M623 Geometric Topology 1

Taught by: Dr. James Davis
Written by: Thanic Nur Samin

Monday, 8/25/2025

Textbook: Characteristic Classes by Milnor and Stasheff. Hereafter referred by MS.

Read Chapter 1 and 2 of MS.

Definition (n-manifold). Two different variants: embedded and abstract.

Abstract: (M, A) where A is an atlas.

Embedded: M C RA. Here, A = index set, R4 = func(4, R) with the product topology.
M Hausdorff space, U C M open, V C R™ open.

Chart ¢ : U =5 V homeomorphism.

Parameterization (ptz) h:V = U

We want some calculus.

Let open V C R™.

A function f:V — R is smooth if all partials of all orders exist: 5 o'f

Liq Bmlp :

f:V — R4 is smooth if f, smooth Vo € A.

v L rA Py R

fa
We can go from abstract manifold to embedded manifold.
Let A= C*(M,R).
M % R4 where i(z) = (f — f(2)).

We can go to the reverse direction easily once we have all the definitions.

Definition. Two charts (¢ : Uy — Vi) and (¢ : Uy — Vi) are compatible (or smoothly compatible) if ¢g0 ¢y *

is smooth. Explicitly,

o0d—1
&1 (U1 NU) % @2(U1 NUsz) needs to be smooth.



Definition. Parameterization h : V — U is smooth (assume M C RA4) if:

VLN M R™

\Q/

is smooth.

and has rank n. ie, Vv € V' the Jacobian:

has rank n.

eg x — o3 is a parameterization which is not smooth, since the Jacobian has rank 0 at 0.

Now we can properly define manifolds.

Definition (Embedded Smooth n-Manifold). M C R4 so that Vo € M there exists a smooth rank n parame-
terization h: V. = U 2 x.

We assume M is Hausdorff.

We can now define a Cateogry of Embedded Manifolds.
Definition (Category of Embedded Manifolds). Embmfld.

Objects: embedded M C R4 of dimn for some n.

Morphisms: Smooth Maps (has to be defined carefully, restricting in Euclidean space).

Diffeomorphism = invertible morphism.

Let (M C R4),(N c R®). f: M — N is smooth if locally smooth, meaning Va € M, 3 smooth parameterization
h:V%US:z:suchthatV%U%MLN%RB is smooth.

Now we can define abstract manifold independend of embedded manifolds.

Definition (Abstract Manifold). Let M be Hausdorff. An n-atlas on M is a set A = {qba Uy, =V, C ]R”}
of compactible n-charts such that {U,} covers M.

Atlas A and A’ are compatible if all charts are.
Fact: Every atlas is contained in a unique maximal atlas.

Then an abstract manifold is (M, .A) with a maximal n-atlas.

Wednesday, 8/27/2025

Recall: embedded n-manifold M C RA: Vz € M, 3 smooth, rank n parameterization h : V — U C M such that
x € U. We assume M is Hausdorff.



Abstract n-manifold: (M, .A) where A is an n-atlas, so A = {charts ¢, : U, =N V.. } such that {U,} cover M
and {¢,} smoothly compatible. We assume M is Hausdorff.

¢,
Remark. If we have an abstract manifold we have a surjective map [[V, — M.

Then we can define M = % This gives us another definition of a manifold.

Exercise. Define smooth f: (M, A) — (N, B).

Not hard, just annoying to get the definitions right!

Theorem 1. Categories of abstract manifolds and embedded manifolds are equivalent.

EmbMflds ~ absMflds

Recall equivalent categories:

Definition. Categories C and D are equivalent (Notation: C ~ D): If there are functors C EDpandD S c
such that F'o G and G o I are naturally isomorphic to the respective identities.

We need some more definitons.

Definition. A skeleton of C is SkC C C is a full subcategory Ve € C,3!¢’ € SkC such that ¢ = ¢'.

A C Bis full if Va,a’ € Ob A, A(a,a’) = B(a,a')

For example, let C = finite sets. Then SkC = {1}, {1,2},{1,2,3},---
Theorem 2. C ~D <= SkC = SkD.

Note that C ~ SkC so one direction is trivial.

Lemma 3 (1.1). Let h and A’ be smooth rank n on M C RA. Then h='oh’ is smooth (thus a diffeomorphism).

Let V and V' be the domain of h and b’ respectively. Then h=t o b’ : (B')"1H(V N V') = A= 1 (V N V)

Corollary 4. A= {h™! | h parameterization} is n-atlas on M.

This gives us EmbMflds — AbstMflds.

Proof. This is the proof of lemma 1.1, lemma 3 in the notes.

Assume V = V’. WTS: (R/)7'V — h=1(V) is smooth.

For x € V choose a1, -+ ,a, € A such that det (gjﬁ (x)) £ 0.

We have:

Me——— RA

h J{pral"'a”

Vv > subset of R"

Then, by the inverse function theorem, the dotted map is locally invertible.



h=Yoh/ = (proincoh) toincoproh’ near h~la.

Given abstract (M, A), let A = C*°(M,R) smooth functions.
i M—RA e (f— flx)).
Let M1 = Z(M)

Lemma 5 (1.5). M; C R? is EmbMfAld. M 25 M, is diffeomorphism.

Definition of tangent vector, tangent space and tangent bundle
Definition (Tangent Vector). is velocity vector of a curve.
We have defined morphisms. Consider the embedded case: suppose we have smooth 7 : R — M C RA. Then,

+/(0) = lim 7(h) —~(0)

A
h—0 h €R

is a tangent vector

Definition (Tangent Space). Suppose x € M C R4, an n-dim embedded manifold. T, M = tangent space of
M at xz. This is:

{7/(0) [ 4(0) = 2} c R*

an n-dim subspace.

We are going to bundle this together.
Definition (Tangent Bundle). TM = {(z,v) € M x R* | v € T,M }.

By definition, TM C M x R# so this is in fact a topological space.

We have a projection map TM = M by (z,v) — x.

Remark. Fibers of m, 7~1(x) are vector spaces: 7~ *(x) = T, M.
Then, TM = U, cpix} x T M.
Abuse of notation lets us write this as |J T, M.

Thus, tangent bundle is in fact a bundle of tangents.

What about abstract manifolds (M,.A)?

We can define T'M as follows:

e M C RETMIMR)

o TM = IVaxR"



e T, M = velocity vector of curves.

e derivations.

Suppose we have smooth function between manifolds f : M — N. Vo € M we can define linear df, : T, M —
TryN, 7' (0) = (f o)’ (0). df, is a map between vector spaces, so it is a linear transformation. It is the
‘Jacobian’.

Then we have df : TM — TN such that df(z,v) = df.(v).

We also have the chain rule: d(fog) =dfodg

Friday, 8/29/2025

No class next week!

Manifold constructed by:

e open subset of R™

Subset double torus C R3

Quotients: P* =RP" = S"/x ~ —x

Lie groups/ matrix group, eg closed subgroups of GL, R C M,R = R™

open

Zero sets.

— regular values
— transversality

— smooth varieties

Definition. tg € R is a regular value of f: M — R if Vo € f~1ty,df, is onto.
f~Y(regular value) is a submanifold of M.

Consider S™ C R™™!, and f: R"™' — R given by z +— 2 +--- + 22 ;.

1 is a regular value f~11 = S™.

Definition. Let f: M — N D X submanifold.

f X, fis transverse to X if Vm € f7 X, Ty N = Ty X + dfp (T M).

M W&%




Theorem 6. f~'X is a submmanifold of M.

Furthermore, dim N — dim X = dim M — dim f =1 X.

In fact, v(f~1X < M) — v(X < N) as vector space isomorphism on fibers.
[insert picture later]

Now, suppose F' is a topological space.

Definition. A fiber bundle with fiber F':

Let E =5 B be a continuous map suuch that ¥b € B,3 open b € U C B and:

UXF—>7T

\/

h fiber preserving homeomorphism. Vo' € U, F = F x V/ = Fy = 7= 1(¥).

F—
Write:

WM

I —— Mob

Sl
eg B x F' — B trivial bundle.
Chapter 2 of MS
Definition. A real vector bundle £ over B is:
E
&= +,Vbe B,m b= F, is a fin. dim vector space.
B

F, x F, > F,R x F, — F satisfies 8 axioms s.t.

UXR"—>7T

Vbe B,3be U C B and n > 0 and \ /

ho 1, . . .
R™ 22 b x R =5 7~ 1b is an isomorphism of vector spaces.



If B is connected then n is constant.
‘rank n vector bundle’.

n-plane bundle.

E(£)
Another thing MS does is write this: & = J,’T(f) for vector bundle which is very precise.

B(£)

Isomorphism of vector bundles over B

Consider two bundles £ and 7 and we have the homeomorphism

) ———=—— E(n

\/

vector space isomorphism on the fibers.

Examples of vector bundles

B x R™
We have the trivial bundle gr_g» _.n :l

B

We have tangent bundles:

TM
™ = J’T T, M

Definition. M is parallelizable if 7, is trivial.

S' is paralellizable.

Lie groups are parallelizable eg S3.

52, or 52" in general not parallelizable via the hairy ball theorem.
We also have normal bundles. Consider M C RY.

v(M CR") ={(z,v) € M xR" |z € M,v € (T,M)*+}

v(8? < 93) < 82 x R is trivial, the map is (z,tz) <= (x,1t).



R —— E(7;)
Tautological bundle over P™: v} = J{

pn
Note that P" = S"/x ~ —x = lines through O in R"*!.

E(}) ={({z,—z},v) € P" x R""! | v € Rz},

E(vY) 5 P, ({x,—z} ~ {z,—z}). Essentially, point on line + line.

This tautological bundle is non-trivial.

Monday, 9/8/2025

Last week was a break.

HWZK: an exercise from ch2. (C, D, E are recommended).

R— F
Recall: a vector bundle ¢ is lﬂ meaning fibers of 7 are k-dimensional vector spaces.

B

Definition. A section of ¢ is actually a section of .

s: B — FE such that mos =1idp.

Section looks like this:

Section of TM =: vector field.
There’s also the zero section z : B — E given by b+ 0 € 7~ 1b.

E
z _‘er homotopy inverses.

B

Now we show there is some twisting.

Eo = E—2(B)
l . B trivial implies Fy = B x (R¥\ e) ~ B x S~

B

We have the tautological line bundle:



R— E = {([z],v) [ v € Rz} C P* x R

pr =S"/x ~—x

We can think of it like (line, point on line) € E.

For example, consider P!. This gives us the open mobius strip.

Theorem 7 (2.1). 7} is nontrivial for n > 1.

Proof. E(y})o is connected <= % P™ x S°. O

Figure 1:

Definition. A metric on a vector bundle £ is g : E xg E — R such that Vb € B, 7~ 'b x 7716 — R is an inner
product.

B
Recall: pullback of lﬁ is Axec B={(a,b) | ala) =5(b)} C A x B.

A2 C

Also see: a vector bundle E — B needs all fibers to be vector spaces. For a metric we want them to be inner
product spaces.

A bundle with metric is often callled a Euclidean vector bundle.

Examples: A Riemannian manifold is TM with a smooth metric [g is smooth].

If M™ C RY we can use the inner product inherited from R¥ so it is a riemannian manifold.

eg the trivial bundle has a metric: (B x R™) x5 (B x R™) — R™ which looks like ((b,v), (b,w)) + v - w.
If M C RN, TM = {(z,v) € M xRY | v =+/(0),7(0) = =}

1@, ) = ol 9((a,v), (@,w)) = v - w.

Then ||-|| : E — R>q given by ||v]| == v/g(v,v).

Theorem 8 (Exercises, ch2). Suppose B is paracompact. We can look at Isomorphism classes of Euclidean
vector bundles over B, forget the metric to get isomorphism classes of vector bundles over B:

iso class of euclidean | forget ¢ iso class of
vector bundle over B vector bundle over B



This is an isomorphism.

E
Definition. Sections si,--- ,s, of rank n vector bundle given by Jf i are linearly independent (1.i) if Vb €

B
B,{s1(b), -+ ,5,(b)} is linearly independent in 7~1(b).

Theorem 9 (2.2). rank n vector bundle ¢ is trivial iff £ has n 1i. sections.

Proof. = :5;(b) == (b,e;) € B x R™.

<= :define f: BxR"™ — E by (b,>_ a;e;) — >_ a;s;(b) O

eg T? has 2 li. sections, thus 77?2 = T2 x R2.

Figure 2:

Wednesday, 9/10/2025

Chapter 3: New bundles

Homeowrk: pick up problems from chapter 3 (and chapter 2).
Abstract definition of bundle (Steenrod, see D-Kirk 5.2).
Let G be a topological group, F' a space, G ~ F

Topological group meaning: G topological group means G is a group and a space such that G x G — G, (a,b) —
ab and G — G,a — a~! are continuous.

Action of G on F: G X F — F given by ef = f and (99')f = g(¢'f).

Definition. A fiber bundle with structure group G and fiber F' [(G, F')-bundle] is a map with:

E
Map J{
F

Atlas A = {¢: Uy x F = 771U}

10



Transition functions © = {0, 4 : Up N Uy — G | 9,9 € A}

such that:

1) {Us} open cover of B.
2) Fiber preserving homeomorphism:

Uy x F—= 5 x-11,

the following diagram commutes: \ /

3) be U¢ n Uw,f eEF = ’lﬁ(b7 f) = (]5([), 9¢’¢(b)f>
4) 0p,4(b) = 05, ()0, ()

Examples:

BxF
G trivial group implies the bundle is a trivial bundle, l

B

G = GL(n,R), FF = R™ gives us the rank n vector bundle. Let b € B, choose ¢,b € Uy. Use the atlas to find
bijection m~1b = R™. This gives us a vector space on 7~ 'b independent of the choice of U, by the 3rd condition.

If the G-action on F' is effective, meaning every non-trivial action does something, meaning there is f € F' such
that gf # f for every g € G\ {e}, then we don’t need condition 4.

If G = O(n) and F = R" then we have a vector bundle with a metric.

If G = GL(n,R)" and F is R™ then we have an oriented vector bundle.

If G = Sp = Aut(F') where F is discrete, then we have a cover.

For discrete G with F' = G then we have a regular G-cover.

If G = Spin(n), F' = R™ then we have a vector bundle with spin structure.

Now we start chapter 3. We can do a lot of things on vector spaces, like tensor products. This lets us do stuff
with vector bundles as well.

Some basic constructions involving vector bundles:

7 'B
1) Restriction: Let & be a vector bundle, b < B. Then we can let §|§ = l
B
3
|
E
B—— B



2) Induced bundles (= Pullback bundle) Let £ be a vector bundle, and B; I, B. We can pullback the bundle
and get f*¢:

ffE=B1 xgpE —— FE

| |

B — 1 B

in fact 5‘5 = inc* €.

