1(\pi(e))h_1(e), \dots, \lambda_r(\pi(e))h_r(e))$$

□

Corollary 39 (Not in MS). Every vector bundle ξ over a compact Hausdorff space B has a whitney sum inverse.

What we need is a finite locally trivial cover. .

Let $\xi = c^*(\xi_k^n)$. Consider $\xi \oplus c^*(\gamma^\perp) = c^*(\gamma \oplus \gamma^\perp) = c^*(\epsilon_{G_n(\mathbb{R}^k)}^k)$ which is trivial. □

Contrast this with the fact that γ_∞^1 has no whitney sum inverse.

$$\begin{array}{ccc} E(\gamma_{k'}^n) & \hookrightarrow & E(\gamma_k^n) \\ \text{Comment: } k' \leq k \implies & \downarrow & \downarrow \\ & & \\ G_n(\mathbb{R}^{k'}) & \hookrightarrow & G_n(\mathbb{R}^k) \end{array}$$

Theorem 40. If $f, g : \xi \rightarrow \gamma_k^n$ bunndle maps then $f \simeq g : \xi \rightarrow \gamma_{2k}^n$.

So “classifying map unique upto homotopy.”

Proof. WTS: $\hat{f} \simeq \hat{g} : E(\xi) \rightarrow \mathbb{R}^{2k}$ fiberwise monomorphism.

Special case: $\forall e \in E(\xi), \forall \lambda > 0, \hat{f}(e) \neq -\lambda \hat{g}(e)$. $h_t(e) = (1 - t)\hat{f}(e) + t\hat{g}(e)$.

General case: define embeddings $d_0, d_1, d_2 : \mathbb{R}^k \rightarrow \mathbb{R}^{2k}$.

$$d_0(e_i) = e_i, d_1(e_i) = e_{2i-1}, d_2(e_i) = e_{2i}.$$

Then $d_0 \circ \hat{f} \simeq d_1 \circ \hat{f} \simeq d_2 \circ \hat{g} \simeq d_0 \circ \hat{g}$. □

Monday, 10/6/2025

Recall lemma 5.3: all vector bundle ξ over compact hausdorff B there exists a bundle map:

$$\begin{array}{ccc} E(\xi) & \xrightarrow{\tilde{c}} & E(\gamma_k^n) \\ \downarrow & & \downarrow \\ B & \xrightarrow{c} & G_n(\mathbb{R}^k) \end{array}$$

for k sufficiently large.

Theorem 41 (5.7). If B is compact Hausdorff and $f, g : \xi \rightarrow \gamma_k^n$ are bundle maps, then $f \simeq g : \xi \rightarrow \gamma_{2k}^n$.

Recall the proofs required $E(\xi) \rightarrow \mathbb{R}^k$ fiber monomorphism.

Theorem 42 (Covering Homotopy Theorem). Slogan: “Homotopy Invariance of Pullback.”.

Suppose we have compact hausdorff manifolds and maps:

$$\begin{array}{ccc} E(\xi') & & \\ \downarrow & & \\ B & \xrightarrow{f \simeq g} & B' \end{array}$$

Then $f^* \xi' \cong g^* \xi'$.

We can ‘replace k by ∞ and compact hausdorff by paracompact Hausdorff.’

For 5.2, we use $\infty \cdot n = \infty$.

For 5.7, we use $\infty + \infty = \infty$.

5.3, 5.7 and CHT implies: B paracompact Hausdorff implies there is a bijection between homotopy classes $[B, G_n(\mathbb{R}^\infty)]$ and [iso class of n -plane v.b. over B].

$$f \mapsto f^* \gamma^n.$$

This is why the Grassmannian is a classifying space, it classifies all bundles.

$$\text{e.g. for sphere } B = S^l \text{ then } \pi_l(G_n(\mathbb{R}^\infty)) = \left\{ \begin{array}{ccc} \mathbb{R}^n & \rightarrow & E \\ & & \downarrow \\ & & S^l \end{array} \right\} \text{ iso.}$$

Let A be an abelian group and $w \in H^l(G_n(\mathbb{R}^\infty), A)$.

Then we get characteristic class of n -plane bundle over B a CW complex. Recall CW complexes are paracompact Hausdorff!

Thus, in order to get characteristic classes, we only need:

$$\begin{array}{ccc} E(\xi) & \longrightarrow & E(\gamma^n) \\ \downarrow & & \downarrow \\ B & \xrightarrow{c} & G_n(\mathbb{R}^\infty) \end{array}$$

Then the characteristic class is defined to be $w(\xi) = c^* w \in H^l(B; A)$.

Then if we have $B' \xrightarrow{f} B$ \downarrow E then $f^* w(\xi) = w(f^* \xi)$.

Theorem 43 (Future Theorem). $H^*(G_n(\mathbb{R}^\infty); \mathbb{F}_2) = \mathbb{F}_2[w_1, w_2, \dots, w_n]$.

For example, for $n = 1$, this theorem states that $H^*(P^\infty, \mathbb{F}_2) = \mathbb{F}_2[a]$.

First we talk about \mathbb{R}^∞ and $G_n(\mathbb{R}^\infty)$. We talk about colimits for that.

Colimit

Consider Category \mathcal{C} .

Definition. A *directed system* (ds):

$$X_0 \rightarrow X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow \dots$$

Definition. A *cocone* of a directed system is an object X with maps so that:

$$\begin{array}{ccccccc} X_0 & \longrightarrow & X_1 & \longrightarrow & X_2 & \longrightarrow & X_3 \longrightarrow \dots \\ & & \searrow & \searrow & \searrow & \downarrow & \swarrow \\ & & & & & X & \end{array}$$

Definition. A *colimit* of a directed system is an *initial cocone*:

$$\begin{array}{ccccccc} X_0 & \longrightarrow & X_1 & \longrightarrow & X_2 & \longrightarrow & X_3 \longrightarrow \dots \\ & & \searrow & \searrow & \searrow & \downarrow & \swarrow \\ & & & & & C & \end{array}$$

$\exists!$

Colimits may not exist. If they exist they are unique upto isomorphism. We write $C = \text{colim}_{n \rightarrow \infty} X_n$

Colimit is kind of a ‘generalized union’.

Colimits are generally ‘quotients of coproducts’.

In the category $R\text{-mod}$,

$$\text{colim}_{n \rightarrow \infty} X_n = \frac{\bigoplus_n X_n}{\langle X_n - \text{im}(X_n) \rangle}$$

Thus $\mathbb{R}^\infty := \text{colim}_{n \rightarrow \infty} \mathbb{R}^n$, if basis e_1, e_2, e_3, \dots then almost all coordinates are zero: $(a_1, a_2, \dots, a_n, 0, 0, \dots)$

In Top or Set,

$$\text{colim}_{n \rightarrow \infty} X_n = \frac{\coprod X_n}{X_n \sim \text{im}(X_n)}$$

Then $G_n(\mathbb{R}^\infty) = \text{colim}_{n \rightarrow \infty} G_n(\mathbb{R}^k) = \text{set of } n\text{-planes in } \mathbb{R}^\infty \text{ with a particular topology. In some sense, it is } \bigcup_k G_n(\mathbb{R}^k).$

Stiefel Manifolds

Recall: we have Stiefel Manifolds:

$$\begin{array}{ccc} O(n) & \longrightarrow & V_n(\mathbb{R}^\infty) \\ & & \downarrow \\ & & G_n(\mathbb{R}^\infty) \end{array} \quad \text{orthonormal } n\text{-frames in } \mathbb{R}^\infty$$

$$V_n(\mathbb{R}^\infty) \times_{O(n)} \mathbb{R}^n = E(\gamma^n).$$

Theorem 44. $V_n(\mathbb{R}^\infty)$ is contractible. eg for $n = 1$ we have $S^\infty \simeq *$.

We need some facts from algebraic topology:

1) $V_n \mathbb{R}^\infty$ is a CW complex and $V_n \mathbb{R}^k \subset V_n \mathbb{R}^\infty$ are subcomplexes.

2) Whitehead's Theorem: if X is CW then $X \simeq * \iff \pi_* X = 0$.

3) Given fibration $\begin{array}{ccc} F & \rightarrow & E \\ \downarrow & & \downarrow \text{(e.g. a } (G, F)\text{-bundle)} \\ B & & \end{array}$ there exists long exact sequence:

$$\cdots \rightarrow \pi_i F \rightarrow \pi_i E \rightarrow \pi_i B \rightarrow \pi_{i-1} F \rightarrow \cdots$$

Now we can prove the theorem:

$$\text{Proof. } 1 \implies \pi_i(V_n(\mathbb{R}^\infty)) = \text{colim}_{k \rightarrow \infty} \pi_i(V_n(\mathbb{R}^k))$$

$$3 \implies \text{for } i \leq l, \pi_i O(l) \xrightarrow{\sim} \pi_i O(l+1).$$

$$\begin{array}{ccc} O(l) & \rightarrow & O(l+1) \\ \downarrow & & \downarrow \\ S^l & & Ae_{l+1} \end{array}$$

$$\begin{array}{ccc} O(k-n) & \rightarrow & O(k) \\ \downarrow & & \downarrow \\ V_n(\mathbb{R}^k) & & Ae_1, \dots, Ae_n \end{array}$$

$$\implies i < k-n, \pi_i(V_n \mathbb{R}^k) = 0 \xrightarrow{(2)} \text{the theorem.}$$

□

Monday, 10/13/2025

Note:

Schubert Symbol: $\sigma = (\sigma_1, \dots, \sigma_n)$.

$1 \leq \sigma_1 < \dots < \sigma_n$.

Dimension $d = d(\sigma) = \sum_i \sigma_i - i$

Partition of $d = \sigma - (1, 2, \dots, n)$.

Recap:

$$G_n(\mathbb{R}^\infty) = BGL(n, \mathbb{R}).$$

It is a classifying space.

Proof 1: representative object.

$$\begin{array}{ccc} O(n) & \longrightarrow & V_n(\mathbb{R}^\infty) \simeq * \\ \text{Proof 2:} & \downarrow & . \\ & & G_n(\mathbb{R}^\infty) \end{array}$$

Thus $G_n(\mathbb{R}^\infty) = BO(n)$, $BO(n) = BGL(n, \mathbb{R})$, $O(n) \simeq GL(n, \mathbb{R})$.

Preview of Chapter 6/7:

- Find CW structure on $G_n \mathbb{R}^\infty$.
- Show mod 2 cellular chain complex has zero differentials. [So this is just like $\mathbb{R}P^\infty$].

Then $H_k(G_n(\mathbb{R}^\infty); \mathbb{F}_2) = C_k(G_n \mathbb{R}^\infty) \otimes \mathbb{F}_2 = \mathbb{F}_2^{\# \text{ of } k\text{-cells}}$.

We use the following two definitions of CW-complexes.

Definition (Using Pushouts). A topological space X together with the filtration $\{X^n\}_{n=0}^\infty$ called skeleton, written $(X, \{X^n\}_{n=0}^\infty)$ so that,

$$X^0 \subset X^1 \subset \dots \subset X = \bigcup_{n=0}^{\infty} X^n$$

such that,

1) $\forall n, \exists$ pushout diagram:

$$\begin{array}{ccc} \coprod S^{n-1} & \longrightarrow & X^{n-1} \\ \downarrow & & \downarrow \\ \coprod D^n & \longrightarrow & X^n \end{array}$$

2) $X = \text{colim}_{n \rightarrow \infty} X^n$.

Definition (Whitehead). Instead of a filtration we have a partition with cells e_α .

Let X be a Hausdorff space. Consider $((X, \{e_\alpha\}))$ so that,

$\{e_\alpha\}$ form partition of X . i.e. $X = \bigcup_\alpha e_\alpha$, $e_\alpha \cap e_\beta = \emptyset$ so that,

- 1) $\forall \alpha, \exists$ characteristic map $\chi_\alpha : D^n \rightarrow \overline{e_\alpha}$ such that $\chi_\alpha|_{\overset{\circ}{D^n}} : \overset{\circ}{D^n} \xrightarrow{\sim} e_\alpha$ homeomorphism.
- 2) $\chi_\alpha(S^{n-1}) \subset$ finite union of $n-1$ cells.
- 3) $B \subset X$ closed $\iff \forall \alpha, B \cap \overline{e_\alpha}$ closed in $\overline{e_\alpha}$.

We can get the skeleton from the cells in the following way: $X^n = \bigcup_{\dim e_\alpha \leq n} e_\alpha$.

Also note 2' alternate: $\overline{e_\alpha} - e_\alpha \subset$ finite union of $n-1$ cells.

For skeleton to cell, note that $X^n - X^{n-1}$ is topologically $\coprod_{n\text{-cells}} e_\alpha$.

We want to figure out the CW complex of the Grassmannian. This is connected to combinatorics.

Definition (Schubert Symbol). The cells will be indexed by Schubert Symbol, which will be increasing sequence of integers: $\sigma = (\sigma_1, \dots, \sigma_n)$ so that $1 \leq \sigma_1 < \sigma_2 < \dots < \sigma_n$. This will index a ‘Schubert cell’ of $G_n \mathbb{R}^k$ if $\sigma_n \leq k$:

$$e(\sigma) = \{X \in G_n \mathbb{R}^k \mid \forall i, \dim(X \cap \mathbb{R}^{\sigma_i}) = i, \dim(X \cap \mathbb{R}^{\sigma_{i-1}}) = i-1\}$$

So we have a dimension jump at \mathbb{R}^{σ_i} .

$$\dim e(\sigma) = \sum_i \sigma_i - i$$

Theorem 45 (6.4). $(G_n \mathbb{R}^k, \{e(\sigma)\})$ is a CW complex [note: $1 \leq \sigma_1 < \dots < \sigma_n \leq k$], and $\dim e(\sigma) = d(\sigma)$.

It also holds for $k = \infty$, i.e. $G_n \mathbb{R}^\infty, \{e(\sigma)\}$ where $1 \leq \sigma_1 < \dots < \sigma_n$ is a CW complex.

Example: $G_1(\mathbb{R}^3)$. $\sigma = (1), (2), (3)$.

Thus $G_1 \mathbb{R}^3 = e^0 \cup e^1 \cup e^2$.

$e^{(1)}$ is the line given by the x -axis.

$e^{(2)}$ is the set of lines through origin in the xy -plane except the x -axis.

$e^{(3)}$ is the set of lines through origin that are not contained in xy -plane.

Now consider $G_2(\mathbb{R}^3)$. $\sigma = (1, 2), (1, 3), (2, 3)$.

$e(1, 2)$ is the xy -plane.

$e(1, 3)$ are the planes with one basis x -axis, other basis not the y -axis.

$e(2, 3)$ are the planes that doesn't contain the x -axis.

Now consider $G_2(\mathbb{R}^4)$. Then $\sigma = (1, 2)[d=0], (1, 3)[d=1], (1, 4)[d=2], (2, 3)[d=2], (2, 4)[d=3], (3, 4)[d=4]$.

σ	$\dim, d = d(\sigma)$	$\sigma - (1, 2, \dots, n)$
(1)	0	0
(2)	1	1
(3)	2	2
(4)	3	3
(1357)	6	0 1 2 3

Table 3: Schubert Symbol Dimensions

Corollary 46 (6.7). # of d -cells in $G_n \mathbb{R}^k =$ # of partitions of d into at most n integers $\leq k - n$.

Wednesday, 10/15/2025

Chapter 7 assumes existence of SW classes satisfying axioms 1-4.

Abbreviate $G_n = G_n(\mathbb{R}^\infty)$. We have bundles:

$$\begin{array}{ccc} \mathbb{R}^n & \longrightarrow & E(\gamma^n) & \subset & G_n \times \mathbb{R}^\infty \\ & & \downarrow & & \\ & & G_n & := & G_n(\mathbb{R}^\infty) \end{array}$$

Notation: $w_k := w_k(\gamma^n)$.

$H^* X = H^*(X; \mathbb{F}_2)$. ‘ \mathbb{F}_2 -coefficients understood’.

Theorem 47 (7.1).

$$H^* G_n = \mathbb{F}_2[w_1, \dots, w_n]$$

The free polynomial ring on generators of degs $1, 2, \dots, n$.

\iff There is no polynomial relationship between them: if p is a polynomial in n variables and $p(w_1, \dots, w_n) = 0$, we must have $p \equiv 0$.

$\iff w_1, \dots, w_n$ are *algebraically independent*.

Lemma 48. Recall γ^1 is the tautological line bundle.

Let $\xi = \underbrace{\gamma^1 \times \dots \times \gamma^1}_{n \text{ times}}$.

i) $w_1(\xi), \dots, w_n(\xi)$ are algebraically independent.

ii) w_1, \dots, w_n are algebraically independent.

Proof.

$$\begin{array}{ccc} \mathbb{R}^n & \longrightarrow & E(\xi) = E(\gamma^1) \times \dots \times E(\gamma^1) \\ & & \downarrow \\ & & \mathbb{P}^\infty \times \dots \times \mathbb{P}^\infty \end{array}$$

$H^* \mathbb{P}^\infty = \mathbb{F}_2[a]$ by Poincaré duality.

Thus $H^*(\mathbb{P}^\infty \times \dots \times \mathbb{P}^\infty) = H^* \mathbb{P}^\infty \otimes_{\mathbb{F}_2} \dots \otimes_{\mathbb{F}_2} H^* \mathbb{P}^\infty = \mathbb{F}_2[a_1, \dots, a_n]$ by Künneth Theorem.

By exercise, $w(\xi) = w(\pi_1^* \gamma^1 \oplus \dots \oplus \pi_n^* \gamma^1) = \prod_k w(\pi_k^* \gamma^1) = (1 + a_1) \dots (1 + a_n)$.

