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It’s basically an introduction to the scheme point of view for algebraic geometry.

Grothendieck POV: if we get the definitions right, hard problems will become easier. We are trying to get the
definition here.

Motivation / A Pseudo History

Let X be a topological space (Compact, Hausdorff).

C(X) = ring of real-valued continuous functions.

Question: What are the maximal ideals of C(X)?

Fact: TFAE: given a ring A,

i) I is maximal among proper ideals of A

ii) A/I is a field

iii) There exists a surjective homomorphism from A to a field F , ϕ : A→ F such that I = kerϕ

If x0 ∈ X, we have the ring homomorphism evalx0
: f 7→ f(x0).

This is an R-linear map.

This is also obviously surjective.

Thus, ker evalx0
= {f ∈ C(x) | f(x0) = 0}. This is a maximal ideal. In fact,

Theorem 1. All maximal ideals of C(X) are of the form ker evalx0
.

Proof. Suppose not. Let ϕ : C(X)→ F be a surjective homomorphism to a field, and let (f1, f2, f3, · · · ) = kerϕ.

If kerϕ ̸= ker evalx0 =⇒ ∃fx0 ∈ kerϕ such that fx0(x0) ̸= 0. This is true for each point x0 ∈ X.
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Therefore, fx0(x) ̸= 0 for all x ∈ Ux0 where Ux0 is an open neighborhood of x0.

Since X is compact, there is x1, · · · , xn ∈ X so that Uxj
cover x.

f1, · · · , fn ∈ kerϕ such that fi(x) ̸= 0∀x ∈ Uxi
.

Then f(x) :=
∑
i f

2
i (x) > 0 for all x ∈ X. Then 1

f ∈ C(X) =⇒ 1 ∈ kerϕ. Contradiction!

Given f ∈ C(X) define Z(f) = f−1(0). This is a closed subset of X.

We can do abuse of notation and say X = Max(C(X)).

Then Z(f) = {m ∈ Max(C(X)) | f ∈ m}

Then, Z(f)c open in X

= {m ∈ Max(C(X)) | f /∈ m}

We have successfully turned a topological space into a ring.

If we have X
cont−−−→ Y we have C(Y )→ C(X).

Instead of arbitrary topological spaces, now we focus on Cn.

Lets look at polynomials Cn → C.

Ring of polynomial functions is C[x1, · · · , xn].

Theorem 2 (Weak Hilbert Nullstellensatz). Maximal ideals of this ring are exactly the kernels of evaluation
maps at points (a1, · · · , an) ∈ Cn.

Note that x1 − a1, · · · , xn − an ∈ ker eval(a1,··· ,an). In fact, ker eval(a1,··· ,an) = (x1 − a1, · · · , xn − an).

Proof. WLOG a1 = · · · = an = 0. Then ker eval(0,··· ,0) are exactly the polynomial with no constant term, which
is exactly (x1, · · · , xn).

Now we prove weak Nullstellensatz.

Proof. Let m ⊂ C[x1, · · · , xn] be a maximal ideal. Then F = C[x1, · · · , xn]/m is a field extension of C. So, F
is transcendental. Choose x ∈ F \ C. Then x generates a subfield C(x).

Then, dimC-v.s. C(x) is uncountable. To prove this, note that
{

1
x−c | c ∈ C

}
are linearly independent.

However, dimC-v.s. C[x1, · · · , xn] is countable.

Given a system of polynomial equations:

f1(x1, · · · , xn) = 0

...

fm(x1, · · · , xn) = 0

Find or describe the set of complex solutions.
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We want to find all m ∈ Max(C[x1, · · · , xn]) such that f1, · · · , fm ∈ m.

Define I = (f1, · · · , fm). Then, we want {m | I ⊂ m}.

We have turned the problem of finding solutions to finding maximal ideal containing a certain ideal.

From the theorem about order preserving bijection of ideal containing ideal and quotient,

We want all maximal ideals m in C[x1, · · · , xn]/I.

We want to do the most general thing. There is nothing special about polynomials!

Let A be a commutative ring. We think of Max(A) as the associated space.

If somebody gives us a ring A, we want to think of it as a ring of function on a space. Max(A) is
that space.

There is a problem with this idea: We would like to be able to go from Max(A)→ Max(B) whenever we have
a ring homomorphism f : B → A.

Suppose m ⊂ A. We want t have f−1(m). We want this to be maximal. It is not always maximal!

Suppose we have a homomorphism C[x] ↪→ C(x).

There is only one maximal ideal on C(x). It is (0). Then f−1((0)) = (0) but (0) is not a maximal ideal in C[x].

The solution is to not use Max(A), but rather Prime(A).

Let f : B → A be a homomorphism and let P ⊂ A be a prime ideal.

Claim: f−1(P ) is also prime.

Proof: xy ∈ f−1(P ) =⇒ f(xy) ∈ P =⇒ f(x)f(y) ∈ P =⇒ f(x) ∈ P ∨ f(y) ∈ P =⇒ x ∈ f−1(P ) ∨ y ∈
f−1(P ).

This works! But how does this mess up the space? What additional points do we have?

Wednesday, 8/27/2025

Now we go back to the textbook.

We start with some category theory. For this course, categories will be locally small. The objects might not be
sets, but hom-sets will be sets.

Let C, DC be categories. C F−→ D morphisms.

Let F : ob C → obD.

Suppose X,Y ∈ ob C.

ϕ : X → Y means ϕ ∈ MorC(X,Y ).

Then, F (ϕ) : F (X)→ F (Y ), F (ϕ) ∈ MorD(F (X), F (Y )).

We have the following categories: Sets, Groups, Ab, Top, Rings, Comm, Field, R-mod, Complexes of R-mod,
Sheaves on X, etc.
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Definition. A functor is faithful if ∀X,Y ∈ Ob C,MorC(X,Y )→ MorD(F (X), F (Y )) is injective.

It is fully faithful if this map is a bijection.

Top∗ = category of pointed topological spaces. This contains pairs (X,x), space with a point.

MorTop∗ ((X,x), (Y, y)) = {cont. maps f : X → Y s.t. f(x) = y}

This is useful: we can’t find fundamental group without a base point.

Then, π1 is a functor from Top∗ to Groups. Morphism (X,x)
f−→ (Y, y) gives us f∗ : π1(X,x)→ π1(Y, y) which

is a group homomorphism.

We want to talk about natural transformation which is important for this course.

Definition (Natural Transformation). Consider functors f, g : C → D.

A natural transformation T : f → g assigns to each x ∈ ob C an element T (x) ∈ MorD(f(x), g(x)) with
compatibilty condition:

Given x, y ∈ Ob(C), f ∈ MorC(x, y) such that the following diagram commutes:

f(x) g(x)

f(y) g(y)

T (x)

f(f) g(f)

T (y)

Definition. If f ∈ MorC(x, y), g ∈ MorC(y, x) we say f and g are inverses iff f ◦ g = idy, g ◦ f = idx.

A morphism which has an inverse is called an isomorphism.

Inverses are unique. If h is also an inverse of f then h◦f ◦g = h◦(f ◦g) = h◦ idy = h and h◦f ◦g = (h◦f)◦g =
idx ◦g = g.

Definition. Morphisms with inverses are isomorphisms.

Definition. A category in which every morphism has an inverse is called a groupoid.

Lets talk about an example. Consider the cateory with 1 object {∗}. Since our categories are locally small, the
morphisms form a set. There is a composition law. This gives us:

A category with one object is a monoid.

Of course, if we add the stipulation that every morphism must have an inverse,

A groupoid with one object is a group.

We want a categorical analogue for injectivity and bijectivity. Consider the example of the same set with two
topologies, one finer than the other. Then on the point level we can have a bijection, but one map is continuous
and the inverse map is not.

This gives us the concepts of monomorphism and epimorphism.

Monomorphism loosely resembles injectivity.

Epimorphism loosely resembles surjectivity.
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Definition. f ∈ MorC(x, y) is a monomorphism if ∀z ∈ Ob C and all g, h ∈ MorC(z, x) we have:

f ◦ g = f ◦ h =⇒ g = h

z x y
g

h

f

Definition. f ∈ MorC(x, y) is epimorphic if ∀z ∈ Ob C, ∀g, h ∈ MorC(y, z),

g ◦ f = h ◦ f =⇒ g = h

x y z
f g

h

Definition (Natural Isomorphism). Given categories C and D and a functor f, g : C → D, a natural isomorphism
is a natural transformation T from f to g such that for all x ∈ Ob C,

T (x) ∈ MorD(f(x), g(x))

is an isomorphism.

Nonexample of natural isomorphism: fix a field k and let C = Vectk. Consider the double dual functor f : C → C
so that V → (V ∗)∗.

[We take two duals since only one would mean this is a contravariant functor. We want the direction of the
functors to be the same].

Consider the identity functor idC : V → V .

We have a natural transformation idVectk → f by V 7→ (V → V ∗)

Any v ∈ V defines a linear transformation Tv : V
∗ → k given by Tv(v

∗) = v∗(v). Then Tv ∈ (V ∗)∗ = V ∗∗.

We have the following commutative diagram:

V V ∗∗

W W ∗∗

Tv

A T (A)

Tw

If V is infinite dimensional, then dimV ∗ > dimV . Then dimV ∗∗ > dimV . So this is only a natural transfor-
mation, not a natural isomorphism.

Note that however in Vectfink the double dual is a natural isomorphism.

Also see: equivalence of categories.

Friday, 8/29/2025

We continue category theory today.
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Definition (Equivalence of Categories). If C and D are categories and F : C → D and G : D → C are functors
such that F ◦G : D → D and G ◦ F : C → C are naturally isomorphic to idD and idC respectively.

For example, let C = category with objects ∅, {1}, {1, 2}, {1, 2, 3}, · · · and morphisms are functions.

Let D be the category of finite sets and morphisms are functions.

We have an obvious functor: C → D sends each {1, 2, · · · , n} to itself.

For D → C we need to work a little bit harder, and we have to deal with axiom of choice and other stuff. To
avoid these, we introduce the following easier definition:

Definition. If C and D are categories and F : C → D and:

1) F is fully faithful

2) F is essentially surjective.

[Essentially surjective means every object is isomorphic to an object in the image. Every set with n elements is
isomorphic to {1, · · · , n} for example.]

Then C and D are equivalent.

Given a category C and A ∈ ob C we define functors:

hA : C → Sets given by hA(X) = MorC(A,X). This is contravariant.

hA : C → Sets given by hA(X) = MorC(X,A)

Given A,B ∈ Ob C, ϕ ∈ MorC(A,B), ϕ deines a functor hB(X)→ hA(X) and hA(X)→ hB(X).

Definition. A contravariant functor F : C → Sets is representable if ∃A ∈ Ob C such that F = hA.

Theorem 3 (Yoneda Lemma). The set of natural transformations hA → hB is naturally isomorphic to
MorC(B,A).

Proof. Let N be a natural transformation from hA to hB . i.e. for X ∈ ob C we have:

N(X) : hA(X)
=MorC(A,X)

→ hB(X)
=MorC(B,X)

Let X = A. Then, N(A) : hA(A)→ hB(A) =⇒ N(A) : MorC(A,A)→ MorC(B,A)

Let N(A)(idA) =: ψ.

Composition by ψ gives a map hA → hB , i.e. for all Y ∈ Ob C, composition by ψ gives hA(Y )→ hB(Y ) which
is the same as N(Y ).

Let f : X → Y . We have:

MorC(A,X) Mor(B,X)

Mor(A, Y ) Mor(B, Y )

N(X)

f∗ f∗

N(Y )
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Setting X = A,

MorC(A,A) Mor(B,A)

Mor(A, Y ) Mor(B, Y )

N(X)

f∗ f∗

N(Y )

taking idA and applying the commutativity,

idA ψ

f N(Y )(f) = f ◦ ψ

N(X)

f∗

Universal Objects

Definition. An object X ∈ ob C is an initial object if ∀Y ∈ ob C, |MorC(X,Y )| = 1.

It is a final object if ∀Y ∈ ob C, |MorC(Y,X)| = 1.

Up to unique isomorphism an initial or final object in a category is unique if it exists.

Definition. Let L be a (commutative) ring and S a multiplicative system in A, meaning 1 ∈ S, x, y ∈ S =⇒
xy ∈ S, 0 /∈ S.

The localization S−1A is the universal A-algebra in which every element of S is invertible.

a1
s1

= a2
s2

means (a1s2 − a2s1)s3 = 0 for some s3 ∈ S.

We need the construction to show that the localization exists. But it is easier to work with the universal
property!

S−1A, assuming it exists, is universal among all A-algebras in which S is invertible.

Consider all ring homomorphisms {ϕ : A→ B | ϕ(s) is a unit in B for all s ∈ S}

We can now define a category. Let this set be ob C. Let the morphisms be as follows:

B

A

C

ϕ

ψ

Existence of S−1A is expressed by the existence of an initial object in this category.

We have the homomorphism A→ S−1A by a 7→ a
1 .
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S−1A

A

B

!

s7→b∗

Another example: suppose A is a ring and M,N are A-modules. We can define tensor product M ⊗A N .

The property we’re interested in is: HomA(M ⊗A N,X) = A-billinear(M ×N,X).

Fix M,N . Consider the functor X 7→ {A-billinear maps M ×N → X}.

This functor is representable by in the category of A-modules.

M ⊗A N

M ×N X

!

Does (Sets) have an initial and final object? ∅ is initial, any 1-element set is final.