Definition. Bundle map ¢ : 7 — £ [both n-plane] is given by a commutative diagram which is isomorphism on
fibers:

Proof. We just need to define the map.

E(n) — B(n) X B(&) E(€)

e (m(e),g(e))
pullback stuff works for (G, F')-bundles.

Friday, 9/12/2025

Today we finish chapter 3.

We can study construction of new vector bundles in the following ways:

a) Restriction: f{g for BC B+ FE
b) Pullback: f*¢ for B L BeE

¢) Product: & X &s.

Fy(&1) x Fy(&2) —— E(&) x E(§2)

|

B(&1) x B(&2)

12



eg T(Ml X MQ) = TM1 X TM2

Whitney Sum: We keep the base space the same. Let £1,&s be vector bundles over the same base space
B. Then we can define the whitney sum as the pullback of the diagonal map to the product:

§1 @& = A& x &)

B2, BxBisb— (bb).
For example, in S? < R3, the whitney sum of the tangent bundle and the normal bundle gives us the
trivial bundle: £, = T'S? ® v(S? — R3).

Subbundles, Quotients and Orthogonal Complements: A subbundle n of £ is E(n) C E(£) such that 7
is a vector bundle.

E(n)

) ——
B
In order to study quotient, we need bundle morphisms. We want the following diagram to be commutative

and also want the map to be linear on fibers:

E(n) — E(§)

B(n) — B(¢)

Bundle morphism over B is different: we want the following commutative diagram to be linear on fibers:

n ———— E(©)
\B/

An example: suppose we have smooth f: M — N. Then we have bundle morphism:

MY TN
ML N
and the bundle morphism /M:

™ — = f*TN

N

We can define quotient bundles from subbundles: subbundle 1 of £ there exists quotient bundle £/n so
that Fy(&/n) are Fy(€)/Fyp(n). We have bundle map over B £ — £/n

Bundles /B fform abelian category. We have the SES:

0—-n—=&—2¢/M—0

We now define normal bundles. Normal bundle of submanifold M of N is given by v(M < N) = (TTN ]\‘/[M ) .

13



Figure 3:

If N C R* (or N Riemannian metric space) then (TM)+ C TN‘M.

(TM)* —— TN|,, — v(M < N)

o

We have (TN)y =TM @ (TM)*.
If ¢ is a bundle with metric and 7 is a subbundle then ¢ = n @t and 7+ = &/n.
If B is paracompact [eg B C W] then bundles over B form an exact category [meaning all SES split].

Reason: consider the following SES:

0—>a—=-8—-7—0

Since B is paracompact we can give 3 a metric. a* = v so it splits.
This tells us: if M C N and N has a Riemannian metric, then,

TN|,, =TM &TM"=TM & v(M — N).

Definition. Smooth f: M — N is a immersion/submersion if V& € M, df, is injective/surjective.

For example, consider S — R? given by () — oo is an immersion, since it’s locally an embedding.

TS52% — 52 is a submersion.

Let f : M — N be an immersion. Then, v(f) = f;?\/IN'

If N has a metric then TM = TN|M @ v(f).

14



Tuesday, 9/16/2025

UCT, Cup and Cap Prodcuts

Let M be an abelian group. Then we have homology H;(X, A; M) and cohomology H*(X, A; N) abelian groups.
The cohomology H(X, A; N) is the cohomology of the following cochain complex: H®(Hom(S,(X,A), N))

‘Cohomology eats homology’ via the following Kronecker Pairing:

(,): H(X,A;N)® H(X,A; M) — N @3 M

(9] ®

Z kio; ® m;

Now we do UCT. Let R =Z and M = Z-module, i.e. abelian group.

If X = RP" then the cellular chain complex of RP™ is:

Z, ifi=0,n;
Thus, if n odd, then H;RP™ = { Zy, ifiodd, 0 <i<m;

0, otherwise.

If coefficients are in Zs then,

CX®Zy 27,5 - 257,
Thus H;(RP";Zs) = Zs for 0 < i < n.
UCT states that the following is a split short exact sequence:

We can say three things about Tor:
Tor is a functor, Tor : Ab x Ab — Ab.

If M, N are f.g. then Tor(M, N) = (torsion M) ®y, (torsion N)

Definition. Find an exact sequence of free groups as follows:

O0—=>F —F—>M—=0

Then Tor(M,N)=H,(F; ® N = Fy ® N).

15



For example, Tor(Zs,Zs), we have following free groups:

022257242 7, 50

Tensoring with Zs to get the following: Zo N Zo. Then H; is the kernel.
So, Tor(Za, Zs) = Zs.

Now we go back to geometry.

Suppose we have space X such that H;_1 X = Zy®?

This gives us H;(X) — Zo C H;(X;Z2).

Geometrically, consider H;(X;Zs) — Tor(H;_1(X); Z2).

If there is [a] € Tor(H,;—1X;Zs) with 2a = 9b then section given by [b] < [a]

UCT works even if we change Z with a PID. For any PID R we can talk about R-modules M, then H;(X; M) =
H;(X;R)® M @ Tor™(H;_,(X; R), M).

We want the analogue of UCT for cohomology. This gives us the split exact sequence:

0 — BExt(H;_1 X, M) — H'(X; M) — Hom(H; X, M) — 0

Again, for n odd consider the chain complex:

CRP"=72%7..2%72%72 50

For cochain complex we’d simply reverse the arrows:

CRP"=72L7¢..22287<0

H;RP™ =7 for i = 0,n and Zs for 0 < i < n,n odd.

HYRP";Z) =7 for i = 0,n and Z, for 0 < i < n,n even.

We have: Ext(Free, M) = 0.

In general, Ext(A4, B) is given by: resolve A, apply Hom(—, B) cohomolgy.
Suppose 0 - F; — Fy - A — 0.

Then, Hom(Fy, B) <~ Hom(Fy, B).

Thus Ext(A, B) = coker §*.

If A, B are finitely generated then Ext(A, B) 2 (torsion A) ® B.

Now, suppose R is a commutative ring.

Then H'(X; R) = H'(Homz(X.X, R))

16



But might be more in the spirit of how we are doing this to do the following;:

HY(X;R) = H'(Homg(Se(X; R), R))

For R-modules M,

Hi(X; M) = H'(Homgz(S, X, M)) = H (Hompg(S.(X; R), M))

Then, H*(X; R) is a graded commutative ring under the cup product.

H*(X;R) is a graded commutative ring meaning we can write:

H*(X;R) = D> H(X;R) and we have H'(X; R) ®r H/(X;R) — H'"/(X; R)

Commutative graded ring meaning o U 8 = (=1)I*l181g U a.

For De Rham cohomology,

Hip(M;R) @ H, (M;R) we have a @ 8+ [a A f]

We also have: H,(M;R) is a graded module over H*(M; R) w.r.t. cap product.

For a € H'(M;R) and z € H;(M; R) then a Nz € H;_;(M;R).

So, cap product by « eats i dimensions from z.

We also have (¢ U S, z) = (o, BN 2).

If f: X =Y is continuous, we have a ring map f*: H*(Y; R) —» H*(X; R) by f*(aUp) = f*aU f*S.
Poincaré Duality: if M™ is closed and oriented and connected then H, M = Z. Choose generator [M] € H, M.
Then we have isomorphism N[M] : H'M = H,_;M

Another fact:

H'M H" M

- - — 7
torsion torsion

is a nonsingular perfect pairing: a ® j is given by (a U 8)[M] € Z.

Recall A x B — 7 is perfect < A — Hom(B,Z) and B =N Hom(A,Z) are isomorphism.
In CP" =e’Ue?U---Ue?" we have H*CP" = Z[a]/a"t!, with dega = 2.

This is a truncated polynomial ring.

We can prove this by Poincaré duality and induction on n.

We also have Kunneth Theorem. If R is a field, then:

H*(X;:R)® H*(Y:R) — H*(X X Y; R)

It is only an injection for general ring.

17



Wednesday, 9/17/2025

HWK due 9/29.
4 Exercises: 1 from Ch2, 1 from Ch3, 2 from Ch4.
Today we finish chapter 3, construction of bundles.

We skipped part f on Friday.

Vector Spaces ‘ Vector Bundle

Veow E®n
Hom(V, W) Hom(¢, )
V* =Hom(V,R) | £ = Hom(¢, ep)
a% Ake
AV A€

Table 1: Anythong we can do on Vector Spaces, we can do in Vector Bundles.

As for Hom(&, n) we assume base space is the same:

k
Hom(R*,R!) — EHom(£, 1)

|

B

Here E Hom(¢, ) = [roughly] U,¢ p Home(Fy(€), Fo(n))

— k ol
- Hopen UCB, &l »nly, trivial U x HOHI(R R )/ ~-

Cotangent Bundle

Let M™ be a smooth n-manifold.

Definition (Cotangent Bundle). Is dual to the tangent bundle: T*M = (T M)*.

We can take exterior power to get differential k forms:

AFR™ —— ART*M
J//T
M
Differential k-form on M,w € T'(A*T*M) smooth section.
AR™ — A*T*M
+ < wedge product.
M

In fact, D'(A*T* M) is a graded algebra, Q*M.

18



Chapter 4

Now we start on Characteristic Classes.

Definition (Stiefel-Whitney Classes). have these 4 axioms:

1) V vector bundle &, assign w;(¢) € H'(B(€);F2) so that wo(£) = 1 and w;(£) = 0 for i > n when ¢ is a an
n-plane bundle.

2) Naturality: For continuous f : B’ — B(§), we have w;(f*¢) = f*(w; &) € HY(B;Fy). [First one is the
pullback on the bundle, second one is the induced map on the cohomology.|

3) Whitney Sum Formula: If §, n are vector bundles over B we have: wi(§&n) = >,y wi(§) Uw;(n).

4) 0 # wi(y1) € HY(PYFy) = HY(SY;Fy) = .
This sequence of cohomology classes is called the Stiefel-Whitney Classes.

Recall: 41 for a mobius strip is the zero section, i.e. S1.

Milnor-Stasheff says naturality a bit differently. Recall: If

iso/fibers
/*> E

then n = f*& wi(n) = f* w;(€).
Note: axioms 1 and 2 says w; are characteristic classes. Characteristic Classes are cohomology classes respecting
naturality. Meaning they respect nontriviality of bundles. Just like homology ‘classifies’ upto homotopy in a

sense, we need characteristic classes to capture the ‘twists’ in a vector bundle.

Axiom 1 and 2 implies:

Proposition 11 (1). £ =2 n = w;(§) = w;(n).

Recall that vector bundles are isomorphic if:

—>E

\/

Proof. f=id. O

Proposition 12 (2). w;(¢}%) =0 for ¢ > 0.

Proof.
B xR*" —— R"

| !

B—C 4 pt

19



wi(€p) = wi(cen

) = " wi(ep,) € H'(pt; F2) = 0.

Thus, nontrivial Stiefel-Whitney Class implies nontrivial bundle.

Proposition 13 (3). If € trivial then w;(e ® 1) = w;(n). In other words, w; stable characteristic classes.

Proposition 14 (4). If ¢ is an n-plane bundle with k linearly independent sections, then k of them vanishes:

Wn—kt+1(§) = = wp_1(§) = wn(§) =0

Most interesting case is k = 1 contrapositive.
w,(£) #0 = A nowhere zero section. Hairy ball theorem!
eg for n odd there exists a nowhere zero section of the tangent bundle T'S™. Therefore, w,,(T'S™) = 0.

Since n is odd n + 1 is even, and we can switch the coordiantes in pairs:

x=(T1, @) = (T, —T2,T1, "+, —Tny1,Tn) € TS C 5™ x R*H!

w4(TCP?) # 0, A nowhere vanishing vector field on CP?2.

If M™ is a closed n-manifold then w,,(TM™) = (M) (mod 2).

Proof. The condition of k linearly independent section is equivalent to existence of a subbundle elfg CcE&.
Case 1: Suppose £ has a metric.

Then ¢ = e @ () *.

w; (&) = w;(efh) by proposition 3. Note that et is a n — k bundle, axiom 1 implies the statement.

Case 2: B is a CW complex so B is paracompact which implies £ has a metric.

E(£)

General case: suppose | . Then 3 CW-approximation B’ — B where B’ is a CW complex which is isomor-
B
phism on 7, which is isomorphism in homology and cohomology. This reduces to case 2.

Friday, 9/19/2025

Recap: Stiefel-Whitney-Classes:
R* — E
Suppose we have an n-plane bundle 4
B

Then w; E = w;(£) € H(B;Fy).

We have some axioms:
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1) wo(§) =1,w;(§) =0fori>n

2) Naturality: if we have f : B’ — B then w;(f*¢) = f*w;(£) € H'(B';Fy).
One way to rephrase it is as follows: f*FE is the pullback bundle in the following:

f*E—— E

L

B! ,B

Another way: if we have a bundle map:

E—— F

|

B —— B

which is an isomorphism on the fibers, then f*E = E’. We have E’ — B’ which is equal to f*¢£.
In Milnor-Stasheft, if we have:

1 — £ in this case w;(n) = f* w;(&).

Note that properties 1 and 2 are called characteristic class on a bundle.

3) Whitney Sum formula: wy(§ & n) =32, ;) wi(§) wi(n)

4) wi(y1) # 0.

Recall proposition 3: if € trivial then w;(e ® n) = w;(n).

Proposition 4: obstruction to sections: If £ has k-linearly independent sections then the top k Stiefel-Whitney
Classes vanish.

Whitney Sum Inverses

Definition. Suppose £ ® 1 = €. Then ¢ and 7 are whitney sum inverses of each other.

Example: Normal bundle and tangent bundle.

Fact: dim B < oo implies every bundle has an inverse.

Observation: w,(§) can be computed in terms of w,(n).
0=wi(&n) =wi() +wi(n) = wi(§) = wi(n)

>+ wa(n)

0=w2(§Dn) =w2(§) + wi(§) wi(n) + wa(n) = wa(£) = wi(n)
In Milnor Stasheff, they define a new ring;:
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HU(B;Fy) = [[ H'(B;F2)
This allows us to take infinite series:

w(€) =1+ wi &+ wal+ - € HI(B;F,)

Then we can rephrase the Whitney sum theorem as follows:
w(E®n) =w(§)Uw(n).