Then $w_k(\xi) = \sigma_k(a_1, \dots, a_n)$ the k 'th elementary symmetric function.

$\sigma_1, \dots, \sigma_n$ are algebraically independent [Newton].

ii follows from this. We have:

$$\begin{array}{ccc}
E(\xi) & \longrightarrow & E(\gamma^n) \\
\downarrow & & \downarrow \\
\mathbb{P}^\infty \times \cdots \times \mathbb{P}^\infty & \xrightarrow{c} & G_n
\end{array}$$

Suppose $p(w_1, \dots, w_n) = 0$. Apply c^* to see $p(w_1(\xi), \dots, w_n(\xi)) = 0 \implies p = 0$. \square

Now we finally prove theorem 7.1. We need to prove that the polynomials on SW classes generate the cohomology.

Proof. We have:

$$\mathbb{F}_2[w_1, \dots, w_n] \subset H^*(G_n)$$

Let $\mathbb{F}_2[w_1, \dots, w_n]^d$ be the subspace of degree d polynomials on the w 's.

$$\mathbb{F}_2[w_1, \dots, w_n]^d \subset H^d(G_n)$$

$H^d(G_n)$ is a *subquotient* of $C^d(G_n)$. Meaning it is quotient of a subgroup / subgroup of a quotient [same thing].

Note that:

$$\dim_{\mathbb{F}_2} \mathbb{F}_2[w_1, \dots, w_n]^d \leq \dim_{\mathbb{F}_2} H^d(G_n) \leq \dim_{\mathbb{F}_2} C^d(G_n)$$

We will show this is an equality.

Note that $\dim_{\mathbb{F}_2} \mathbb{F}_2[w_1, \dots, w_n]^d$ is the number of monomials $w_1^{r_1} \cdots w_n^{r_n}$ of degree d , meaning we need $r_1 + 2r_2 + \cdots + nr_n = d$.

$\dim_{\mathbb{F}_2} C^d(G_n)$ is the number of schubert symbols $1 \leq \sigma_1 < \sigma_2 < \cdots < \sigma_n$ of dimension d , meaning $d = \sum_i (\sigma_i - i)$.

We claim they are in bijection as follows:

$$r_n + 1 < r_n + r_{n-1} + 2 < \cdots < r_n + r_{n-1} + \cdots + r_1 - n$$

Thus all three dimensions are equal. Therefore,

$$\mathbb{F}_2[w_1, \dots, w_n] = H^*G_n$$

Furthermore, we can deduce that $\partial \equiv 0 \pmod{2}$ in C^*G_n . \square

Corollary 49. We have a classifying map:

$$H^*(G_n) \xrightarrow{c^*} H^*(\mathbb{P}^\infty \times \cdots \times \mathbb{P}^\infty)$$

$$w_k \mapsto \sigma_k(a_1, \dots, a_n)$$

Thus, $H^*(G^n) \cong H^*(\mathbb{P}^\infty \times \cdots \times \mathbb{P}^\infty)^{S_n}$

c^* is injective.

Theorem 50 (7.3 Uniqueness). If $w(\eta) = 1 + w_1(\eta) + \cdots$ and $\tilde{w}(\eta) = 1 + \tilde{w}_1(\eta) + \cdots$ satisfying axioms 1-4, then $w = \tilde{w}$

Proof. Step 1: By axiom 4, $w(\gamma_1^1) = \tilde{w}(\gamma_1^1)$.

Step 2: we have

$$\begin{array}{ccc} E(\gamma_1^1) & \longrightarrow & E(\gamma^1) \\ \downarrow & & \downarrow \\ P^1 & \xrightarrow{c} & P^\infty \end{array}$$

Recall $c^* : H^1 \mathbb{P}^\infty \rightarrow H^1 \mathbb{P}^1$ is an injection so $w(\gamma^1) = \tilde{w}(\gamma^1)$.

Step 3: Set $\xi = \gamma^1 \times \cdots \times \gamma^1$. Then $w(\xi) = \tilde{w}(\xi)$.

To see this, $\xi = \pi_1^* \gamma^1 \oplus \cdots \oplus \pi_n^* \gamma^1$.

$w(\xi) = \prod_i (1 + a_i) = \tilde{w}(\xi)$.

Step 4: $w(\gamma^n) = \tilde{w}(\gamma^n)$.

$$\begin{array}{ccc} E(\xi) & \longrightarrow & E(\gamma^n) \\ \downarrow & & \downarrow \\ \mathbb{P}^\infty \times \cdots \times \mathbb{P}^\infty & \xrightarrow{c} & G_n \end{array}$$

c^* is injective on H^* . $w(\xi) = \tilde{w}(\xi)$ so $c^* w(\xi) = c^* \tilde{w}(\xi) \implies w(\gamma^n) = \tilde{w}(\gamma^n)$.

Step 5: $w(\eta) = \tilde{w}(\eta)$ when $B(\eta)$ is CW complex.

To see this, just check:

$$\begin{array}{ccc} E(\eta) & \longrightarrow & E(\gamma^n) \\ \downarrow & & \downarrow \\ B(\eta) & \longrightarrow & G_n \end{array}$$

Step 6: $w(\eta) = \tilde{w}(\eta)$ for all η .

Take CW approximation:

$$\begin{array}{ccc} E & \longrightarrow & E(\eta) \\ \downarrow & & \downarrow \\ B & \longrightarrow & B(\eta) \end{array}$$

$w(E) = \tilde{w}(E)$ so $\tilde{w}(\eta) = \tilde{w}(\eta)$.

□

Friday, 10/17/2025

Existence of SW Classes following Thom

Uses two things: Thom isomorphism theorem and Steenrod squares.

\mathbb{F}_2 -coefficients understood.

Consider a rank n vector bundle

$$\begin{array}{ccc} \mathbb{R}^n & \longrightarrow & E \\ & & \downarrow z \\ & & B \end{array}$$

Then we have

$$\begin{array}{ccc} \mathbb{R}^n - 0 & \longrightarrow & E_0 \\ & & \downarrow \\ & & B \end{array} = E - z(B)$$

$z(B)$ zero section.

$$b \in B, F_b = \pi^{-1}b, F_{b_0} = \pi^{-1}b - \{0\}.$$

Remark. $H^*(F_b, F_{b_0}) \cong H^*(\mathbb{R}^n, \mathbb{R}^n - 0) \cong H^*(D^n, S^{n-1}) \cong \tilde{H}^*(D^n/S^{n-1}) = \begin{cases} \mathbb{F}_2, & \text{if } * = n; \\ 0, & \text{otherwise.} \end{cases}$

Theorem 51 (8.1, Thom). $\exists! u \in H^n(E, E_0)$ such that $\forall b \in B$,

$$i_b^* u \neq 0 \in H^n(F_b, F_{b_0}) = \mathbb{F}_2.$$

$\forall k \in \mathbb{Z}, H^k E \xrightarrow{\cong} H^{k+n}(E, E_0), x \mapsto x \cup u$ is an isomorphism.

‘Every bundle behaves like the trivial bundle’.

Corollary 52. $H^i(E, E_0) = 0$ for $i < n$.

Definition. $u \in H^n(E, E_0)$ Thom class $u = u_E$.

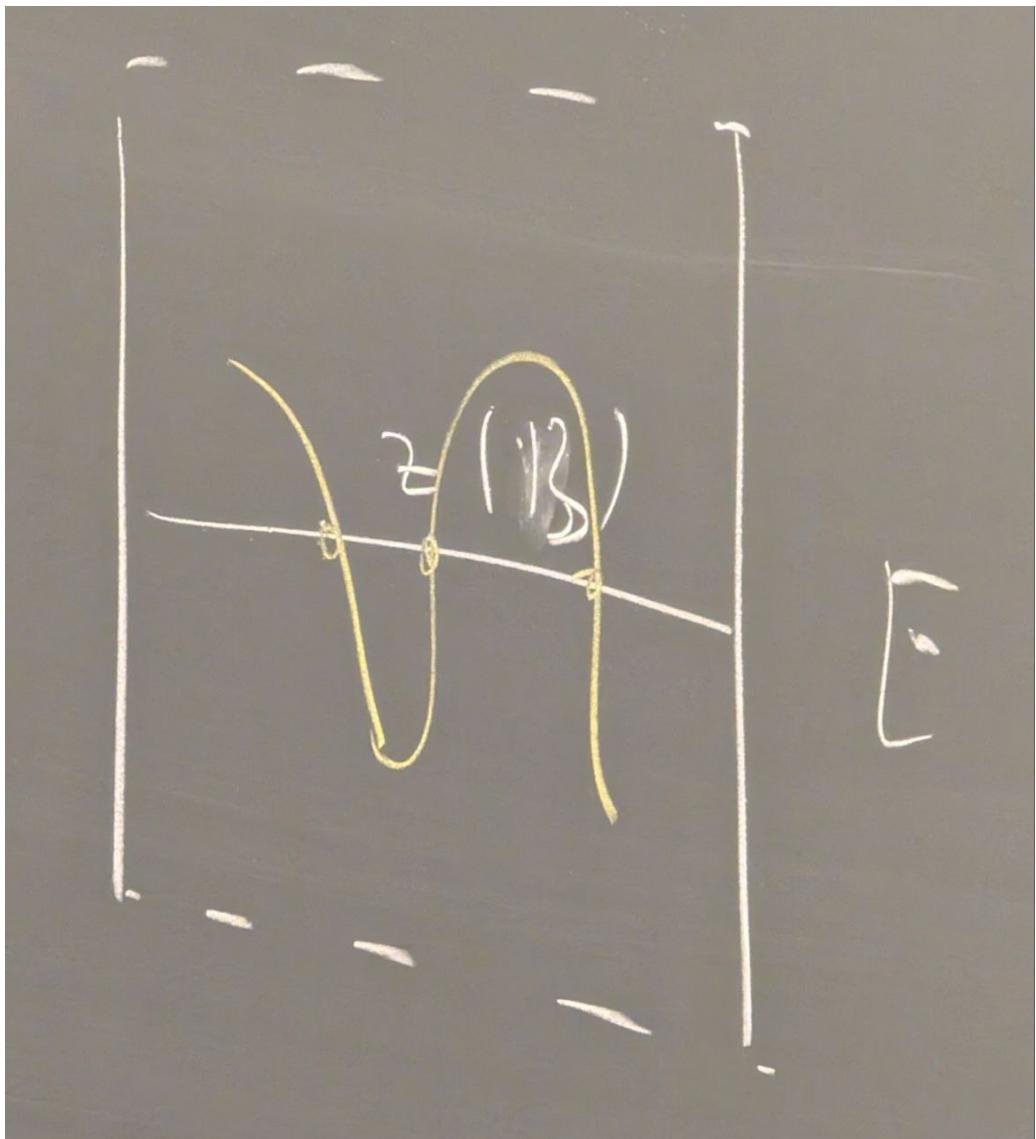
Theorem 53 (Thom Isomorphism). We have the following isomorphism:

$$\phi : H^k B \rightarrow H^{k+n}(E, E_0)$$

$$\phi(X) = \pi^* x \cup u$$

Exercise. Prove 8.1 for trivial bundle. [Use Künneth theorem]

What is $\langle u, \text{relative cycle} \rangle$? This is inner product $H^k(E, E_0) \otimes H_k(E, E_0) \rightarrow \mathbb{F}_2$. It ‘counts’ the number of intersections with the zero sections.



Steenrod Squares (Generalizes Cup Products)

Axioms:

- 1) $\text{Sq}^i : H^n(X, Y) \rightarrow H^{n+i}(X, Y)$ homology of abelian groups $\forall n, i \geq 0$.
- 2) 'naturality' $f : (X, Y) \rightarrow (X', Y')$ then $\text{Sq}^i \circ f^* = f^* \text{Sq}^i$.
- 3) $a \in H^n(X, Y)$.

$$\begin{aligned}
 \text{Sq}^0 a &= a \\
 \text{Sq}^n a &= a \cup a \\
 \text{Sq}^i a &= 0 \text{ when } i > n
 \end{aligned}$$

- 4) Cartan formula

$$\text{Sq}^k(a \cup b) = \sum_{i+j=n} \text{Sq}^i a \cup \text{Sq}^j b$$

These axioms look like the axioms of SW classes.

Definition (SW Classes, Thom). Let ϕ be the Thom isomorphism. Then,

$$w_i(\xi) = \phi^{-1} \text{Sq}^i \phi(1) = \phi^{-1} \text{Sq}^i u$$

So, when n is the rank of the bundle,

$$\begin{array}{ccc}
 u & \xrightarrow{\quad} & \text{Sq}^i u \\
 \uparrow & & \downarrow \phi^{-1} \\
 H^n(E, E_0) & \xrightarrow{\text{Sq}^i} & H^{n+i}(E, E_0) \\
 \uparrow & & \uparrow \\
 H^0 B & \xrightarrow{\quad} & H^i(B) \\
 \downarrow & & \downarrow \\
 1 & \xrightarrow{\quad} & w_i(\xi)
 \end{array}$$

Goal: SW classes satisfy axioms.

Total Steenrod square: $\text{Sq}(a) = a + \text{Sq}^1 a + \text{Sq}^2 a + \cdots + \text{Sq}^n a, a \in H^n(X, Y)$.

Then $\text{Sq} : H^*(X, Y) \rightarrow H^*(X, Y), \text{Sq} = 1 + \text{Sq}^1 + \text{Sq}^2 + \cdots$.

Cartan: $\text{Sq}(a \cup b) = \text{Sq}(a) \cup \text{Sq}(b)$.

Axioms for SW classes:

Axiom 1: $w_0 \xi = 1, w_i \xi = 0$ for $i > \text{rank } \xi$ follows from 3.

Axiom 2: Naturality:

$$\begin{array}{ccc}
 E & \xrightarrow{f} & E' \\
 \downarrow & & \downarrow \\
 B & \xrightarrow{\bar{f}} & B'
 \end{array}$$

$$f : (E, E_0) \rightarrow (E', E'_0).$$

Thom class is natural [meaning $f^* u_{E'} = u_E$ since f is isomorphism on fibers].

Thom isomorphism is natural: $f^* \circ \phi_{E'} = \phi_E \circ \bar{f}^*$.

Thus, $\bar{f}^* w_i(\xi') = \bar{f}^* \phi^{-1} \text{Sq}^i \phi(u_{E'}) = \phi_E^{-1} f^* \text{Sq}^i \phi_{E'}(u_{E'}) = [\text{some calculations}] = w_i(\bar{f}^* \xi')$.

Monday, 10/20/2025

Review: \mathbb{F}_2 -coefficients understood. We have vector bundle $\xi : \mathbb{R}^n \rightarrow E \xrightarrow{\pi} B$. We defined $E_0 = E - z(B)$, the complement of the zero section. We defined the Thom class $u = u_E \in H^n(E, E_0)$ so that $i_b^* u \neq 0 \in H^n(F_b, F_{b_0})$ for all $b \in B$.

Thom isomorphism theorem: $\phi_E = \phi : H^*B \rightarrow H^{*+n}(E, E_0)$ given by $\phi(x) = (\pi^*X) \cup u_E$ is an isomorphism.

Then we can define SW class of a bundle: $w_i \xi = \phi^{-1} \text{Sq}^i u$.

Recall that $\text{Sq}^i : H^*(E, E_0) \rightarrow H^{*+i}(E, E_0)$.

We also have a total version: $w(\xi) = \phi^{-1} \text{Sq} u_E$ where $\text{Sq} = 1 + \text{Sq}^1 + \text{Sq}^2 + \dots$

Lemma 54. $w(\xi \oplus \xi') = w(\xi) \cup w(\xi')$.

Also recall we have the cross product: $H^i X \otimes H^j Y \rightarrow H^{i+j}(X \times Y)$ by $a \otimes b \mapsto a \times b$.

This comes from: if we have an n -simplex on $X \times Y$ given by $\sigma : \Delta^n \rightarrow X \times Y$, then $(a \times b)(\sigma) = a(i(p_X \circ \sigma))b((p_Y \circ \sigma)_j)$ where we have the front i and back j face maps and p_X, p_Y are projections.

Then, $a \times b = (p_X^* a) \cup (p_Y^* b)$ and $a \cup b = \Delta^*(a \times b)$.

Now, suppose we have two bundles $\xi : \mathbb{R}^n \rightarrow E \rightarrow B$ and $\xi' : \mathbb{R}^{n'} \rightarrow E' \rightarrow B'$.

Then we can have the cross version of the lemma:

Lemma 55 (X-lemma). $w(\xi) \times w(\xi') = w(\xi \times \xi')$.

Claim: X-lemma implies the lemma.

Proof. $w(\xi \oplus \xi') = w(\Delta^*(\xi \times \xi')) = \Delta^* w(\xi \times \xi') = \Delta^*(w(\xi) \times w(\xi')) = w(\xi) \cup w(\xi')$. □

Now we prove the X-lemma.

Proof. $w(\xi \times \xi') = \phi_{E \times E'}^{-1}(\text{Sq}(u_{E \times E'})) = \phi_{E \times E'}^{-1}(\text{Sq}(u_E \times u_{E'}))$.

Cartan $\implies \text{Sq}(a \cup b) = \text{Sq} \cup \text{Sq} b$, applying Δ^* we see that $\text{Sq}(a \times b)n = \text{Sq} \times \text{Sq} b$.

Thus, $= \Phi_{E \times E'}^{-1}(\text{Sq} u_E \times \text{Sq} u_{E'}) = (\phi_E \times \phi_{E'})^{-1}(\text{Sq} u_E) \times (\text{Sq} u_{E'})$.