What about the category of complex vector spaces?

0 is initial and final.

A zero object is an object that is both initial and final.

Category of infinite sets doesn’t have an initial or final object.

In the category of rings, Z→ R always exists so it’s initial. We don’t take zero rings so there’s no final object.

Note that if we have a map of rings A→ B, the map of schemes go in the opposite direction: SpecB → SpecA.
So there should be a final object in the category of schemes.

Wednesday, 9/3/2025

Products and Coproducts

Suppose we have a category C, index set I and for each α ∈ I we have Xα ∈ ob C.

We want to talk (in a categorical sense) about the product of all the Xα’s. This should be analogous to the
cartesian product, we should be able to extract the initial object.

The product, thus, should be an object X ∈ ob C together with the maps πα ∈ MorC(X,Xα) which is universal
for such data.

For example, in the case I = {1, 2} and X = X1 ×X2, X is universal in the following sense:
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Y

X

X1 X2

For coproducts we just reverse the arrows.

Category C, α ∈ I index set, Xα ∈ ob C.

The coproduct
∐
αXα of the Xα’s is an object X ∈ ob C together with maps iα ∈ MorC(Xα, X) with is universal

for such data. For I = {1, 2} and X = X1

∐
X2:

Y

X

X1 X2

In the category of sets, product is the cartesian product, and coproduct is the disjoint union.

In Ab, the product and coproduct of two objects are the same, the direct sum as long as the index set is finite.

For infinite index set,∐∞
i=1 =

⊕∞
i=1Xi = {(x1, x2, · · · ) | xi ∈ Xi, xi = 0∀i≫ 0}

Finite sums.∏∞
i=1Xi = {(x1, x2, · · · ) | xi ∈ Xi}

Unrestricted.

These are not the same! Infinite product of Z is not free for example.

We can write it like this:

Ab×Ab
∐
−→ Ab

Ab×Ab
∏
−→ Ab

We have the following natural transformation:

(X1, X2) 7→
(X1 ⊕X2 → X1 ×X2)
(x1, x2) 7→ (x1, x2)

Something that is both a product and a coproduct is called a biproduct.

Limits and Colimits

We can generalize the concepts of product to limit and coproduct to colimit.
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Limits/Colimits are the same thing but instead of an index set I we use an index category I.

The data which determines the limit/colimit is a functor from I → C.

For example: consider the following category of 3 elements (ignore the identity morphisms):

1

0 2

Consider functors from this category to a category C. We then have the following in C:

X1

X0 X2

The limit of such a diagram, if it exists consists of X ∈ ob C and maps πi ∈ MorC(X,Xi) such that the diagram:

X1 X

X0 X2

commutes with the universal property:

Y

X1 X

X0 X2

f1

f2

This is specific case is called the fiber product.

In (Sets) all limits and colimits exist.

In the fiber product example, we can consider X =
∐
x0∈X0

f−1
1 (x0)× f−1

2 (x0).

We can look at the following category of natural number: I := · · · → 4 → 3 → 2 → 1 [we don’t write arrows
4→ 1 since it’s a composition].

Let C = Ab. We can consider I → Ab so that we have · · · → X4 → X3 → X2 → X1.

Then taking limit gives us the projective limit lim←−nXn.

For example if Xi = Z/piZi.

We have Z/pi+1Z→ Z/piZ by taking mod pi.

Then lim←−n Z/p
nZ = Zp = a0 + a1p+ a2p

2 + · · ·.
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Note: the topology of Zp is important. Individual Z/pnZ have discrete topology. They’re finite and thus
compact. The topology of Zp then comes from Tychonoff’s theorem.

Filtered Category

A filtered category I satisfies:

1) I is non-empty.

2) If x, y ∈ ob I there exists z ∈ ob I such that MorC(x, z) ̸= ∅,MorC(y, z) ̸= ∅.

3) If x, y ∈ ob I, f, g ∈ MorC(x, y) then ∃z ∈ ob I, h ∈ MorC(y, z) such that h ◦ f = h ◦ g.

Condition 2 implies given x, y we can always find z such that,

x

z

y

Condition 3 implies given

x y

We can find

x y z

Advantage of having a filtered category: we can make colimits exist.

Theorem 4. The category of fields does not have general colimits but it does have filtered colimits

Take a colimit in the category of sets and observe that it has a field structure.

How do we add up two elements in different fields x and y? Take the field z and add there!

Adjoint Functors

Suppose we have categories C and D and functors F : C → D, G : D → C. TFAE:

1) (F,G) is an adjoint pair

2) F is the left-adjoint of G

3) G is the right-adjoint of F

All these equate to saying:
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Definition. There is a natural isomorphism between the following: MorD(F (X), Y ) and MorC(X,G(Y )). We

denote this by N(X,Y ). So MorD(F (X), Y )
N(X,Y )−−−−−→ MorC(X,G(Y )).

The picture looks like the following: Suppose we have X1 → X2 in C.

MorD(F (X1), Y ) MorC(X1, G(Y ))

MorD(F (X2), Y ) MorC(X2, G(Y ))

N(X1,Y )

N(X2,Y )

F (f)∗ f∗

Friday, 9/5/2025

Consider the following example:

C = (Sets)

D = (Ab)

G : D → C the forgetful functor.

F : C → D the free abelian group functor.

If X is any set and Y is any abelian group, then,

Hom(Free(X), Y )
∼=−→ Func(X,Y )

These are adjoint functors.

Let H be a commutative ring, and M,X, Y ∈ ob(A-mod). Then,

HomA(M ⊗A X,Y )
∼=−→ HomA(X,HomA(M,Y ))

Here F (X) =M ⊗A X

G(Y ) = HomA(M,Y ).

An example from Homological Algebra:

Abelian Categories. Examole: Abelian groups, k-vector spaces, A-modules, left R-modules, sheaves of abelian
groups, k-vector spaaces with G-rep, etc.

There are axioms for abelian categories but you don’t really need to remember it.

Let C be an abelian category. We have the following:

MorC(X,Y ) is an abelain group.

Composition MorC(X,Y )×MorC(Y,Z)→ MorC(X,Z) is bilinear.

The category has a 0-object.
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The category has a biproduct.

The category has kernels and cokernels.

Every monomorphism is the kernel of its cokernel.

Every epimorphism is the cokernel of its kernel.

Let’s unpack what kernel/cokernel means in a categorical sense.

Consider X
f−→ Y . We also have the zero map X

0−→ Y .

Kernel: Let K be universal in the following:

K ′

K X Y
0

f

Then the kernel is the morphism K → X.

Similarly, let C be universal in the following:

X Y C

C ′

0

f

cokernel is the morphism Y → C. That is why it makes sense to talk about kernel of cokernel and cokernel of
the kernel.

Most importantly:

Theorem 5. An abelian category is a category in which diagram chasing works.

Every abelian category is equivalent to a full subcategory of R-mod for some ring R.

Now let’s talk about complexes, so we can talk about homological algebra.

Definition (Complex). A complex is a sequence of objects and morphisms with the rule that composing any
two consecutive morphisms gives the 0 morphism.

Going up gives you cochain complexes.

Going down gives you chain complexes.

Consider the cochain complex:

· · · ϕn−2−−−→ Xn−2 ϕn−1−−−→ Xn−1 ϕn−−→ Xn ϕn+1−−−→ Xn+1 ϕn+2−−−→ Xn+2 → · · ·

We have the following: ϕn+1 ◦ ϕn = 0.

The cohomology of this cochain complex is Hn(X•) = kerϕn+1/ imϕn.
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Consider X → Y . We have the following:

X Y

Z

epi mon

Then Z → Y is the image.

X
f−→ Y → coker f then im f = ker(Y → coker f).

Example of diagram chase:

Consider the following exact complexes: their cohomology is 0, with some more morphisms.

0 X0 X1 X2 0

0 Y 0 Y 1 Y 2 0

f0 f1 f2

Then we will have the following:

0 ker f0 ker f1 ker f2

0 X0 X1 X2 0

0 Y 0 Y 1 Y 2 0

coker f0 coker f1 coker f2

f0 f1 f2

Proof same as previous course.

Sheaves

Suppose we have a smooth manifold. Note that we have the extra data of charts and atlases, which gives us
the tools to work.

Not the best POV for doing algebra, we don’t always have smoothness. Topological manifolds are easy, we just
want transition functions to be continuous.

The additional structure on X to make it a smooth manifold is the data of which functions on X are smooth.

We want the following data: For each open set U in X, we want a commutative ring C∞(U) of smooth functions.

Note: this is not saying the functions have to be smooth. This data defines what the smooth functions are!

Now, if V ⊂ U then we have a restriction homomorphism C∞(U)→ C∞(V ).

We can do this in a categorical way: we can look at the category of open sets with inclusion as morphisms, and
look at a contravariant functor. This doesn’t give us a sheaf though.
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Definition (Presheaf). A presheaf of commutative rings on X is a contravariant functor from the category
Open(X) to the category CommRing.

Monday, 9/8/2025

Actually, we can replace commutative ring with any category.

∀U ⊂ open, F(U) is an object in C and if U ⊂ V we have a restriction map ResV,U : F(V ) → F(U). For
U ⊂ V ⊂W we have:

ResV,U ◦ResW,V = ResW,U

Presheaves form a category CX whose morphisms are natural transformations.

F ,G ∈ ob CX .

ϕ : F → G gives morphisms F(U)→ G(U) in CX for each U ⊂ X and for all V ⊂ U ⊂ X the following diagram
commutes:

F(U) G(U)

F(V ) G(V )

ϕ(U)

ResV,U

ϕ(V )

ResV,U

Examples: presheaves of functions of any usual types [eg continuous, smooth etc.]

An element of F(U) is callled a section.

To understand this terminlogy, consider the following example:

Suppose Y
π−→ X is a continuous map of topological spaces.

Then F(U) = presheaf of continuous functions f : U → Y such that π ◦ f = idU .

For x ∈ X, f−1X is callled the fiber of f over x. We can pick a point on each fiber so that it varies continuously.
This is called a section.
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Figure 1:

The stalk of x ∈ X is lim−→U∋x F(U).

If F is a presheaf of analytic functions on X = C, what is the stalk at x = 0?

It is defined by the taylor series. So it contains power series with positive radius of convergence.

Suppose U ⊂ X is open. Let Uα be an open cover of U . We also have
⋃
α∈I Uα = U .

We have two obvious maps
∏
α∈I F(U) to

∏
β,γ∈I F(Uβ ∩ Uγ).

∏
α∈I F(U)

∏
β,γ∈I F(Uβ ∩ Uγ)

ϕ:α7→β

ψ:α7→γ

Let’s take a look into this. We have sections (sα){α ∈ I} 7→ (tβ,γ)β,γ .

ϕ((sα))β,γ = ResUβ ,Uβ∩Uγ sβ

ψ((sα))β,γ = ResUγ ,Uβ∩Uγ
sγ .

Thus we have:

F(U)
∏
α∈I F(U)

∏
β,γ∈I F(Uβ ∩ Uγ)

α7→β

α7→γ

This diagram commutes.
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Let F : Open(X)→ C. If ∆ ∈ ob C then,

∆

F(U)
∏
F(Uα)

∏
F(Uβ ∩ Uγ)

If sα ∈ F(Uα) is a collection of sections so that ∀β, γ, sβ and sγ agree on overlaps, i.e. ResUβ ,Uβ∩Uγ
sβ =

ResUγ ,Uβ∩Uγ
sγ then ∃s ∈ F(U) such that ResU,Uα

s = sα for all α.

This is the sheaf axiom.

Since there exists the empty product, we have to have a terminal object. But in our definition of the category
of rings, we are excluding the zero ring so we don’t have a final object in that category. But then we cannot
define schemes. We need to modify some things.

Presheaf which is not a Sheaf

We want to define sheaves. Consider the following example:

Let X = R and F = sheaf of continuous functions X → Z. Let G = presheaf of constant Z-valued functions on
X.

Then, G(U) = Z for all U ̸= ∅.

G(ϕ) = (0).

F agrees with G on connected sets. But not necessarily on disconnected sets.

G is not a sheaf!

What are the stalks of F and G?

In both cases, the stalk at every point is Z.

Furthermore, in the category of presheaves, there is a map G → F in the sense that we have G(U) → F(U)
which is essentially the identity. On the stalks, this is an isomorphism.

In general, if G and F are both presheaves on X and ϕ : G → F is a morphism of presheaves, then ∀x ∈ X, ϕ
induces a map ϕx sending stalks to stalks: ϕx : Gx → Fx.

F(U) F(W ) F(V )

G(U) G(W ) G(V )

is commutative.

Note that, we can thus have two different presheaves with the same stalks. We don’t want this, stalk should
contain all the data of a sheaf.

Slogan: A sheaf is a local object, i.e. determined by local data: stalks and compatibility of nearby stalks.

17



Wednesday, 9/10/2025

Let F be a presheaf, U ⊂ X open. We can look at sections of X inside U . Let Fx be the stalk of F at x. We
have:

F(U)→ (compatible germs over U) ⊂
∏
x∈U
Fx

s 7→ (sx)x∈U

Claim: if F is a sheaf, this map is a bijection.

Suppose sections s, t ∈ F(U) and sx = tx for all x ∈ U .

Germs sx and tx are equal implies for all x ∈ X we can find an open set Vx ⊂ U containing x and a section
r ∈ F(Vx) such that sx = [(r, Vy)] = tx.

Meaning, ResU,Vx
s = r = ResU,Vx

t.