Lemma 15. {1 +a1+ax+--- € HH(B,IFQ) ‘ a; € HZ(B,]FQ)}
Proof. Due to ‘Euler’:

(Ita+az+)7" = gaary

:1+(a1+a2+...)+(a1+a2+...)2+(a1+a2+...)3
=1+a1+(azs+al)+ (az+a})+--

O

Notation: Suppose w(¢) € HII(B;F,) then we can have the formal multiplicative inverse: W(¢) € HII(B;Fy)
so that w(§)w(&) =1

This gives us the following observation: ¢ @& n = €V gives us w(&) w(n) =1 = w(&) = W(n).
eg H*(P>;Fy) = Fa[a] then we have canonical line bundle 4! then w(y!) =1+4+aso (1+a) ' =1+a+a?+---

which has infinitely many terms so the inverse might not exist! The line bundle doesn’t have any whitney sum
inverse.

Theorem 16 (Whitney Duality Theorem). Let M™ C RY be a smooth manifold. Then,
wi(TM) =%, (v(M — RY))

Proof. (TM & v(M — RN)) = TRY| O

Lemma 17. Suppose we have a closed codim 1 manifold: M™ C R"*!. Then w(TM) = 1.
So Stiefel-Whitney Classes give an obstruction to submanifolds of codimension 1.

Proof. TM @ v(M — R™"*1) is trivial, v(M — R"*1) gives nowhere zero section. O

Corollary 18. Non-orientable submanifolds must have codimension at least 2.

n
S+
xr~—x when z€S"—

Recall P" = RP" = S" [z ~ —x = r = lines in R"*! through 0.

P" is a CW complex via the pushout:
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Snfl Pnfl
PY c P' C-.- C P" is the skeleton.

(o)

Essentially P* = e Uel U---Ue™ with e’ = D?.
Cellular chain complex:
Co(P";Fs)=F> % - ST,

Cochain complex:

C.(Pn;F2)=]F2<—"'<—F2

H,(P";Fy) = H*(P;Fy) = {Fy : x < n}

Next: H*(P™;Fy) = Si[ﬂ truncated polynomial ring.

Monday, 9/22/2025

We do some computations today.

Recall: P" = S"/x ~ —x=¢"Uel U---Ue"
N———
pn—1

* n IF27 if < n;
Then H*(P";Fs) = 0 otherwise

Let 0 a € H(P™;Fy).

Theorem 19. H*(P™;Fs) = FZ[ﬂ, truncated polynomial ring.

ant1
Proof. Induction on n and Poincaré Duality.
It is true for n = 1.
Now suppose it is true for n — 1.
We have injection ¢ : P*~! < P". Thus ¢* is a ring map isomorphism on dimension < n — 1.

Thus a,a?,--- ,a"" "

non-zero.
Question: do we have a™ # 07

We use Poincaré Duality to prove that.

Suppose [P"] € H,(P™;F3) # 0.
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Then we have: N[P"]: H"~1(P";Fy) = H;(P";Fy).

Then (a™, [P"]) = (a"!,a N [P"]) # 0 since UCT implies:

H"1(P™;Fy) = Hom(H,,_,(P™;Fy),F3) by 8+ (b~ (3,b)) and both a®~' and a N [P"] are nonzero.

Now we can look at SW classses of ;. and TP™.
Proposition 20. w(yl) =1+ a € H*(P";F3).
Proof. True for n = 1 by axiom 4.

Now consider restriction: )| L=

By the axiom we have 1 +a = w(y]) = i* w(7;.).

Now let v =~} = {{([z],v)} | v € Rz} C P" x R"*! be the tautological line bundle.
YC e = @yt =t
Therefore, w(yt) =W(y) = (14+a) ' =1+a+---+a" € H*(P"Fy).

Thus v+ has no nonzero sections.

Corollary 21. v. over P> has no W.SL

Question: w(TP™) =7

Recall: G ~ X then orbit space X/G = X/x ~ gz, S™/Cy = P™.

Theorem 22. i) TP Qe =y -Dr.
+1

i) w(TP") = (1+a)"* =30 ("1)a’ € H(P";F2)

Proof. Apply the antipodal map to:

TS"Pr=e"t=c'p - @€

To get the following:

TP"®e=~v®---vy

where Cy ~ S™ x R""! by (2,0) = (—z, —v).

Note: TP™ = (TS™)/C5 since S™ is a covering space of TP™.
Note: v(S™ — R"1) el

Note: v(S™ — R"™1)/Cy 2 €k,

Note: €, /Co = v since %?R ~ E(y) by [(z,t)] — ([z], tx)

This proves ().
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Now we prove i = ii.

w(P") =w(IP"®e) =w((n+1)y) =w(y) " = (1+a)"*

MS shows TP"™ = Hom(y, y1).

Parallelizable Manifolds

Definition. A manifold M™ is parallelizable if TM™ = €%, [i.e. if there exists n linearly independent vector
fields]

eg S is not parallelizable via the hairy ball theorem.

Lie Groups are parallelizable: note that T.G™ has basis e1,--- , e,, and for g € G we have ¢, : G — G given by
h — gh.

We then have g — (dly.)(e;) giving n linearly independent vector fields.
Thus, w;(T'M™) # 0 for < > 0 implies M is not a lie group.

S§0,81 53 PO Pl P3(=S0(3)) are lie groups.

Wednesday, 9/24/2025

Corollary 23 (4.61). w,(P") #0 <= n even.

(ii). w(P") =1 <= n+1=2"

Corollary 24. n even implies P™ has no nowhere zero vector field.

P" parallelizable [i.e. TP™ trivial] implies n = 2" — 1.

Proof. 4.6i: w,(P") #0 < (”H)a" #0 <= n+1#0 < n+1odd.

n

4.6ii: w(P? 1) = (14-a)?" = 1+a® =1 gives one direction. For other direction, if n+1 = 2"m for odd m > 1
then w(P™) = (14 0)”™ = (1 +a?)™ = 1+ ma? +-- -

O

Theorem 25 (4.7 Stiefel). Suppose 3 bilinear map p : R” x R™ — R™ without zero divisor [meaning p(x,y) =
0 = z=0o0ry=0].

Then P"~! is parallelizabl [thus n = 27].
e.g. R,C, H,Q. Theorem by Adams states n =1,2,4,8.

Proof. Let {b1,---,b,} be basis for R". Define v;:
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Then z #20 = p(x,b1), -+ ,p(x,b,) are linearly independent, thus vy (z),- - ,v,(x) linearly independent.
Note that v (x) = .
Define linearly independent sections sg, - - , s, of TP"1.

si[z] = [, prigyy s (vi(2))] € TP =(TS"1)/Cs. O

Stiefel-Whitney Numbers

We want to prove the following theorem:

Theorem 26. A closed manifold is a boundary <= Stiefel-Whitney numbers are all zero.

We need to talk about first fundamental class.

If M™ is a closed connected manifold [since we have Fy coefficient we don’t worry about orientation] then the
fundamental class [M] € H, (M;Fy) 2 H°(M;Fy) = Fs.

We dont really need connectedness. If M"™ = M; U- - - M}, where each M; are connected then the fundamental
class [M] = i1 [M1] + - + i [My] € Hy(M;Fy) = F5.

Definition. A partitition of n is r1,--- , 7, € Z>¢ such that vy +2ry +3rs +--- +nr, =n.
Let II(n) = set of partitions of n.

For examp1e7 H(4) = {(07 0,0, 1)7 (07 2,0, O)u (17 0,1, 0)7 (27 1,0, 0)7 (47 0,0, 0)}
Definition (Stiefel-Whitney Number). Given (r;) € II(n) the Stiefel-Whitney Number is defined by:

witeewn M = (W (TM)™ U - - w (TM)™, [M]) € F
For example we find Stiefel-Whitney numbers of P2.
w(P?) =w(TP?) =(1+a)®=1+a+ad°
wi[P?] = (a2, P?) = 1
wo[P?] = (a?, P%) =1
Thus P2 is not the boundary of a 3-manifold.

We can see this more easily since the characteristic of P? is odd.

Friday, 9/26,/2025

Homeowork Due Monday.

Ch2: 1 Exercise Ch3: 1 Exercise Ch4: 2 Exercise
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Manifolds with Boundary

Classic examples: disk D™, cylinder S~ x T
Definition. Local Model is the upper half-space H" = {(x1,--- ,2,) € R™ | 21 > ¢}.

Definition. Let M C R4. An n-manifold with boundary such that Vo € M,3 smooth homeomorphism
(parameterization) h: V — U where V. C H" and « € U C M open such that Vy € V,dh, : R" — R? has rank
n.

Definition. Int M = {x € M | 3nbhd U = R"}.
OM =M —Int M
M =0M UlInt M

D" = S~ ylnt D

n-manifold is n-manifold with boundary.

manifold with nonempty interior is not a manifold.

M is an n-manifold with boundary = Int M is a n-manifold and M is a n — 1 manifold.
M ~Int M.

Now consider tangent space:

R* — TM ={(z,v)|xzeMv=+(0),70) ==z
\L ,’}/[0,00)—)M\/’Y(—O0,0]%M}
M

Then TM ‘ 5 ETOM & ¢! where €' is the outward poinitng normal, the nowhere zero section of TM 5

Poincaré-Lefschetz Duality

(PL duality).
Theorem 27. H,(M,0M;F;) = Fs.
Definition. Fundamental class [M] € H,(M,0M;F5).

Theorem 28 (PL Duality). N[M]: H'(M,dM;Fs) = H,_;(M;Fs).
N[M]: H'(M,Fy) = H,,_;(M,0M,TF5).
Exercise: Work this out for D™.
Furthermore, if we look at the long exact sequence of a pair:
H,(M,0M;Fy) 2 H,_1(0M;Fy) — H,_1(M;Fy)
then O[M] = [OM].
Theorem 29 (MS 4.9, Pontryagin). Suppose M is a compact n + 1-manifold with boundary. Then the Stiefel

Whitney numbers of 9M are 0.

27



Proof. WLOG M is connected. Let r; € II(n) [thus ), i = n].
Then (w1 (TOM)™ U ---w, (TOM)™, [0M](= J[M]))
= (0(wi(TOM)™ - - wp(TOM)™), [M]).

Now, recall:

H™(M;Fs) S5 H™(OM,Fy) 5 H" (M, 0M;F,)

WTS: wi(TOM)™ - - wy,(TOM)™ € imi*.

Note that it is equal to:

wi (i (TM))™ -3, (P (TM))"™ = i* (wy(TM)™ - - v, (TM)"™)

O

Theorem 30 (P-Thom). A closed n-manifold is the boundary of a compact n-manifold iff all Stiefel Whitney
numbers vanish.

Note that all manifolds are boundary of a not necessarily compact manifold, just take M x [0, 00)

Definition (Bordism Groups). Two closed n-dimenstional manifolds My, My are bordant if 3 a compact Wn+1
manifold with boundary such that 0W d%ﬁ M; [] My. W is called the cobordism.

Easy exercise: Bordism is an equivalence relation. Canonical example: Pant = S ~ S1]] St
One can get a group Q2 = (bordism classes of closed n-manifold, []).

This is called the unoriented bordism group.

Note that 208 = 0 since (M x I) = M [[ M, —[M] = [M].

Theorem 31 (Collar Neighborhood). 3 neighborhood U of 0W and a diffeomorphism & : U L OW x [0, 00)
such that h(z,0) for x € OW.

Note that €9 is a graded ring with cartesian product.

2
Z]2 pt
0
7)2 P?
0
7.)2 ®7.)2 P4, P? x P?
7./2 Wu-n-manifold SU(3)/SO(3)

=
NGO = =D
=

Tk W~ O3

Table 2: Bordism Group Calculations

Theorem 32 (PT Theorem).
SW
00 S ()1
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Monday, 9/29/2025

Applications:
Let M — M is a k to 1 covering map with k& odd. Then,

0=[M]eff — 0=[M] e

eg Lens spaces L(k) with k odd are boundaries.

Proof. H,(M;F5) ’j% H, (M;F,).
SW numbers of M = SW numbers of M. O

MS poses the question:

Why is P2~ a boundary?

Proof. First proof:

We explicitly calculate the SW numbers.

W(P?1) = (14 a)?* = (1 + a?)*.

Thus, for i odd, w;(P?*~1) = 0.

Thus, since ), ir; is odd:

Taking mod 2 — Y, |44 7 is odd so some odd 7; is nonzero. Thus, wi* - - - wo; ' [P?F71] = 0.
Second proof:

If 3 free Cs-action on M then M is a boundary.

Proof: (M x¢, [1,—-1]) = M x¢, {-1,1} = M.

SO —— M D' —— W =M x¢, [-1,1]
Or: l , change fiber D' gives us J{ which gives us OW = M.
M M
Lens space L(4) with 7; = Cy then covered by P?¢~1, O

Conjecture by Farrell/Yau:

Almost flat manifolds are boundaries.

J nilmanifold
Theorem 33 (Gromov). Almost flat <= infranil & 1 finite cover
M

Nilmanifold is a simply connected lie group modulo a lattice. Example: x|, lattice is where * are

1

S O =
S = %
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integers.

Theorem 34 (D-Fang). Yes if finite cover is 2¥-to-1.

N/T — M if 2%-to-1 implies M = OW.

Chapter 5

Sk—l

xr~—x

RP*=1 = lines in R*. By lines we mean 1-dim spaces through the origin. Easier to think of usually.

We have the tautological line bundle given by E(v) = {(line, point on line)} C RP*~! x R*.

R —— E(v)

|

Pkfl

Instead of lines we can think about higher dimensional vector spaces through the origin which gives us the
Grassmanian.

Grassmanian or Grassmanian Manifold of n-planes in R*

Notation: G, (R¥) is the Grassmanian. Points are n-dim subspaces of R¥.
X € G,,(RF) = X = n-dim subspaces of R*.
Example: planes through the origin in R™.

We have a tautological n-plane bundle E(y™) = {point, point on plane}

R" —— E(y") = {(X,v) € Go(R¥F) x R¥ | v € X}

|

G, (RF)
Suppose M™ C R*. Then we have M — G,,(R¥),p — T, M.

We in fact have a bundle map:

We can do the same for the normal bundle.
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v(M < RF) —— E(y*—)

M ——— G, (RF)

Topology on G, (R¥)

We need to find an atlas. What is the dimension?

Definition (Stiefel Manifold). V;,(R*) = orthonormal n-frames in R*
= {(U1,~'- ,Un) ERF x...RF | Vi - Uy :(Sij}.

This is a closed, bounded subsset of (R¥)" = it is compact.

Thus this has a topology.
Now, we have an onto map q : V,,(R¥) — G, (R¥) with q(vy,--- ,v,) = Span{vy,--- , v, }.

Give G,,(R¥) the quotient topology, i.e. U C G,,(R¥) is open iff ¢~1U is open.