$= w(\xi) \times w(\xi')$. □

Recall Axiom 4: $w_1(\gamma_1^1) \neq 0$. We want to prove that.

Proof. Let M be the Möbius strip. Then we have (E, E_0) . We also have $(M, \partial M)$. We can collapse the boundary of the Möbius strip to a point which gives us \mathbb{P}^2 . i.e. we have:

$$H^*(E, E_0) \xrightarrow[\text{htpy invariance}]{\approx} H^*(M, \partial M) \xleftarrow[\text{good pair}]{\approx} H^*(M/\partial M, *) \cong H^*(\mathbb{P}^2, *)$$

Recall $E = E(\gamma_1^1) \subset \mathbb{P}^2 \times \mathbb{R}^3, [-1, 1] \times \mathbb{R} / \sim, (x, t) \sim (-x, -t)$.

$u_E \neq 0$ by definition and $H^1(E, E_0) \cong H^1(\mathbb{P}^2), u \leftrightarrow a$.

Then, $\text{Sq}^1 a = a \cup a \neq 0 \implies \text{Sq}^1 u \neq 0$.

Thus, $w_1(\gamma_1^1) = \phi^{-1}(\text{Sq}^1 u_E) \neq 0$.

□

Chapter 9

For this chapter, \mathbb{Z} -coefficients understood.

We want to talk about orientation. Let V be a $\dim n$ vector space. Let $V_0 = V - \{0\}$.

Definition. An orientation for V is a generator $\mu_V \in H_n(V, V_0)$.

This corresponds to the linear algebra definition for V .

Orientation of V corresponds to $\frac{\text{ordered bases } (b_1, \dots, b_n) \text{ for } V}{(b_1, \dots, b_n) \sim (b'_1, \dots, b'_n) \text{ if determinant of change of basis matrix is positive}}$.

Then, the class of $[b_1, \dots, b_n]$ maps to the orientation in homology given by $\sigma : \Delta^n \rightarrow V$ where $\sigma(t_0, \dots, t_n) = \sum_{i=1}^n (t_i - t_{i-1})b_i$.

Now suppose $\xi : \mathbb{R}^n \rightarrow E \rightarrow B$ is a vector bundle.

Definition. Orientation for ξ is an assignment $b \mapsto \mu_{F_b} \in H_n(F_b, F_{b_0}; \mathbb{Z})$ that is ‘continuous in b ’. Meaning, $\forall b \in B, \exists (U, h)$ where $b \in U$ and,

$$\pi^{-1}U \xrightarrow{h} U \times \mathbb{R}^n$$

$\forall x \in U, F_x \rightarrow \{x\} \times \mathbb{R}^n \cong \mathbb{R}^n$ is o.p.

If there exists such an orientation we call ξ is orientable.

Theorem 56 (Thom Isom, 9.1). Let $\xi : \mathbb{R}^n \rightarrow E \rightarrow B$ be an oriented vector bundle.

- i) $\exists ! u = u_E \in H^n(E, E_0)$ such that $\forall b, i_b^* u \in H^n(F_b, F_{b_0}) \cong \mathbb{Z}$ is a generator. We call u the Thom class.
- ii) $\phi = \phi_E : H^* B \xrightarrow{\cong} H^{*+n}(E, E_0)$ given by $\phi(x) = \pi^* x \cup u$, this is the Thom isomorphism.

Corollary 57. $H^k(E, E_0) = 0$ for $k < n$.

$H^n(E, E_0) \cong \mathbb{Z}$ if B is path connected.

e.g. γ_1^1 is path connected.

$$H^1(E, E_0; \mathbb{Z}) = H^1(\mathbb{P}^2; \mathbb{Z}) = 0$$

Wednesday, 10/22/2025

Let $\xi : \mathbb{R}^n \rightarrow E \rightarrow B$. Recall that an orientation on ξ is a ‘continuous assignment of a point’ $b \mapsto \mu_{F_b} \in H_n(F_b, F_{b_0}; \mathbb{Z})$.

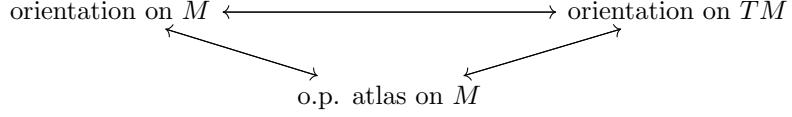
Equivalently, continuous assignment of $[b_1, \dots, b_n]$ an equivalence class of ordered basis of F_b .

$$M^n \text{ manifold} \quad \text{local homology}$$

$$\text{cont } x \longmapsto \mu_x \in H_n(M, M - x) \cong \mathbb{Z}$$

Puzzle: M^n is smooth, orientable on $M \leftrightarrow$ orientation on TM how?

Note that there is $\exp_x : T_x M \rightarrow M$ which is a diffeomorphism near x . Patch them up with orientation preserving atlas on M . Meaning, (M, \mathcal{A}) where transition maps $\Phi_\beta \circ \Phi_\alpha^{-1}$ are orientation preserving, meaning their determinant is positive.



Exercise 12A: $w_1(\xi) = 0 \iff \xi$ orientable.

Theorem 58. ξ orientable $\iff w_1(\xi) \in H^1(B; \mathbb{F}_2)$ is 0.

Note that, $\forall n, \exists$ two n -plane bundles over S^1 given by ϵ^n and $\gamma_1^n \oplus \epsilon^{n-1}$.

$$\text{bundles over } S^1 \xrightarrow{\text{clutching}} \pi_0(\text{GL}_n(\mathbb{R})) \xrightarrow[\det]{\cong} \{\pm 1\}$$

Bundles over I are trivial.

$\xi : \mathbb{R}^n \rightarrow E \rightarrow B$ homomorphism [orientation character] $\tilde{w} : \pi_1 B \rightarrow \{\pm 1\}$.

$$\begin{array}{ccc}
 \epsilon^n & \longrightarrow & E(\gamma) \\
 \downarrow & & \downarrow \\
 I & \xrightarrow{\exp} & S^1
 \end{array}$$

$E(\gamma) \cong \frac{I \times \mathbb{R}^n}{(0, v) \sim (1, Av)}$ where $A \in \text{GL}_n(\mathbb{R})$.

$$\tilde{w}[\gamma] = \begin{cases} +1, & \text{if } \gamma^* \epsilon \text{ trivial;} \\ -1, & \text{if } \gamma^* \epsilon \text{ non-trivial.} \end{cases}$$

Essentially, given a loop we walk around it to see if my right hand becomes my left hand.

By UCT and Hurewicz theorem,

$$H^1(B; \mathbb{F}_2) \cong \text{Hom}(H_1 B, \mathbb{F}_2) \cong \text{Hom}(\pi_1 B, \{\pm 1\})$$

$$w_1(\xi) \longleftrightarrow \tilde{w}$$

They correspond for γ_1^n so they correspond for γ .

$\mathbb{P}^\infty = G_1(\mathbb{R}^\infty) \rightarrow G_n(\mathbb{R}^\infty)$ is isomorphism on π_1 . Meaning,

$$\pi_1 \mathbb{P}^\infty \rightarrow \pi_1 G_n(\mathbb{R}^\infty)$$

by cellular approximation [they have the same 1-skeleton and thus 1-cells. Recall the 1-skeleton contains some Schubert cells with dimension 1. So any path on $G_n(\mathbb{R}^\infty)$ is homotopic to one in $G_1(\mathbb{R}^\infty)$]. It is 1 – 1 because of w_1 .

Therefore, they correspond for γ^n . Thus, $w \rightsquigarrow \tilde{w}$ for general ξ .

Milnor-Stasheff uses oriented grassmannian $\tilde{G}_n(\mathbb{R}^\infty)$ to show that $H^1(\tilde{G}_n(\mathbb{R}^\infty); \mathbb{F}_2) = 0$.

Theorem 59 (Thom Isomorphism Theorem). $\xi : \mathbb{R}^n \rightarrow E \rightarrow B$. We have a \mathbb{Z} -coefficient version and a \mathbb{F}_2 -coefficient version. In other words, we have a general manifold version and an oriented manifold version.

We can then state the theorem in a fancier way:

$H^*(E, E_0)$ is a free rank 1 module over H^*B with a generator [the thom class] in $\deg n$. This works for both \mathbb{Z} and \mathbb{F}_2 coefficients.

The module action is given by the cup product. For $x \in H^*B$ and $a \in H^*(E, E_0)$, we can first take the pullback π^*x of x into H^*E . Then,

$$x \cdot a := \underbrace{(\pi^*x) \cup}_{H^*E} \underbrace{a}_{H^*(E, E_0)}.$$

Then $H^*B \cong H^{*+n}(E, E_0) = H^*B \cup u_E$

Proof 1. We use the Serre Spectral Sequence. We look at the relative fibration:

$$\begin{array}{ccc} (F, F_0) & \longrightarrow & (E, E_0) \\ & \downarrow & \\ & & B \end{array}$$

We then have the machine that computes the cohomology of the total space in terms of the cohomology of the base with coefficients in the fiber:

$$\begin{array}{c} E^2 = H^p(B; H^q(F, F_0)) \implies H^{p+q}(E, E_0) \\ \hline \hline \begin{array}{c|c} \parallel & 0 \\ \hline n \parallel & H^*(F, F_0) \\ \hline \parallel & 0 \end{array} \\ \hline \end{array}$$

[Take M622 for more information]. □

Friday, 10/24/2025

$$\xi : \mathbb{R}^n \rightarrow E \rightarrow B$$

Theorem 60 (Thom Isomorphism). Here \mathbb{Z} -coefficient if oriented, else \mathbb{F}_2 .

Then $H^*(E, E_0)$ is free rank 1 module over H^*B . Generator $u_E \in H^n(E, E_0)$.

Theorem 61 (Thom Isomorphism). $\phi : H^*B \xrightarrow{\sim} H^{*+n}(E, E_0)$, $\phi(y) = \pi^*y \cup u_E$.

Theorem 62 (Thom Isomorphism for Homology).

$$H_*B \xleftarrow{\sim} H_{*+n}(E, E_0)$$

It is given by cap product with the Thom class.

We did first proof via spectral sequences.

Second proof: Mayer-Vietoris.

Proof. Case 1: Trivial bundle.

Here $(E, E_0) = B \times (\mathbb{R}^n, \mathbb{R}_0^n)$. In (E, E_0) we have $H^* = H^*B \otimes H^*(\mathbb{R}^n, \mathbb{R}_0^n)$ is free rank 1 by Künneth theorem.

Case 2: $B = B' \cup B''$ open cover. Assume Thom Isomorphism Theorem holds for $\xi|_{B'}$, $\xi|_{B''}$ and $\xi|_{B' \cap B''}$.

Write $B^\cap := B' \cap B''$. Let $E^\cap = \pi^{-1}(B^\cap)$ and $E_0^\cap = \pi_0^{-1}(B^\cap)$.

Question: why is this a thom class?

We have the relative Mayer-Vietoris exact sequence:

$$\cdots \rightarrow H^n(E, E_0) \rightarrow H^n(E', E'_0) \oplus H^n(E''_0, E''_0) \rightarrow H^n(E^\cap, E_0^\cap) \rightarrow \cdots$$

$$u \longmapsto (u', u'') \longmapsto 0$$

Thus we must have $u' \mapsto u^\cap \mapsto u''$.

Now we can use a 5-lemma argument:

$$\begin{array}{ccccc} H^i B & \longrightarrow & H^i B' \oplus H^i B'' & \longrightarrow & H^i B^\cap \\ \downarrow & & \cong \downarrow \phi & & \cong \downarrow \phi \\ H^{i+n}(E, E_0) & \longrightarrow & H^{i+n}(E', E'_0) \oplus H^{i+n}(E''_0, E''_0) & \longrightarrow & H^{i+n}(E^\cap, E_0^\cap) \end{array}$$

So, $H^i B \xrightarrow{\phi, \cong} H^{i+n}(E, E_0)$.

Case 3: Finite cover $B = B_1 \cup \cdots \cup B_k$ such that $\xi|_{B_i}$ is trivial for $\forall i$.

Use induction and Case 2: $(B_1 \cup \cdots \cup B_{k-1}) \cup B_k$.

Thus Thom isomorphism holds if B is compact.

Case 4: General case. Then use limits. Too hard.

□

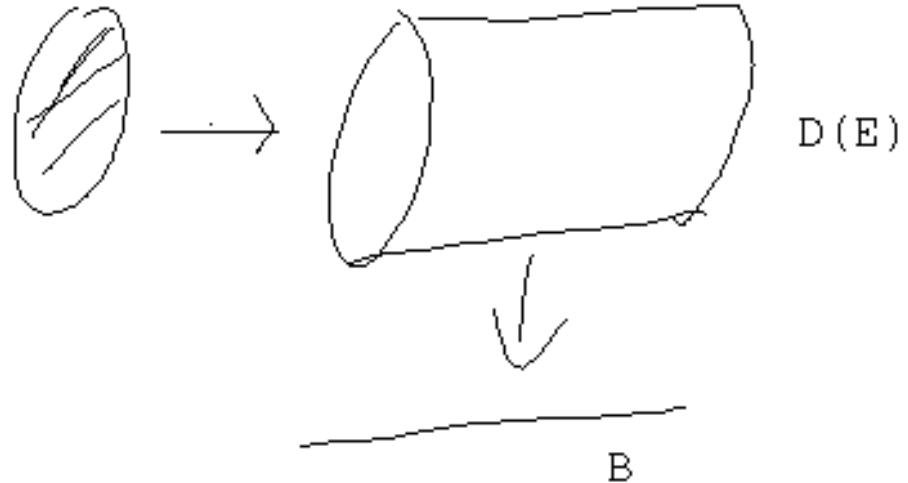
Proof. Third proof. Assume ξ is smooth n -bundle, B is a k -dimensional smooth closed manifold.

We can give ξ a metric $\|\cdot\| : E \rightarrow \mathbb{R}$.

Disk bundle $D(E) = \{e \in E \mid \|e\| \leq 1\}$.

$S(E) = \{e \in E \mid \|e\| = 1\}$.

Then $(D(E), S(E)) \rightarrow (E, E_0)$ gives isomorphism H_* and H^*



$D(E)$ is a compact manifold with $\partial D(E) = S(E)$.

Let PD_B and PD_{DE} be Poincaré (Lefschetz) duality isomorphisms. Define thom class to P-L dual of zero section.

$$u_E := PD_{DE}(z_*[B]) \in H^n(DE, SE)$$

Here z is the zero section.

$$\phi(y) = \pi^*y \cap u_E \stackrel{\text{claim}}{=} PD_{DE}(\text{inc}_* PD_B y).$$

For the claim see Bredon's topology and geometry book page 369.

□

Chapter 9

Consider an oriented vector bundle ξ :

$$\begin{array}{ccc} \mathbb{R}^n & \longrightarrow & E \\ & & \downarrow \pi \\ & & B \end{array}$$

Definition. Euler Class $e(\xi) \in H^n(B; \mathbb{Z})$ is the image of the Thom class:

$$\begin{array}{ccc} H^n(E, E_0) & \longrightarrow & H^n E \xleftarrow{\pi^*} H^n B \\ \Downarrow & & \Downarrow \\ u & & e(\xi) \end{array}$$

Three uses:

Proposition 63 (11.12). M^n closed, oriented manifold then,

$$\langle e(TM), [M] \rangle = \chi(M)$$

Where χ is the Euler characteristic.

Proposition 64. Euler class is the first obstruction to the existence of a nowhere zero section.

Thus, $\dim B < n \implies \xi$ has a nowhere zero section.

$\dim B = n, e(\xi) = 0 \implies \xi$ has a nowhere zero section.

Thus, M^n closed, oriented, $\chi(M) = 0 \implies \exists$ nowhere zero vector field.

If $X^n \subset M^{2n}$ closed, oriented then,

$$\langle e(\nu(X \hookrightarrow M)), i_*[X] \rangle = \text{self intersection } \# \text{ of } X$$

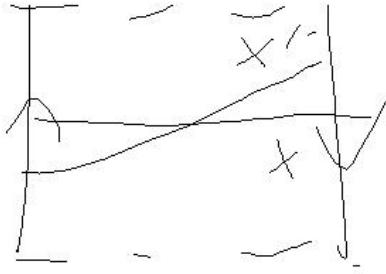
$$= X \cdot X = \langle PD_M[X], [X] \rangle$$

For example, $\langle e(\mathbb{C}P^n \hookrightarrow \mathbb{C}P^2), [\mathbb{C}P^1] \rangle = 1$

Non-oriented clase:

$$\langle e(\nu(X \hookrightarrow M)), i_*[X] \rangle = X \cdot X \pmod{2}$$

Example: consider $M = \mathbb{R}P^2$.



[We perturb a bit since considering the intersection doesn't really make sense]

Then $e(\xi) \bmod 2 = w_n(\xi)$.

Note that $X \cdot X \bmod 2 = X \cdot X' \bmod 2$.

Basic Properties, Milnor-Stasheff 9.2

i) 9.2 $e(\xi)$ is natural. i.e. It is a characteristic class. If $f : \xi' \rightarrow \xi$ is a bundle map [meaning there is an isomorphism on the fibers]

$$\begin{array}{ccc} E' & \xrightarrow{\tilde{f}} & E \\ \downarrow & & \downarrow \\ B' & \xrightarrow{\bar{f}} & B \end{array}$$

Then $e(f^*\xi) = f^*e(\xi)$.

ii) 9.3 $\bar{\xi}$ reversing orientation on ξ gives us $e(\bar{\xi}) = -e(\xi)$.

iii) 9.4 n odd $\implies 2e(\xi) = 0, \xi \cong \bar{\xi}$ [oriented vector bundle]. $v \mapsto -v$, then $e(\xi) \underset{9.2}{=} e(\bar{\xi}) = -e(\xi)$.