Note that
⋃
x Vx = U . Sheaf axiom says that two sections on an open cover are the same. So, s = t. This

proves that the map is injective.

Suppose we have (sx)x∈U are compatible.

For each x, define Vx ∋ x and σx ∈ F(Vx), sx = (σx)x. We want to glue together the σx. We want the gluability
part of the sheaf axiom.

Claim: ∀x, y,ResVx,Vx∩Vy
σx = ResVy,Vx∩Vy

σy.

∀x, y, ∃σ ∈ F(U) such that ResU,Vy σ = σx∀x. So we’re done.

Definition. The étalé space [F ] of a sheaf F is the disjoint union of their stalks with the topology generated
by

{[(s, x)] | x ∈ U, s ∈ F(U)}

We then have a map [F ]→ X. Compatible germs map to open neighborhood.

Now suppose we have X
f−→ Y . If F is a sheaf we can define the pushforward of F by f .

f∗(F)(U) = F(f−1(U))

Example: suppose X = {y} and f is the inclusion map.

Let c ∈ ob C. Let Fy,c = sheaf over y with value c. f : {y} ↪→ y ∈ Y .

f∗Fy,c(U) =

{
c, if y ∈ U
0, if y /∈ U

Definition. A ringed space is a pair (X,OX) where X is a topological space and OX is a sheaf of commutative
rings on X.

18



Examples:

1) X is a topological space, OX is the sheaf of continuous R-valued functions.

2) X is a smooth manifold, OX is the sheaf of smooth functions on X.

3) X is a Riemann surface, OX is the sheaf of analytic functions on X.

Theorem 6. The category of presheaves of

 abelian grps
vector spaces

etc

 forms an abelian categories.

To prove this, we need to be able to compute kernels, images, cokernels.

Let ϕ : F → G be a morphism of presheaves. We do it by sections:

(kerϕ)(U) = kerF(U)
ϕ(U)−−−→ G(U).

(imϕ)(U) = imϕ(U)

(cokerϕ)(U) = cokerϕ(U)

If (X,OX) is a ringed space, we can define a presheaf F of OX -modules to be a presheaf of abelian groups and
structure of OX(U)-module on each F(U) compatible with restriction maps.

Example: Let E → X be a vector bundle.

Let OX be the sheaf of rings of continuous functions over X and F be the sheaf of continuous sections of
E → X.

The category of sheaves is a full subcategory of the category of presheaves. This means, morphisms of sheaves
are the same as morphism of presheaves which just happen to be sheaves.

The category AbX of sheaves of abelian groups is again an abelian category.

Lemma 7. If ϕ : F → G is a morphism of sheaves of abelian groups over X, then the presheaf kernel of F → G
is a sheaf:

H(U) := ker

(
F(U)

ϕ(U)−−−→ G(U)

)
is a sheaf.

Proof. Given an open cover U =
⋃
α Uα and given h ∈ H(U) such that ResU,Uα(h) = 0 for all α we have h = 0.

Reason: H(U) ⊂ F(U) so we only need to check if h is 0 in F(U) which follows from the sheaf axiom.

Given hα ∈ H(Uα) such that:

ResUα,Uα∩Uβ
hα = ResUβ ,Uα∩Uβ

hβ∀α, β

then ∃h ∈ H(U) ∈ ker

(
F(Uα)

ϕ(Uα)−−−−→ G(Uα)
)
.

ϕ(Uα ∩ Uβ)
(
ResUα,Uα∩Uβ

hα − ResUβ ,Uα∩Uβ
hβ

)
= 0

We have ResUα,Uα∩Uβ
ϕ(Uα)(hα) = ResUβ ,Uα∩Uβ

ϕ(Uβ)(hβ).

hα ∈ F(Uα) which maps to 0 on G(Uα)
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hβ ∈ F(Uβ) maps to 0 in G(Uβ).

Then ResUα,Uα∩Uβ
hα = ResUβ ,Uα∩Uβ

hβ

By gluability ∃h ∈ F(U) such that ResU,Uα h = hα.

Question: Does h ∈ H? WTS: ϕ(U)(h) = 0.

ResU,Uα
ϕ(U)(h) = 0∀α.

In general, gluability on F and separability on G implies gluability on H.

Friday, 9/12/2025

If F ,G are sheaves and ϕ : F → G is a morphism, then if we take image in the category of presheaves, then
im(ϕ)(U) = ϕ(U)(F(U)) ⊂ G(U).

Then im(ϕ) is not a sheaf.

For sheaves, we need a different notion of images!

The separability axiom is fine: if f1, f2 ∈ im(ϕ)(U) and U =
⋃
α Uα and ∀α : ResU,Uα

(f1) = ResU,Uα
(f2) then

f1 = f2.

Problem is gluability.

Suppose gα ∈ im(ϕ)(Uα) and ∀α, β we have ResUα,Uα∩Uβ
gα = ResUβ ,Uα∩Uβ

gβ .

Can we find a g ∈ im(ϕ)(U) such that ResU,Uα
(g) = gα?

Note that since gα ∈ im(ϕ)(Uα), there exists fα ∈ F(Uα) such that ϕ(Uα)(fα) = gα.

We can do this gluing if ResUα,Uα∩Uβ
fα = ResUβ ,Uα∩Uβ

for all α, β by gluability of F . But we don’t necessarily
have that, we can only deduce that ResUα,Uα∩Uβ

fα − ResUβ ,Uα∩Uβ
fβ is in kerϕ(Uα ∩ Uβ).

Thus, if we want an abelian category of sheaves, we want a different notion of image and cokernels.

Theorem 8. If F ,G are sheaves and ϕ : F → G is a morphism of sheaves which is an isomorphism at the stalk
level, then ϕ is an isomorphism.

Isomorphism at the stalk level: ϕ : F → G induces ϕx : Fx → Gx for each x ∈ X. We want this to be an
isomorphism.

Slogan: A sheaf is determined by its stalks.

Proof. Let U be any open subset of X. We want ϕ(U) : F(U)→ G(U) to be an isomorphism.

Suppose f1, f2 ∈ F(U) such that ϕ(U)(f1) = ϕ(U)(f2). Then ∀x ∈ U , the germ of f1, which we write as f1,x
and the germ of f2, f2,x map to the same germ, i.e. ϕ(U)(f1)x = ϕ(U)(f2)x in Gx. So, f1,x = f2,x for all x ∈ U .
Thus ∃Ux ⊂ U such that ResU,Ux

f1 = ResU,Ux
f2.

By separability, f1 = f2.
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Now we prove gluability. Let g ∈ G(U). ∀x ∈ U we have gx = ϕx(fx) for some (unique) fx ∈ Fx.

Then ∃fUx
∈ F(Ux) such that fUx

represents fx where Ux is a neighborhood of x.

Then ϕ(Ux)(fUx
) = gUx

which has stalk gx. Then there exists Ux ⊃ Vx ∋ x such that ϕ(Vx)(ResUx,Vx
fUx

) =
ResU,Vx(g).

Define f ′Vx
= ResUx,Vx

fUx
. Then, ϕ(Vx)(f

′
Vx
) = ResU,Vx

(g).

Claim: {f ′Vx
} agree on overlaps.

Proof: ∀x, y ∈ U we have ResVx,Vx∩Vy (f
′
Vx
) = ResVy,Vx∩Vy (f

′
Vy
). This is true stalk by stalk and F is a sheaf.

By gluability we can find f ′ ∈ F(U) such that ResU,Vx f
′ = f ′Vx

for all x.

Therefore, ϕ(U)(f ′)x = gx for all x. ϕ(U)(f ′) = g.

Given a presheaf F there exists at most one sheaf G and morphism F → G which is an isomorphism of stalks
at each x. The process of finding such a G is called sheafification.

Definition (Sheafification). Let F be a presheaf. We define its sheafification F sh in the following way:

The stalks F sh
x are the same as Fx.

Compatibility is the same.

Let us be very specific about what sections are.

F sh = functions U →
∐
x∈U Fx such that each x ∈ U maps to fx ∈ Fx such that fx are compatible as usual.

We need to check if F sh is actually a sheaf, and if there exists a map F → F sh which is an isomorphism at the
stalk level.

WTS: fα ∈ F sh(Uα) and ∀α, β we have ResUα,Uα∩Uβ
(fα) = ResUβ ,Uα∩Uβ

(fβ) then ∃!f ∈ F sh(U).

fα gives us a function Uα →
∐
x∈Uα

Fx.

fβ gives us a function Uβ →
∐
x∈Uβ

fx.

∀x ∈ Uα ∩ Uβ we have fα,x = fβ,x.

Define fx = fα,x for some α with x ∈ Uα.

Now we need the map F → F sh. Consider F(U)→ F sh given by f 7→ (x 7→ fx).

We trivially have F sh
x = Fx: let sx = [(s ∈ F(U), x)]. s defines compatible germs in a neighborhood of x

therefore a section of F sh
x in a neighborhood of x.

Exponential Sequence for analytic functions on X = C \ {0}

Let O = analytic functions [as additive group]

O× = non-vanishing analytic functions [as multiplicative group]

Let Z be sheaf of locally constant Z-valued functions.
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We have the following:

0 Z O O× 0
f 7→exp(2πif) ?

Question: is this sequence exact?

We can’t take log uniquely in O× so not for presheaves. But we can take log locally, so on the stalk level we
can take log and thus this is a short exact sequence for sheaves!

Slogan: Exactness for presheaves is determined on the section level, exactness for sheaves is determined on the
stalk level.

Let ϕ : F → G be a morphism of sheaves in an abelian category.

im(ϕ)sheaves = (im(ϕ)presheaves)
sh

coker(ϕ)sheaves = (coker(ϕ)presheaves)
sh

Theorem 9. If F is a presheaf, F sh is the universal sheaf admitting a map from F .

Thus, if F is a presheaf and G is a sheaf and we have F → G we have a unique F sh → G.

F F sh

G

Sheafification is a functor. There is also a forgetful functor from sheaves to presheaves.

Sheafification is the left adjoint of the forgetful functor.

If F is a presheaf and G is a sheaf,

Morsheaves(F sh,G) Morpresheaves(F ,G)
∼=

Monday, 9/15/2025

Sheaf w.r.t. a base

Let X be a topological space and B a base for the topology on X.

A presheaf on X w.r.t. B is a contravariant functor from B to C.

A sheaf on X w.r.t. B is a presheaf F such that any section f ∈ F(U) is determined uniquely by compatible
restrictions to Uα where Uα ∈ B and

⋃
α Uα = U .
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F(U)
∏
α F(Uα)

∏
α,β,γ,Uα⊂Uβ∩Uγ

F(Uα)

C

If F is a sheaf on X and B is a base then by forgetting some data we get a sheaf on X w.r.t. B. In fact every
sheaf on X w.r.t. B comes from a sheaf F on X which is unique up to unique isomorphism.

Given FB a sheaf w.r.t. B, B = {Uα | α ∈ I} define:

F(U) :=
∏

α|Uα⊂U

FB(Uα)⇒
∏

α,β,γ|Uα⊂Uβ∩Uγ

FB(Uα)

Now take stalks.

Let FB,x = lim−→U∈B,x∈U FB(U).

A set of elements sx ∈ FB,x where x ∈ U ∈ Open(X) is compatible if ∀x ∈ U∃V ∈ B, x ∈ V and a section
sV ∈ FB(V ) suh that (sV )x = sx∀x ∈ V .

Let F be the sheaf given by stalks FB,x and this is compatibility.

Gluing Sheaves

Now, suppose X is a topological space and F is a sheaf on X and also X has an open cover: X = U1 ∪ U2.

Consider the restriction of F : F
∣∣
Ui

which iis the sheaf which we obtain from F by restricting to open sets
contained in U1.

This means F
∣∣
U1

is a contravariant functor from Open(Ui) to C such that:

∀U ⊂ Ui : F
∣∣
Ui

(U) = F(U)

∀V ⊂ U ⊂ Ui : ResU,V on F
∣∣
Ui

is the same as on F .

Which means, if we have a sheaf on U1 ∪ U2, we can get sheaves on U1 and U2.

Can we do the reverse? Given sheaves U1 and U2 can we get a sheaf on U = U1 ∪ U2?

Consider sheaves F1 on U1 and F2 on U2.

We want something akin to F1

∣∣
U1∩U2

∼= F2

∣∣
U1∩U2

but this is not enough data. We actually want the following:

Suppose we have isomorphism i : F1

∣∣
U1∩U2

→ F2

∣∣
U1∩U2

then there exists a unique sheaf on X such that

F
∣∣
U1

∼= F1 and F
∣∣
U2

∼= F2.

∀ ∈ Ui the stalk Fx is in fact (Fi)x.

For x ∈ U1 ∩ U2: Fx = (F1,x

∐
F2,x)/ ∼i.

Suppose X =
⋃
α∈I Uα and Fα is a sheaf on Uα. For all α, β : Fα

∣∣
Uα∩Uβ

→ Fβ
∣∣
Uβ∩Uα

is an isomorphism.
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Further, ∀α, βγ we have:

iβ,γ

∣∣∣∣
Uα∩Uβ∩Uγ

◦ iα,β
∣∣∣∣
Uα∩Uβ∩Uγ

= iα,γ

∣∣∣∣
Uα∩Uβ∩Uγ

[This is needed for ∼i to be an equivalence relation].

Then we can glue together to get a sheaf F on X.

Pullback sheaves

Let F be a sheaf on Y and X
f−→ Y .