Lemma 35 (5.1). G,(R¥) is a compact smooth manifold of dimension n(k — n). Furthermore, there is a
diffeomorphism G, (R¥) — Gy_,(R¥) by X — Xt

Wednesday, 10/1/2025

O(n) — V,,(R¥) Stiefell, On n

+q

G (R¥) = n planes in R¥, Grassmanian.
q(vi,--+ ,v,) = Span(vy, -+ ,Up).

Given V,,(R¥) C (R¥)™ subspace topology.
We give G,,(R¥) quotient topology.
Lemma 36. G, (R¥) is a compact smooth manifold of dimn(k — n).
Proof. hausdorft?

X € G,(RF)

v e Rk

d(z,v) ="' d(z,v)

Vo(R¥) % G, (R¥) — R

d(—,v) o ¢ continuous.

d(—,v) continuous.
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If X #Y choose v e Y — X.
Let d = d(X,v).
Separate X and Y by:

d(—,v) "1 (~o0, %) and d(—m)‘l(goo)

Atlas? Euclidean Neighborhoods?

X € G,(RF)

U=Ux={y € G,(R*) | X+ = {0}} open and dense.
[:Hom(X,X1) = U

fr>graph(f) CRF = X @ X+(= X x X1).

graph(f) = {v+ f(v) | v € z}

U T Hom(X, X+) —= Rr(—n)

¢

Coordinates show ¢ is homeomorphism.
Atlas {(U, ¢)}

ANother proof:

O(k) ~ G,,(RF) transitively, (A4, X) — AX
Isotopy at R x {0x_,}:

is O(n) x O(k —n).

Thus G,,(R*) = O(k)/O(n) x O(k — n).

If G is a compact lie group and H is a closed subgroup then G/H is a manifold.

O(n) = 2Ol Vo(R¥) = O(k)/O(n —k)

G,(RF) = 0(k)/O(n)z,0(n —k)
Associated R™ bundle is ™.
E(Y") = Va(R*¥) Xo(n) R™
Friday, 10/3/2025

Lemma 37 (5.2). The tautological bundle is a bundle:
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E(vy) = {(X,v) |v € X} C Gp(RF) x R*

is a rank n v.b.

Proof. 7=1X is a vector space: (X,v) + (X,w) = (X,v + w),c(X,v) = (X, cv).

We also want local triviality. Consider X € G,,(R¥). Let U = {Y | Y N X+ = 0}.

UxR' —— " 7=

\/

is a fiberwise isomorphism where h is a homeomorphism.

Then U x R®™ = U x X by choosing a basis for X. Furthermore, U x X Lxidx Hom(X, X+) x X and

Hom(X, X+) x X — 771U by (f,v) — (graph f,v + f(v)). O

Lemma 38 (5.3). Any n-plane bundle £ over a compact Hausdorff manifold, 3 a bundle map to the tautological
bundle G,,(R¥):

for k large.

So the tautological bundle is final.

Note that we knew this for embedded manifold and tangent bundle:

TM™

|

M —— G, (RF)
p——— T,M

c is called ‘classifying group’ and ™ is the universal bundle.

By defintion, a bundle map { — 7} is the same as a fiberwise isomorphism:

E(§) —— E(y)
l l which is by definition the same as a fiberwise monomorphism ¢ : E(¢) — RF.
B

—— Gn(RF)
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Let Fy, = 7~ 'b. Then c(b) = &(Fy) + é.
Then ¢(e) = (é(Fp), é(e)).

Now we prove lemma 5.3.

Proof. Compact, so choose open cover Uy, --- , U, of B such that f’U‘ is trivial.

Choose open W; C V; C U; such that W; C V;,V; C Uy, and {W;} and {V;} still cover B.

Note that W; and B — V; are disjoint closed sets. Thus 3 continuous ); : B — [0,1] such that \;(W;) =
1, A;(B = V;) = 0 by Urysohn’s lemma.

trivial <= fiberwise isomorphism h; : 7~ 1U; — R™ by sections s,(b) — e;.
U; J

Define ¢: E(§) - R" @ --- dR".
[y —

r times

O

Corollary 39 (Not in MS). Every vector bundle £ over a compact Hausdorff space B has a whitney sum
inverse.

What we need is a finite locally trivial cover. .

Let £ = ¢* (). Consider £ ® c*(y1) = c*(y 1) = c*(egn(Rk)) which is trivial. O

Contrast this with the fact that v, has no whitney sum inverse.

E(vg) —— E()
Comment: k' <k = l l

Gn(R¥) —— G, (R¥)
Theorem 40. If f,g: { — ;' bunndle maps then f ~g:& — 77,.

So “classifying map unique upto homotopy.”

Proof. WTS: f ~ §: E(¢) — R% fiberwise monomorphism.

Special case: Ve € E(€),YA > 0, f(e) # —Ag(e). hi(e) = (1 —1t)f(e) + tg(e).
General case: define embeddings dy,d;, ds : R¥ — R2%,

do(e;) = ei,di(e;) = ei—1,da(e;) = ea;.

Then dyo f ~djo f~dyo§~dyog. O

Monday, 10/6/2025

Recall lemma 5.3: all vector bundle £ over compact hausdorff B there exists a bundle map:
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for k sufficiently large.

Theorem 41 (5.7). If B is compact Hausdroff and f,g: § — 43 are bundle maps, then f ~ g:§ — 73,.

Recall the proofs required E(¢) — R¥ fiber monomorphism.

Theorem 42 (Covering Homotopy Theorem). Slogan: “Homotopy Invariance of Pullback.”.

Suppose we have compact hausdorff manifolds and maps:

E(¢)

B-_I=, p

Then f*¢' = g*¢'.

We can ‘replace k by oo and compact hausdorff by paracompact Hausdorff.’
For 5.2, we use oo - n = oo.
For 5.7, we use co 4 0o = o0.

5.3, 5.7 and CHT implies: B paracompact Hausdroff implies there is a bijection between homotopy classes
[B, G, (R>)] and [iso class of n-plane v.b. over B.

f=
This is why the Grassmanian is a classifying space, it classifies all bundles.

R*" — F
{
St
e.g. for sphere B = S' then 1 (G (R®)) = ———=.

Let A be an abelian group and w € H'(G,,(R>), A).

Then we get characteristic class of n-plane bundle over B a CW complex. Recall CW complexes are paracompact
Hausdorff!

Thus, in order to get characteristic classes, we only need:

E() —— E(Y")
| |
B —° % Gp(R*®)

Then the characteristic class is defined to be w(¢) = ¢* w € H'(B; A).
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E
Then if we have J{ then f*w(&) = w(f*¢).

B -1, B

Theorem 43 (Future Theorem). H*(G,,(R*);Fa) = Fa[wyi, wa, -+, Wy].

For example, for n = 1, this theorem states that H* (P>, Fy) = Fy[a].

First we talk about R and G,,(R*). We talk about colimits for that.

Colimit

Consider Category C.
Definition. A directed system (ds):

Xo%Xlﬁng)Xg*)"'

Definition. A cocone of a directed system is an object X with maps so that:

Xoxl\)@\j)f/

Definition. A colimit of a directed system is an initial cocone:

XO Xl X2 X3 ..
C
3!
X

Colimits may not exist. If they exist they are unique upto isomorphism. We write C' = colim,, o, X},

Colimit is kind of a ‘generalized union’.
Colimits are generally ‘quotients of coproducts’.
In the category R-mod,

D, Xn
(X, —im(X,))

colim,, soo X,, =

Thus R* := colim,,_,o, R", if basis ey, eq, e3, - - - then almost all coordinates are zero: (aj,as,- - -

In Top or Set,

HXn

1' n oo Xn - N - /v N
COHMn— X, ~im(X,,)

36

aanaovoa"')



Then G, (R*®) = colim, ;o Gn(R¥) = set of n-planes in R™ with a particular topology. In some sense, it is

Uy G (R).

Stiefel Manifolds

Recall: we have Stiefel Manifolds:

O(n) —— V,(R*>) orthonormal n-frames in R

|

Gr(R>)

V(R®) x o) R™ = E(y").

Theorem 44. V,,(R*>°) is contractible. eg for n = 1 we have S ~ .

We need some facts from algebraic topology:

1) V,R* is a CW complex and V,R* ¢ V,,R*® are subcomplexes.
2) Whitehead’s Theorem: if X is CW then X ~ % <— 7, X =0.

r - FE
3) Given fibration 1 (e.g. a (G, F)-bundle) there exists long exact sequence:
B

-~'—>7TZ‘F%7T1‘E—>7T'¢B—)7TZ‘,1F—>“-

Now we can prove the theorem:

Proof. 1 = 7;(V,,(R*®)) = colimy_, o0 7 (V;, (RF))
3 = fori <l,mO() = mO(l+1).
A

o) — O0@+1)

{ 4
Sl A€l+1
Ok—-n) — O(k) A
Then A

Vo (RF)  Aey, -, Ae,

= i<k—n,m(V,RF)=0 g the theorem. O

Monday, 10/13,/2025

Note:

Schubert Symbol: o = (o1, ,0p).
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1<o1 < - <o,

Dimension d = d(o) = >, 0 — i
Partition of d = o — (1,2,-+- ,n).
Recap:

G, (R*®) = BGL(n,R).

It is a classifying space.

Proof 1: representative object.

O(n) —— Vo (R™®) ~ %
Proof 2: l

G (R>)
Thus G, (R>*) = BO(n), BO(n) = BGL(n,R),0(n) ~ GL(n,R).

Preview of Chapter 6/7:

e Find CW structure on G,,R*°.

e Show mod 2 cellular chain complex has zero differentials. [So this is just like RP].

Then Hk(Gn(ROO)7 ]FZ) — Ck(GnROO) QFy = IFQ# of k-cclls.

We use the following two definitions of CW-complexes.

Definition (Using Pushouts). A topological space X together with the filtration {X"}>2, called skeleton,
written (X, {X"}22,) so that,

XOCchmCX:UX"

n=0

such that,

1) Vn, 3 pushout diagram:

H Snfl anl

l |

D" — X*
2) X = colim,, 00 X™.
Definition (Whitehead). Instead of a filtration we have a partition with cells e,.
Let X be a Hausdorff space. Consider ((X,{e,})) so that,

{ea} form partition of X. i.e. X =], €q,eq Neg = @ so that,
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° ~
1) Ve, 3 characteristic map xo : D™ — €, such that y, S D™ = e, homeomorphism.

2) Xa(S™1) C finite union of n — 1 cells.

3) B C X closed <= Va,BNe, closed in &5.

We can get the skeleton from the cells in the following way: X™ = [y, eo<n Ca-
Also note 2" alternate: e, — e, C finite union of n — 1 cells.
For skeleton to cell, note that X™ — X"~ is topologically I, cens €a-

We want to figure out the CW complex of the Grassmanian. This is connected to combinatorics.

Definition (Schubert Symbol). The cells will be indexed by Schubert Symbol, which will be increasing sequence
of integers: ¢ = (o1, ,0,) so that 1 < o7 < 03 < --- < 0,. This will index a ‘Schubert cell’ of G,,R* if
o < k:

e(o) = {X € G,R* | Vi,dim(X NR) = i, dim(X NR7~") =4 — 1}

So we have a dimension jump at R7:.

dime(o) =), 0, — i
Theorem 45 (6.4). (G,R*, {e(o)}) is a CW complex [note: 1 < oy < --- < 0, < k], and dime(c) = d(o).

It also holds for k = oo, i.e. G,R*®, {e(0)} where 1 <oy < --- < 0, is a CW complex.

Example: G1(R?). o = (1), (2), (3).

Thus G1R? = e® Uel U e2.

e1) is the line given by the z-axis.

e is the set of lines through origin in the zy-plane except the z-axis.
e is the set of lines through origin that are not contained in zy-plane.
Now consider G5(R3).0 = (1,2), (1, 3), (2, 3).

e(1,2) is the zy-plane.

e(1,3) are the planes with one basis z-axis, other basis not the y-axis.
e(2,3) are the planes that doesn’t contain the z-axis.

Now consider G2(R*). Then o = (1,2)[d = 0], (1,3)[d = 1], (1, 4)[d = 2], (2,3)[d = 2], (2,4)[d = 3], (3,4)[d = 4].

o | dimd=d(o) | o— (1,2, ,n)
(1) 0 0
(2) 1 1
(3) 2 2
(4) 3 3
(1357) 6 0123

Table 3: Schubert Symbol Dimensions
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Corollary 46 (6.7). # of d-cells in G,,R* = # of paritions of d into at most n integers < k — n.

Wednesday, 10/15/2025

Chapter 7 assumes existence of SW classes satisfying axioms 1-4.

Abbreviate G,, = G,,(R*). We have bundles:

R" —— E(y") C GpxR*®

G = Gp(R™)

3

Notation: wg = wi (™).

H*X = H*(X;F3). ‘Fa-coefficients understood’.

Theorem 47 (7.1).
H*Gn = FQ[wla e 7Wn]

The free polynomial ring on generators of degs 1,2,--- ,n.

<= There is no polynomial relationship between them: if p is a polynomial in n variables and p(wq, -, w,) =
0, we must have p = 0.

< wi, -+, W, are algebraically independent.
Lemma 48. Recall 7! is the tautological line bundle.

Let £ = ! x .-t
—_———

n times

i) wi(§), - ,wp(§) are algebraically independent.

il) wy,---,w, are algebraically independent.

Proof.
R* —— E(§) =E(y') x -+ x E(y")

l

P>® x ... x P>

H*P> = Fs[a] by Poincaré duality.

Thus H*(P® X --- x P®) = H*P* Qp, - - - ®p, H* P> =Fs[ay,- -+ ,a,] by Kinneth Theorem.
By exercise, w(§) = w(miy! @ - @ miyt) = [[Lwriy) = (L +a1) -+ (1 + ap).

Then wi (&) = or(a1, - ,an) the k’th elementary symmetric function.

o1, ,0p are algebraically independent [Newton].

ii follows from this. We have:
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E() — E(y")

| |

P® x...xP*® —% G,
Suppose p(wy,- -+ ,wy,) = 0. Apply c* to see p(w1(§), -+ ,w,(§)) =0 = p=0. O

Now we finally prove theorem 7.1. We need to prove that the polynomials on SW classes generate the cohomol-
ogy.

Proof. We have:

]FQ[WD"' 7W’n] C H*(Gn)

Let Fa[wy, -, w,]? be the subspace of degree d polynomials on the w’s.

]FQ[Wlu e 7Wn]d C Hd(Gn)
HY(G,,) is a subquotient of C¢(G,,). Meaning it is quotient of a subgroup / subgroup of a quotient [same thing].
Note that:
dimg, Fo[wy, -+, w,]* < dimg, HY(G,,) < dimp, C%(G,,)

We will show this is an equality.