If M^n is closed and oriented, then $\xi(M^n) = 0, e(TM) = 0$.

$$\chi(\mathbb{R}P^2) = 1, e(T\mathbb{R}P^2) \neq 0$$

So, if $H^n B$ is torsion free and n is odd, then $e(\xi) = 0$.

If $e(\xi) \neq 0, n$ odd then $e(\xi) \in H^n(B)$ has order 2. Thus there exists a nontrivial torsion summand of $H^n B$.

Question: does there exist a unique oriented $\xi : \mathbb{R}^n \rightarrow E \rightarrow B$ with n odd so that $e(\xi) \neq 0$?

Proposition 65. 9.4. $\frac{1}{2}$: $e(\xi) = \phi^{-1}(u \cup u)$.

Proof. $\phi(e(\xi)) = \pi^*e(\xi) \cup u = u|_E \cup u = u \cup u$.

$$\begin{array}{ccc}
u & u & u \cup u \\
H^n(E, E_0) \otimes H^n(E, E_0; \mathbb{F}_2) & \xrightarrow{\quad} & H^{2n}(E, E_0; \mathbb{F}_2) \\
\downarrow & & \searrow \\
H^n E \otimes H^n(E, E_0; \mathbb{F}_2) & &
\end{array}$$

$$u|_E \quad u$$

□

Proposition 66. $H^n(B; \mathbb{Z}) \rightarrow H^n(B, \mathbb{F}_2)$ has $e(\xi) \mapsto w_n(\xi)$.

Proof. $e(\xi) \mapsto \phi^{-1}(u \cup u) = \phi^{-1}(\text{Sq}^n u) = w_n(\xi)$

□

Proposition 67 (9.6). a) $e(\xi \times \xi') = e(\xi) \times e(\xi')$.

b) $e(\xi \oplus \xi') = e(\xi) \cup e(\xi')$.

Proof. a) Follows from $u_{E \times E'} = u_E \times u_{E'}$.

b) Apply Δ^* to a.

□

Proposition 68 (9.7). If ξ has a nowhere zero section then $e(\xi) = 0$.

Proof. If B is paracompact we can choose a metric. Then, $\xi = \epsilon^1 \oplus (\epsilon^1)^\perp \rightarrow e(\xi) = 0 \cup e((\epsilon^1)^\perp) = 0$.

We use CW approximation for general case.

□

In general, $e(\xi \oplus \epsilon^1) = 0$. Thus, the Euler class is not stable, in contrast to the Stiefel-Whitney classes, where they are stable w.r.t. ‘adding’ trivial bundles.

Wednesday, 10/29/2025

Crash Course in Intersection Theory

- Transversality
- Isotopy invariance
- Intersection numbers
- Thom transversality theorem
- Tubular neighborhood theorem
- Explicit PD
- Alg Int # = Gem Int #.

Transversality

Consider submanifolds A, B of M .

Definition. $A \pitchfork B$ [A and B intersect Transversely] means $\forall x \in A \cap B, T_x A + T_x B = T_x M$.

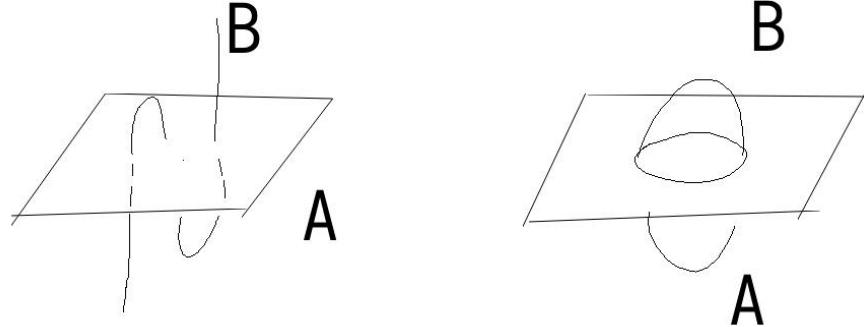


Figure 4: Transverse

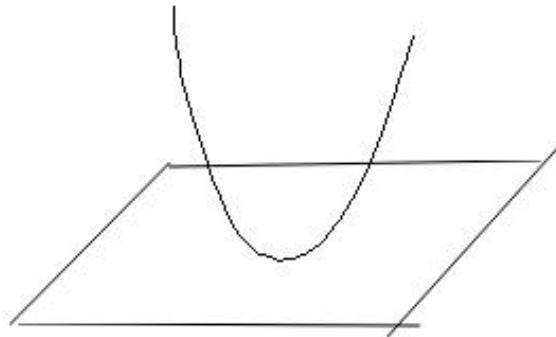


Figure 5: Not transverse

Theorem 69. $A \pitchfork B$. Then,

- $A \cap B$ is a manifold.
- $\nu(A \cap B \hookrightarrow A) \cong \nu(B \hookrightarrow M)|_{A \cap B}$.

Furthermore, $\dim A - \dim A \cap B = \dim M - \dim B$.

Recall that $\nu(B \hookrightarrow M) = (TB)^\perp \subset TM|_B$.

$$\nu(B \hookrightarrow M) = \frac{TM|_B}{TB}.$$

Theorem 70. All submanifolds A, B where A is isotopic to A' , $A' \pitchfork B$.

Slogan: “Transversality is generic”. i.e. it is a dense open condition.

We can perturb A to make it transverse.

Recall isotopy means homotopy through embeddings.

Intersection Numbers

Assume now that $A^n \pitchfork B^k \subset M^{n+k}$.

This implies that $T_x A \oplus T_x B = T_x M$. Assume further that $|A \cap B| < \infty$. e.g. M is compact.

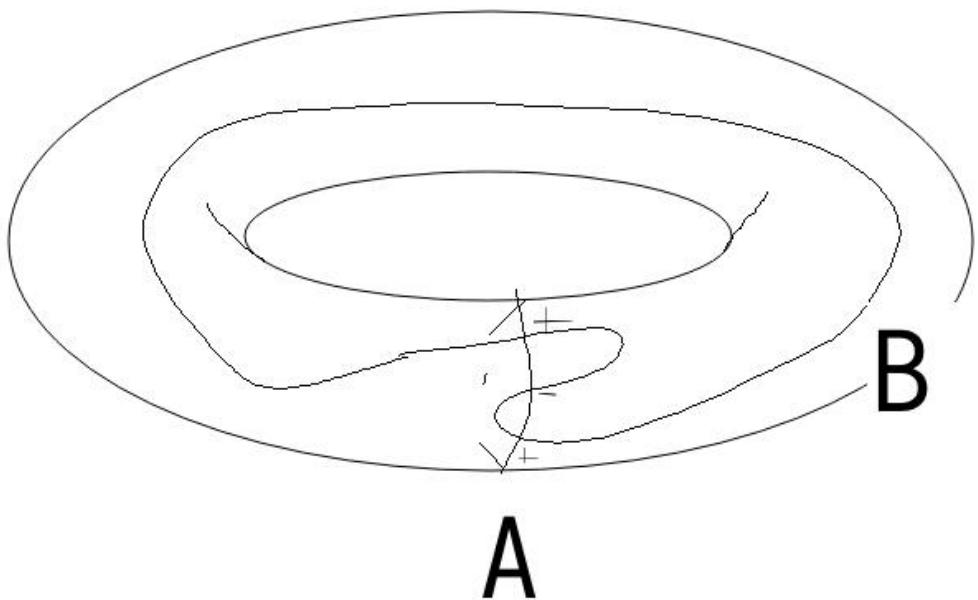
Then we can define the mod 2 intersection number: $|A \cap B| \bmod 2$.

Now assume A, B, M are all oriented.

For $x \in A \cap B$ we can define:

$$\epsilon_x = \begin{cases} +1, & \text{if orientation of } T_x A \oplus T_x B \text{ and } T_x M \text{ match;} \\ -1, & \text{otherwise.} \end{cases}$$

$$A \cdot B = \sum_{x \in A \cap B} \epsilon_x .$$



There $M = T^2, A \cdot B = 1 - 1 + 1$.

Theorem 71. A, B, M are closed then $A \cdot B$ is isotopy invariant.

First Proof. ‘Geometric’

□

Second Proof. ‘Homological’.

$$A \cdot B = \langle PD_M[A] \cup PD_M[B], [M] \rangle \in \mathbb{Z}$$

□

Observe that A not transverse to B can derive that $A \cdot B := A' \cdot B'$.

Consider $M = \mathbb{R}^2$, $A = S^1$ and $B = I$. Then, $A \cdot B$ is not isotopy invariant.

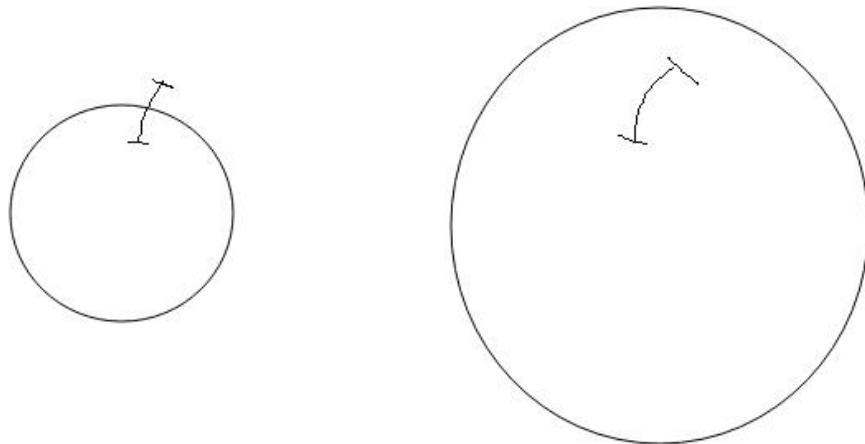


Figure 6: $A \cdot B$ is not isotopy invariant in this case

Suppose $\partial M \neq \emptyset$, submanifold A of F is called *proper* if $\partial A = A \cap \partial M$.

Theorem 72. If A^n, B^k are proper submanifolds of M^{n+k} where B is closed and A, M are compact, and suppose that $A \pitchfork B$, then $A \cdot B$ is isotopy invariant.

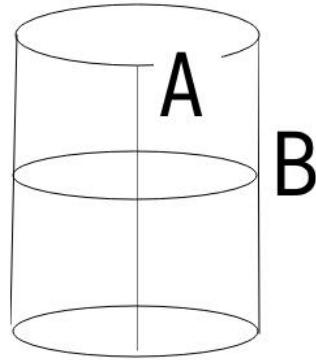


Figure 7: Here $A \cdot B = 1$

Corollary 73. For closed $A, B \subset M$, $A \cdot B$ is isotopy invariant.

Warning: $A, B \subset M$ proper then $A \cdot B$ is not isotopy invariant.

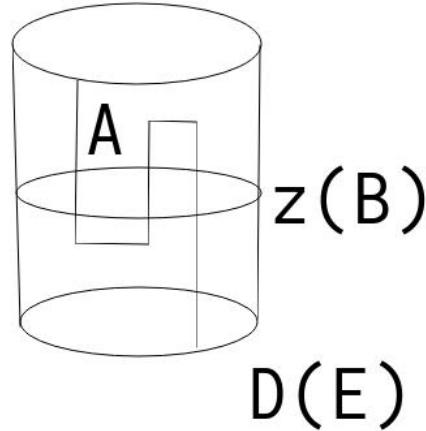
Theorem 74 (Thom Intersection Theorem). Suppose we have a smooth bundle $\xi : \mathbb{R}^n \rightarrow E \rightarrow B^k$ with metric on ξ and B closed.

Recall that the thom class $u_E = PD_E z_*[B] \in H^n(DE, SE) = H^n(E, E_0)$ where z is a zero section.

If $A^n \subset D(E)$ is a proper compact submanifold, then,

$$A \cdot z(B) = \langle u_E, z_*[B] \rangle \in \begin{cases} \mathbb{Z}, & \text{if oriented;} \\ \mathbb{F}_2, & \text{otherwise.} \end{cases}$$

Proof. After isotopy of A , assume \exists neighborhood of $z(B)$ such that each component $A \cap V$ lies in a fiber.



□

Friday, 10/31/2025

We are moving on to chapter 11.

Let $M^n \subset A^{n+k}$ submanifold.

Theorem 75 (11.1 Tubular Neighborhood Theorem). \exists embedding $\nu(M \hookrightarrow A) \hookrightarrow A$ which is ‘identity’ on M .

Proof. (When A is compact): Give TM a metric. Consider $\exp : TM \rightarrow M$ as follows:

$\exp(v) = \gamma'(1)$ where $\gamma : [0, 1] \rightarrow M$ geodesic where $\gamma(0) = \pi(v)$ and $\gamma'(0) = v$

We start at the base point and run in the direction of v .

$\exists \epsilon > 0$ such that $\exp|_{\overset{\circ}{D}_\epsilon(v)} : \overset{\circ}{D}_\epsilon(v) \hookrightarrow A$.

Note that $E(\nu) \cong \overset{\circ}{D}_\epsilon(v)$ by scaling.

$E(\nu) \hookrightarrow A, (-\epsilon, \epsilon) \cong \mathbb{R}$.

□

Corollary 76 (11.2). If M is losed in A then restriction maps are isomorphisms:

$$H^*(A, A - M) \xrightarrow[\text{excision}]{} H^*(N, N - M) \xrightarrow[TMT]{\cong} H^*(E(\nu), E(\nu)_0)$$

Here N is the tubular neighborhood: $\text{im}(E(\nu) \subset A)$.

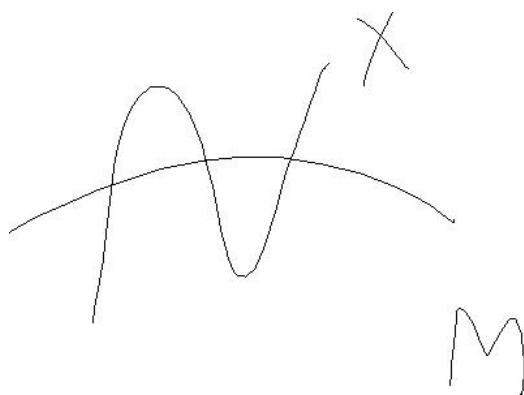
Definition. Thom class $u_M \in H^n(A, A - M)$ maps to u_ν .

$u_M \in H^n(-; \mathbb{F}_2)$

$u_M \in H^n(-; \mathbb{Z})$ if ν is oriented, e.g. A, M are oriented.

Remark. $X \pitchfork M$. $[x] \in H_n(A, A - M)$.

$\langle u_M, [x] \rangle \in M \cdot X$.



Theorem 77 (11.3).

$$H^k(A, A - M) \xrightarrow{i^*} H^k A \xrightarrow{j^*} H^k M$$

a) If M is closed in A then,

$$j^* i^* u_A = \begin{cases} w_k(\nu) \\ e(\nu) \end{cases} \text{ if } \nu \text{ is } \begin{cases} \text{oriented} \end{cases}$$

b) If $M \subset A$ but closed in manifolds,

$$i^* u_M = PD[M] \in \begin{cases} H^k(A; \mathbb{F}_2), & \text{if;} \\ H^k A, & \text{if } A \text{ and } M \text{ both oriented.} \end{cases}$$

Proof. b: explicit Poincaré Duality: Poincaré Dual of submanifold in the image of Thom class of its normal bundle.

$$H^n A \longrightarrow H^k A$$

↑

$$[M] \longrightarrow \text{im } u_M$$

a: oriented case ‘Essentially definition of Euler class’

$$u_M$$

$$\begin{array}{ccccc} H^k(N, N - M) & \xleftarrow{\cong} & H^k(A, A - M) & \xrightarrow{i^*} & H^k A \\ \downarrow TNT & & & & \downarrow j^* \\ H^k(E(\nu), E(\nu)_0) & \longrightarrow & H^k(E(\nu)) & \xrightarrow{\cong} & H^k M \end{array}$$

$$u_\nu$$

$$e(U)$$

□

In the non-oriented case, with \mathbb{F}_2 -coefficients, need:

$$H^k(E(\nu), E(\nu)_0; \mathbb{F}_2) \longrightarrow H^k(M; \mathbb{F}_2)$$

$$u_\nu \longmapsto w_k(\nu)$$

[See 95]

Applications:

Corollary 78 (11.3a). \implies Cor 11.4. $M^n \subset \mathbb{R}^{n+k}$ closed subset then,

$$0 = w_k(\nu) = \bar{w}_k(TM).$$

If $M \subset \mathbb{R}^{n_k}$ is oriented, then $e(\nu) = 0$.

Recall that $\bar{w}(\xi) w(\xi) = 1$.

$$\begin{aligned}\bar{w}(\xi) &= w(\xi)^{-1} = \frac{1}{1+(w_1+w_2+\dots)} \\ &= 1 + (w_1 + w_2 + \dots) + (w_1 + w_2 + \dots)^2 + \dots\end{aligned}$$

Recall $M^n \hookrightarrow \mathbb{R}^{n+k}$ immersion implies $\bar{w}_l(TM) = 0$ for $l > k$.

When $n = 2^l$, $w(TP^n) = 1 + a + a^n$.

$$w(TP^n) = 1 + a + \dots + a^n.$$

Therefore, $\mathbb{R}P^n$ does not immerse into \mathbb{R}^{2n-2} .