The étalé space of f−1F is the pullback of the étalé space of F via X
f−→ Y .

If we think about F as an étalé space, then we have a map F → Y , and we have X → Y . Then we have a fiber
product:

X ×Y F F

X Y

Define presheaf G by G(U) = lim−→V⊃f(U)
F(V )

Then let f−1(F) = Gsh.

Example: Let y ∈ Y and let f : {y} → Y by f(y) = y.

Then f−1F is a sheaf on {y}.

G({y}) = lim−→
V ∋y
F l(V ) = Fy

Clean way of saying this: f−1 is the left adjoint of f∗.

Meaning: suppose X
f−→ Y with F ,G sheaves on X,Y respectively. Then,

MorSh(X)(f
−1(G),F)→ MorSh(Y )(G, f∗F)

Spectrum

Let A be a commutative ring. Then SpecA is the set of prime ideals.

A ‘function’ f ∈ A ‘vanishes’ at a point P ∈ A if f ∈ P .

Define V (f) = {P ∈ SpecA | f ∈ P}.

We want V (f) to be closed.
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Consider the topology on SpecA defined by the subbase V (f)c.

For example, A = C[x] =⇒ SpecA = {(x− c)} ∪ {(0)}.

Then closed sets are finite collections of complex numbers.

So, open sets are C and all but finitely many points but we aren’t allowed to delete (0).

Note that this space isn’t Hausdorff since (0) = C.

[insert picture, C is a line and the point (0) is smeared over the line]

Figure 2: SpecC[x]

Remark. If I is any ideal we can define V (I) = {P ∈ SpecA | I ⊂ P} =
⋂
f∈I V (f) is closed.

Wednesday, 9/17/2025

We set up some definition:

Let A be a ring, SpecA the set of prime ideals. Let a ∈ A be a ‘function’.

Define: V (a) = {P ∈ SpecA | a ∈ P}.

D(a) := V (a)c.

Note that, V (ab) = {P ∈ SpecA | ab ∈ P} = V (a) ∪ V (b).

De Morgan =⇒ D(ab) = D(a) ∩D(b) so closed under intersection.

Then the zariski topology is defined by the base D(a).

Suppose we have A
ϕ−→ B. Then we have SpecB

f−→ SpecB where f(P ) = ϕ−1(P ).

Theorem 10. This function is continuous.

Proof. WTS: f−1(open) is open. Any open set can be written as
⋃
α∈I D(aα).

f−1 (
⋃
αD(aα)) =

⋃
α f

−1(D(aα)).

Thus ETS: f−1(DSpecA(aα)) = DSpecB(f(aα)).

f(aα) /∈ P ⇐⇒ aα /∈ ϕ−1P ⇐⇒ ϕ(aα) /∈ P .
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Recall V (I) = {P ∈ SpecA | I ⊂ P}. Abuse of notation: V ((f)) = V (f). Then, V (I) =
⋂
f∈I V (f) is closed.

Proposition 11. There is a bijective correspondence between V (I) and SpecA/I.

This correspondence is in fact bicontinuous if we endow V (I) with its subspace topology.

Remark. A basis for V (I) is given by D(a)∩V (I) which is the complement in V (I) of V (f)∩V (I) = V ((f)+I).

If J ⊂ A/I is the ideal ((f) + I)/I then V (J) corresponds to V (f) ∩ V (I).

To what extent do we have a bijective correspondense between ideals and closed subsets?

If we have an ideal I we can go to a closed subset V (I).

However, if we have a closed subset Z we can go to the set {f ∈ A | f ∈ P ∀P ∈ Z}.

aka from Z we get the ideal of stuff that vanishes in Z. This is not quite a bijective correspondense.

Example: (x) and (x2) both give us the same closed subset.

We need to take the radical rad(I) [other notation:
√
I].

rad(I) =
√
I =

⋂
P∈SpecA,I⊂P P

Suppose I = (x2) ⊂ k[x]. (x2) ⊂ P ⇐⇒ (x) ⊂ P .

eg Spec k[x]/(x2) has picture of a point and a line.

[insert picture]

Let A1 be an affine line: Spec k[x].

What does a map A1 → A1 look like?

Let A1 → A1 be Spec k[x]→ Spec k[y].

It corresponds to a ring homomorphism in the opposite direction: k[y]→ k[x].

If we want to classify all such homomorphism, we should worry about what happens on the k-level. But when
one is talking about varities, we are really talking about varities over a particular field, so we are essentially
talking about a diagram like this:

Note: Provisional definition of an affine variety: We can only talk about varities over a field k. Consider
SpecA → Spec k where A is a finitely generated k-algebra. Then we have a1, · · · , an ∈ A. We can look at
ϕ : k[x1, · · · , xn]→ A which follows xi 7→ ai. Then A ∼= k[x1, · · · , xn]/I, kerϕ = I.

A1 A1

Spec k

So we are essentially talking about morphims of varities over Spec k. Then in the ring level we have:

k[x] k[y]

k
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We only need to see where y goes. y maps to a polynomial p(x). So the morphisms are exactly what we want.

Example: suppose k is algebraically closed and consider the map y 7→ x2.

What are the points on Spec k[x]? Note that k[x] is a PID, so every ideal must be a scalar multiples of some
polynomial f . Since k is algebraically closed any polynomial f factors into linear factors. Thus, prime ideals
are precisely (x− a) [and (0)].

Thus, there is a bijective correspondence between Spec k[x] and k ∪{η} [η corresponds to the (0) ideal. We call
it the generic point ].

Then, we have:

y x2

k[y] k[x]

(x− a) Spec k[x] Spec k[y] (y − a2)

a k ∪ {η} k ∪ {η} a2

ϕ−1((x− a)) =
{
P (y) | P (x2) ∈ (x− a)

}
=

{
P (y) | P (a2) = 0

}
= (y − a2).

ϕ−1(0) : P (x2) ≡ 0 =⇒ P (y) ≡ 0 so η ↔ η.

Consider SpecR[x]. Here R[x] has prime ideals (0) and (f(x)) where f is irreducible.

eg x2 + 1 is irreducible in R[x].

Note that R[x]/(x2 + 1)
∼=−→ C.

The isomorphism map is as follows: f(x) 7→ f(i). But it could be f(x) 7→ f(−i).

For a real polynomial, the condition of vanishing at i and −i are the same. This kind of maximal ideal doesn’t
correspond to an element in the field. In fact they don’t even correspond to an element in a field extension.
They correspond to a pair of elements in a field extension!

There are thus two types of maximal ideal in R[x]:

1) (x− a) where a ∈ R.

2) ((x− α)(x− α)), {α, α} ⊂ C \ R

In addition there iis one prime ideal which is not maximal, (0).

What about fields where there are a lot of extension fields?

What about SpecA where A has a zero divisor?

One way we can obtain a ring with a zero divisor is starting with a nice ring and modding out a product:
k[x, y]/(f(x, y)g(x, y)).

Then V (fg) = V (f) ∪ V (g).
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Consider zero sets of f(x, y) = 0 and g(x, y) = 0. Our space is the union of these sets, neither of which are
the whole space. There is a point whose closure is the first component, a point whose closure is the second
component, but no generic point!

[insert picture]

What if f = g in this case?

Consider k[x, y]/(y − x)2. We have the same space as k[x, y]/(y − x), but we have an infinitesimal!

[insert picture]

What about SpecQ[x]? Too hard

Now suppose k is algebraically closed. What about Spec k[x, y] = A2
k?

Our maximal ideals are (x− a, y − b). This corresponds to the point (a, b).

We also have the middle case (f(x, y)) which are the intermediate ideals. If f(x, y) = y − x2 then it’s closure
consists of itself and all the points on the parabola. We can think about it as smeared over the whole parabola.

We have the zero ideal (0) which is the minimal ideal. It corresponds to a generic point.

There are 3 levels, so the space should be roughly 3 dimensional. This is the idea behind Krull dimension.

Friday, 9/19/2025

Some more commutative algebra, and topology on Spec.

Theorem 12. SpecA is quasi-compact.

Proof. Note: we basically want to show every open cover has a finite subcover. We use the word ‘quasi’ because
SpecA is not Hausdorff.

Let
⋃
α∈I Uα = SpecA.

Each Uα has an open cover Uα =
⋃
β∈Jα D(fα,β).

Then, SpecA =
⋃
α∈I

⋃
β∈Jα D(fα,β).

We can reduce in this way to covers by D(fα,β) ‘affine opens’. Changing notation, we write SpecA =⋃
α∈I D(fα).

Consider the ideal J = (fα)α∈I .

Case 1: J ̸= A. Then there exists a maximal ideal m ⊃ J ∋ fα.

m↔ x ∈ SpecA then x ∈ V (fα) and x /∈ D(fα)∀α. So x /∈
⋃
α∈I D(fα) = SpecA which is a contradiction.

Case 2: J = A. Then 1 ∈ J so ∃gα and finite I0 ⊂ I and gα such that
∑
α∈I0 fαgα = 1.

Claim:
⋃
α∈I0 D(fα) = SpecA.

Claim ⇐⇒ ∀x ∈ SpecA∃α ∈ I0 such that x ∈ D(fα) ⇐⇒ ∀P prime ideal ∃α ∈ I0 such that fα /∈ P . This is
true since otherwise 1 =

∑
α∈I0 fαgα ∈ P which is impossible.
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At first glance the previous theorem seems unprovable without the noetherian condition. But we don’t need it.

Definition. A topological space X is Noetherian if every decreasing chain of closed subsets X = X0 ⊃ X1 ⊃
X2 ⊃ · · · eventually stabilizes.

We then have the following theorem:

Theorem 13. If A is a noetherian ring then SpecA is a noetherian topological space.

Proof. ∃ bijective correspondence between closed subsets and radical ideals, i.e. ideals I =
√
I.

X → I(X) = {f ∈ A | f ∈ P∀P ∈ X}

A decreasing chain of Xi gives an increasing chain of I(Xi) which stabilizes.

This gives us: any field k is noetherian since the only ideal is (0).

Theorem 14 (Hilbert). If A is Noetherian then A[x] is Noetherian.

Corollary: k[x1, · · · , xn] is Noetherian.

Corollary: Ank = Spec k[x1, · · · , xn] is Noetherian.

Corollary: A closed subspace of a Noetherian space is Noetherian. On the ring side, a quotient ring of a
Noetherian ring is Noetherian.

Connectedness

If X = U1 ⊔ U2 which are open then it is disconnected. U1 and U2 will also be closed.

Question: is Spec k[x1, · · · , xn] connected?

Is Spec k[x1, · · · , xn]/I connected?

Theorem 15. The following conditions are equivalent:

1) SpecA is disconnected.

2) A ∼= A1 ×A2 for some A1 ×A2 [here not considering the zero ring as a ring helps us]

3) A has a non-trivial idempotent e [i.e. e ̸= 0, 1, e2 = e. If your space has two components you can think
of a function that is 1 on one component and 0 on the other component, then that function must be an
idempotent].

Proof. 2 =⇒ 3 : Let e = (1, 0).

3 =⇒ 2 : Let A1 = Ae,A2 = A(1− e). Then A1 ×A2

∼=−→ A by (xe, y(1− e)) 7→ xe+ y(1− e).

1 =⇒ 3 : Suppose SpecA = V (I) ⊔ V (J). Then I + J = A otherwise I + J ⊂ m and the corresponding point
x ∈ SpecA ∈ V (I) ∩ V (J).

Claim: ϕ : A→ A/I ×A/J is surjective and its kernel is nilpotent.
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Surjectivity: we can find a ∈ A such that a ≡ 1 mod I, a ≡ 0 mod J since I + J = A.

Now, suppose x ∈ kerϕ. Then x ∈ I ∩ J .

Recall that for every prime ideal P of A we have I ⊂ P or J ⊂ P thus I ∩ J ⊂ P .

Thus I ∩ J ⊂
⋂
P∈SpecA P = rad(0) = radA.

So, x ∈ radA is nilpotent.

Let e ∈ A satisfy ϕ(e) = (1, 0). THen e2 − e ∈ kerϕ =⇒ e2 − e is nilpotent.

Suppose (e2 − e)n ≡ 0.

Claim: E = 1− (1− en)n is an idempotent.

Proof: E2 − E = E(1− E) = (1− en)n(1− (1− en)n) which is a multiple of en(1− e)n so it is 0.

E ∈ (en) and (1− E) ∈ ((1− e)n).

2 =⇒ 1: Suppose A = A1 ×A2. Every prime ideal either contains ((1, 0)) = A1 × (0) or ((0, 1)) = 0×A2.

Equivalently project P ⊂ A onto A1 and project it into A2. Exactly one of these projections is surjective: if
projA1

P = I1 ⊊ A1 and projA2
P = I2 ⊊ A2, we have (x, 1)(1, y) = (x, y) ∈ P but individually not in P which

is a contradiction.

Theorem 16. A topological space X is reducible if X = X1∪X2 where X1, X2 ⊊ X and X1 and X2 are closed.

Every disconnected space is reducible.

The key theorem for tomorrow:

Theorem 17. TFAE:

1) SpecA is irreducible.

2) SpecA has a generic point: η ∈ SpecA such that {η} = SpecA

3) A has a minimum prime ideal: a prime ideal contained in all other prime ideals.

4) radA is a prime ideal.

Monday, 9/22/2025

We can instead prove the following theorem:

Theorem 18. TFAE:

1) SpecA is reducible.

2) SpecA has no generic point

3) A has no minimal prime ideal.