Note that dimg, Fa[wy,---,w,]? is the number of monomials w)* ---w’ of degree d, meaning we need r +
2r9 4 -+ - + 1y, = d.

dimg, C4(G,,) is the number of schubert symbols 1 < 01 < 03 < - -+ < 7, of dimension d, meaning d = > (oi—1).
We claim they are in bijection as follows:
A+l <rp+rpaa+2<---<rp+rpg+-o-+ri—n

Thus all three dimensions are equal. Therefore,

FQ[Wla"' 7W’n] = H*Gn

Furthermore, we can deduce that 9 == 0 (mod 2) in C*G,,. O

Corollary 49. We have a classifying map:

H*(Gp) <5 H*(P™ x - - x P®)

wi = o(ar, - ,an)
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Thus, H*(G™) = H*(P™® x --- x P®)5»
c* is injective.

Theorem 50 (7.3 Uniqueness). If w(n) =1+ wi(n) +---
then w = w

Proof. Step 1: By axiom 4, w(vi) = w(71).

Step 2: we have

E(v) — E(y")

| |

Pl p

Recall ¢* : H'P>® — H'P! is an injection so w(y!) = w(y1).
Step 3: Set £ =41 x -+ x 4. Then w(&) = w(&).

To see this, £ = iyt @ -+ @ wlyh.

w(&) = [L(1 +a:) = w(&).

Step 4: w(y™) = w(7"™).

c* is injective on H*. w(§) = w(§) so c*w(§) = *w(¢) = w(y™) = w(y").
Step 5: w(n) = w(n) when B(n) is CW complex.

To see this, just check:

Step 6: w(n) = w(n) for alll .

Take CW approximation:

w(E) = w(E) so w(n) = w(n).

and W(n) = 1+ Wwi(n) + -

satisfying axioms 1-4,



Friday, 10/17/2025

Existence of SW Classes following Thom

Uses two things: Thom isomorphism theorem and Steenrod squares.

Fy-coefficients understood.

R* —— F
Consider a rank n vector bundle lz .
B
R*"-0——FEy = FE-2zB)
Then we have J
B

z(B) zero section.
be B, F, = ’/Tilb,F'b0 =71h— {0}

. ~ . Fo, ifx=mn;
Remark. H*(Fy, Fy,) 2 H*(R",R" — 0) & H*(D",S" ') 2 H*(D"/S" 1) = .
0, otherwise.

Theorem 51 (8.1, Thom). 3luw € H"(E, Ey) such that Vb € B,
itu 0 € HY(Fy, Fy,) = Fy.

Vk € Z, H*E = H*t"(E, Ey), z — x Uu is an isomorphism.
‘Every bundle behaves like the trivial bundle’.

Corollary 52. H'(E, Ey) = 0 for i < n.

Definition. v € H"(E, Ey) Thom class u = ug.

Theorem 53 (Thom Isomorphism). We have the following isomorphism:

¢: H*B — H*™(E, Ey)

p(X)=7m"zUu

Exercise. Prove 8.1 for trivial bundle. [Use Kiinneth theorem]

What is (u,relative cycle)? This is inner product H*(E, Ey) ® Hy(E, Ey) — Fo. It ‘counts’ the number of
intersections with the zero sections.
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Steenrod Squares (Generalizes Cup Products)

Axioms:

1) Sq* : H"(X,Y) — H"t(X,Y) homology of abelian groups ¥n,i > 0.
2) ‘naturality’ f: (X,Y) — (X’,Y’) then Sq of* = f*Sq'.
3) a € H*(X,Y).

Sq®a=a
Sq"a=aUa
Sq'a =0 when i >n

4) Cartan formula

Sq"(aUb) = Z Sq*aUSq’ b

i+j=n
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These axioms look like the axioms of SW classes.

Definition (SW Classes, Thom). Let ¢ be the Thom isomorphism. Then,

wi(§) =¢7'Sq" ¢(1) = ¢~ Sq" u

So, when n is the rank of the bundle,

Hn(EaEO) qul} Hn+i(E7E0)

H°B — Hi(B)

Goal: SW classes satisfy axioms.

Total Steenrod square: Sq(a) = a +Sq' a4+ Sq®a+ ---+Sq" a,a € H*(X,Y).
Then Sq : H*(X,Y) — H*(X,Y),Sq =14 Sq' +Sq® + - - -.

Cartan: Sq(aUb) = Sq(a) U Sq(d).

Axioms for SW classes:

Axiom 1: wo& =1,w; & = 0 for ¢ > rank ¢ follows from 3.

Axiom 2: Naturality:

f:(E,Ey) — (F', E}).
Thom class is natural [meaning f*ug = ug since f is isomorphism on fibers].
Thom isomorphism is natural: f* o ¢p = ¢go f*

Thus, f w; &) = F o 1sq d(up) = d5' f*Sq' ¢ (upr) = [some calculations] = w; (f*§').

Monday, 10/20,/2025

Review: Fa-coefficients understood. We have vector bundle ¢ : R* — E =5 B. We defined Ey = E — 2(B), the
complement of the zero section. We defined the Thom class u = ug € H"(E, Ey) so that iu # 0 € H"(Fy, Fy,)
for all b € B.
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Thom isomorphism theorem: ¢g = ¢ : H*B — H**"(FE, Ey) given by ¢(x) = (7*X) Uug is an isomorphism.
Then we can define SW class of a bundle: w; £ = ¢! Sq w.

Recall that Sq* : H*(E, Ey) — H**(E, Ey).

We also have a total version: w(€) = ¢! Squg where Sq =1+ Sq' +Sq*+ - -

Lemma 54. w({® &) =w(§) Uw(').

ALso recall we have the cross product: H'X @ H'Y — HT/(X xY) by a® b+ a x b.

This comes from: if we have an n-simplex on X x Y given by o : A™ — X x Y, then (a x b)(¢) = a(;(px ©
0))b((py o 0);) where we have the front ¢ and back j face maps and px,py are projections.

Then, a x b = (pka) U (p}-b) and aUb = A*(a x b).
Now, suppose we have two bundles £ : R* —+ E — B and ¢ : R" — E' — B'.

Then we can have the cross version of the lemma:

Lemma 55 (X-lemma). w(&) x w(§') = w(§ x &').
Claim: X-lemma implies the lemma.

Proof. w(§®¢') = w(A™(Ex ) = A" w(§ x &) = A%(w(§) x w(¢')) = w(§) Vw(E). N

Now we prove the X-lemma.

Proof. w(é x &) = ¢ p (Sa(upxpr)) = g p (Sa(up x up:)).
Cartan = Sq(a Ub) = SqU Sqb, applying A* we see that Sq(a x b)n = Sq x Sqb.
Thus, = ® ) g (Squpe X Sque) = (¢p X ¢p) " (Squr) x (Squp).

= w(&) x w(¢’). O
Recall Axiom 4: wy(v1) # 0. We want to prove that.

Proof. Let M be the Mobius strip. Then we have (E, Ey). We also have (M,0M). We can collapse the
boundary of the mébius strip to a point which gives us P2. i.e. we have:

H*(E,Ey) ————— H*(M,dM) «+——— H*(M/dM, ) = H*(P?, )

htpy invariance good pair
Recall E = E(vf) C P2 x R3,[-1,1] x R/ ~, (z,t) ~ (—z, —t).
up # 0 by definition and H(E, Ey) & H'(P?),u <+ a.
Then, Sq'a=aUa#0 = Sq' u #0.

Thus, wi(11) = ¢~1(Sq" ug) # 0.
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Chapter 9

For this chapter, Z-coefficients understood.

We want to talk about orientation. Let V' be a dimn vector space. Let Vo =V — {0}.

Definition. An orientation for V' is a generator uy € H,(V, Vp).

This corresponds to the linear algebra definition for V.

ordered bases (b1, ..., by) for V.

Orientation of V corresponds to (b, by )~ (b],---,b!)) if determinant of change of basis matrix is positive *

Then, the class of [by, -+ ,b,] maps to the orientation in homology given by o : A™ — V where o(tg, -+ ,t,) =

S (t = tim1)b;.
Now suppose & : R® - E' — B is a vector bundle.

Definition. Orientation for £ is an assignment b — pp, € H,(Fp, Fy,; Z) that is ‘continuous in b’. Meaning,
Vb € B, 3(U, h) where b € U and,

UL U xR
Ve e U, F, — {z} x R" 2 R" is o.p.

If there exists such an orientation we call £ is orientizable.

Theorem 56 (Thom Isom, 9.1). Let { : R" — E — B be an oriented vector bundle.

i) 3w =wug € H"(E, Ey) such that Vb, ifu € H"(Fy, F},) = Z is a generator. We call u the Thom class.
il) o =¢p: H*B = H*™(E, Ey) given by ¢(x) = n*z U, this is the THom isomorphism.

Corollary 57. H*(E,Ey) =0 for k < n.

H"(E,Ey) 2 Zif B is path connected.

e.g. 71 is path connected.

HY(E,Ey;Z) = H'(P%,Z) =0

Wednesday, 10/22/2025

Let £ : R® - E — B. Recall that an orientation on ¢ is a ‘continuous assignment of a point’ b — up, €
Hn(Fb, Fb(); Z)

Equivalently, continuous assignment of [by,-- -, b,] an equivalence class of ordered basis of Fy.

M™ manifold local homology

cont & —— p, € Hy (M, M —2) = Z
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Puzzle: M™ is smooth, orientable on M < orientation on T'M how?

Note that there is exp, : T,M — M which is a diffeomorphism near x. Patch them up with orientation
preserving atlas on M. Meaning, (M, A) where transition maps ®5 o ®_! are oritentation preserving, meaning
their determinant is positive.

orientation on M orientation on T'M
o.p. atlas on M

Exercise 12A: w1(§) =0 <= ¢ orientable.

Theorem 58. ¢ orientable <= wy(§) € H'(B;F3) is 0.

Note that, Vn,3 two n-plane bundles over S! given by €” and vi @ "~ L.

bundles over §1 -Zuiching 7mo(GL, (R)) i? {£1}

Bundles over [ are trivial.

¢ :R™ - E' — B homomorphism [orientation character| w : m B — {£1}.

™

" —— E(y)

é

ex

413)51

_ +1, if v%e trivial;
whl= . -
—1, if y"e non-trivial.

Essentially, given a loop we walk around it to see if my right hand becomes my left hand.
By UCT and Hurewicz theorem,
H'(B;F,) = Hom(H, B,Fy) = Hom(m B, {£1})

wi(l) «— W

They correspond for 41 so they correspond for 7.

P>* = G1(R*) = G,(R*) is isomorphism on 7;. Meaning,

TP® = 1Gp(R®)
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by cellular approximation [they have the same 1-skeleton and thus 1-cells. Recall the 1-skeleton contains some
Schubert cells with dimension 1. So any path on G, (R*°) is homotopic to one in G1(R*>)]. It is 1 — 1 because
of Wi.

Therefore, they correspond for 4™. Thus, w ~» w for general £.

Milnor-Stasheff uses oriented grasmanian G,,(R>) to show that H'(G, (R>);Fy) = 0.

Theorem 59 (Thom Isomorphism Theorem). £ : R" — E — B. We have a Z-coefficient version and a
Fa-coefficient version. In other words, we have a general manifold version and an oriented manifold version.

We can then state the theorem in a fancier way:

H*(E, Ep) is a free rank 1 module over H* B with a generator [the thom class] in degn. This works for both Z
and Fy coefficients.

The module action is given by the cup product. For z € H*B and a € H*(E, Ey), we can first take the pullback
7z of x into H*E. Then,

—
H*E H*(E,E))
Then H*B =~ H**"(E, Eo) = H*B Uug

Proof 1. We use the Serre Spectral Sequence. We look at the relative fibration:

(F, Fo) —_— (.E7 EO)

|

B

We then have the machine that computes the cohomology of the total space in terms of the cohomology of the
base with coefficients in the fiber:

E? = H?(B; HY(F, F,)) = HP™(E, Ey)

H 0

0

[Take M622 for more information]. O

Friday, 10/24/2025

¢ER*"—-F— B

Theorem 60 (Thom Isomorphism). Here Z-coeflicient if oriented, else Fs.

Then H*(E, Ey) is free rank 1 module over H*B. Generator ug € H"(E, Ey).
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Theorem 61 (Thom Isomorphism). ¢ : H*B = H**"(E, Ey), ¢(y) = n*y Uug.

Theorem 62 (Thom Isomorphism for Homology).

H.B<& H, . (E, Ep)
It is given by cap product with the Thom class.

We did first proof via spectral sequences.

Second proof: Mayer-Vietoris.

Proof. Case 1: Trivial bundle.

Here (E, Ey) = B x (R",R}). In (E, Ey) we have H* = H*B® H*(R",Ry) is free rank 1 by Kiinneth theorem.

and &

Case 2: B = B"U B" open cover. Assume Thom Isomorphism Theorem holds for §|,, , §

B B'NB""

Write B := B'N B". Let E" = 7~'(B") and Ej = 7, }(B").
Question: why is this a thom class?

We have the relative Mayer-Vietoris exact sequence:

- — H"(E,Ey) — H"(F',E})® H"(E{/,EJ) — H"(E",E{') — ---

w (u/,u) 0

Thus we must have v/ — u"” « u”.

Now we can use a 5-lemma argument:

H'B H'B'® H'B" HB"

1 . |

HH_"(E, E()) HH_TL(E/,E(/)) D HH—"(E”, E(/)/) Hi—&-n(Eﬁ’ E(F)T)

So, H'B 25 Hi+™(E, Ey).
Case 3: Finite cover B = B U --- U By, such that €|B~ is trivial for Vi.

Use induction and Case 2: (By U---U Bji_1) U By.
Thus Thom isomorphism holds if B is compact.

Case 4: General case. Then use limits. Too hard.

Proof. Third proof. Assume ¢ is smooth n-bundle, B is a k-dimensional smooth closed manifold.

We can give £ a metric ||| : F — R.
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Disk bundle D(E) ={e € E | |le]| < 1}.
S(E)={ec E|le] =1}.

Then (D(E), S(E)) — (E, Ey) gives isomorphism H, and H*

D(FE) is a compact manifold with 0D(E) = S(E).

Let PDp and PDpg be Poincaré (Lefschetz) duality isomorphims. Define thom class to P-L dual of zero
section.

ug = PDpg(z.B]) € H*(DE, SE)

Here z is the zero section.
$(y) = 7y Nug “2" PDpp(inc, PDpy).