We can go down one further dimension $\mathbb{R}P^n$ doesn't embed in \mathbb{R}^{2n-1} . In particular, $\mathbb{R}P^2 \not\hookrightarrow \mathbb{R}^3$.

Now, consider the open Möbius strip M .

$$M \hookrightarrow \mathbb{R}^3 \text{ but } w_1(TM) \neq 0 \implies \bar{w}_1(TM) \neq 0$$

This means $M \not\hookrightarrow \mathbb{R}^3$ as closed subset.

Monday, 11/3/2025

Chapter 11

Goals: Euler class of a closed manifold integrated over the whole manifold is the Euler characteristic:

$$\langle e(T), [M] \rangle = \chi(M)$$

Another goal: Wu's formula for $w_k(TM)$.

Review:

Euler class $e(\xi) \in H^n(B; \mathbb{Z})$ is the image of the Thom class:

$$u \in H^n(E, E_0) \rightarrow H^n E \xleftarrow[\cong]{\pi^*} H^n B \ni e(\xi)$$

Submanifold $M^n \subset A^{n+k}$.

11.2: If M is closed in A , then,

$$u_\nu \in H^k(E(\nu), E(\nu)_0) \xrightarrow[T.N.T.]{\cong} H^k(N, N - M) \xleftarrow{\cong} H^k(A, A - M) \ni u_M$$

Milnor-Stasheff class u_M as u' .

Intuition for u_M : $\langle u_M, [X] \rangle = M \cdot X$.

$$11.3: u_M \in H^k(A, A - M) \xrightarrow{i^*} H^k A \xrightarrow{j^*} H^k M$$

- a) M closed in A implies $u_M \mapsto w_k(\nu)$. ν oriented implies $u_M \mapsto e(\nu)$.
- b) M, A closed manifolds implies $u_M \mapsto PD_A[M]$.

Application of 11.3(b): $X^k \pitchfork M^n \subset A$, all closed and oriented. In that case,

$M \cdot X = \langle u_M, [X] \rangle = \langle PD[M], X \rangle = \langle PD[M] \cup PD[X], [A] \rangle$, the algebraic intersection number.

In the case A^{n+k} closed and oriented, then, we have algebraic integral pairing:

$$\frac{H^n A}{\text{tor}} \otimes \frac{H^k A}{\text{tor}} \rightarrow \mathbb{Z}$$

$$a \otimes b \mapsto \langle a \cup b, [A] \rangle$$

Choose \mathbb{Z} -basis $\{e_k\}$, that gives us $\langle e_i \otimes e_j, [A] \rangle$. It's a symmetric matrix, and P.D. implies $\det = \pm 1$.

Tangent Bundle

‘Normal bundle of the diagonal bundle is the tangent bundle of the manifold.’

Define diagonal map $\Delta : M \rightarrow M \times M$, $\Delta(x) = (x, x)$.

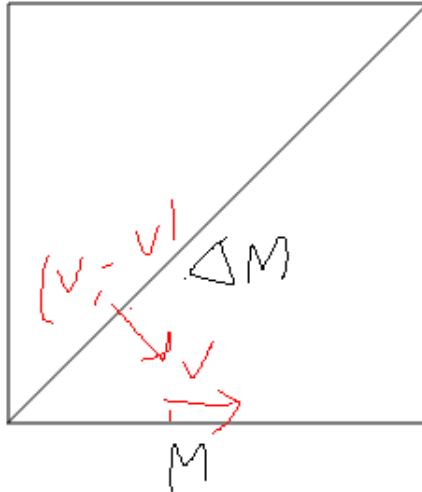


Figure 8: Diagonal Map

Consider curve $\alpha : \mathbb{R} \rightarrow M \times M$. Then we in fact have two maps: $\alpha = (\alpha_1, \alpha_2)$ where $\alpha_i : \mathbb{R} \rightarrow M$.

Therefore, $T(M \times M) = TM \times TM$.

Notice that for any curve $\gamma : \mathbb{R} \rightarrow M$ we can find a new curve $(\gamma(t), \gamma(-t)) : \mathbb{R} \rightarrow M \times M$.

These give us lemma 11.5

Lemma 79 (11.5). \exists bundle map:

$$v \longmapsto (v, -v)$$

$$\begin{array}{ccc} TM & \longrightarrow & \nu(\Delta(M) \hookrightarrow M \times M) \\ \downarrow & & \downarrow \\ M & \xrightarrow[\simeq]{\Delta} & M \times M \end{array}$$

Therefore $TM = \nu(\Delta \hookrightarrow M \times M)$.

Now we jump into the algebraic topology.

$$H^n(M \times M, M \times M - \Delta M) \rightarrow H^n(M \times M)$$

$$u_{\Delta M} \mapsto u''$$

Here u'' is the ‘diagonal cohomology class’. $u'' = PD_{M \times M}[\Delta]$.

Lemma 80 (11.8). $(1 \times a) \cup u'' = (a \times 1) \cup u''$ for $a \in H^*M$.

Sketch. $\Delta M \hookrightarrow M \times M$ is symmetric in the two factors. □

Lemma 81 (11.9). When M is closed, if we take the ‘slant product’ then $u''/[M] = 1 \in H^0M$

Proof ommitted.

Products

Recall: Cup products \leftrightarrow cross products. Implies cohomology is a ring.

Cap products imply homology is a module over cohomology ring. It corresponds to ‘slant product’.

$$/ : H^{p+q}(X \times Y) \otimes H_q Y \rightarrow H^p X$$

$$a \otimes z \mapsto a/z$$

It is supposed to be like a fraction.

It is also related to the cross product: $(a \times b)/\beta = \langle b, \beta \rangle a$.

This can work as a definition if coefficients are in a field. Theorem for general coefficients.

Definition (Slant Product). At the cochain level: take $f \in H^{p+q}(X \times Y)$ and $\sigma : \Delta^q \rightarrow Y$, then for any p -chain τ ,

$$(f/\sigma)(\tau) = f({}_p\sigma \times \tau)$$

[Note: this is not quite right]

Wednesday, 11/5/2025

Recap:

Slant product $/ : H^{p+q}(X \times Y) \otimes H_q X \rightarrow H^p Y$. $p \otimes \beta \mapsto p/\beta$.

Main idea: if $a \in H^p X, b \in H^q Y$ then $(a \times b)/\beta = \langle b, \beta \rangle a$.

$-/\beta$ is $H^* X$ -linear: $((a \times 1) \cup p)/\beta = a \cup (p/\beta)$.

If M is oriented assume field coefficient F . Otherwise assume \mathbb{F}_2 -coefficients.

Now assume that M^n is closed and smooth. $H^n(M \times M, M \times M - \Delta) \ni u_\Delta$, the thom class of the diagonal. u_Δ maps to $u'' \in H^n(M \times M)$. It is called the diagonal cohomology class, which is the Poincaré dual to ΔM .

Recall when $n \in \dim B - \dim A$, we have $H^n(B, B - A) \cong H^n(E(\nu), E(\nu)_0)$ where ν is the normal bundle by excision and tubular neighborhood theorem.

11.8: $\forall a \in H^* M, (a \times 1) \cup u'' = (1 \times a) \cup u''$, symmetry.

11.9: $u''/[M] = 1 \in H^0 M$.

Proof omitted.

11.10: Duality Theorem: \forall basis b_1, \dots, b_r for $H^* M$ there exists dual basis $b_1^\#, \dots, b_r^\#$ so that $\langle b_i \cup b_j^\#, [M] \rangle = \delta_{ij}$.

11.11 $u'' = \sum_i (-1)^{|b_i|} b_i \times b_i^\# \in H^n(M \times M)$.

11.10 $\iff I : H^* M \otimes_F H^* M \rightarrow F$ given by $a \otimes b \mapsto \langle a \cup b, [M] \rangle$ is a perfect pairing, thus $\dim H_p M = \dim H^{n-p} M = \dim H_{n-p} M$.

Suppose A, B are Λ -modules where Λ is a commutative ring. then $A \otimes_\Lambda B \rightarrow C$ is perfect pairing if $A \xrightarrow{\cong} \text{Hom}(B, C)$ and $B \xrightarrow{\cong} \text{Hom}(A, C)$. In our example the perfect pairing comes from the bilinear map.

Proof. We prove 11.10 and 11.11.

By Künneth theorem we can write $H^n(M \times M) \ni u'' = b_1 \times c_1 + \dots + b_r \times c_r$.

11.8 $\implies (a \times 1) \cup u'' = (1 \times a) \cup u''$. By taking slat with fundamental class,

$$((a \times 1) \cup u'')/[M] = ((1 \times a) \cup u'')/[M]$$

$$a \cup (u''/[M]) = (1 \times a) \cup \left(\sum_j b_j \times c_j \right) / [M]$$

$$a = \left(\sum_j (-1)^{|a||b_j|} (1 \cup b_j) \times (a \cup c_j) \right) / [M].$$

$$a = \sum_j (-1)^{|a||b_j|} \langle a \cup c_j, [M] \rangle b_j.$$

Now take $a = b_i$. The b_i are a basis. Therefore, taking $a = b_i$ we see:

$$b_i = \sum_j (-1)^{|b_i||b_j|} \langle b_i \cup c_j, [M] \rangle = \delta_{ij}$$

Define $b_j^\# = (-1)^{b_j} c_j$.

$$\langle b_i \cup b_j^\#, [M] \rangle = \delta_{ij}$$

$$u'' = \sum_i (-1)^{|b_i|} b_i \times b_i^\#$$

When $M = \mathbb{R}P^2$, $u'' = 1 \times a^2 + a \times a + a^2 \times 1 \in H^2(\mathbb{R}^2 \times \mathbb{R}P^2)$.

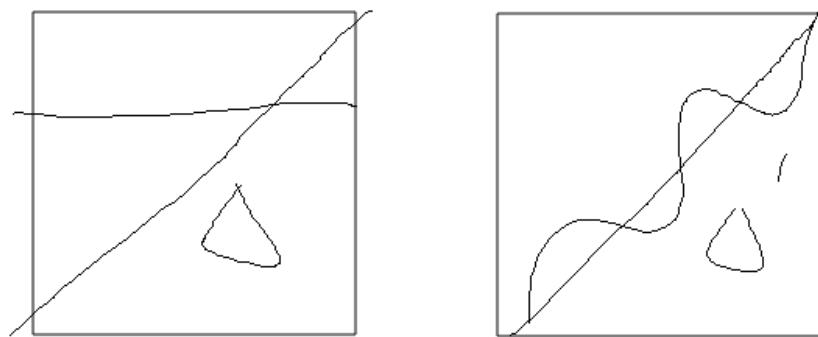
□

Corollary 82. When M^n is closed, smooth and oriented, $\langle e(TM), [M] \rangle = \chi(M)$.

When M^n is closed and smooth, $\langle w_n(TM), [M] \rangle \cong \chi \xi(M) \pmod{2}$,

Proof. Oriented case: claim $e(TM) = \Delta^* u''$.

$$\begin{array}{ccc}
 u_{TM} & & e(TM) \\
 \downarrow & & \uparrow \Delta^* \\
 H^n(TM, TM_0) & \longrightarrow & H^n(M \times M) \\
 \downarrow \cong & & \uparrow \Delta^* \\
 H^n(E(\nu : \Delta \hookrightarrow M \times M), E(v)_0) & \xrightarrow{\cong} & H^n(M \times M, M \times M - \Delta) \longrightarrow H^*(M \times M) \\
 & u_\Delta & u'' \\
 \square & &
 \end{array}$$



Let Δ' be isotopic copy of Δ such that $\Delta' \pitchfork \Delta$.

Then $\Delta' \cdot \Delta = \langle e(\nu), [\Delta] \rangle - \langle e(TM), [M] \rangle = \chi(M)$

THus, $\chi(M)$ is the self intersection number of the diagonal $\Delta M \hookrightarrow M \times M$

Corollary 83. If M has a nowhere zero vector field then $\chi(M) = 0$.

Proof. Suppose otherwise. Then M has a non-zero vector field implies ΔM has a non-zero normal vector field. “Flow” implies $\exists \Delta'$ such that $\Delta' \cap \Delta = \emptyset$. □

Thus, $\chi(M) \neq 0 \implies$ can't comb hairy M .

Recall $\chi(M) = (-1)^i \dim H_i(M, \mathbb{Q}) = \sum_i (-1)^i (\# \text{-of } i\text{-cells})$.
 $= \sum_i (-1)^i \dim H_i(M, \mathbb{F}_p)$.

Friday, 11/7/2025

Wu classes / Wu Formula / Wu Theorem

Coefficients in \mathbb{F}_2 understood.

Wu classes are polynomials of whitney classes.

$$v_0 = w_0 = 1$$

$$v_1 = w_1$$

$$v_2 = w_1^2 + w_2$$

$$v_3 = w_1 w_2.$$

They're defined as following:

Definition (Total Wu Class).

$$v = v_0 + v_1 + v_2 + \dots$$

$$w = \text{Sq } v$$

$$\text{i.e. } v = \text{Sq}^{-1} w = (1 + \text{Sq}^1 + \text{Sq}^2 + \dots)^{-1} w.$$

Proposition 84 (Wu's Formula, Exercise 8A). $\text{Sq}^k w_m$ is 'something in the cohomology of the Grassmannian', so it must be some polynomial over Stiefel Whitney Classes.

$$\text{Sq}^k w_m = \sum_i \binom{k-m}{i} w_{k-i} w_{m+i}$$

Hint on 8A:

$$H^*(G_n) \cong H^*(P^m \times \dots \times P^m)^{S_n}$$

$$w_i \mapsto \sigma_i(a_1, \dots, a_n)$$

Compute Sq^i using Cartan.

$$\text{eg } \text{Sq}^1 w_2 = w_1 w_2 + w_3.$$

Computation:

$$w = Sq v = (1 + Sq^1 + Sq^2 + \dots)(v_0 + v_1 + v_2 + \dots)$$

Then, $1 = w_0 = v_0$.

$$w_1 = v_1$$

$$w_2 = Sq^1 v_1 + v_2 \implies w_2 = w_1^2 + v_2$$

$$\begin{aligned} w_3 &= \cancel{Sq^2 v_1} + Sq^1 v_2 + v_3 = Sq^1 w_1^2 + Sq^1 w_2 + v_3 \\ &= \underbrace{Sq^0 w_1 Sq^1 w_1 + Sq^1 w_1 Sq^0 w_1}_{\text{cartan}} + \underbrace{w_1 w_2 + w_3}_{\text{Wu Formula}} + v_3 \end{aligned}$$

Now, suppose we have M^n a closed n -manifold.

Theorem 85 (Wu Theorem). Let $v(TM)$ be the total Wu class of a tangent bundle.

$$\langle v(TM) \cup -, [M] \rangle = \langle Sq(-), [M] \rangle$$

i.e. if $x \in H^{n-k} M$ then $v_k(TM) \cup x = Sq^k x$.

i.e. $\langle v_k(TM) \cup x, [M] \rangle = \langle Sq(-), [M] \rangle$.

Corollary 86. Let $M \xrightarrow{h} M'$ be homotopy equivalent manifolds. Then, $w(TM) = h^* w(TM')$.

Sketch. Wu classes are determined by algebraic topology. Thus, homotopy equivalent implies same algebraic topology which implies same Wu class which implies same Stiefel-Whitney class. \square

We can connect this to intersection forms.

Definition (Algebraic Intersection Form). $I_M : H^* M \otimes H^* M \rightarrow \mathbb{F}_2$.

$$I_M(a \otimes b) = \langle a \cup b, [M] \rangle$$

We write $a \cdot b = I_M(a \otimes b)$. By Poincaré duality it is a *perfect pairing*, thus it is a *non-singular pairing*.

Key application of Wu's Theorem

Suppose $n = 2k$. M is a closed n -dimensional manifold.

$$\langle v_k(TM) \cup x, [M] \rangle = \langle Sk^k x, [M] \rangle = \langle x \cup x, [M] \rangle$$

Thus, for $x \in H^k M$:

$$v_k(TM) \cdot x = x \cdot x .$$

Now we restrict to the middle dimensional homology.

$$\widehat{I_M} : H^k M^{2k} \otimes H^k M^{2k} \rightarrow \mathbb{F}_2$$

Definition. \widehat{I}_M is even if $\forall a, \widehat{I}_M(a \otimes a) = 0$.

\iff if β_i is a basis for $H^k M$ then the matrix $(\beta_i \cdot \beta_j)$ has even $\#$ on the diagonal.

Then,

Theorem 87 (Wu's Theorem).

$$v_k(TM^{2k}) = 0 \iff \widehat{I}_M \text{ is even}$$

Example: Suppose $n = 2$. Then $v_1 = w_1$.

$v_1 = 0 \iff M^2 \text{ orientable} \iff \widehat{I}_M \text{ is even (eg Torus).}$

Matrix:
$$\begin{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} & & \\ & \ddots & \\ & & \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \end{bmatrix}$$

$v_1 \neq 0 \iff \widehat{I}_M \text{ is odd. e.g. } \mathbb{R}P^1 \cdot \mathbb{R}P^1 = 1 \text{ in } \mathbb{R}P^2.$

Let K be the Klein bottle. Then \widehat{I}_K has matrix $\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$ since $b \cdot b = 1$ and $a \cdot a = 0$.