4) radA is not prime.
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Proof. We prove 1 =⇒ 2 =⇒ 3 =⇒ 4 =⇒ 1.

1 =⇒ 2: Suppose SpecA = X ∪ Y where X,Y are closed and X,Y ⊊ SpecA.

If η ∈ SpecA then either η ∈ X or η ∈ Y .

So, {η} ⊂ X or {η} ⊂ Y so no generic point.

2 =⇒ 3: If P and Q are prime ideals, then Q ∈ {P} =⇒ Q ∈ V (P ) =⇒ P ⊂ Q. If there is no generic point,
then there is no prime ideal that is contained in all other prime ideals.

3 =⇒ 4: Since every prime ideal contains
⋂
P∈SpecA P = radA it follows that radA is not prime.

4 =⇒ 1: Since radA is not prime, we have f, g ∈ A such that fg ∈ radA but f, g /∈ radA. Thus, there exists
P ∈ SpecA so that f /∈ P i.e. P /∈ V (f) and g /∈ radA i.e. Q /∈ V (g). But fg ∈ radA implies all prime ideals
lie in V (fg).

Thus, V (f) ∪ V (g) = SpecA.

Corollary 19. A is intrgral domain ⇐⇒ SpecA is irreducible and A has no non-zero nilpotents.

Proof. A integral implies [fg ∈ (0) =⇒ f ∈ (0) or g ∈ (0)] =⇒ (0) is prime =⇒ (0) is the minimum prime
ideal =⇒ SpecA is irreudible. Further, if fn = 0 then f = 0 so no non-zero nilpotents.

Other direction: if SpecA is irreducible then radA is prime. If SpecA has no non-zero nilpotents, then
radA = (0). Thus (0) is prime. Thus, fg = 0 =⇒ fg ∈ (0) =⇒ f ∈ (0) or g ∈ (0) =⇒ f = 0 or g = 0. Thus
A is an integral domain.

Lemma 20. If A is an integral domain then any polynomial ring A[x1, · · · , xn] is also an integral domain.

Proof. Use induction on n. ETS: A integral =⇒ A[x] integral.

Suppose P (x) =
∑n
i=0 aix

i, Q(x) =
∑m
j=0 bjx

j are non-zero of degree n andm respectively. We may assume that

an ̸= 0, bm ̸= 0. Then P (x)Q(x) =
∑n+m
k=1

∑
i+j=k aibjx

k. So, the xn+m coefficient of P (x)Q(x) is anbm ̸= 0.
Thus, P (x)Q(x) ̸= 0.

Thus, polynomial rings over an integral domain are integral. In particular, polynomial rings over fields are
integral.

Corollary 21. Spec k[x1, · · · , xn] is irreudiclbe when k is a field.

Note that Spec k[x1, · · · , xn] is the affine n-space over k.

A consequence of irreducibility: In an irreudcible topological space X, the closure of a non-empty open set U
is everything: U = X.

Why? Note that U c ∪ U ⊃ U c ∪ U = X.

Theorem 22. Every n× n matrix over C satisfies its own characteristic polynomial.

Proof. Let M ∈ Mn(C). Let pM be the characteristic polynomial. If disc pM (x) ̸= 0 then M is diagonalizable

with distinct entries. Thus M ∼

λ1 · · · 0
...

. . .
...

0 · · · λn

 where λi ̸= λj .

Then pM (x) = pD(x) = (x− λ1) · · · (x− λn) and pM (M) = pD(D) = 0.

31



i.e. Cayley Hamilton theorem is trivial when eigenvalues are distinct.

Now we can easily finish with algebraic geometry:

disc pM (x) ̸= 0 is a non-empty open condition on An2

C .

Any identity that holds on a dense subset of An2

C holds on An2

C . So we’re done!

What is happening under the hood? Note that disc pM · pM (M) on Mn(C) is always zero, so it is in fact the
zero polynomial.

Definition. A ring A is a Jacobson ring if the intersection of its maximal ideals is (0).

This is a stronger condition than being an integral domain: eg a valuation ring has only one max ideal and thus
it is a Jacobson ring.

Theorem 23. Every polynomial ring over a field is a Jacobson ring.

Chapter 4: Define OSpecA

SpecOSpecA: sheaf of regular functions on SpecA.

U ⊂ SpecA is any open set. We want OSpecA(U).

Suppose A is an integral domain with fraction field K.

Then OSpecA(U) ⊂ K. Which elements of K count as regular on U?

Suppose we have a
b ∈ K. As long as b doesn’t vanish on U , we can talk about 1

b on U . Thus we can talk about
a
b on U .

Recall if P ∈ SpecA then we can take K(P ) = Frac(A/P ). For f ∈ A then f(P ) ∈ K(P ) namely, (f
mod P ) ∈ A/P ⊂ Frac(A/P ).

Thus a, b ∈ A, ab ∈ K(P ) is problematic when b ∈ P .

We want to work more generally than integral domains. We want to use the sheaf machinery.

Stalk POV:

What is the set of germs of regular functions at P?

We’re basicallly looking at fractions where the denominator doesn’t belong to P .

Recall we have localization: AP =
{
a
b | b ∈ A \ P

}
/ ∼.

Let AP be the stalks and compatibility of a family of a map U → ⊔P∈UAP by P 7→ sP are compatible if
∀P ∈ U∃V ⊂ U open neighborhood of P and a fraction a

b where b does not lie in any prime ideal in V such
that a

b gives sP for all P ∈ V .

Base POV:

D(f) = SpecA \ V (f) gives a base for the topology of SpecA.

OSpecA(D(f)) = A
[
1
f

]
= Af = S−1A where S = {1, f, f2, · · · }. We don’t want f to be nilpotent. This is just

A[x]/(fx− 1).
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Wednesday, 9/24/2025

We need to check if OSpecA(D(f)) := A
[
1
f

]
is well defined and satisfies the sheaf axioms.

Well defined:

Proposition 24. D(f) = D(g) =⇒ A
[
1
f

]
∼= A

[
1
g

]
.

Proof. It suffices to show that f is invertible in A[1/g] and g is invertible in A[1/f ].

Thus it suffices to show that f is invertible in A[1/g].

Note that D(f) = D(g) =⇒ D(f) ⊂ D(g) =⇒ V (g) ⊂ V (f) =⇒ f vanishes on every point of V (g), i.e.
∀P ∈ V (g), f ∈ P .

Thus, f ∈
⋂
P∈V (g) P = rad(g).

Thus, fn ∈ (g), i.e. ∃a ∈ A such that fn = ag =⇒ 1
g = a

fn ∈ A[1/f ]. Thus g ∈ A[1/f ]. QED.

Thus, OX(D(f)) is well defined.

Proposition 25. Suppose D(f) =
⋃
α∈I D(fα). WTS: OX(D(f)) is the equalizer of the following diagram:

∏
α∈I OX(D(fα))

∏
α,β∈I OX(D(fα) ∩D(fβ))

ϕ

ψ

i.e. OX(D(f)) =
{
g ∈

∏
α∈I OX(D(fα)) | ϕ(g) = ψ(g)

}
Proof. Specializations:

1) D(f) = X

2) I is finite.

Note D(f) = SpecA
[
1
f

]
and A

[
1
fα

]
= A

[
1
f

] [
1
fα

]
. So WLOG we can assume that D(f) = X. Then,

A Eq

(∏
A
[

1
fi

] ∏
A
[

1
fifj

])

a
(
a
1

) (
a
1

)
We prove injectivity first.

Suppose a ∈ A is in the kernel. Then a ∈ A maps to 0 in each A[1/fi]. Thus, a/1 = 0 in A[1/fi] for all i ∈ I.
Thus, for all i ∈ I, afkii = 0 for some ki ∈ N.
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Furthermore, SpecA =
⋃
i∈I D(fi), ∀P ∈ SpecA, ∃fi such that fi /∈ P .

Thus, (f1, f2, · · · ) = 1.

Thus
∑
i aifi = 1 for some finite collection of the fi.

For every k we have (fk1 , f
k
2 , · · · ) = 1.

Thus,
∑
i ai,kf

k
i = 1 for some finite collection of i. Choosing k ≥ ki for the finite collection of i, we see that

(fk11 , fk22 , · · · ) = 1. So,
∑
i bif

ki
i = 1 =⇒

∑
i abif

ki
i = a = 0.

Now suppose I is finite. we now want to show surjectivity.

Suppose ∀i, j we have ai
fi

=
aj
fj

in A
[

1
fifj

]
.

Then we can find ki,j ∈ N such that (aifj − ajfi)(fifj)ki,j = 0.

Suppose aifj = ajfi [special case]. Note that (f1, f2, · · · , fn) = 1 =⇒ b1f1 + · · ·+ bnfn = 1.

Let a = a1b1 + · · ·+ anbn. Claim: a = ai
fi

for all i.

WTS: a = a1
f1
⇐⇒ f1a = a1. Recall f1a = f1a1b1 + f1a2b2 + · · ·+ f1anbn = f1a1b1 + f2a1b2 + · · ·+ fna1bn =

a1(b1f1 + · · ·+ bnfn) = a1 So we’re done.

What if aifj = ajfi doesn’t hold? Note that a1
f1

= a1f1
f2
1

=
a1f

2
1

f3
1

= · · ·. These power gives us bigger powers of

(fifj)
ki,j . So we have proved for finite I.

Now suppose I is infinite.

Let J be the finite subset such that
⋃
j∈J D(fj) = SpecA.

Given compatible fractions
aj
fj
, ∃a ∈ A which is equal to all of them. Moreover a is unique: a = ai

fi
for all i ∈ I.

Some clarification about partition of unity.

Let X =
⋃
i Ui and ϕi : Ui → R, ϕi(x) = ϕj(x) in Ui ∩Uj . A partition of unity of X: we define on the cover Ui

a collection of functions ψi : X → R sucht hat each ψi is 0 outside Ui and
∑
i ψi = 1.

Note that
∑
i ϕiψi = f : X → R with the property if x ∈ Ui, f(x) = ϕi(x).

In the proof, role of ψ is played by bifi which vanishes on V (fi) and thus is suppported on D(fi).

Therefore, the sheaf OX exists and satisfies OX(D(f)) = A
[
1
f

]
.

What about open sets not of the form D(f)? Suppose X = A2
C = SpecC[x, y]. Define U = X − {(0, 0)}.

We can take a cover of U by D(f)s.

Let U1 = SpecC[x, y]
[
1
y

]
and U2 = SpecC[x, y]

[
1
x

]
. Then U = U1 ∪ U2.

We have C
[
x, y, 1x

]
× C

[
x, y, 1y

]
→ C

[
x, y, 1

xy

]
.
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Let f =
∑
i,j aijx

iyj ∈ C
[
x, y, 1x

]
and g =

∑
i,j bijx

iyj ∈ C
[
x, y, 1y

]
. Then aij = bij , no negatives, some

positives. Thus we have no extra functions.

Friday, 9/26/2025

Recall:

We constructed OX for X = SpecA using the base D(f) the so called distinguished opens.

OX(D(f)) = A[f−1].

What is the stalk at x ∈ X ↔ P ⊂ A? We take a direct limit over all the open neighborhoods of x, aka the
sections.

OX,x = lim−→D(f)∋xOX(D(f)) = lim−→f /∈P A
[
1
f

]
.

= lim−→f∈A\P A
[
1
f

]
= (A \ P )−1A = AP .

We have the same construction for A-modules. LetM be an A-module. We can construct a sheaf of OX -modules
M̃ in exactly the same way:

Define M̃(D(f)) =M
[
1
f

]
=M ⊗A A

[
1
f

]
= {1, f, f2, · · · }−1M .

We need to check if it is well defined, i.e. D(f) = D(g) =⇒ M
[
1
f

]
=M

[
1
g

]
. Proof is also the same.

If D(f) =
⋃
α∈I D(fα) then,

M̃(D(f)) = Eq
(∏

α∈I M̃(D(fα))⇒
∏
α,β M̃(D(fα) ∩D(fβ))

)
M

[
1
f

]
= Eq

(∏
α∈I M̃

[
1
fα

]
⇒

∏
α,β M̃

[
1

fαfβ

])
.

If x↔ P then stalk at x, M̃x =MP = (A \ P )−1M .

Schemes in general

If F is a sheaf on a topological space X and U ⊂ X is open, we can define f
∣∣
U
to be the ‘restriction of F to U ’

to be F
∣∣
U
(V ) = F(V )∀V ⊂ U open.

Definition (Scheme). A scheme is a pair (X,OX) consisting of a topological space and a sheaf of commutative
rings such that X =

⋃
α∈I Uα with the property that ∀α ∈ I, ∃ a commutative ring Aα and an isomorphism of

ringed spaces (Uα, OX
∣∣
Uα

) ∼= (SpecAα,OSpecAα
).

If X = SpecA then X is an affine scheme.

Definition (Locally Ringed Space). A locally ringed space is a ringed space for which every stalk is a local
ring.

Proposition 26. Every scheme is a locally ringed space.

Proof. WTS: OX,x is a local ring ∀x ∈ X.
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Choose Uα ∋ x and identify OX
∣∣
Uα

with (SpecAα,OSpecAα). Then x corresponds to P ⊂ Aα. We can take the
direct limit w.r.t. this identification over all neighborhoods of x contained in Uα.

w.r.t. this identification, we have:

OX,x = OSpecAα,P = (Aα)P

On a locally ringed space, one can think of a section as a function which sends each point to an element of a
field.