For the claim see Bredon’s topology and geometry book page 369.
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Monday, 10/27/2025

Chapter 9
R" —— F
Consider an oriented vector bundle £ : lﬂ .
B

Definition. Fuler Class e(€) € H™"(B;Z) is the image of the Thom class:

H™(E,Ey) — H"E +=— H"B

W

e(§)

Three uses:

Proposition 63 (11.12). M™ closed, oriented manifold then,

Where x is the Euler characteristic.

Proposition 64. Euler class is the first obstruction to the existence of a nowhere zero section.
Thus, dim B < n = ¢ has a nowhere zero section.
dim B =n,e(§) =0 = ¢ has a nowhere zero section.

Thus, M™ closed, oriented, x(M) =0 = 3 nowhere zero vector field.

If X™ c M?" closed, oriented then,

(e(V(X — M)),i.[X]) = self intersection # of X

=X X =(PDy[X],[X])

For example, (¢(CP" — CP?),[CP']) =1
Non-oriented clase:
(e((X — M)),i[X]) =X - X mod 2.

Example: consider M = RP2.
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[We pertrube a bit since considering the intersection doesn’t really make sense]
Then e(§) mod 2 = w,(&).

Note that X - X mod 2 =X - X’ mod 2.

Basic Properties, Milnor-Stasheff 9.2

i) 9.2 e(¢) is natural. i.e. It is a characteristic class. If f : ¢ — £ is a bundle map [meaning there is an
isomorphism on the fibers]

E 1 E

B 5B
Then e(f*¢) = fre(S).
ii) 9.3 £ reversing orientation on ¢ gives us e(§) = —e(€).

iii) 9.4 n odd = 2¢(&) = 0,¢ = € [oriented vector bundle]. v +— —v, then e(€) 5 e(&) = —e(§).

If M™ is closed and oriented, then {(M™) = 0,e(TM) = 0.

X(RP?) = 1,e(TRP?) # 0

So, if H"B is torsion free and n is odd, then e(§) = 0.

If e(§) # 0,n odd then e(§) € H™(B) has order 2. Thus there exists a nontrivial torsion summand of H"B.

Question: does there exists unique oriented & : R” — E — B with n odd so that e(§) # 0?7

Proposition 65. 9.4.1: e(¢) = ¢~ (uUu).

Proof. ¢(e(§)) =n*e(§) Uu = u‘E Uu=uUu.
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U u ulJu

H"(E, Ey) ® H"(E, Eg;Fy) —— H?"(E, Ey; Fs)
{
H"E @ H"(E, Ey; Fs)

’IL‘E u

Proposition 66. H"(B;Z) — H"(B,F3) has e(§) — w,(&).

Proof. e(&) = ¢~ HuUu) = ¢71(Sq" u) = wp(€) O
Proposition 67 (9.6). a) e(& x &) =e(§) xe(£).
b) e(€ &) =e(§)Ue(¢).

Proof.  a) Follows from upxp = ug X ug.

b) Apply A* to a.

Proposition 68 (9.7). If £ has a nowhere zero section then e(§) = 0.

Proof. If B is paracompact we can choose a metric. Then, £ = ¢! @ (e})+ — e(¢) = 0Ue((e!)) = 0.

We use CW approximation for general case. O

In general, (&£ @ €!) = 0. Thus, the Euler class is not stable, in contrast to the Stiefel-Whitney classes, where
they are stable w.r.t. ‘adding’ trivial bundles.

Wednesday, 10/29/2025

Crash Course in Intersection Theory

e Transversality
e Isotopy invariance

e Intersection numbers

Thom transversality theorem

Tubular neighborhood theorem

Explicit PD

Alg Int # = Gem Int #.
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Transversality

Consider submanifolds A, B of M.
Definition. A M B [A and B intersect Transfversly] means Vo € AN B, T, A+ T, B =T,M.

}B B
|

Figure 4: Transverse

Figure 5: Not transverse

Theorem 69. A M B. Then,

e AN B is a manifold.

e V(ANB — A) ¥ Z/(B<—>M)’AQB.

Furthermore, dim A — dim AN B = dim M — dim B.

Recall that v(B < M) = (T'B)* c TM|.

v(B— M) =Mz
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Theorem 70. All submanifolds A, B where A is isotopic to A’, A’ h B.

Slogan: “Transversality is generic”. i.e. it is a dense open condition.

We can pertrube A to make it transverse.

Recall isotopy means homotopy through embeddings.

Intersection Numbers

Assume now that A" h B¥ ¢ Mtk

This implies that T, A ® T,,B = T,, M. Assume further that |[AN B| < co. e.g. M is compact.
Then we can define the mod 2 interserction number: |A N B| mod 2.

Now assume A, B, M are all oriented.

For x € AN B we can define:

-1 otherwise.

{—1—1, if orientation of T, A ® T,,B and T, M match;
€r =

)

There M =T2, A-B=1—-1+1.

Theorem 71. A, B, M are closed then A - B is isotopy invariant.

First Proof. ‘Geometric’
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Second Proof. ‘Homological’.

A-B = (PDy[A]UPDy|[B],[M]) € Z

Observe that A not transverse to B can derive that A- B = A’ - B'.

Consider M =R?, A= S' and B =1I. Then, A - B is not isotopy invariant.

Figure 6: A - B is not isotopy invariant in this case

Suppose OM # &, submanfiold A of F is called proper if 0A = ANOM.

Theorem 72. If A", B* are proper submanifolds of M"t* where B is closed and A, M are compact, and
suppose that A m B, then A - B is isotopy invariant.
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Figure 7: Here A- B =1

Corollary 73. For closed A, B C M, A - B is isotopy invariant.

Warning: A, B C M proper then A - B is not isotopy invariant.

Theorem 74 (Thom Intersection Theorem). Suppose we have a smooth bundle ¢ : R® — E — B* with metric
on £ and B closed.

Recall that the thom class ug = PDgz.[B] € H"(DE,SE) = H"(E, Ey) where z is a zero section.

If A C D(F) is a proper compact submanifold, then,

Z,
Fy, otherwise.

if oriented;

A z(B) = (ug, 2B]) € {

Proof. After isotopy of A, assume 3 neighborhood of z(B) such that each component ANV lies in a fiber.
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Friday, 10/31/2025

We are moving on to chapter 11.

Let M™ C A™t* submanifold.

Theorem 75 (11.1 Tubular Neighborhood Theorem). 3 embedding v(M — A) — A which is ‘identity’ on M.

Proof. (When A is compact): Give TM a metric. Consider exp : TM — M as follows:
exp(v) = 4/(1) where « : [0,1] = M geodesic where (0) = w(v) and 7'(c) = v

We start at the base point and run in the direction of v.

Je > 0 such that exp | D(v) < A.

Note that F(v) = D.(v) by scaling.

E(v) = A, (—€,€) 2 R.

Corollary 76 (11.2). If M is losed in A then restriction maps are isomorphisms:

H*(A,A— M) —=—s H*(N,N — M) % H*(E(v), E(v)o)

Here N is the tubular neighborhood: im(E(v) C A).
Definition. Thom class up € H*(A, A — M) maps to u,.
UpN S Hn(i, ]FQ)

up € H"(—; Z) if v is oriented, e.g. A, M are oriented.

Remark. X h M. [z] € H,(A,A— M).

(up, [z]) € M - X.
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Theorem 77 (11.3).
H*(A,A— M) 5 H*A 25 HYM

ok ek o Wk(V) . .
Jrua= { e(v) } it v s {oriented}

b) If M C A but closed in manifolds,

a) If M is closed in A then,

HY(A;TFy),  if

HYA, if A and M both oriented.

Proof. b: explicit Poincaré Duality: Poincaré Dual of submanifold in the image of Thom class of its normal
bundle.

H"A —— HFA
m
[M] —— im Un
a: oriented case ‘Essentially definition of Euler class’
upm
HF(N,N — M) «—— H¥(A,A— M) ——— H*kA
lTNT lj*

H*E(v), E(v)y) — H¥(E(v)) —— H*M

Uy, e(U)

In the non-oriented case, with Fo-coefficients, need:

Hk(E(V), E(V)O;]FQ) E— Hk(M;FQ)

Uy ¥ wi (V)

[See 95]

Applications:

Corollary 78 (11.3a). = Cor 11.4. M"™ C R"** closed subset then,
0= Wk(l/) = Wk(TM)

If M C R™ is oriented, then e(r) = 0.
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Recall that w(&) w(€) = 1.

W) =wl) " = T

=1+ (witwat-)+(witwat+- )2+

Recall M™ — R"** immersion implies w;(T'M) = 0 for [ > k.

When n = 2!, w(TP") =1+a+a™.

w(TP")=14a+---+a".

Therefore, RP™ does not immerse into R??~2.

We can go down one further dimension RP™ doesn’t embed in R?"~!. In particular, RP? < R3.
Now, consider the open Mdbius strip M.

M — R3 but wi(TM) #0 = w1 (TM) #0

This means M < R3 as closed subset.

Monday, 11/3/2025

Chapter 11

Goals: Euler class of a closed manifold integrated over the whole manifold is the Euler characteristic:

Another goal: Wu’s formula for wy (TM).
Review:

Euler class e(§) € H"(B;Z) is the image of the Thom class:
ue H'(E,Ey) — H"E <~ H"B 5 ¢(¢)

Submanifold M™ c A™tk,

11.2: If M is closed in A, then,

u, € H*(E(v), E(v)o) H*(N,N — M) < H*(A,A— M) 5 uy

[~}
T.N.T.

Milnor-Stasheff class ua; as u'.

Intution for ups: (upr, [X]) = M - X.

11.3: upr € HY(A, A— M) S qRA 25 Hé M
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a) M closed in A implies up; — wg(v). v oriented implies ups — e(v).

b) M, A closed manifolds implies up; — PD 4[M].

Application of 11.3(b): X* th M™ C A, all closed and oriented. In that case,
M - X = (upy, [X]) = (PD[M], X) = (PD[M] U PD[X], [A]), the algebraic intersection number.
In the case A"** closed and oriented, then, we have algebraic integral pairing:

H"A HFA
tor tor

— 7

a®b— (aUb,[A])

Choose Z-basis {ex}, that gives us (e; ® e;, [A4]). It’s a symmetric matrix, and P.D. implies det = +1.

Tangent Bundle

‘Normal bundle of the diagonal bundle is the tangent bundle of the manifold.’

Define diagonal map A : M — M x M, A(x) = (z,x).

Figure 8: Diagonal Map

Consider curve a: R — M x M. Then we in fact have two maps: a = (a1, as) where o; : R — M.
Therefore, T(M x M) =TM x TM.
Notice that for any curve v : R — M we can find a new curve (y(t),y(—t)) : R — M x M.

These give us lemma 11.5

Lemma 79 (11.5). 3 bundle map:
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v ——— (v, —v)

T™™M —— v(A(M) — M x M)

! |

M —— MxM

IR >

Therefore TM = v(A — M x M).

Now we jump into the algebraic topology.

H™(M x M, M x M — AM) — H™(M x M)

uan — u”’

Here u” is the ‘diagonal cohomology class’. u” = PDrxa[A].

Lemma 80 (11.8). (1 xa)Uu" = (ax 1)Uu" for a € H*M.

Sketch. AM — M x M is symmetric in the two factors. O
Lemma 81 (11.9). When M is closed, if we take the ‘slant product’ then u”/[M] =1¢€ H'M

Proof ommitted.

Products

Recall: Cup products <> cross products. Implies cohomology is a ring.

Cap products imply homology is a module over cohomology ring. It corresponds to ‘slant prduct’.

/ HPM(X xY)® HY — HP X

a®zwalz

It is supposed to be like a fraction.
It is also related to the cross product: (a x b)/3 = (b, f)a.

This can work as a definition if coefficients are in a field. Theorem for general coefficients.

Definition (Slant Product). At the cochain level: take f € HPT9(X xY) and o : A? — Y, then for any p-chain
T?

(f/o) (1) = flpo x T)
[Note: this is not quite right)
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Wednesday, 11/5/2025

Recap:

Slant product /: HPT4(X xY)® H,X — HPY. p® B+ p/p.

Main idea: if a € HPX,b € HYY then (a x b)/8 = (b, B)a.

—/B is H*X-linear: ((a x 1)Up)/B8=aU (p/pf).

If M is oriented assume field coefficient F'. Otherwise assume Fo-coefficients.

Now assume that M™ is closed and smooth. H™"(M x M, M x M — A) 3 ua, the thom class of the diagonal.
ua maps to u” € H"(M x M). Tt is called the diagonal cohomology class, which is the Poincaré dual to AM.

Recall when n € dim B — dim A, we have H"(B,B — A) 2 H"(E(v), E(v)o) where v is the normal bundle by
excision and tubular neighborhood theorem.

11.8: Ya € H*M,(a x 1) Uu” = (1 x a) Uu”, symmetry.

11.9: v’ /[M]=1€ H°M.

Proof omitted.

11.10: Duality Theorem: V basis b1, - - - , b, for H* M there exists dual basis b’f, -+, b¥ so that <biUbj¢, [M]) = ;.
111w = Y, (=1)blb; x b# € H™(M x M).

1110 <= [ : H*M @r H*M — F given by a ® b — (a Ub,[M]) is a perfect pairing, thus dim H,M =
dim H" P M = dim H,_,M.

Suppose A, B are A-modules where A is a commutative ring. then A @ B — C is perfect pairing if A i
Hom(B,(C) and B Z, Hom(A, C). In our example the perfect pairing comes from the bilinear map.

Proof. We prove 11.10 and 11.11.
By Kiinneth theorem we can write H"(M X M) > u” =b; X ¢1 + -+ b, X ¢;.
11.8 = (ax 1)Uu” = (1 x a) Uu”. By taking slat with fundamental class,

((ax 1) Uu")/[M] = (1 x a) Un")/[M]
aU @ /[M]) = (1 x @)U (5, b; % ¢;) /[M]
o= (Z;(=DmI1 UL x (aUe)) /[M]

o= Zj(—1)|“||bj|(a Ucj, [M])b,.

Now take a = b;. The b; are a basis. Therefore, taking a = b; we see:

b= S (=1l (5, U ey, [M]) = 6y

Define bfé = (=1)bic;.
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(b; UDT , [M]) = b
u’ = Ty(=1) b x b

When M =RP?u”" =1xa?>+axa+a®x1¢e H*R? x RP?).