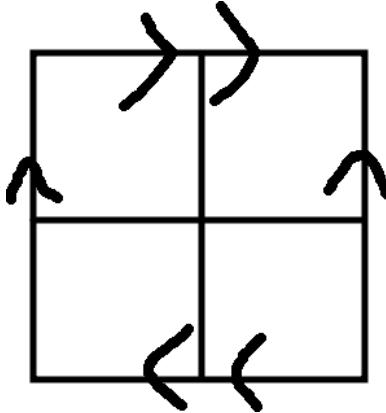


Figure 9: Klein Bottle

e.g. $\mathbb{R}P^4 : w_1 \neq 0, w_2 = 0, v_2 \neq 0$ thus $\mathbb{R}P^2 \cdot \mathbb{R}P^2 = 1$.

Further example: $\mathbb{C}P^1 \cdot \mathbb{C}P^1 = 1$.

Corollary 88. Orientable 4-manifold: \widehat{I}_M is even $\iff w_2(TM) = 0 \iff v_2(TM) = 0$.

To prove Wu's theorem we need an additional lemma:

Lemma 89 (11.3).

$$w(TM) = \text{Sq}(u'')/ [M]$$

Where $u'' \in H^n(M \times M)$ the diagonal cohomology class dual to ΔM .

Proof. We assume the lemma is true. In that case,

I_M is perfect pairing thus non-singular, thus $\exists! \hat{v} \in H^*M$ such that $\langle \hat{v} \cup -, [M] \rangle = \langle \text{Sq}(-), [M] \rangle : H^*M \rightarrow \mathbb{F}_2$.

WTS: $\hat{v} = v(TM)$.

WTS: $\text{Sq } \hat{v} = w(TM)$.

Choose basis b_i for H^*M and dual basis b_i^\sharp i.e. $b_i \cdot b_j^\sharp = \delta_{ij}$ [11.10]

Then, 11.11 $\implies u'' = \sum_i b_i \times b_i^\sharp$.

$$11.10: \hat{v} = \left(\sum_i \hat{v} \cdot b_i^\sharp \right) b_i = \sum_i \langle \text{Sq}(b_i^\sharp), [M] \rangle b_i$$

$$\implies \text{Sq } \hat{v} = \sum_i \langle \text{Sq}(b_i^\sharp), [M] \rangle \text{Sq } b_i$$

Cartan and 11.11 implies,

$$\text{Sq } \hat{v} = \sum_i (\text{Sq}(b_i) \times \text{Sq}(b_i^\sharp)) / [M] = \text{Sq}(u'') / [M] = w(TM).$$

□

Monday, 11/10/2025

Recap: Wu classes: $\text{Sq } v = w$.

Wu formula:

$$\text{Sq}^k w_m = \sum_i \binom{k-m}{i} w_{k-i} w_{k+i}$$

Using these, we can find out: $v_1 = w_1, v_2 = w_1^2 + w_2, v_3 = w_1 w_2$.

Wu's Theorem: If M is a closed manifold and $x \in H^*(M; \mathbb{F}_2)$ then,

$$\langle v(TM) \cup x, [M] \rangle = \langle \text{Sq}^k(x), [M] \rangle$$

Corollary 90. If $k > \frac{\dim M}{2}$ then $v_k(TM) = 0$.

Proof. $\forall x \in H^{n-k}(M; \mathbb{F}_2)$

$$\langle v_k(TM) \cup x, [M] \rangle = \langle \text{Sq}^k(x), [M] \rangle = \langle 0, [M] \rangle = 0$$

□

If $k = \frac{\dim M}{2}$ then $\langle v_k(TM) \cup x, [M] \rangle = \langle x \cup x, [M] \rangle$ which is the 'self intersection' number.

Application to 3-manifolds

Let M^3 be closed, $w_i = w_i(M), v_i = v_i(TM)$.

Theorem 91. a) All SW numbers of M^3 vanish.

b) M^3 orienatable implies $w_1 = w_2 = w_3 = 0$.

Proof. $\frac{\dim M}{2} \implies v_2 = 0, v_3 = 0$. Then $w_1^2 = w_2$ and $w_1 w_2 = 0$. So $w_1^3 = 0$. $\chi(M^3) = 0 \implies w_3 = 0$ [recall $\chi(M^n) \equiv \langle w_n(TM), [M] \rangle \pmod{2}$, apply PD].

For part b: $w_1 = 0 \implies w_2 = 0, w_3 = 0$. \square

a + Thom's theorem $\implies M^3 = \partial W^4$ compact, i.e. every 3-manifold is the boundary of a compact 4-manifold.

b + obstruction theorem \implies oriented closed 3-manifold M^3 has trivial tangent bundle, “paralellizable” [Problem 12-13].

Gysin Sequence

$$\begin{array}{ccc} \mathbb{R}^n & \longrightarrow & E \\ \text{It's a long exact sequence. Consider the vector bundle} & & \downarrow \pi \\ & & B \end{array}$$

a) \exists LES:

$$\cdots \rightarrow H^{j-n}(B; \mathbb{F}_2) \xrightarrow{- \cup w_n} H^j(B; \mathbb{F}_2) \xrightarrow{\pi^\sharp} H^j(E_0; \mathbb{F}_2) \rightarrow H^{j-n+1}(B; \mathbb{F}_2) \rightarrow \cdots$$

b) If oriented, \exists LES:

$$\cdots \rightarrow H^{j-n} \xrightarrow{- \cup e} H^j B \rightarrow H^j E_0 \rightarrow H^{j-n+1} B \rightarrow \cdots$$

c) If oriented with metric,

$$\cdots \rightarrow H^{j-n} B \xrightarrow{- \cup e} H^j B \rightarrow H^j(S(E)) \rightarrow \cdots$$

Recall, suppose we have a trivial bundle. $H^* E_0 = H^*(B \times (\mathbb{R}^n - 0)) = H^*(B \times S^{n-1}) = H^* B \oplus H^{*+n-1} B$ [Künneth]. Since in trivial bundle, $- \cup e$ is 0 this works!

Proof. b: LES of pair (E, E_0) :

$$\begin{array}{ccccccc} H^j(E, E_0) & \longrightarrow & H^j E & \longrightarrow & H^j E_0 & \longrightarrow & H^{j+1}(E, E_0) \\ \cong \uparrow - \cup u|_E & \nearrow & & & \cong \uparrow & & \\ H^{j-n} & & H^j B & & & & \\ \cong \uparrow & - \cup e & \nearrow & & & & \\ H^{j-n} B & & & & & & \end{array}$$

$$\begin{array}{ccc} S^1 & \longrightarrow & E \\ \text{2nd proof: SSS tp} & & \downarrow \\ & & S^2 \end{array}$$

Classified by $e \in H^2(S^2)$. eg $E = S^3, S^1 \times S^2, L_n$ lens spaces, $e = 0, 1, n$. \square

Corollary 92 (12.3). Any 2-fold cover $\begin{array}{ccc} \widetilde{B} & \xrightarrow{\pi} & B \end{array}$ implies: $\exists \xi = \begin{array}{ccc} \mathbb{R} & \longrightarrow & E \\ \downarrow & & \downarrow \\ B & & B \end{array}$ such that,

$$\begin{array}{ccc} SE & \xrightarrow{\cong} & \widetilde{B} \\ & \searrow & \swarrow \\ & B & \end{array}$$

and LES:

$$\cdots \rightarrow H^{j-1}(B; \mathbb{F}_2) \xrightarrow{- \cup w_1} H^j(B; \mathbb{F}_2) \rightarrow H^j(\widetilde{B}; \mathbb{F}_2) \rightarrow \cdots$$

‘Smith exact sequence, Hatcher’

Proof. Let $E := \frac{\widetilde{B} \times \mathbb{R}}{(x, t) \sim (x', -t)}$

Where $\pi(x) = \pi(x')$, $x \neq x'$.

$$\begin{array}{ccc} S^2 & & T^2 \\ \downarrow & \text{or} & \downarrow \\ P^2 & & K^2 \end{array} . \quad \square$$

$\widetilde{G}_n(\mathbb{R}^{n+k})$ = oriented n -planes in \mathbb{R}^{n+k} . This is $V_n(\mathbb{R}^{n+k})/SO(n)$.

$$V_n(\mathbb{R}^{n+k}) = \{(v_1, \dots, v_n) \mid v_i \in \mathbb{R}^{n+k}; v_i \cdot v_j = \delta_{ij}\} \subset \mathbb{R}^{n+k} \times \cdots \times \mathbb{R}^{n+k}$$

$$SO(n) = \{A \in M_n \mathbb{R} \mid AA^t = I, \det A = 1\}.$$

$$\begin{array}{ccc} \widetilde{G}_n & = & \widetilde{G}_n(\mathbb{R}^\infty) & = & BSO(n) \\ \downarrow \text{double cover} & & & & \\ G_n & = & G_n(\mathbb{R}^\infty) & = & BO(n) \end{array}$$

Then we will have 12.3 (Gysin):

$$H^*(\widetilde{G}_n; \mathbb{F}_2) = \mathbb{F}_2[w_2, w_3, \dots]$$

Friday, 11/14/2025

Today: \widetilde{G}_n and \mathbb{C} vector bundles.

Definition (Oriented Grassmannian). $\widetilde{G}_n(\mathbb{R}^{n+k})$ = oriented n -planes in \mathbb{R}^{n+k}

$$= \frac{\text{Orthonormal } n\text{-frames in } \mathbb{R}^{n+k}}{\text{Orientation Preserving Right motions}} = \frac{V_n(\mathbb{R}^{n+k})}{SO(n)}$$

Then there's a double cover:

$$\begin{array}{ccc} \widetilde{G}_n(\mathbb{R}^{n+k}) \\ \downarrow \\ G_n(\mathbb{R}^{n+k}) \end{array}$$

The double cover is not trivial. $k > 0$, $\widetilde{G}_n(\mathbb{R}^{n+k})$ is connected.

There is a tautological bundle over this space.

$$\begin{array}{ccc} E(\widetilde{\gamma}_n) \\ | \\ \widetilde{G}_n(\mathbb{R}^{n+k}) \end{array}$$

Definition 1: $E(\widetilde{\gamma}_n) \subset \widetilde{G}_n(\mathbb{R}^{n+k}) \times \mathbb{R}^{n+k}$.

Definition 2: Pullback:

$$\begin{array}{ccc} E(\widetilde{\gamma}_n) & \longrightarrow & E(\gamma_n) \\ \downarrow & & \downarrow \\ \widetilde{G}_n(\mathbb{R}^{n+k}) & \longrightarrow & G_n(\mathbb{R}^{n+k}) \end{array}$$

$$\widetilde{G}_n = G_n(\mathbb{R}^\infty) = \operatorname{colim}_{k \rightarrow \infty} \widetilde{G}_n(\mathbb{R}^{n+k})$$

Theorem 93. $E(\widetilde{\gamma}_n) \downarrow \widetilde{G}_n$ classifies oriented vector bundles over B CW. i.e.

$$[B, \widetilde{G}_n] \longleftrightarrow \left\{ \begin{array}{c} \text{iso class of} \\ \text{oriented } n\text{-planes} \\ \text{bundles } /B \end{array} \right\}$$

$$f \longmapsto f^* \widetilde{\gamma}_n$$

$H^*(\widetilde{G}_n) \rightarrow H^*B$. Here \widetilde{G}_n classifying space, $\widetilde{\gamma}_n$ universal bundle.

Proof. First: If ξ oriented then any bundle map $\xi \rightarrow \gamma_n$ lifts uniquely to o.p. bundle map $\xi \rightarrow \widetilde{\gamma}_n$

Second: Presentation

$$\begin{array}{ccc} SO(n) & \longrightarrow & V_n(\mathbb{R}^\infty) & \simeq & * \\ & & \downarrow & & \\ & & \widetilde{G}_n & & \end{array}$$

Then $\tilde{G}_n = BSO(n) = BGL_n^+(\mathbb{R})$. □

$\tilde{G}_n \xrightarrow{\pi} G_n$: non-trivial 2-fold cover. Let γ_π be the associated line bundle to the double cover.

$H^1(G_n, \mathbb{F}_2) = \mathbb{F}_2$. This is w_1 .

Therefore, $w_1(\gamma_\pi) = w_1(\gamma_n)$.

We can change the fiber:

$$\begin{array}{ccc}
 & \tilde{G}_n \times_{C_2} \mathbb{R} & \\
 & \parallel & \\
 S^0 & \longrightarrow & \tilde{G}_n \\
 & \downarrow & \\
 & G_n & \\
 & & \mathbb{R} \longrightarrow E(\gamma_\pi) \\
 & & \downarrow \\
 & & G_n
 \end{array}$$

Recall 12.3: Gysin sequence for γ_π .

$$\xrightarrow{0} H^{j-1}(G_n; \mathbb{F}_2) \xrightarrow{- \cup w_1} H^j(G_n; \mathbb{F}_2) \rightarrow H^j(\tilde{G}_n; \mathbb{F}_2) \xrightarrow{0} H^j(G_n; \mathbb{F}_2) \xrightarrow{- \cup w_1}$$

$H^*(G_n; \mathbb{F}_2) = \mathbb{F}_2[w_1, \dots, w_n]$. This is a polynomial ring, so multiplying by w_1 is injective.

Thus, $- \cup w_1$ is injective.

Theorem 94 (12.4). $H^*(\tilde{G}_n; \mathbb{F}_2)/\langle w_1 \rangle = \mathbb{F}_2[w_2, \dots, w_n]$

Remark: there also exists Euler class $e(\tilde{\gamma}_n) \in H^n(\tilde{G}_n; \mathbb{Z})$

If we have an oriented v.b. ξ , then $e(\xi) \in H^n(B; \mathbb{Z})$. n odd means $2e(\xi) = 0$.

Q(Davis): Find example where $e(\xi) \neq 0, n$ odd.

A(Mandell): $\xi = \tilde{\gamma}_3$, oriented grassmannian of 3-planes in \mathbb{R}^∞ .

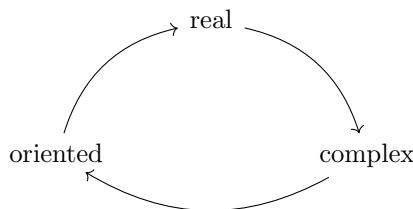
$$e(\tilde{\gamma}_3) \in H^3(\tilde{G}_3; \mathbb{Z})$$

$$0 \neq e(\tilde{\gamma}_3) \xrightarrow{\text{mod}} w_3 = w_3(\tilde{\gamma}_3) \neq 0.$$

Puzzles:

1. What 2-dimensional real planes in \mathbb{C}^n are complex lines?

2. P176:



\mathbb{C}^n -bundle

$$w: \mathbb{C}^n \longrightarrow E$$

$$\downarrow \pi$$

$$B$$

MS Definition, of Steenrod $\mathrm{GL}_n(\mathbb{C}, \mathbb{C}^n)$ -bundle

Complex projective space $\mathbb{C}P^n = G_1(\mathbb{C}^{n+1})$.

Complex Grassmannian $G_n(\mathbb{C}^{n+k})$

Tautological bundle:

$$\begin{array}{ccc} \mathbb{C}^n & \longrightarrow & E(\gamma_n) & \subset & G_n(\mathbb{C}^{n+k}) \times \mathbb{C}^{n+k} \\ & & \downarrow & & \\ & & G_n(\mathbb{C}^{n+k}) & & \end{array}$$

Universal bundle:

$$\begin{array}{ccc} \mathbb{C}^n & \longrightarrow & E(\gamma^n) \\ & & \downarrow \\ & & G_n(\mathbb{C}^\infty) \end{array}$$

$H^*(G_n \mathbb{C}^\infty)$ characteristic classes, \mathbb{C}^n -bundle.

$H^*(G_n \mathbb{C}^\infty, \mathbb{Z}) = \mathbb{Z}[c_1, c_2, \dots, c_n]$ are called Chern Classes.

$|c_i| = 2i$.

$$\mathbb{C}^n\text{-bundle} \longrightarrow \mathbb{R}^{2n}\text{-bundle}$$

$$w \longmapsto w|_{\mathbb{R}}$$

Definition. A complex structure on $\xi: \mathbb{R}^n \rightarrow E \rightarrow B$ is a bundle map:

$$\begin{array}{ccc} E(\xi) & \xrightarrow{J} & E(\xi) \\ & \searrow & \swarrow \\ & B & \end{array}$$

such that $J^2 = -\mathrm{id}$. i.e. $J(J(v)) = -v$.

complex vector bundle \longleftrightarrow real vector bundle with complex structure

Monday, 11/17/2025

1. $\text{Spin}(n) \rightarrow \text{SO}(n)$

2. BoH Periodicity:

$$\pi_i O = \begin{cases} \mathbb{Z}/2, & \text{if } i \equiv 0(8); \\ \mathbb{Z}/2, & \text{if } i \equiv 1(8); \\ 0, & \text{if } i \equiv 2(8); \\ \mathbb{Z}, & \text{if } i \equiv 3(8); \\ 0, & \text{if } i \equiv 4(8); \\ 0, & \text{if } i \equiv 5(8); \\ 0, & \text{if } i \equiv 6(8); \\ \mathbb{Z}, & \text{if } i \equiv 7(8); \end{cases}$$

$$\pi_1 U = \begin{cases} 0, & \text{if } i \equiv 0(2); \\ \mathbb{Z}, & \text{if } i \equiv 1(2). \end{cases}$$

3. Splitting principal

$$\begin{array}{ccc} L_1 \oplus \cdots \oplus L_n & \longrightarrow & E \\ \downarrow & & \downarrow \\ B' & \xrightarrow{f} & B \end{array}$$

f^* injective.