Consider (X,OX) with x ∈ X. x ∈ U ⊂ X..

THen s ∈ OX(U) gives us sx ∈ OX,x.

(OX,x,mx) =⇒ OX,x/mx = K(x).

s(x) ∈ K(x).

Question: What does a one-point scheme look like? We take a look at the simplest space to see what the
structure sheaf is doing for us.

X has an open cover which consists of a single open set X = {x} and so OX(X) = A.

(SpecA,OSpecA) ∼= (X,OX).

So A is a ring with a single prime ideal P . radA = nilpotent elements of A.

P is maximal ideal so A/P ∼= k.

Example: suppose A = k[x1, x2, · · · ]/(x1, x2, · · · )2.

= {a0 + a1x1 + a2x2 + a3x3 + · · · }.

There is an ascending chain of prime ideals (x1) ⊂ (x1, x2) ⊂ (x1, x2, x3) ⊂ · · ·.

So A is not necessarily Noetherian.

Proposition 27. A is Noetherian =⇒ A is artinian.

Examples of non-affine schemes:

1) Infinite disjoint union of schemes.

2) A2
k \ {0, 0}

3) P 1

4) ←−:−→ the non Hausdorff space, the affine line with the origin dobuled.

Monday, 9/29/2025

If F is a sheaf on X and U ⊂ X is open, sometimes we write:
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F(U) = Γ(U,F).

Γ stands for the ‘global sections functor’. If U = X then it is really the global section.

We use the two interchangably.

Suppose we have a SES

0→ F → G → H → 0

Question: do we have a section of global section? Answer is no: it is left exact, but not exact. It’s failure to be
exact gives us the existence of cohomology. In fact we can think of cohomology as the derived functor of the
global sections functor.

Recall that infinite disjoint union of affine scheme is not affine.

If we have product of n rings then,

Spec(A1 × · · · ×An) =
n∐
i=1

SpecAi

So, for finite disjoint union of affine schemes is affine. But it doesn’t work for infinite product.

If (X,OX) is a scheme and U ⊂ X is an open subset then (U, OX
∣∣
U
) is a scheme.

If X is a scheme and x ∈ X and U is an open neighborhood of x then there exists an smaller open neighborhood
V of X in U which is affine. If we let W = SpecA then we want V ⊂ U ∩W affine.

In SpecA we have a point x and an open neighborhood U and we want an open affine neighborhood V of X
with V ⊂ U .

U c = V (I). Want f such that V (f) ⊃ V (I) and x ∈ V (f)c = D(f).

x↔ P means f /∈ P .

x /∈ V (I) so ∃f ∈ I such that f /∈ P .

Theorem 28. If U ⊂ X is an open set then (U, OX
∣∣
U
) is again a scheme.

Now, consider X = A2
C \ {0, 0}.

This is a scheme. Now, Γ(X,OX) = C[x, y].

Thus, if X is affine, it must be isomorphic to SpecC[x, y] ∼= A2
C.

Thus, in order to show X is not affine we need to show A2
C ̸∼= A2

C − {(0, 0)}.

We need to talk a bit more about locally ringed spaces (X,OX).

If f ∈ Γ(X,OX) then we can define V (f) := {x ∈ X | f(x) = 0}. Talking about f(x) makes sense since
f = 0 ⇐⇒ f ∈ mx ⊂ OX,x.

WTS: V (f) is a closed set.

We show that f /∈ mx is an open condition. f ∈ OX,x = limU∋xOX(U).
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Recall that 1
f ∈ OX,x. So

1
f = hx for some h ∈ OX(V ).

Then V (I) =
⋂
f∈I V (f) is also closed.

Now consider X = A2 \ {(0, 0)}.

Γ(X,OX) = C[x, y]. Consider I = (x, y). Then V (I) = closed subset of X.

Then V (I) = ∅.

If X ∼= SpecC[x, y] then V (I) must match, but it does not.

Note that all examples of non affine schemes must be achieved via ‘gluing’ by definition.

Now we glue together two pieces of A1 so that all but 0 is glued in two different ways: one is ←−:−→ and the
other is P 1.

[insert picture here]

Lets talk about ←−:−→ first.

A1
C
c1

∐
A1

C
c2

/ ∼, c1 ∼ c2 if c ̸= 0, 01 ̸∼ 02.

This is (X = C \ {0}) ∪ {o1, o2, η}

Topology is the profinite topology, except {η} = X. Note that 02 /∈ {01} and vice versa.

All functions live in C(x).

Constants are regular everywhere.

Functions look like: a (x−α1)···(x−αn)
(x−β1)···(x−βm) where a ̸= 0, αi ̸= βj .

This is regular except on β1, · · · , βm and if some βi = 0 it is not regular in both 01 and 02.

Γ(U,OX) = all functions in C(x) regular on all points on U .

This has a cover by X \ {01} ∼= A1
C2

and X \ {02} ∼= A1
C1
.

Why isn’t X affine? Γ(X,OX) = C[x].

Every function in C[x] which vanishes at 01 vanishes at 02. So, if it were affine, we would have the property
f ∈ m1 ⇐⇒ f ∈ m2 which is not possible.

For the P1 picture, call the first A1
C \ {0} as SpecC

[
x, 1x

]
and the second one A1

C \ {0} = Spec
[
y, 1y

]
where

gluing is done by setting y = 1
x .

Then the identification is c1 ∼
(
1
c

)
2
if c ̸= 0. There are two other equivalence classes 01 and 02 which aren’t

equivalent to anything. We can think 01 ∼ ∞2, 02 ∼ ∞1 but the points at infinity ‘doesn’t mean anything’.

X = C− {0} ∪ {01, 02, η}.

constants are regular everywhere.

General function a (x−αi)···(x−αn)
(x−β1)···(x−βm) , a ̸= 0, αi ̸= βj

38



This is regular on A1
C,1 except at β1, · · · , βm.

This is equal to a
( 1

y−α1)···( 1
y−βj)

( 1
y−β1)···( 1

y−βj)
= aym−n (1−α1y)···(1−αny)

(1−β1y)···(1−βmy)
= bym−n

(
y− 1

α1

)
···(y− 1

αn
)(

y− 1
β1

)
···(1− 1

βm
)

Then on A1
C,2 the function is regular except at 1

β1
, · · · , 1

βm
and if n > m then at 02.

Thus, global sections Γ(X,OX) which are regular everywhere contains only constants.

So this is not an affine scheme. Thus Gn(Rk) = O(k)/P

Wednesday, 10/1/2025

No HW this week, no class this Monday.

Suppose we have a collection of ringed spaces (Xα,OXα) where α ∈ I. Further suppose we have the gluing data,
and for α, β ∈ I, let Uα,β ⊂ Xα open and ια,β : Uα,β → Uβ,α a homeomorphism and ιβ,α = ι−1

α,β , ια,α = idUα

and ιβ,γ
∣∣
Uβ,γ∩Uβ,α

◦ ια,β
∣∣
Uα,β∩Uα,γ

= ια,γ
∣∣
Uα,γ∩Uα,β

.

Finally, we also have OXα

∣∣
Uα,β

iα,β−−→∼= ι−1
α,β OXβ

∣∣
Uβ,α

and iα,β also satisfy natural compatibility conditions.

Then we can define X =
∐
Xα/ ∼.

Meaning we can glue the sheaves together to get OX :

We want to define for each x the stalk OX,x.

Define Ix = {α ∈ I | x ∈ im(Xα → X)} .

So, ∀α ∈ Ix define xα ∈ Xα to be the point mapping to x.

Then, OX,x = lim−→Ix
OXα,xα

.

Projective Space

Note that Pnk = kn+1 \ {0}/k∗.

Essentially we have (x0, · · · , xn) ∼ (cx0, · · · , cxn) for all c ̸= 0.

We often use the notation (x0 : x1 : · · · : xn).

Note that {(x0 : · · · : xn) | x0 ̸= 0} ↔ kn by:

(x0 : · · · : xn) 7→
(
x1

x0
, · · · , xn

x0

)
.

Letting Ui = {(x0 : · · · : x− il)},⋃r
i=0 Ui = Pn.

U0 is the affine space with ‘coordinates’ x0

Then X0 = Spec k[x1/0, x2/0], · · · , xn/0 etc.

39



Xi = Spec k[x0,iX].

Uij = Spec k[x0/i, · · · , xn/i][1/xj/i]

We want the right isomorphism of k-algebras:

k[x0/i, · · · , xn/i][x−1
j/i]

∼−→ k[x0/j , · · · , xn/j ][x−1
i/j ]

xk/i 7→ xk/jx
−1
i/j

xj/i 7→ x−1
i/j

Alternative way using the Proj Construction.

In An+1 what are the ideals of I such that V (I) is a union of lines through the origin? Equivalently,

(x0, · · · , xn) ∈ V (I) ⇐⇒ (x0, · · · , xn) ∈ V (I).

f(cx0, · · · , cxn) = cdf(x0, · · · , xn)

f = fd + fe where fd is homogeneous of degree d, fe is homogeneous of degree e.

f(cx) = cdfd(x) + cefe(s)

f ∈ I =⇒ cdfd + cefe ∈ I, fd + fe ∈ I, 2dfd + 2efe ∈ I, (2e − 2d)Fe ∈ I

d1, · · · , dk are monomial degrees.

We want c1, · · · , ck such that c
dj
i matrix is invertible.

If c1, · · · , ck are distinct elements of a field K then the vandermonde matrix determeninant is nonzero:

det


1 c1 c21 · · · ck−1

1

1 c2 c22 · · · ck−1
2

...
...

...
. . .

...

1 ck c2k · · · ck−1
k

 = ±
∏
i<j

(ci − cj) ̸= 0

If our field K is infinite then necessary and sufficient conditions that x ∈ V (I) =⇒ cx ∈ V (I)∀c ∈ K∗ is that
every homogenous component of every element of I lies in I.

Equivalently I is generated by homogeneous elements. Such an I is a homogenous ideal.

As a set, the projective space Pnk is the set of prime homogeneous ideals of k[x0, · · · , xn] excluding (x0, · · · , xn).

Friday, 10/3/2025

Let X be a manifold. It is characterized by homeomorphisms D → X. Suppose we have D
i−→ X → Y . If i is a

coordinate neighborhood of X, i is a coordinate neighborhood of Y .
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We want isomorphism of sheaves of smooth functions.

Recall Pnk .

Proj k[x0, · · · , xn] = ProjA the set of homogeneous ideals which are prime, excluding the ideal (x0, · · · , xn).

Here prime can mean two things: prime in the usual sense, and the other sense: if the product of two homoge-
neous polynomials lie in this ideal, then one of them lie in the ideal.

A priori these concepts can be different. But we can prove that they arre indeed the same by inducting on the
degrees of f, g such that fg ∈ P .

We also want a topology.

If f is a homogeneous polynomial, define V (f) = {P ∈ nProjA | f ∈ P}.

Define the topology with base V (f)c.

Question 1: what is V (xi)
c?

Claim: V (xi)
c is homeomorphic to Ui = Spec k[x0/i, · · · , xi−1/i, xi+1/i, · · · , xn/i].

There is a bijection between homogeneous prime ideals in A and prime ideals:

k[x0/i, · · · , xn/i] together with the ideal (1).

Let P =
⊕∞

i=0 Pi be a homogeneous prime ideal in A. Define P0 in A0:

P0 =


∞∑
j=0

pj

xji
| pj ∈ Pj


When e0 + · · ·+ en = j we can write:

x
e0
0 ···xen

n

xj
i

=
(
x0

x1

)0

· · ·
(
xn

xi

)en
⇝ xe00/i · · ·x

en
n/i ∈ A0.

Claim: P0 is a prime ideal (or (1) if P = (x1, · · · , xn)).

Suppose fg ∈ P0. Then f(x0/i, · · · , xn/i)g(x0/i, · · · , xn/i)

Rewrite F (x0,··· ,xn)
xa
i

G(x0,··· ,xn)

xb
i

by clearing denominators. F ∈ Pa, G ∈ Pb.

fg ∈ P0 =⇒ FG ∈ P =⇒ F ∈ P or G ∈ P =⇒ f ∈ P0 or g ∈ P0.

Conversely, every prime ideal P0 arises from a prime ideal P .

A0 ⊃ P0 → P =
⊕

m≥0 Pm ⊂ A.

We get the ideal by Pm =
{
F ∈ Am | F

xm
i
∈ P0

}
This is a bijection at the space level.

If F ∈ A is homogeneous of degree m, we can write F
xm
i
↔ f ∈ A0.

Claim: under this correspondence, V (F ) ∩ Ui ↔ V (f) is a bijective correspondence between Ui ⊆ ProjA and
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SpecA0.

ProjA↔ U0 ∪ · · · ∪ Un.

What is the structure sheaf on ProjA?

Let P ∈ ProjA. What is OProjA,P ?

OProjA,P = set of degree 0 fractions f
g where f, g are homogeneous of the same degree and g /∈ P .

If xi ∈ P so P corresponds to some prime P0 ∈ Ui = SpecA0 then OProjA,P
∼= (A0)P0

by F
G ↔

f
g .

[insert picture]

This construction doesn’t need Pn. It can work for any Z≥0 graded ring S.

Definition. A Z≥0-graded ring S is a ring S = S0 ⊕ S1 ⊕ S2 ⊕ · · · where Si are additive subgroups and
SiSj ⊂ Si+j .

Proj(S) = homogeneous prime ideals not containing the ideal S+ = S1 ⊕ S2 ⊕ · · ·.