O
Corollary 82. When M" is closed, smooth and oriented, (e(T'M), [M]) = x(M).
When M™ is closed and smooth, (w,,(TM), [M]) = x£(M) mod 2,
Proof. Oriented case: claim e(TM) = A*u”.
urm S(TM)
H"(TM,TMy) H"(M x M)
e N
HY(B(v: A < M x M), E(v)) —— H™"(M x M,M x M — A) —— H*(M x M)
uA u"
O

O\ ()

Let A’ be isotopic copy of A such that A’ h A.
Then A"+ A = (e(v), [A]) — (e(TM), [M]) = x(M)

THus, x(M) is the self intersection number of the diagonal AM — M x M

Corollary 83. If M has a nowhere zero vector field then x(M) = 0.

Proof. Suppose otherwise. Then M has a non-zero vector field implies AM has a non-zero normal vector field.
“Flow” implies 3A’ such that A’NA = &. O
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Thus, x(M) #0 = can’t comb hairy M.
Recall x(M) = (—1)"dim H;(M,Q) = >, (—1)*(#-of i-cells).

= >, (—=1)"dim H;(M,F,).

Friday, 11/7/2025

Wu classes / Wu Formula / Wu Theorem

Coefficients in Fy understood.

Wu classes are polynomials of whitney classes.
Vo = Wg = 1

Vi = W1

Vo = W% + wWo

V3 = W1 Wa.

They’re defined as following;:
Definition (Total Wu Class).

V=vo+Vvi+vat---
w = Squ

1

ie.v=8q 'w=(14+8Sq"+Sq*+---)"'w.

Proposition 84 (Wu’s Formula, Execrise 8A). Sq" wy, is ‘something in the cohomology of the Grassmanian’,
so it must be some polynomial over Stiefel Whitney Classes.

k—m
qu Wm = Z ( i ) Wk—i Wim+i

i

Hint on 8A:
H*(G,) = H*(P™ x --- x P™)"

w; = oi(ar, -, an)

Compute Sq” using Cartan.
eg Sq1 Wo = W1 Wo + W3.

Computation:
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W:SQV:(1+Sq1+sq2+,,,)(vo+vl+U2+...)
Then, 1 = wg = vg.
Wi =V
WgZSq1v1+V2 = Wy =Wi+Vy

w3 ZM-F Sq' va+vs = Sq' wi +Sq" wa + v3

=SqOW18 ! q Wlsq0W1+W1W2+W3+V3

cartan Wu Formula

Now, suppose we have M™ a closed n-manifold.

Theorem 85 (Wu Theorem). Let v(T'M) be the total Wu class of a tangent bundle.

(V(TM) U —, [M]) = (Sa(=), [M])

ie. if z € H* *M then v (TM) Uz = Sq* z.

Le. (vii(TM) Uz, [M]) = (Sq(-), [M]).
Corollary 86. Let M o M’ be homotopy equivalent manifolds. Then, w(T'M) = h* w(TM').

Sketch. Wu classes are determined by algebraic topology. Thus, homotopy equivalent implies same algebraic
topology which implies same Wu class which implies same Stiefel-Whitney class. O

We can connect this to intersection forms.

Definition (Algebraic Intersection Form). Iy : H*M @ H*M — Fs.

In(a®b) = (aUb,[M])

We write a - b = Ip(a ®b). By Poincaré duality it is a perfect pairing, thus it is a non-singular pairing.

Key application of Wu’s Theorem

Suppose n = 2k. M is a closed n-dimensional manifold.

{0k (TM) U, [M]) = (Sk" z, [M]) = (x U, [M])

Thus, for z € H*M:

vi(TM) - z=x-x.
Now we restrict to the middle dimensional homology.
Ins : HEM?* @ H*M?* 5 Fy
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Definition. I, is even if Va, I/J\\4(a ®a) =0.

<= if 3; is a basis for H*M then the matrix (5; - B;) has even # on the diagonal.

Then,

Theorem 87 (Wu’s Theorem).
vi(TM?*) =0 <= I, is even

Example: Suppose n = 2. Then vi = wy.

vi =0 <= M?2 orientable <= I,; is even (eg Torus).

i

Matrix:

b i

vi #0 < I is odd. e.g. RP1-RP! =1 in RP2,

Let K be the Klein bottle. Then I/[\( has matrix [(1) ﬂ sinceb-b=1and a-a=0.

I\ /N

e

Figure 9: Klein Bottle

e.g. RP*:w; #0,wy =0,vy # 0 thus RP?2-RP? = 1.

Further example: CP! - CP! = 1.

Corollary 88. Orientable 4-manifold: Iy is even <= wo(TM) =0 <= vo(TM) = 0.
To prove Wu’s theorem we need an additional lemma:
Lemma 89 (11.3).

w(TM) = Sq(u”)/[M]

Where uv” € H*(M x M) the diagonal cohomology class dual to AM.

Proof. We assume the lemma is true. In that case,
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Iy is perfdect pairingm thus non-singular, thus 316 € H*M such that (0U—, [M]) = (Sq(—), [M]) : H*M — Fs.
WTS: 6 = v(TM).

WTS: Sqo = w(T'M).

Choose basis b; for H* M and dual basis bg ie. b; - bg- = 4,5 [11.10]

Then, 11.11 = " = 3, b; x bl

1110 0 = (32,96 ) b = 52,(Sa(6f), (M)

— Sqd = Y,(Sq(®]), [M]) Sab;

Cartan and 11.11 implies,

Sq = Y,(Sa(bi) x Sa(b))/[M] = Sa(u”)/[M] = w(TAI).

O
Monday, 11/10/2025
Recap: Wu classes: Sqv = w.
Wu formula:
k—m
k — . .
Sq” w,, = zZ: ( ; ) Whk—i Wkt
Using these, we can find out: vy = w1, vy = W7 + Wa, U3 = W1 Wa.
Wu’s Theorem: If M is a closed manifold and © € H*(M;F3) then,
(o(TM) Uz, [M]) = (Sq"(x), [M])
Corollary 90. If k > 42 then v, (M) = 0.
Proof. Yz € H" *(M;TFs)
(ve(TM) Uz, [M]) = (Sq* (), [M]) = (0, [M]) = 0
O

If k = 98 M then (v, (TM) Uz, [M]) = (x Uz, [M]) which is the ‘self intersection’ number.

Application to 3-manifolds

Let M3 be closed, w; = w;(M),v; = v;(TM).
Theorem 91. a) All SW numbers of M? vanish.

69



b) M? orienatable implies w; = wy = w3z = 0.

Proof. M = vy = 0,v3 = 0. Then w? = wy and wy wy = 0. So w} = 0. x(M?) =0 = w3 = 0 [recall
X(M™) = (w,(TM),[M]) (mod 2), apply PD].

For part b: w; =0 = wy =0,ws =0. O

a 4+ Thom’s theorem == M?3 = 9W* compact, i.e. every 3-manifold is the boundary of a compact 4-manifold.

b + obstruction theorem == oriented closed 3-manifold M? has trivial tangent bundle, “paralellizable”
[Problem 12-13].

Gysin Sequence

R" — F
It’s a long exact sequence. Consider the vector bundle l,r .

B

a) 3 LES:

s BB Fy) 22 HI(ByFy) s HY(Eo; Fa) — HI-"(B;Fy) —

b) If oriented, 3 LES:

— HI™" =S HIB — HIEy — H "B — ...

c¢) If oriented with metric,

= HI""B =% HIB — H/(S(E)) — ---

Recall, suppose we have a trivial bundle. H*Ey = H*(B x (R"® —0)) = H*(B x S"!) = H*B® H**""'B
[Kiinneth]. Since in trivial bundle, — U e is 0 this works!

Proof. b: LES of pair (E, Ep):

HI(E, Ey) HIiEy —— HITY(E, Ey)

=

H'B

q e

H/'~"B

St —— FE

2nd proof: SSS tp l .
52
Classified by e € H2(S?). eg E = 83,5 x S2 L,, lens spaces, ¢ = 0, 1,n. O

70



B R— F
Corollary 92 (12.3). Any 2-fold cover l

™

B B

SE—= 3 B

N7

and LES:

— HI7Y(B;F,) —% HY(B;F,) — H(B,F,) —

‘Smith exact sequence, Hatcher’

BxR
Proof. Let E = m

Where m(x) = w(2’),z # 2.

S? T2
Use Gysin. e.g. l or l
p? K?

G (R™F) = oriented n-planes in R"™*. This is V,, (R""*)/SO(n).

Vn(Rn+k) = {(Ul, cee ,’Un) | V; € ]RnJrk;’Ui "V = 5”} C Rn+k X

SO(n) = {A e M,R | AA* = I det A = 1}.

G. = GuR®) = BSO(n)
ldoublc cover
G, = G.(R®) = BO(n)

Then we will have 12.3 (Gysin):

H*(én;]FQ) - FQ[W27W3a o ]

Friday, 11/14/2025

Today: a; and C vector bundles.

Definition (Oriented Grassmanian). G, (R"**) = oriented n-planes in R+

Orthonormal n-frames in R*+* V,, (R7HF)

implies: 3¢ = l such that,

" Orientation Preserving Rigit motions ~ SO(n)
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Then there’s a double cover:

Gn (Rn+k)

|

Gn (Rn+k)

The double cover is not trivial. k > 0,G,, (R"**) is connected.

There is a tautological bundle over this space.

Gn (Rn+k)

Definition 1: E(3,) C G, (R™*) x Rk,

Definition 2: Pullback:

E@ n) —— E(m)

Gn (Rn+k) N Gn (Rn+k)

G = Gp(R™®) = colimG,, (R"F)

k—oco

E(Yn)
Theorem 93. l classifies oriented vector bundles over B CW. i.e.

Gn

B iso class of
[B,G,] +— | oriented n-planes
bundles /B

f——/"

H* ((N}’n) — H*B. Here G,, classifying space, 3, universal bundle.

Proof. First: If £ oriented then any bundle map £ — =, lifts uniquely to o.p. bundle map £ — 7,

Second: Presentation



Then G,, = BSO(n) = BGL; (R).

én Iy G,,: non-trivial 2-fold cover. Let v be the associated line bundle to the double cover.
H1<Gn,F2) = Fg. This is Wi.
Therefore, w1 (Vx) = w1 (7n)-

We can change the fiber:

én Xy R
I
SO — G, R ——— E(vy)
G, Gy,

Recall 12.3: Gysin sequence for ;.

% HI7Y (G Fa) =% HI(Gp;Fo) — HI(Gp;Fo) % HI (G Fa) —2%

H*(Gp;Fy) = Fa[wy, -+, wy]. This is a polynomial ring, so multiplying by w; is injective.

Thus, — U w; is injective.

Theorem 94 (12.4). H*(G,;Fa)/(w1) = Falwy, -, ws]

Remark: there also exists Euler class e(3,) € H"(G,; Z)

If we have an oriented v.b. £, then e(¢) € H"(B;Z). n odd means 2e(§) = 0.
Q(Davis): Find example where e(§) # 0,n odd.

A(Mandell): £ =73, oriented grassmanian of 3-planes in R>.

e(is) € H*(Gs;Z)

0 # e(F3) ™% wy = wy(F3) # 0.

Puzzles:

1. What 2-dimensional real planes in C" are complex lines?

2. P176:

real

oriented complex

\_/
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C"-bundle

w Cr —— F

MS Definition, of Steenrod GL,,(C,C™)-bundle
Complex projective space CP" = G (C"*t1).
Complex Grassmanian G, (C"+F)

Tautological bundle:
C" ——— E(y,) C  Gp(Cntk) x Cntk

Gn (Cn+k)

Universal bundle:

H*(G,C>) characterstic classes, C"-bundle.
H*(G,C>®,Z) =Z|c1,ca," - ,cyn] are called Chern Classes.

C™-bundle —— R?"-bundle

"
w U}R

Definition. A complex structure on £ : R™ — E — B is a bundle map:

—>E

\/

such that J? = —id. i.e. J(J(v)) = —v.

complex vector bundle +—— real vector bundle with complex structure
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Monday, 11/17/2025

1. Spin(n) — SO(n)

2. BoH Periodicity:

Z/2, ifi=0(8);
Z/2, ifi=1(8);
0, if i = 2(8);
7,  ifi=3(8);
0 =
0, if i = 4(8);
0, if i = 5(8);
0, if i = 6(8);
Z.,  ifi=1(8);

0, ifi=0(2);
mU = e
Z, ifti=1(2).

3. Splitting principal

Lie---eoL, — E

| |

B ——— B

f* injective.

Homotopy

i (X, o) = [(S%, %), (X, 0)].

i =0: 7y < path-component of X.
i > 2: Abelian group.

Suppose X is path connected.

Path v : I — X with v, : m;(X,v(0)) = m(X,~(1)). So we can omit z¢ from the definition. We can go wrong
sometimes, but we won’t worry about it.

Addition structure:

(0]



;G L, (R) = Vect,, (S*T!) isomorphisom classes.

R* —— F
Vect,, (1) is l
Sitl

Proof 1. Clutching.

§| yirr and €| i are trivial. £ is given, 5 — GL,(R) by gluing.
i -

Proof 2.
GL, — EGL, =~ x

BGL,
i+1y C.5- ~
Then Vect, (S**!) = m;4.1BGL, = mGL,
LES
In general [X, BG] = Iso class of (G, F)-bundle /X.
Classifying Spaces
We have the following groups:
SO(n) — GL; (R)
O(n) —— GL,(R)

GL; (R) corresponds to orientable bundles.
O(n) corresponds to metrics.

Claim: the horizontal maps are homotopy equivalent
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Proof. Polar decomposition: A € GL,(R) = A = PO where P is ‘positive’ [i.e. symmetric and positive
definite] and O € O(n).

Then O(n) is a deformation retract of GL,, by
(1=t)P+tI)O

Corollary 95. BO(n) ~ BGL, R

Every bundle over CW-complex admit a metric / unique upto isometry.

Theorem 96. SO(n) is path-connected, m O(n) = [det]{=1}.

Proof. Pick 0 # a € R™. Look at reflection through a'. Call it R,.
Then R, : R" = R", Ry| , =id, Ra(a) = —a.

First, if O € O(n) then O is a product of reflection.

Second, if S € SO(n) then S is a product of even number of reflection.
Third, if a, b are linearly independent then R, ~ R} via Riqy(1-¢)-
Fourth, R, Ry ~ R, R, = id.

This proves the problem. Note that AA' =1 = (det A)2 =1 = det A € {£1}. O

Then SO(n) is path-connected and O(n) has two path components.

Wednesday, 11/19/2025

-1
Let R =
1

Then we have the following split exact sequence:
1 —— SO(n) — O(n) -2 {+1} —— 1
o
R+—— -1
Then O(n) = SO(n) x {£1}.
mo O(n) = {£1}.
SO(1) = {1},0(1) = {+1}.

SO(2) = S1,0(2) = St x {£1} the dihedral group.

7



Lemma 97. SO(3) @ RP3.