Homotopy

$$\pi_i(X, x_0) = [(S^i, *), (X, x_0)].$$

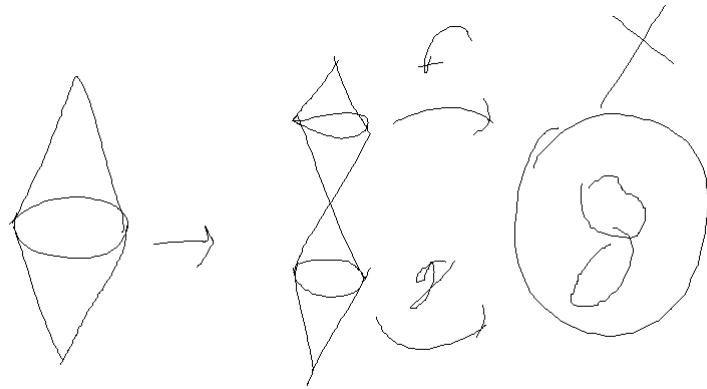
$i = 0 : \pi_0 \leftrightarrow \text{path-component of } X.$

$i \geq 2$: Abelian group.

Suppose X is path connected.

Path $\gamma : I \rightarrow X$ with $\gamma_* : \pi_i(X, \gamma(0)) \xrightarrow{\sim} \pi_i(X, \gamma(1))$. So we can omit x_0 from the definition. We can go wrong sometimes, but we won't worry about it.

Addition structure:



$\pi_i GL_n(\mathbb{R}) = \text{Vect}_n(S^{i+1})$ isomorphism classes.

$$\begin{array}{ccc}
 \mathbb{R}^n & \longrightarrow & E \\
 \text{Vect}_n(S^{i+1}) \text{ is} & \downarrow & \\
 & & S^{i+1}
 \end{array}$$

Proof 1. Clutching.

$\xi|_{H_+^{i+1}}$ and $\xi|_{H_-^{i+1}}$ are trivial. ξ is given, $S^i \rightarrow GL_n(\mathbb{R})$ by gluing. \square

Proof 2.

$$\begin{array}{ccc}
 GL_n & \longrightarrow & EGL_n \simeq * \\
 & & \downarrow \\
 & & BGL_n
 \end{array}$$

Then $\text{Vect}_n(S^{i+1}) \xrightarrow{C.S.} \pi_{i+1} BGL_n \underset{LES}{\cong} \pi_i GL_n$ \square

In general $[X, BG] \cong \text{Iso class of } (G, F)\text{-bundle } /X$.

Classifying Spaces

We have the following groups:

$$\begin{array}{ccc}
 SO(n) & \hookrightarrow & GL_n^+(\mathbb{R}) \\
 \downarrow & & \downarrow \\
 O(n) & \hookrightarrow & GL_n(\mathbb{R})
 \end{array}$$

$GL_n^+(\mathbb{R})$ corresponds to orientable bundles.

$O(n)$ corresponds to metrics.

Claim: the horizontal maps are homotopy equivalent

Proof. Polar decomposition: $A \in \mathrm{GL}_n(\mathbb{R}) \implies A = PO$ where P is ‘positive’ [i.e. symmetric and positive definite] and $O \in \mathrm{O}(n)$.

Then $\mathrm{O}(n)$ is a deformation retract of GL_n by

$$((1-t)P + tI)O$$

□

Corollary 95. $\mathrm{BO}(n) \simeq \mathrm{BGL}_n \mathbb{R}$

Every bundle over CW-complex admit a metric / unique upto isometry.

Theorem 96. $\mathrm{SO}(n)$ is path-connected, $\pi_0 \mathrm{O}(n) \xrightarrow{\sim} [\det]\{\pm 1\}$.

Proof. Pick $0 \neq a \in \mathbb{R}^n$. Look at reflection through a^\perp . Call it R_a .

Then $R_a : \mathbb{R}^n \rightarrow \mathbb{R}^n$, $R_a|_{a^\perp} = \mathrm{id}$, $R_a(a) = -a$.

First, if $O \in \mathrm{O}(n)$ then O is a product of reflection.

Second, if $S \in \mathrm{SO}(n)$ then S is a product of even number of reflection.

Third, if a, b are linearly independent then $R_a \simeq R_b$ via $R_{ta+(1-t)b}$.

Fourth, $R_a R_b \simeq R_b R_a = \mathrm{id}$.

This proves the problem. Note that $AA^t = 1 \implies (\det A)^2 = 1 \implies \det A \in \{\pm 1\}$. □

Then $\mathrm{SO}(n)$ is path-connected and $\mathrm{O}(n)$ has two path components.

Wednesday, 11/19/2025

$$\text{Let } R = \begin{bmatrix} -1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{bmatrix}$$

Then we have the following split exact sequence:

$$1 \longrightarrow \mathrm{SO}(n) \longrightarrow \mathrm{O}(n) \xrightarrow[\text{r}, \dots, \dots]{} \{\pm 1\} \longrightarrow 1$$

$$R \longleftarrow -1$$

Then $\mathrm{O}(n) = \mathrm{SO}(n) \rtimes \{\pm 1\}$.

$\pi_0 \mathrm{O}(n) = \{\pm 1\}$.

$\mathrm{SO}(1) = \{1\}$, $\mathrm{O}(1) = \{\pm 1\}$.

$\mathrm{SO}(2) = S^1$, $\mathrm{O}(2) = S^1 \rtimes \{\pm 1\}$ the dihedral group.

Lemma 97. $\mathrm{SO}(3) \cong \mathbb{R}P^3$.

Proof 1. $A \in \mathrm{SO}(3)$. Then the characteristic polynomial is of degree 3. Thus, A has a real eigenvalue.

Since $A \in \mathrm{SO}(3)$ the eigenvalue $\lambda = \pm 1$.

Case 1: all eigenvalues are real. $\begin{bmatrix} -1 & & \\ & -1 & \\ & & -1 \end{bmatrix} \notin \mathrm{SO}(3)$.

Case 2: Other eigenvalues are non-real. Then $\lambda = \pm 1, \mu, \bar{\mu}$ with $\lambda\mu\bar{\mu} = 1 \implies \lambda = 1$.

Thus, there exists ‘axis’ v such that $Av = v$ with $\bar{v} = 1$.

i.e. A is a rotation about axis v through angle $0 \leq \theta \leq \pi$.

$$\mathrm{SO}(3) \xrightarrow{\sim} D^3 / \sim = \mathbb{R}P^3$$

$$A \mapsto \frac{\theta}{\pi}v$$

□

Proof 2. $S^3 = \text{unit quaternions} = \{a + bi + cj + dk \mid a^2 + b^2 + c^2 + d^2 = 1\}$.

Claim: S^3 is a double cover of $\mathrm{SO}(3)$. We essentially have to prove that:

$$1 \longrightarrow \{\pm 1\} \longrightarrow S^3 \longrightarrow \mathrm{SO}(3) \longrightarrow 1$$

$$z \longmapsto (bi + cj + dk \mapsto z(bi + cj + dk)\bar{z})$$

□

Lemma 98 (Stability Lemma). Recall $\mathrm{SO}(n) \hookrightarrow \mathrm{SO}(n+1) \hookrightarrow \dots$ by $A \mapsto \begin{bmatrix} A & 0 \\ 0 & 1 \end{bmatrix}$.

$$\text{a) } \pi_{n-1} \mathrm{SO}(n) \twoheadrightarrow \pi_{n-1} \mathrm{SO}(n+1) \xrightarrow{\sim} \pi_{n-1} \mathrm{SO}(n+2) \xrightarrow{\sim}$$

$$\text{b) } \pi_n \mathrm{BSO}(n) \twoheadrightarrow \pi_n \mathrm{BSO}(n+1) \xrightarrow{\sim} \pi_r \mathrm{BSO}(n+2) \xrightarrow{\sim}$$

Proof. Fiber bundle.

$$\begin{array}{ccc} \mathrm{SO}(n) & \longrightarrow & \mathrm{SO}(n+1) \\ & \downarrow & \\ & S^n & \end{array} \qquad \qquad \begin{array}{c} A \\ \downarrow \\ \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix} \end{array}.$$

LES on π_* and $\pi_1 S^n = 0$ for $i < n$.

a) LES on π_* and $\pi_1 S^n = 0$ for $i < n$.

b)

$$\begin{array}{ccc} \mathrm{SO}(n) & \longrightarrow & \mathrm{ESO}(n) \\ & & \downarrow \\ & & \mathrm{BSO}(n) \end{array} \quad \simeq \quad *$$

$$\pi_i \mathrm{BSO}(n) \xrightarrow{\approx} \pi_{i-1} \mathrm{SO}(n).$$

□

Example:

$$\pi_1 \mathrm{SO}(2) \longrightarrow \pi_1 \mathrm{SO}(3) \xrightarrow{\approx} \pi_1 \mathrm{SO}(4) \longrightarrow$$

$$TS^2 \longleftarrow 0$$

$$\pi_1 \mathrm{SO}(n) = \mathbb{Z}_2 \text{ for } n > 2. \quad \pi_1 \mathrm{SO}(2) = \mathbb{Z}.$$

We define $\mathrm{Spin}(n)$ as connected double group of $\mathrm{SO}(n)$.

$$\mathrm{Spin}(3) = S^3.$$

$$0 \longrightarrow \{\pm 1\} \xrightarrow{\Delta} S^3 \times S^3 \rightarrow \mathrm{SO}(4) \longrightarrow 1$$

$$(z, w) \longleftarrow (v \mapsto zw\bar{v})$$

$$\mathrm{Spin}(4) = S^3 \times S^3.$$

Spin structure on $\xi = \mathbb{R}^n \rightarrow E \rightarrow B$ or vector bundle with metrics where B is path-connected.

$$P_{\mathrm{SO}} = \{(e_1, \dots, e_n) \mid \pi(e_i) = \pi(e_i) = \pi(e_j), \text{ orthonormal}\}$$

Then we can define spin structure to $\mathrm{Spin} n$. i.e.

principal $\mathrm{Spin}(n)$:

$$\begin{array}{ccc} \mathrm{Spin}(n) & \longrightarrow & P_{\mathrm{Spin}(n)} \\ & & \downarrow \\ & & B \end{array}$$

Furthermore,

$$\begin{array}{ccc} P_{\mathrm{Spin}} \times_{\mathrm{Spin}} \mathrm{SO} & \xrightarrow{\approx} & P_{\mathrm{SO}} \\ & \searrow & \swarrow \\ & B & \end{array}$$

\iff the following happens:

$$\begin{array}{ccc} P & \longrightarrow & P_{SO} \\ & \searrow & \swarrow \\ & B & \end{array}$$

$$\begin{array}{ccc} \text{Spin} & \longrightarrow & SO \\ \downarrow & & \downarrow \\ P_{\text{spin}} & \longrightarrow & P_{SO} \\ & \searrow & \swarrow \\ & B & \end{array}$$

Deine: $\text{Spin}(n)$ as connected double cover of $\text{Spin}(n)$

Theorem 99. ξ admits a spin structure $\iff w_2 \xi = 0$.

If ξ admits a spin structure then,

$$\text{spin structures} \leftrightarrow H^1(B; \mathbb{Z}_2)$$

Proof.

$$\begin{array}{ccc} \mathbb{R}P^\infty & \longrightarrow & B\text{Spin}(n) \\ & \nearrow & \downarrow \\ B & \longrightarrow & BSO(n) \end{array}$$

□

Monday, 12/1/2025

Let $\xi = \mathbb{R}^n \rightarrow E \rightarrow B$ be oriented with metric.

Theorem 100. ξ admits a spin structure iff $w_2(\xi) = 0$.

If so, spin structure on $\xi \leftrightarrow H^1(B; \mathbb{Z}_2)$.

Consider the *frame bundle*.

$$\begin{array}{ccc} SO(n) = SO & \longrightarrow & P_{SO} \\ & & \downarrow p \\ & & B \end{array} = \{(e_1, \dots, e_n) \mid p(e_i) = p(e_j), e_i \text{ O.N.}\} \subset E \times \dots \times E$$

spin structure on $\xi \leftrightarrow \alpha \in H^1(P_{SO}; \mathbb{Z}_2)$ such that $i^* \alpha \neq 0$.

$\leftrightarrow \alpha : \pi_1 P_{SO} \rightarrow \mathbb{Z}_2$ such that $\alpha \circ i \neq 0$.

$$P_{\text{spin}}$$

This gives rise to the double cover

$$\begin{array}{ccc} & & P_{\text{spin}} \\ & \downarrow & \\ P_{\text{SO}} & & \end{array}$$

Given the fibration, we have the Serre 5-term exact sequence [with \mathbb{Z}_2 -coefficients]

$$\begin{array}{ccccccc} H^1 B & \longrightarrow & H^1 P_{\text{SO}} & \longrightarrow & H^1 \text{SO} & \xrightarrow{\delta_3} & H^2 B \\ & & & & \parallel & & \\ & & & & \{0, g\} & & \end{array}$$

This is a consequence of the Serre Spectral Sequence.

Claim: $\delta_3(g) = w_2(\xi)$.

Proof: (i): $\delta_3(g) \in H^1 B$ is a characteristic class for oriented vector bundle with metric [everything natural, we have a pullback].

$$\begin{array}{ccccccc} \text{SO}(n) & \longrightarrow & \text{ESO}(n) & \simeq & * & & \\ \text{(ii): 'universal case':} & & \downarrow & & & & \\ & & \text{BSO}(n) & = & \widehat{G}_n & & \\ & & & & & & \\ 0 & \longrightarrow & H^1(\text{SO}) & \xrightarrow{\approx} & H^2(\text{BSO}(n)) & & \\ & & & & & & \\ & & (0, g) & & (0, w_2) & & \end{array}$$

END OF SPIN!

Recall stability lemma:

$$\begin{array}{ccccccc} \pi_k \text{O}(k+1) & \longrightarrow & \pi_k \text{O}(k+2) & \xrightarrow{\approx} & \pi_k \text{O}(k+3) & \xrightarrow{\approx} & \\ \parallel & & \parallel & & \parallel & & \\ \pi_{k+1} \text{BO}(k+1) & \longrightarrow & \pi_{k+1} \text{BO}(k+2) & \longrightarrow & \pi_{k+1} \text{BO}(k+3) & \xrightarrow{\approx} & \end{array}$$

For example,

$$\pi_1 \text{O}(2) \longrightarrow \pi_1 \text{O}(3) \xrightarrow{\approx} \pi_1 \text{O}(4) \longrightarrow$$

$$\mathbb{Z} \longrightarrow \mathbb{Z}_2 = \mathbb{Z}_2$$

Corollary: $\pi_2 \text{O}(k) = 0$ for $k \gg 0$.

Corollary 101. Let B be CW complex.

$$\begin{array}{ccc} \xi = \mathbb{R}^n & \longrightarrow & E \\ \text{a)} & & \downarrow n > \dim B \\ & & B \end{array}$$

$\implies \exists$ nowhere zero section ($\iff \xi = \alpha \oplus \epsilon$).

b)

$$\begin{array}{ccc} \xi, \eta = \mathbb{R}^n & \longrightarrow & E \\ & & \downarrow \\ & & B \end{array}$$

$n > \dim B.$

$\xi \oplus \epsilon \cong \eta \oplus \epsilon$ [stability isomorphism] $\implies \xi \cong \eta$ isomorphism.

Now we can define stably orthonormal group:

$$O = \text{colim}_{n \rightarrow \infty} O(n) (= \bigcup_n O(n) \text{ with topology})$$

Then $\pi_k O = \pi_k O(n)$ for $n \geq k + 2$.

Then we have Bott periodicity

$$\pi_k O = \begin{cases} \mathbb{Z}_2, & \text{if } k \equiv 0(8); \\ \mathbb{Z}_2, & \text{if } k \equiv 1(8); \\ 0, & \text{if } k \equiv 2(8); \\ \mathbb{Z}, & \text{if } k \equiv 3(8); \\ 0, & \text{if } k \equiv 4(8); \\ 0, & \text{if } k \equiv 5(8); \\ 0, & \text{if } k \equiv 6(8); \\ \mathbb{Z}, & \text{if } k \equiv 7(8). \end{cases}$$

$$\pi_k U = \begin{cases} 0, & \text{if } k \equiv 0(2); \\ \mathbb{Z}, & \text{if } k \equiv 1(2). \end{cases}$$

For $k \leq 7$, the generators are all Hopf bundles over S^{k+1} . There are 4 Hopf bundles (reals, complex, quaternions, octonions) and they correspond to the non-zero $\pi_k O$.

Canonical example: $k = 1$.

$$\begin{array}{ccc} S^1 & \longrightarrow & S^3 (z_1, z_2) \\ & & \downarrow \\ & & \mathbb{C}P^1 [z_1 : z_2] \cong S^2 \end{array}$$

$$\begin{array}{ccc} \mathbb{C} & \longrightarrow & E(\gamma^1) \\ & & \downarrow \\ & & \mathbb{C}P^1 \end{array}$$

$$\begin{array}{ccc} S^3 & & (z_1, z_2) \\ \downarrow & & \\ \mathbb{C} \cup \infty & & z_1/z_2 \end{array}$$

Theorem 102 (Splitting Principle). We can have splitting principles for real bundles $\xi = \mathbb{R}^n \rightarrow E \rightarrow B$ or complex bundles $\mathbb{C}^n \rightarrow E' \rightarrow B'$.