F ∈ Si ↔ D+(F ) = V (F )c.

Define the Z-graded ring S•
[
1
F

]
whose degree d piece consists of fractions of the form A

Fn where A is homogeneous
of degree d+ n degF .

Book uses (S•)F . The book also calls S•
[
1
F

]
0
= ((S•)F )0 = degree 0 elements of (S•)

[
1
F

]
.

In the previous example, Ai =
(
k[x0, · · · , xn]

[
1
xi

])
0
.

Note: SpecS•

[
1
f

]
0
is an open subscheme of ProjS which we call D+(F ).

Chapter 5

We talk about some properties of Schemes.

Quasicompactness: Compactness in the usual language of point-set topology, open cover has finite subcover.

Theorem 29. A Scheme X is quasi-compact if and only if it has a finite affine open cover.

Proof. One direction: X has an affine open cover. If it is quasi-compact, take a finite subcover.

Other direction: suppose X = U1 ∪ · · · ∪ Un where each Ui is affine. Each Ui is quasi-compact. A finite union
of quasi-compact spaces is quasi-compact.

Definition. A topological space is quasi-separated if and only if the intersection of any two quasi-compact
subsets is again quasi-compact.

For example, if a scheme X is quasi-separated, then the intersection of any two affine opens is a finite union of
affine opens.

The abbreviation qcqs stands for quasi-compact and quasi-separated. Any halfway reasonable space should
satisfy qcqs property.
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In particular, affine schemes, projective schemes etc.

Note that these topologies aren’t generally Hausdorff/compact. We can bring in analogues of those concepts.

separated ↔ Hausdorff

proper ↔ compact

Note: separated =⇒ quasi-separated, projective =⇒ proper.

Definition. A scheme is X is reduced if ∀x ∈ X,OX,x has no nontrivial nilpotent elements.

Equivalently, a reduced scheme is one on which every section is determined by its function.

Wednesday, 10/8/2025

Notation: Scheme is X, we have Xα, Uα,β ⊂ Xα, iα,β : Uα,β
∼=−→ Uβ,α.

OXα

∣∣∣∣
Uα,β

∼=−→ i∗α,β OXβ

∣∣∣∣
Uβ,α

X

Uα,β Xα Y

Uβ,α Xβ

fα

fβ

Reduced scheme:

X is reduced means OX,x has no non-trivial nilpotent elements for all x ∈ X.

Theorem 30. X is reduced iff ∀U ⊂ X,OX(U) has no non-trivial unipotents.

Proof. If ∃x such that OX,x has a non-zero nilpotent element nx then ∃ a neighborhood U of x andd a section
n ∈ OX(U) which gives nx at x.

Then there exists an integer k ≥ 2 such that (nk)x = nkx = 0.

Then nk is zero in an open neighborhood V ⊂ U of x. So n
∣∣
U
̸= 0 but

(
n
∣∣
V

)k
= 0.

Conversely, let f ∈ OX(U) be a non-zero nilpotent. Then for all x ∈ U, fx is nipotent. For some x ∈ U, fx is
non-zero. Otherwise, each x would have an open neighborhood on which f restricts to 0. These neighborhoods
would cover U so f would not be non-zero.

Theorem 31. TFAE:

1) X is irreducible and reduced.

2) For every affine open SpecA of X,A is an integral domain.

Definition. If the equivalent conditions of the above theorem holds, then X is integral.
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Proof. Suppose X is not reduced. Then there exists fx ∈ OX,x which is non-zero and nilpotent. There exists
an affine open neighborhood SpecA of x such that fx comes from a non-zero nilpotent f ∈ A so A is not an
integral domain.

Suppose A is not reducible. We can construct open subscheme of X:

SpecA
∐

SpecB = SpecA×B but SpecA×B is not an integral domain since (1, 0)(0, 1) = (0, 0).

Now, suppose SpecA ⊂ X is not an integral domain. Then ∃f, g ∈ A such that fg = 0 but f ̸= 0, g ̸= 0.

f, g ∈ A = Γ(SpecA,OX). V (f) ∪ V (g) = V (fg) = SpecA. Suppose V (f), V (g) are both proper subsets of
SpecA. Then SpecA is not irreducible. In fact X is not irreducible because it is the union of the following two
closed subsets: (SpecA)c ∪ V (f) and (SpecA)c ∪ V (g). Only exception is when V (f) or V (g) equals SpecA.

WLOG suppose V (f) = SpecA. Then f ∈ P for all prime P =⇒ f ∈
⋂
P prime P = radA.

Thus f is nilpotent and A has a non-trivial nilpotent element.

Note that if OX,x is integral domain for all x ∈ X it doesnt mean that X is integral. X could be a disjoint
union of integral schemes.

Non-Examples: Spec k[xy]/(xy) fails to be irreducible. [Picture: Coordinate axes +].

We claim that it is reduced. Suppose k[x, y] represents a nilpotent class in k[x, y]/(xy). Then f(x, y)k ∈ (xy)
so x | fk, y | fk =⇒ x | f, y | f so xy | f .

Spec k[x]/(x2) failes to be fails to be reduced. [Picture: Just a point ·]. But it is irreducible.

Suppose K is a field and A is a K-algebra. Suppose L/K is an extension field and consider the L-algebra
A⊗K L.

Are the properties irreducibility, integrality, reducedness preserved by this operation?

In general, the answer is no.

Examples: K = R, A = C, L = C. Note that C⊗R C.

Think of this as R[x]/(x2+1)⊗RC = C[x]/(x2+1) = C[x]/(x+ i)(x− i) ∼= C[x]/(x+ i)×C[x]/(x− i) ∼= C×C.

A is a K-algebra. We say SpecA is geometrically irreducible, integral etc. iff A ⊗K L is irreducible, integral,
etc for all extension fields L/K.

When we talk about property of a commutative ring, (say Noetherian), we can think about it as a property of
an affine scheme. We can ask questions: is there a cover of the scheme by affine open schemes? Is it true that
every affine open subscheme has this property?

Definition (Distinguished Open Subset). A distinguished open subset of the affine scheme SpecA is a set of

the form D(f) for some f ∈ A. Regarded as an open subscheme of SpecA,D(f) is SpecA
[
1
f

]
.

Lemma 32 (Affine Communication Lemma). Suppose we have a property P of affine open subsets of a scheme
X such that the following are true:

1) If SpecA has property P , every distinguished open subset of SpecA has property P .

2) If f1, · · · , fn ∈ A with (f1, · · · , fn) = (1)

and the distinguished open subsets of SpecA given by D(f1), · · · , D(fn) all have property P then SpecA
itself has property P .
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Then, if there is any affine open cover of X with property P then all affine opens have property P .

Proof. Let SpecAi be a cover of X by affine opens with property P . Let SpecA ⊂ X be any affine open.

Claim: ∀x ∈ SpecA there exists an affine open neighborhood of x which is distinguished as an affine open subset
of some SpecAi and also as an affine open subset of SpecA.

Figure 3: Claim

We omit the proof of the claim for now.

Then this open set SpecAfx has property P from SpecAi.
⋃
x∈SpecA SpecAfx = SpecA.

So SpecA = SpecAfx1
∪ · · · ∪ SpecAfxn

.

Since (fx1
, · · · , fxn

) = (1) we deduce that SpecA has property P .

Lemma 33. Let SpecA, SpecB denote open affine subsets of SpecX. Suppose x ∈ SpecA ∩ SpecB.

Then x has an affine open neighborhood which is distinguished in both SpecA and SpecB.

Proof. A distinguished open subset of a distinguished open subset is distinguished.

D(SpecA, f)

D
(
SpecA

[
1
f

]
, g
fn

)
D(SpecA, fg)

So we may replace SpecB by an open neighborhood of x, D(SpecB, g) which is contained in SpecA ∩ SpecB.
Thus we can assume SpecB ⊂ SpecA.

We can take D(SpecA, f) a neighborhood of x inside SpecB.

f ∈ A = Γ(SpecA,OX)
Res−−→ Γ(SpecB,OX) = B.

So Res(f) = f ′ ∈ B.
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Claim: D(SpecB, f ′) = D(SpecA, f).

This finishes the proof.

Monday, 10/13/2025

Recall affine communication lemma: given a ring property P such that:

1) If A has P then A
[
1
f

]
has P .

2) If f1, · · · , fn ∈ A, (f1, · · · , fn) = (1) and A
[

1
fi

]
has P then A has P .

then every scheme X with an affine open cover by SpecAα where Aα all have P has the property that every
affine open SpecB ⊂ X,B has P .

In this case we say X locally has property P .

Furthermore, if X is quasi-compact [so it has a finite affine open cover] then X has P . i.e. If X is quasi-compact,
then X having a property locally implies X has the property.

Examples: Let P = Noetherian. First we verify:

Proposition 34. If f ∈ A and A is Noetherian then A[1/f ] is Noetherian.

Proof. Easy using Hilbert Basis Theorem: A[1/f ] = A[x]/(fx − 1). Hilbert Basis Theorem implies A[x] is
Noetherian, and any quotient of a Noetherian ring is Noetherian.

Proposition 35. If f1, · · · , fn ∈ A generate (1) and each A[1/fi] is Noetherian then A is Noetherian.

Proof. Let I1 ⊂ I2 ⊂ I3 ⊂ an ascending chain of ideals of A.

Fix i. I1[1/fi] ⊂ I2[1/fi] ⊂ · · · is an ascending chain of ideals in A[1/fi]. Noetherian implies they eventually
stabilize. Since there are finitely many fi then ∃N such that ∀m > N, ∀i, Im[1/fi] = Im+1[1/fi].

Claim: ∀m > N, Im = Im+1 [so the original chain of ideal stabilizes].

Proof: Im+1/Im is an A-module.

Now consider (Im+1/Im)[1/fi]. We claim that (Im/Im+1) ∼= Im+1[1/fi]/Im[1/fi].

To see this, consider the SES:

0→ Im → Im+1 → Im+1/Im → 0

Flatness of localization implies:

0→ Im[1/fi]→ Im+1[1/fi]→ (Im+1/Im)[1/fi]→ 0

When is S−1M = (0)? when ∀m, ∃s ∈ S such that sm = 0.
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If x ∈ Im+1 representing a class in Im+1/Im then ∀i, ∃ki such that fkii x = 0 in Im+1/Im. ∃k such that fki x ∈ Im.
Write 1 =

∑n
i=1 cifi.

1 = 1nk = (
∑n
i=1 cifi)

nk
=

∑n
i=1 dif

k
i .

=⇒ x =
∑n
i=1 dixf

k
i ∈ Im.

Corollary 36. Every locally Noetherian scheme is quasiseparated.

Proof. Let SpecA, SpecB be affine open in X. We are interested in SpecA ∩ SpecB ⊂ SpecA = Noetherian
topological space. Open subset of Noetherian topological space must be Noetherian. So SpecA ∩ SpecB must
also be Noetherian.

Noetherian spaces are quasicompact.

Current notion of scheme is built up by spectra of commutative ring, and a commutative ring is the same thing
as a Z-algebra. A sheaf of commutative ring is a shief of Z-algebras. We can thus generalize the notion of
schemes:

Definition (A-scheme). If A is any commutative ring, then an A-scheme is a ringed space, i.e. a pair X,OX
consisting of a space and a sheaf of A-algebras with the property that X has a cover by SpecBα where Bα are
A-algebras.

An A-scheme is the same thing as a scheme X with a morphism to SpecA.

Now, property P is no longer necessarily a property of a ring, it is rather property of A-algebra.

We write PA to be a property of A-algebra.

Let PA be the property B is a finitely generated A-algebra.

Any finitely generated A-algebra can be thought of as a quotient of a polynomial ring over A. So finitely
generated A-algebras are noetherian. PA satisfies the conditions for the affine communication lemma.

Lemma 37. If B is finitely generated over A then B[1/f ] is finitely generated over A.

Proof. B[1/f ] = B[x]/(fx− 1).

Theorem 38. Suppose B is an A-algebra and f1, · · · , fn ∈ B generating the unit ideal, and each B[1/fi] is a
finitely generated A-algebra. Then B is a finitely generated A-algebra.

Proof. ∀fi∃ generators
bi,j

f
Ni,j
i

of B[1/fi]. We have
∑n
i=1 cifi = 1. Assume WLOG all Ni,j = N for some fixed

N .

Claim: {fi} ∪ {ci} ∪ {bi,j} generate B.

Proof: Given b ∈ B, for each fi we can write b ∈ B[1/fi] as a polynomial in bij/f
N
i .

Clearing the denominator, WLOG for some big Mi, we can write bfMi
i as a polynomial in bi,j together with fi.

WLOG Mi =M for some large M .

Then bfMi ∈ A[bi,j , fi].

47



∑
i cifi = 1 =⇒ (

∑
i cifi)

Mn
= 1 =⇒ dif

M
i = 1, di ∈ A[c1, · · · , cn, f1, · · · , fn].

Thus b =
∑
i dibf

M
i ∈ A[ci, fi, bi,j ].

Definition (Harthshorne). Let X be a k-scheme where k = k. Then X is a k-variety means that X is integral,
separated and of finite type.

Definition (Vakil). A k-scheme X is a k-variety means X is reduced, separated, and of finite type.

Why does Harthshorne restrict to algebraically closed fields? Base change in algebraic geometry lets us turn
A-schemes to B-schemes. It might happen that if we go from a field to a field extension, we can lose the property
of being irreducible: see C⊗RC. Harthshorne doesn’t want to worry about that. A lot of authors want to follow
Harthshorne, so when they define k-scheme they want to restrict to the case where we don’t have problem if
we base change to k.