Proof 1. A € SO(3). Then the characteristic polynomial is of degree 3. Thus, A has a real eigenvalue.
Since A € SO(3) the eigenvalue A = +1.
-1
Case 1: all eigenvalues are real. -1 ¢ SO(3).
-1
Case 2: Other eigenvalues are non-real. Then A = £1, u, i with Ay =1 = A =1.

Thus, there exists ‘axis’ v such that Av = v with 7 = 1.

i.e. A is a rotation about axis v through angle 0 < 6 < 7.

SO(3) = D?/ ~=RP3

Proof 2. S® = unit quarternions = {a + bi + ¢j + dk | a® + b* + ¢* + d* = 1}.

Claim: S? is a double cover of SO(3). We essentially have to prove that:

1 —— {£1} 53 SO(3) 1

z — (bi+ ¢j + dk — z(bi + c¢j + dk)Z)

Lemma 98 (Stability Lemma). Recall SO(n) < SO(n+1) < --- by A [61 (1)]

a) mp—150(n) = m,—1SO(n + 1) S SO(n + 2) =

b) m, BSO(n) - m, BSO(n + 1) = 7, BSO(n + 2) =

Proof. Fiber bundle.

SO(n) — SO(n +1)

o

S A

LES on 7, and ;5™ = 0 for 7 < n.
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a) LES on 7, and m.S™ =0 for i < n.

b)
SO(n) —— ESO(n) =~ =«
BSO(n)
7; BSO(n) = m;_1 SO(n).
Example:

st SO(Q) —r M 80(3) A T 80(4) Emd

TS? — 0

m1 S0(n) = Zg for n > 2. 1 SO(2) =Z
We define Spin(n) as connected double group of SO(n).

Spin(3) = S3.

0 {1} —25 53 % $3 - S0(4) ——— 1
(z,w) ——— (v — zwD)

Spin(4) = §3 x S3.

Spin structure on £ = R™ — E — B or vector bundle with metrics where B is path-connected.
Pso ={(e1,--- ,en) | m(e;) = mw(e;) = w(e;), orthonormal}

Then we can define spin structure to Spinn. i.e.

principal Spin(n):
Spin(n) —— Papin(n)
|
B
Furthermore,
Pspin X spin SO - 3 Pso

\/
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<= the following happens:

P— 4 P

NS

Spin —— SO

L |

spm — PSO

N

Deine: Spin(n) as conected double cover of Spin(n)

Theorem 99. ¢ admits a spin structure <= wy ¢ = 0.

If ¢ admits a spin structure then,

spin structures «» H'(B;Zy)

Proof.
RP> —— BSpin(n)

= |

B~ BSO(n)

Monday, 12/1/2025

Let £ = R"™ — E — B be oriented with metric.

Theorem 100. £ admits a spin structure iff wo(£) = 0.

If so, spin structure on & < H'(B; Zs).

Consider the frame bundle.

SO(n) =SSO —— Pso = {(e1,--- ,en) | p(e;) =p(ej),e; ONJCE x ---

g

B

spin structure on & <> o € H'(Pso;Zs) such that i*a # 0.

+ a: m Pso — Zs such that aoi #£ 0.

80
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Pspin
This gives rise to the double cover J{

Pso

Given the fibration, we have the Serre 5-term exact sequence [with Zs-coeflicients]

H'B —— H'Pso — H'SO —%+ H?2B — H?Pso
I

{0, 9}
This is a consequence of the Serre Spetral Sequence.
Claim: d3(g) = w2(§).

Proof: (i): d3(g9) € H'B is a characteristic class for oriented vector bundle with metric [everything natural, we
have a pullback].

SO(n) —— ESO(n) =~ =
(ii): ‘universal case’: l

BSO(n) = Gn

0 —— HY(SO) = H2(BSO(n))

(0,9) (07W2)

END OF SPIN!

Recall stability lemma:

Ok +1) —— m, 0(k+2) — = m, O(k+3) —=—

I Il
Th4+1 BO(]C + ].) —» Mk41 BO(IC + 2) —> k41 BO(/f + 3) =

For example,

11 0(2) — m 0(3) /= 1 0(4) ——

Corollary: 75 O(k) = 0 for k > 0.
Corollary 101. Let B be CW complex.

E=R"—— E
a) ln>dimB.

B
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= 3 nowhere zero secttion (<= £ =a®e).

En=R" — I
b) Jn>mm3

B
& @ e X n @ e [stability isomorphism] = & 2 n isomorphism.

Now we can define stably orthonormal group:

O = colim,, 00 O(n)(= U O(n) with topology)

n

Then 7, O = m, O(n) for n > k + 2.

Then we have Bott periodicity

Lo, it k=0(8);
Zs, if k=1(8);
0, ifk=2(8);
Z, it k=3(8);
Tk 0= .
0, if k= 4(8);
0, if k = 5(8);
0, ifk=6(8);
Z,  ifk=1(8).

0, ifk=0(2);
7T;9U= .
Z, ifk=1(2).

For k < 7, the generators are all Hopf bundles over S**1. There are 4 hopf bundles (reals, complex, quarternions,
octonions) and they correspond to the non-zero m; O.

Canonical example: k = 1.

C— E(v')
i
S3 (21, 22)
|
CUoo 21/ %9
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Theorem 102 (Splitting Principle). We can have splitting principles for real bundles { = R® — E — B or
complex bundles C* — E' — B’.

Assume B, B’ are CW. Splitting principle says 3 maps F ER B, F' I B’ such that:

1) ffE=L1®---®Lyand f*E' =L ®---® L], i.e. direct sum of line bundles.
2) These maps are cohomology injections: f*: H*(B;Fy) — H*(F;Fs), f* : H*(B;Z) — H*(F'; Z).

idea: We can pretend every vector bundle is a sum of line bundle.
For existence of SW (and chern) classes:
Instead of Steenrod squares, we can try to take f*w(E) = w(Ly)---w(Ly).

These are just line bundles so we can define them by orientations.

Wednesday, 12/3/2025
Theorem 103 (One Step Splitting Principle). 3f : P — B, f': P’ — B’ such that:

1) ffE= L& Ey, (f')"E =L & E.
2) H*(f,Fy), H*(f;Z) are injective.

One step splitting principle implies splitting principle by induction.
P will be the projective bundle associated to B.
If V is a vector space we have P(V) = lines in V = Gry(V).

Then we have projective bundles:

RP"! —— P(E) = UP(E) =Eo/e~Ae:A#£0

;

cpP"-! —— P(E)

B
We have the tautological line bundle:
R—— L = {(l,e)lecl}CcP(E)XE
|
P(E)
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Ly C B
\ /
P(E)

Assume B, B’ are CW. Then f*E = L, @ (L{).
Theorem 104 (Leray-Hirsch, See Hatcher). Let a = wy(y') € HY(P(E);Fa).

Let b = e(y!) € H2(P(E"))
Then H*(P(E);Fy) is a free H*(B,Fy)-mmodule with basis 1,a,a?,--- ,a" 1.

H*(PE') is a free H* B-module with basis 1,b,b2,--- b7 !

This implies 1-step S.P. f*, f’* are injective since {1} is linearly independent.

Grothendieck’s Definition of SW and Chern Classes
LH = a™ = sum of basis elements, b" = sum of basis elements.

a" =330, f*(ag)a"

b= S (b

Define w; E = a; € HY(B;Fs).

¢E' = —b;, € H¥(B'; 7).

Back to the splitting principle. What are F' and F’?

Flags

Suppose we have vector spae V where dimV = n.

Definition (Flag). F(V)={0CV, C---CV, =V}

If V has an inner product then F(V) = Fy(V) ={V =L & --- & L, } where L, are orthogonal lines.
F=F(E),F = F'(E).

Why are SW classes F;y coefficient but Chern class Z-coefficient

This boils down to O(n) vs U(n).

We have:

(Z2)" = O(n)

(S1)" < U(n)
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Then,

E(y!) x - x E(Y") E(")
RP> x J x RP® = (BZy)" = B(Zy)" —— BO(n) :lGrn R
E(y!) x - x E(y") E(Y")
RP> x l xRP>® = (BSY)" =B(S")" — BU(n) lGrn cr

Theorem 105 (Borel).

s

g

H*(BO(n);Fo) — H*(RP® x --- x RP*;Fy)
im g* = Falay, -, an,]".
H*(BU(n);Z) = Zlay, - -, an]™"
This gives us another definition of SW classes and chern class.

*

g wi(y") = oilar, - an) = oi(wi(y'), - wa (1))
(¢ ci(y") = o1(br, -+ ,by)

Monday, 12/8/2025

Chern Classes MS Ch13-14

Recall C-vector bundles:

CcCr —— F

w= l

B

This corresonds to a R?™*-bundle with acomplex structure:

RQn R2n

~ ., 7

Where J2 = —1Id
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Open U C C™ then TU = U x C".

Lt ac—l—tv)’tzo i (z,v)

UxCt —=—— 77U

7

JoTU — TU, Jy(x,v) = (x,iv)
Let f:U — U where U C C™.
f is holomorphic if df o Jg = Jy o df [= analytic = Cauchy-Riemann eqn hold]

M a C-manifold of dimn definitions:
Definition (1). Space M with holomorphic atlas A= {¢ : Vy, — U C C"} so that ¢3 o #7" is holomorphic.

Definition (2). M is a manifold of dim2n with complex structure J : TM — TM such that Vo € M3
neighborhood V' and a diffeomorphism ¢ : V' — U where d¢ o J = Jy o d¢

Definition (Allmost Complex Manifold). An almost complex manifold is a smooth manifold on a smooth
structure on its tangent bundle.

Examples: C" is a complex manifold.

CP™ are complex manifolds.

Higher dimension torii: C™/(Z",4Z"™) are complex manifolds.

CP! = 5? are complex manifolds.

0Odd dimensional spheres cannot have complex structures.

Question: When do even dimensional spheres have complex/almost complex structures?
54,52 for 2n > 6 don’t have almost complex structures.

S% has almost complex structure.

Axioms:

Ci(w) = H*(B;Z),Co(w) = 1,C1(w) = 0 for i > n.

)
)

3) Crlwen) =32, cilw)Uci(n)
) e1(') = —ucpr € H*(CPY).

These are called Hopf bundlles
Also 4': ¢, (w) = e(wr)

C-v.s. maps to oriented v.s.: V — V.
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(elv"‘ ;en) = (61,i61,€2,i62,"' 7en»i€n)'

R
det - det
det

Mn(c MQnR
| I

Endc(C") — 5 Endg

So GL,,(C) — GL,, +(R)
Theorem 106. H*(G,C®) = Z[c1(Y™), - , cn(7™)]. Algebraically independent.

Existence of Chern Classes

1) Grothendieck: a € H?P(E),a™! = — Y chern classes a'.

7' 7'
2) Borel: l l
CP> X X CP>* —£ Gr,C®
¢ H*Grp,(C®) —
mathbbZay,--- ,a,)°". Then ¢; <+ oy(ai, - ,a,).
57! T ) if 1 < )
3) MS Cl((,v’) _ (7-[-0) C (CU()) 1 Z n
e(wr), if i =n.
Assume inductively that ¢;¢ is defined for rank ¢ < n.
c!— 5 By, = E-2B)
wo = lﬂ.g
B

mow has nowhere zero section s : Ey — Ey xp Ep = njw,v — (v,0).
el C miw.

— X 1
Then wy = wiw/e'.

Remark: if w has a metric then 7iw = ! @ (')t

Also, By L5 P(E) then f*~! is trivial.

Wednesday, 12/10/2025

Chern-Weil Theory

() is curvature of a metric connection
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Complex Theory of Connection

C" —— FE
Let l be a smooth C v.b. over a smooth (real) manifold.

M

E
I'(E) = smooth section lﬁ s

M
Let Q¢(M; E) be i-forms with values in E.
Q0(M: E) = T'(E).
OY(M; E) = T(T*M ©g E) = D(Hom(T'M, E)).
C*®M = smooth M — R.

Qi(M; E) = T(AN'T*M @ E)

Definition. A connection on E is a C-linear map V akin to derivative given by:
V:Q%M;E) - QY(M; E)
which satisies the Liebniz law:
V(fs)=df ® s+ fVs
Where s e TE, f € C*M.
For X € I'(T'M), section of tangent bundle is a vector field,
VxI'(E) - T'(E)

is kind of a ‘directional derivative’:

Vs =V(s)X

Definition. A hermitian metric on F is a function (,) : E x5 E — C. It is a fancy notation for the pullback:
given two points in a fiber we want a complex number. It is a C-inner product on fibers. The inner product
has to be hermitian.

Definition (Metric Connection). By picking two sections s, ¢ note that (s, t) is a function M — C.
d(s,t) = (Vs,t) + (s, Vt) € Q' (M;C)
Local View

Lemma 107 (1). Consider trivial bundle (U x C™)
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A connection is determined by matrix w;; € M, (Q'(M;C)) = Q' (M; M,,C).
In case of a metric connection, (w;;) is skew hermitian.
For n = 1 in the metric case w € Q'(M;iR). In this case, locally, this is given by just a one-form.

w = connection 1-form.

Proof. Let s1,---, sy, be linearly independent section (orthonormal in metric case):
V(Sl) = Zwij (%9 Sj

V(fis1+ -+ fusn) = dei ® s+ fiVs;

In the metric case since s; are orthonormal, 0 = d(s;, s;) = (Vs;, s;) + (si, Vs;j) = wij + @j;.

Lemma 108 (2). Every bundle has a connection.

Proof. Take a partition of unity ({Ua}, Aa) on M so that E|, are trivial. Take V. =3 A\, V,.

Curvature of Connection

cCr —— F
Consider l with metric.

M

Curvature of connection:

Q(V) = Q€ Q*(M;Hom(E, F))

If V is metric then Q € Q%(M;U,)

Local Def: Q;; = dw;j — wirs A wi;j.

Global Def 1: Q, () = V. Vys =V, Vis = V5 8
Global Def 2: Q =V o V.

C——1L
Now we look at line bundles. Suppose we have a smooth line bundle l with a metric.

M
Locally a connection is given by 1-form w € Q(U;iR).
Q=dw—wAwe Q?(M;iR).

Facts:
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1) 1. d2 =0 curv. closed
dQ = d(dw) — (dw Aw) + w A dw = 0.
10) € Hp M = H2(M:R)

2) V) — (V') = dp

So, [+€)] is independent of connection.

3) [+ is a characteristic class.
= [10] = a(e1(L)) € H*(M;R) for some a € R.

4) a= % Compute for Hopf bundle:

C —— E(vY)

|

CP!

Use Gauss Bonnet.
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