Assume B, B' are CW. Splitting principle says \exists maps $f: F \xrightarrow{f} B, f': F' \xrightarrow{f'} B'$ such that:

- 1) $f^* E = L_1 \oplus \cdots \oplus L_n$ and $f'^* E' = L'_1 \oplus \cdots \oplus L'_n$, i.e. direct sum of line bundles.
- 2) These maps are cohomology injections: $f^*: H^*(B; \mathbb{F}_2) \rightarrow H^*(F; \mathbb{F}_2), f'^*: H^*(B'; \mathbb{Z}) \rightarrow H^*(F'; \mathbb{Z})$.

idea: We can pretend every vector bundle is a sum of line bundle.

For existence of SW (and chern) classes:

Instead of Steenrod squares, we can try to take $f^* w(E) = w(L_1) \cdots w(L_n)$.

These are just line bundles so we can define them by orientations.

Wednesday, 12/3/2025

Theorem 103 (One Step Splitting Principle). $\exists f: P \rightarrow B, f': P' \rightarrow B'$ such that:

- 1) $f^* E = L_1 \oplus E_1, (f')^* E' = L'_1 \oplus E'_1$.
- 2) $H^*(f; \mathbb{F}_2), H^*(f; \mathbb{Z})$ are injective.

One step splitting principle implies splitting principle by induction.

P will be the projective bundle associated to B .

If V is a vector space we have $P(V) = \text{lines in } V = \text{Gr}_1(V)$.

Then we have projective bundles:

$$\begin{array}{ccc} \mathbb{R}P^{n-1} & \longrightarrow & P(E) \\ & & \downarrow \\ & & B \end{array} = \bigcup P(E_b) = E_0/e \sim \lambda e : \lambda \neq 0$$

$$\begin{array}{ccc} \mathbb{C}P^{n-1} & \longrightarrow & P(E') \\ & & \downarrow f' \\ & & B' \end{array}$$

We have the tautological line bundle:

$$\begin{array}{ccc} \mathbb{R} & \longrightarrow & L_1 \\ & & \downarrow \\ & & P(E) \end{array} = \{(l, e) \mid e \in l\} \subset P(E) \times E$$

$$\begin{array}{ccc}
L_1 & \subset & f^*E \\
\searrow & & \swarrow \\
& P(E) &
\end{array}$$

Assume B, B' are CW. Then $f^*E = L_1 \oplus (L_1^\perp)$.

Theorem 104 (Leray-Hirsch, See Hatcher). Let $a = w_1(\gamma') \in H^1(P(E); \mathbb{F}_2)$.

Let $b = e(\gamma^1) \in H^2(P(E'))$

Then $H^*(P(E); \mathbb{F}_2)$ is a free $H^*(B, \mathbb{F}_2)$ -module with basis $1, a, a^2, \dots, a^{n-1}$.

$H^*(PE')$ is a free H^*B -module with basis $1, b, b^2, \dots, b^{n-1}$

This implies 1-step S.P. f^*, f'^* are injective since $\{1\}$ is linearly independent.

Grothendieck's Definition of SW and Chern Classes

LH $\implies a^n = \text{sum of basis elements}, b^n = \text{sum of basis elements.}$

$$a^n = \sum_{i=1}^n f^*(a_i) a^{n-i}$$

$$b^n = \sum_{i=1}^n f'^*(b_i) b^{n-i}$$

Define $w_i E = a_i \in H^1(B; \mathbb{F}_2)$.

$$c_i E' = -b_i \in H^{2i}(B'; \mathbb{Z}).$$

Back to the splitting principle. What are F and F' ?

Flags

Suppose we have vector space V where $\dim V = n$.

Definition (Flag). $F(V) = \{0 \subsetneq V_1 \subsetneq \dots \subsetneq V_n = V\}$

If V has an inner product then $F(V) \cong F_0(V) = \{V = L_1 \oplus \dots \oplus L_n\}$ where L_i are orthogonal lines.

$$F = F(E), F' = F'(E).$$

Why are SW classes \mathbb{F}_2 coefficient but Chern class \mathbb{Z} -coefficient

This boils down to $O(n)$ vs $U(n)$.

We have:

$$(\mathbb{Z}_2)^n \hookrightarrow O(n)$$

$$(S^1)^n \hookrightarrow U(n)$$

Then,

$$\begin{array}{ccc} E(\gamma^1) \times \cdots \times E(\gamma^1) & \longrightarrow & E(\gamma^n) \\ \downarrow & & \downarrow \\ \mathbb{R}P^\infty \times \cdots \times \mathbb{R}P^\infty & = & (B\mathbb{Z}_2)^n = B(\mathbb{Z}_2)^n \xrightarrow{g} \mathrm{BO}(n) = \mathrm{Gr}_n \mathbb{R}^\infty \end{array}$$

$$\begin{array}{ccc} E(\gamma^1) \times \cdots \times E(\gamma^1) & \longrightarrow & E(\gamma^n) \\ \downarrow & & \downarrow \\ \mathbb{R}P^\infty \times \cdots \times \mathbb{R}P^\infty & = & (B\mathbb{S}^1)^n = B(S^1)^n \xrightarrow{g} \mathrm{BU}(n) = \mathrm{Gr}_n \mathbb{C}^n \end{array}$$

Theorem 105 (Borel).

$$H^*(\mathrm{BO}(n); \mathbb{F}_2) \xrightarrow{g^*} H^*(\mathbb{R}P^\infty \times \cdots \times \mathbb{R}P^\infty; \mathbb{F}_2)$$

$$\mathrm{im} \, g^* = \mathbb{F}_2[a_1, \dots, a_n]^{S_n}.$$

$$H^*(\mathrm{BU}(n); \mathbb{Z}) \xrightarrow{\sim} \mathbb{Z}[a_1, \dots, a_n]^{S_n}$$

This gives us another definition of SW classes and chern class.

$$g^* w_i(\gamma^n) = \sigma_i(a_1, \dots, a_n) = \sigma_i(w_1(\gamma^1), \dots, w_n(\gamma^1))$$

$$(g')^* c_i(\gamma^n) = \sigma_1(b_1, \dots, b_n)$$

Monday, 12/8/2025

Chern Classes MS Ch13-14

Recall \mathbb{C} -vector bundles:

$$\omega = \begin{array}{ccc} \mathbb{C}^n & \longrightarrow & E \\ & \downarrow & \\ & & B \end{array}.$$

This corresponds to a \mathbb{R}^{2n} -bundle with a complex structure:

$$\begin{array}{ccccc} & \mathbb{R}^{2n} & & \mathbb{R}^{2n} & \\ & \searrow & & \nearrow & \\ & E & \xrightarrow{J} & E & \\ & \searrow & & \nearrow & \\ & & B & & \end{array}$$

Where $J^2 = -\mathrm{Id}$

Open $U \subset \mathbb{C}^n$ then $TU \cong U \times \mathbb{C}^n$.

$$\frac{d}{dt}(t \mapsto x + tv)|_{t=0} \leftrightarrow (x, v)$$

$$\begin{array}{ccc} U \times \mathbb{C}^n & \xrightarrow{\approx} & \pi^{-1}U \\ & \searrow & \swarrow \\ & U & \end{array}$$

$$J_0 TU \rightarrow TU, J_0(x, v) = (x, iv)$$

Let $f : U \rightarrow U$ where $U \subset \mathbb{C}^n$.

f is *holomorphic* if $df \circ J_0 = J_0 \circ df$ [= analytic = Cauchy-Riemann eqn hold]

M a \mathbb{C} -manifold of dim n definitions:

Definition (1). Space M with *holomorphic atlas* $A = \{\phi : V_\phi \rightarrow U \subset \mathbb{C}^n\}$ so that $\phi_2 \circ \phi_1^{-1}$ is holomorphic.

Definition (2). M is a manifold of dim $2n$ with complex structure $J : TM \rightarrow TM$ such that $\forall x \in M \exists$ neighborhood V and a diffeomorphism $\phi : V \rightarrow U$ where $d\phi \circ J = J_0 \circ d\phi$

Definition (Almost Complex Manifold). An *almost complex manifold* is a smooth manifold on a smooth structure on its tangent bundle.

Examples: \mathbb{C}^n is a complex manifold.

$\mathbb{C}P^n$ are complex manifolds.

Higher dimension torii: $\mathbb{C}^n / \langle \mathbb{Z}^n, i\mathbb{Z}^n \rangle$ are complex manifolds.

$\mathbb{C}P^1 = S^2$ are complex manifolds.

Odd dimensional spheres cannot have complex structures.

Question: When do even dimensional spheres have complex/almost complex structures?

S^4, S^{2n} for $2n > 6$ don't have almost complex structures.

S^6 has almost complex structure.

Axioms:

- 1) $C_i(\omega) = H^{2i}(B; \mathbb{Z}), C_0(\omega) = 1, C_1(\omega) = 0$ for $i > n$.
- 2) $C_i(f^* \omega) = f^* c_i \omega$.
- 3) $C_k(\omega \oplus \eta) = \sum_{i+j} c_i(\omega) \cup c_j(\eta)$
- 4) $c_1(\gamma') = -u_{\mathbb{C}P^1} \in H^2(\mathbb{C}P^1)$.

These are called Hopf bundles

Also 4': $c_n(\omega) = e(\omega_{\mathbb{R}})$

\mathbb{C} -v.s. maps to oriented v.s.: $V \rightarrow V_{\mathbb{R}}$.

$(e_1, \dots, e_n) \mapsto (e_1, ie_1, e_2, ie_2, \dots, e_n, ie_n)$.

$$\begin{array}{ccccc}
 & & \mathbb{R} & & \\
 & \nearrow \text{det} \cdot \text{det} & & \swarrow \text{det} & \\
 M_n \mathbb{C} & \xrightarrow{\quad} & M_{2n} \mathbb{R} & & \\
 \parallel & & \parallel & & \\
 \text{End}_{\mathbb{C}}(\mathbb{C}^n) & \xrightarrow{\quad} & \text{End}_{\mathbb{R}} & &
 \end{array}$$

So $\text{GL}_n(\mathbb{C}) \rightarrow \text{GL}_{n,+}(\mathbb{R})$

Theorem 106. $H^*(G_n \mathbb{C}^\infty) = \mathbb{Z}[c_1(\gamma^n), \dots, c_n(\gamma^n)]$. Algebraically independent.

Existence of Chern Classes

1) Grothendieck: $a \in H^2 P(E), a^{n+1} = -\sum \text{chern classes } a^i$.

$$\begin{array}{ccccccc}
 2) \text{ Borel:} & \gamma^1 & & & \gamma^1 & & \\
 & \downarrow & & & \downarrow & & \\
 \mathbb{C}P^\infty & \times & \dots & \times & \mathbb{C}P^\infty & \xrightarrow{c} & Gr_n \mathbb{C}^\infty
 \end{array}$$

$c^* : H^* Gr_n(\mathbb{C}^\infty) \rightarrow \mathbb{Z}[a_1, \dots, a_n]^{S_n}$. Then $c_i \leftrightarrow \sigma_1(a_1, \dots, a_n)$.

$$3) \text{ MS: } c_i(\omega) = \begin{cases} (\pi_0^*)^{-1} c_i(\omega_0), & \text{if } i < n; \\ e(\omega_{\mathbb{R}}), & \text{if } i = n. \end{cases}$$

Assume inductively that $c_i \phi$ is defined for rank $\phi < n$.

$$\begin{array}{ccc}
 \mathbb{C}^{n-1} & \longrightarrow & E_0 = E - z(B) \\
 \omega_0 = & & \downarrow \pi_0 \\
 & & B
 \end{array}$$

$\pi_0^* \omega$ has nowhere zero section $s : E_0 \rightarrow E_0 \times_B E_0 = \pi_0^* \omega, v \mapsto (v, v)$.

$\epsilon^1 \subset \pi_0^* \omega$.

Then $\omega_0 = \pi_0^* \omega / \epsilon^1$.

Remark: if ω has a metric then $\pi_0^* \omega = \epsilon^1 \oplus (\epsilon^1)^\perp$

Also, $E_0 \xrightarrow{f} P(E)$ then $f^* \gamma^1$ is trivial.

Wednesday, 12/10/2025

Chern-Weil Theory

$$c_1 L = \left[\frac{i}{2\pi} \Omega \right] \in H_{DR}^2 M$$

Ω is curvature of a metric connection

Complex Theory of Connection

Let $\mathbb{C}^n \longrightarrow E$ be a smooth \mathbb{C} v.b. over a smooth (real) manifold. \downarrow
 M

$\Gamma(E) = \text{smooth section } \begin{array}{c} E \\ \downarrow s \\ M \end{array}$

Let $\Omega^i(M; E)$ be i -forms with values in E .

$$\Omega^0(M; E) = \Gamma(E).$$

$$\Omega^1(M; E) = \Gamma(T^*M \otimes_{\mathbb{R}} E) = \Gamma(\text{Hom}(TM, E)).$$

$$\mathbb{C}^\infty M = \text{smooth } M \rightarrow \mathbb{R}.$$

$$\Omega^i(M; E) = \Gamma(\Lambda^i T^*M \otimes E)$$

Definition. A connection on E is a \mathbb{C} -linear map ∇ akin to derivative given by:

$$\nabla : \Omega^0(M; E) \rightarrow \Omega^1(M; E)$$

which satisfies the Liebniz law:

$$\nabla(fs) = df \otimes s + f\nabla s$$

Where $s \in \Gamma E, f \in \mathbb{C}^\infty M$.

For $X \in \Gamma(TM)$, section of tangent bundle is a vector field,

$$\nabla_X \Gamma(E) \rightarrow \Gamma(E)$$

is kind of a ‘directional derivative’:

$$\nabla_X s := \nabla(s)X$$

Definition. A *hermitian metric* on E is a function $\langle \cdot, \cdot \rangle : E \times_M E \rightarrow \mathbb{C}$. It is a fancy notation for the pullback: given two points in a fiber we want a complex number. It is a \mathbb{C} -inner product on fibers. The inner product has to be hermitian.

Definition (Metric Connection). By picking two sections s, t note that $\langle s, t \rangle$ is a function $M \rightarrow \mathbb{C}$.

$$d\langle s, t \rangle = \langle \nabla s, t \rangle + \langle s, \nabla t \rangle \in \Omega^1(M; \mathbb{C})$$

Local View

Lemma 107 (1). Consider trivial bundle $(U \times \mathbb{C}^n)$

A connection is determined by matrix $\omega_{ij} \in M_n(\Omega^1(M; \mathbb{C})) = \Omega^1(M; M_n \mathbb{C})$.

In case of a metric connection, (ω_{ij}) is skew hermitian.

For $n = 1$ in the metric case $\omega \in \Omega^1(M; i\mathbb{R})$. In this case, locally, this is given by just a one-form.

ω = connection 1-form.

Proof. Let s_1, \dots, s_n be linearly independent section (orthonormal in metric case):

$$\nabla(s_i) = \sum \omega_{ij} \otimes s_j$$

$$\nabla(f_1 s_1 + \dots + f_n s_n) = \sum df_i \otimes s_i + f_i \nabla s_i$$

In the metric case since s_i are orthonormal, $0 = d\langle s_i, s_j \rangle = \langle \nabla s_i, s_j \rangle + \langle s_i, \nabla s_j \rangle = \omega_{ij} + \bar{\omega}_{ji}$. \square

Lemma 108 (2). Every bundle has a connection.

Proof. Take a partition of unity $(\{U_\alpha\}, \lambda_\alpha)$ on M so that $E|_{U_\alpha}$ are trivial. Take $\nabla = \sum \lambda_\alpha \nabla_\alpha$. \square

Curvature of Connection

$$\begin{array}{ccc} \mathbb{C}^n & \longrightarrow & E \\ \text{Consider} & & \downarrow \text{with metric.} \\ & & M \end{array}$$

Curvature of connection:

$$\Omega(\nabla) = \Omega \in \Omega^2(M; \text{Hom}(E, E))$$

If ∇ is metric then $\Omega \in \Omega^2(M; U_n)$

Local Def: $\Omega_{ij} = d\omega_{ij} - \omega_{ik} \wedge \omega_{kj}$.

Global Def 1: $\Omega_{x,y}(s) = \nabla_x \nabla_y s - \nabla_y \nabla_x s - \nabla_{[x,y]} s$

Global Def 2: $\Omega = \nabla \circ \nabla$.

$$\begin{array}{ccc} \mathbb{C} & \longrightarrow & L \\ \text{Now we look at line bundles. Suppose we have a smooth line bundle} & & \downarrow \text{with a metric.} \\ & & M \end{array}$$

Locally a connection is given by 1-form $\omega \in \Omega^1(U; i\mathbb{R})$.

$$\Omega = d\omega - \omega \wedge \omega \in \Omega^2(M; i\mathbb{R}).$$

Facts:

1) 1. $d\Omega = 0$ curv. closed

$$d\Omega = d(d\omega) - (d\omega \wedge \omega) + \omega \wedge d\omega = 0.$$

$$[\frac{1}{i}\Omega] \in H_{DR}^2 M = H^2(M; \mathbb{R})$$

2) $\Omega(\nabla) - \Omega(\nabla') = d\beta$

So, $[\frac{1}{i}\Omega]$ is independent of connection.

3) $[\frac{1}{i}\Omega]$ is a characteristic class.

$$\implies [\frac{1}{i}\Omega] = a(c_1(L)) \in H^2(M; \mathbb{R}) \text{ for some } a \in \mathbb{R}.$$

4) $a = \frac{1}{2\pi}$. Compute for Hopf bundle:

$$\begin{array}{ccc} \mathbb{C} & \longrightarrow & E(\gamma^1) \\ & & \downarrow \\ & & \mathbb{C}P^1 \end{array} \quad \begin{array}{ccc} \mathbb{R}^2 & \longrightarrow & E \\ & & \downarrow \\ & & S^2 \end{array}$$

Use Gauss Bonnet.