Let k be a field, X a k-scheme which is locally of finite type and x ∈ X a closed point. Then we can define the
degree deg(x) as follows:

K(x) = OX,x/m is a field which is also a k-vector space. i.e. K(x)/k is a field extension. Then deg(x) is the
degree of the field extension. Why should it be a finite extension?

X ∈ SpecA ⊂ X,A is a finitely generated k-algebra.

Note that K(x) = Am/mm = A/m.

As a ring, K(x) is finitely generated over k. By the Nullstellensatz, K(x) is a finite extension of k.

Example: Suppose k = R, X = Spec k[x, y]/(x2 + y2 − 1). This is the circle in R2. Consider a point on the
circle, let’s say (3/5, 4/5). This corresponds to the ideal I = (x− 3/5, y − 4/5). This is a degree 1 point.

If we take (2,±
√
−3), then we get the ideal (x− 2, y2 + 3) which has degree 2.

It roughly tracks what happens if we change base to a field extension.

Now, suppose we have A an integral domain. A ⊂ K = A(0). Consider a monic polynomial xn+a1x
n−1+· · ·+an

with ai ∈ A. Since A might not be Z, we might have a root in K that is not in A. This doesn’t happen in Z.
This can be captured by normality. A self intersecting curve doesn’t have normality, for example.

Wednesday, 10/15/2025

Let A be an integral domain, K = Frac(A).

A is integrally closed means that every root in K of any monic polynomial in A lies in A.

For example Z is integrally closed:

Suppose a, b ∈ Z and a
b is a root of xn + c1x

n−1 + · · ·+ cn with ci ∈ Z. Further suppose a
b is written in lowest

terms, i.e. gcd(a, b) = 1.

(a
b

)n
+ c1

(a
b

)n−1

+ · · ·+ cn = 0

Clearing denominators,

an + c1a
n−1b+ · · ·+ cnb

n = 0
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So b | an. Thus a prime factor of b must be a prime factor of a, so b = 1.

We only used the fact that Z is a UFD. We can deduce:

Theorem 39. Every UFD is integrally closed.

In particular, note that polynomial ring over UFD is UFD.

Non example: let A = k[t2, t3] = Spank(1, t
2, t3, t4, · · · ). Then Frac(A) = k(t). t is a root of x2 − t2.

Proposition 40. If A is integrally closed and S is a mutiplicative system in A, then S−1A is integrally closed.

Proof. Let xn + c1x
n−1 + · · ·+ cn ∈ S−1A[x].

We can write ci =
di
si for some s ∈ S.

Let α ∈ Frac(S−1A) = Frac(A) be a root of this polynomial.

Then sα is a root of xn + d1x
n−1 + · · ·+ dn.

Thus sα ∈ A =⇒ α ∈ S−1A.

Corollary 41. If A is integrally closed and P is a prime ideal in A then the local ring AP is integrally closed.

The (right) converse is also true.

Proposition 42. If A is an integral domain and AP is integrally closed for all prime ideals P of A then A is
integrally closed.

Proof. Let K = Frac(A). Suppose α ∈ K is the root of a monic polynomial with coefficients in A. Let
I = {a ∈ A | aα ∈ A}. This is an ideal.

If I = A then 1 ∈ I =⇒ α ∈ A so we’re done.

Note that if α ̸= 0 we have I ̸= 0.

Now suppose I is a proper ideal.

Let m ⊂ A be a maximal ideal containing I.

Claim: α /∈ Am. Suppose otherwise. Then α = t
m where m ∈ A \m but mα ∈ A =⇒ m ∈ I ⊂ m.

However, Am is integrallly closed and contains A. Contradiction.

Definition. X is a normal scheme if it is irreducible and every OX,x is integrally closed.

Theorem 43. TFAE:

1) X is normal.

2) X is irreducible and has an affine cover.

3) X is irreducible and every affine open is the spectrum of an integrally closed ring.
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Chapter 6: Quasicoherent Sheaves

(X,OX).

A sheaf F of OX -modules means a sheaf of abelian groups with for each U ⊂ X, an OX(U)-module structure
on F(U) compatible with restriction maps.

Quasicoherent sheaves are the main and most important class of OX -modules.

Let A be a commutative ring, M an A-module. Set X = SpecA. We define M̃ to be a sheaf of OX -modules
satisfying:

M̃(D(f)) =M

[
1

f

]

Note that M
[
1
f

]
is a module over OX(D(f)) = A

[
1
f

]
.

One of the ways to define a sheaf are on a base, and distinguished open sets form a base.

The modules of this form are called quasicoherent.

What are the stalks of this sheaf?

M̃P =MP .

Let (f1, · · · , fn) = (1). i.e. SpecA =
⋃n
i=1D(fi).

We have the exact sequence (proved earlier):

0→ A→
⊕

1≤i≤n

A

[
1

fi

]
→

⊕
1≤i̸=j≤n

A

[
1

fifj

]

It generalizes to modules:

0→M →
⊕

1≤i≤n

M

[
1

fi

]
→

⊕
1≤i̸=j≤n

M

[
1

fifj

]

Now we can define quasicoherent sheaves in general.

Definition. A sheaf F of OX -modules on X is quasicoherent if and only if there exists an affine cover of X
given by

⋃
α∈I SpecAα and a collection of Aα-modules Mα such that,

F
∣∣∣∣
SpecAα

as a module over OSpecAα
∼= M̃α

Theorem 44. The map M 7→ M̃ gives an equivalence of categories from A-modules to quasicoherent OSpecA-
modules.

Proof. Check: morphisms are the same.

Let M,N ∈ ModA, ϕ :M → N an A-linear map.

50



Define ϕ̃ : M̃ → Ñ by,

ϕ̃(D(f)) : M̃(D(f)) =M

[
1

f

]
→ Ñ(D(f)) = N

[
1

f

]

m

fk
7→ ϕ(m)

fk

The main thing to check:

Claim: If ψ : M̃ → Ñ is a morphism of OSpecA-modules there exists unique ϕ :M → N such that ψ = ϕ̃.

Proof of Claim: note that ψ(SpecA) : M̃(SpecA) → Ñ(SpecA) but M̃(SpecA) = M, Ñ(SpecA) = N so we

have M → N given by ϕ. We claim that ψ = ϕ̃.

M̃(SpecA) Ñ(SpecA)

M̃(D(f)) Ñ(D(f))

m M N n

m
1 M

[
1
f

]
N

[
1
f

]
n
1

ϕ
(
m
1

) ϕ(m)
1

ϕ

=

Theorem 45. If F is an OX module which is quasicoherent w.r.t. some affine cover, then it is quasicoherent
w.r.t. all affine opens.

Proof. We use affine communication lemma. Need to check:

1) If F is quasicoherent on SpecA then F
∣∣
D(f)

is quasicoherent on SpecA
[
1
f

]
:

M̃
∣∣∣
D(f)

(D(fg)) = M̃(D(fg)) =M
[

1
fg

]
. So M̃

∣∣∣
D(f)

=
˜
M

[
1
f

]
.

2) Suppose now F is a sheaf of OSpecA-modules on SpecA, f1, · · · , fn ∈ A with (f1, · · · , fn) = 1 and for

each i we have A
[

1
fi

]
-module Mi such that F

∣∣
D(fi)

∼= M̃i. Then we want to show that ∃ an A-module

M such that F ∼= M̃ as OSpecA-module:

Main task is figuring out what M is.
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F
∣∣
D(fifj)

M̃i

∣∣∣
D(fifj)

M̃j

∣∣∣
D(fifj)

˜
Mi

[
1
fj

] ˜
Mj

[
1
fi

]

∼=
∼=

∼=

= =

Φ̃ij

∼=

Φ̃ij must come from some Φij :Mi,j =Mi

[
1
fj

] ∼=−→Mj

[
1
fi

]
=Mj,i.

M := ker
⊕

1≤i≤n

Mi →
⊕

1≤i̸=j≤n

Mi,j

To prove that F ∼= M̃ the main thing is to prove that ∀i,

M̃i = F̃

∣∣∣∣
D(fi)

∼−→ M̃

∣∣∣∣
D(fi)

Comparing two quasi-coherent sheaves on D(fi).

So we’re checking Mi
∼−→M

[
1
fi

]
.

WLOG we check M1
∼−→M

[
1
f1

]
.

Localization is exact. So,

0→M →
⊕
i

Mi →
⊕
i̸=j

Mi,j

0→M

[
1

f1

]
→

⊕
i

Mi

[
1

f1

]
=Mi1 →

⊕
i̸=j

Mi,j

[
1

f1

]

0→M1 →
⊕
i

Mi,1 →
⊕
i̸=j

Mi,j,1

Friday, 10/17/2025

X = SpecA,F is an OX -module.

X =
⋃n
i=1D(fi), F

∣∣
D(fi)

∼= M̃i.

Mi is an A[1/fi]-module.

Claim: ∃ an A-module M such that F ∼= M̃ .

M̃i[1/fj ] = M̃i

∣∣∣∣
D(fifj)

∼= F
∣∣∣∣
D(fifj)

∼= M̃j

∣∣∣∣
D(fifj)

= M̃j [1/fi]
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Φi,jMi[1/fj ]
∼−→Mj [1/fi] =Mi,j

Let M = ker γ in the following:

0→M →
n⊕
i=1

Mi
γ−→

⊕
1≤i̸=j≤n

Mi,j

We need: M̃D(fi)(= M̃ [1/fi]) ∼=Mi.

Claim: M [1/fi] ∼=Mi. WLOG i = 1.

0 M [1/f1]
⊕n

i=1Mi[1/f1]
⊕

1≤i̸=j≤nMi,j [1/f1]

0 M1

⊕n
i=1M1[1/fi]

⊕
1≤i̸=j≤nM1[1/fifj ]

∼=Φi,1 ∼=Φi,1[1/fj ]

γM1

If F is quasicoherent then F(SpecA) =M .

[missed some stuff here]

Res
D(f)
SpecA :M →M ′ is A-linear.

By universal property of localization,

M M ′

M [1/f ]

M [1/f ]→M ′ exists for all OX -modules.

If F is a sheaf of OX -modules and for all afine opens SpecA ⊂ X and all distinguished opens D(f) ⊂ SpecA
we have:

F(SpecA)[1/f ]→ F(D(f))

is an isomorphism is an isomorphism of A[1/f ] modules then F is quasicoherent.

Tensor Products

Let F ,G be OX modules.

There is a presheaf tensor product given by F ⊗OX,pre
(U) = F(U)⊗OX(U) G(U).

Suppose we have M,N A-modules and f :M →M ′, g : N → N ′, h : A→ A′.

F :M ⊗A N →M ′ ⊗A′ N ′ then m⊗ n 7→ f(m)⊗ g(n) and we extend by linearity.
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F (am⊗ n) = h(a)f(m)⊗ g(n) = f(m)⊗ h(a)g(n) = f(m)⊗ g(an) = F (m⊗ an).

Let F ,G be OX -modules.

F ⊗OX,pre
G(U) = F(U)⊗OX(U) G(U)

F ⊗OX
G = (F ⊗OX,pre

G)sh

(F ⊗OX
G)x = Fx ⊗OX,x

Gx.

If F ,G are quasicoherent then F ⊗ G is again quasicoherent.

Let SpecA be affine open, D(f) a distinguished open of SpecA.

F = M̃,G = Ñ where M,N are A-modules.

Define a sheaf H = M̃ ⊗A N .

There is a natural map of OX -module F ⊗pre G → H.

D(f) ⊂ SpecA ⊂ X.

F
∣∣
SpecA

= M̃, G
∣∣
SpecA

= Ñ .

H
∣∣∣∣
SpecA

= M̃ ⊗A N

this defines a quasicoherent sheaf because:

H
∣∣∣∣
SpecA[1/f ]

=M [1/f ]⊗A[1/f ] N [1/f ]

≃ (M ⊗A N)[1/f ]

m

fk
⊗ n

f l
7→ m⊗ n

fk+l

We can check stalk level:

Hx = Fx ⊗OX,x
Gx

Let X be any scheme, F a sheaf of OX -modules.

Let f ∈ Γ(X,OX). Then Xf = {x ∈ X | f(x) ̸= 0}.

Xf is open so we can talk about Γ(Xf ,OX).
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Γ(X,OX) Γ(Xf ,OX)

Γ(X,OX)[1/f ]

Lemma 46 (QCQS Lemma). If X is QCQS (quasicompact quasiseparated) then F is quasicoherent if and only
if the map in the above diagram Γ(X,OX)[1/f ]→ Γ(Xf ,OX) is an isomorphism for all f .

If X is QCQS then it has a finite open cover X =
⋃
i SpecAi such that each SpecAi∩SpecAj =

⋃
k SpecBi,j,k.

We can look at the sequence:

0→ Γ(X,F)→
⊕
i

Γ(SpecAi,F)
γ−→

⊕
i,j,k

Γ(SpecBi,j,k,F)

[then not clear, later]

Grothendieck Pretopologies

Regularly, we have the set of affines, some collections of smaller affinees from good covers.

In a Grothendieck pretopology we have a collections of open sets U and for each U a collection of covers, which
are sets of open sets contained in U .

But we don’t want to think of these as sets, these can be objects in a category. So actual axioms are different.

1) If {Ui} is a cover of U and V ⊂ U is any open subset then {Ui ∩ V } is a cover of V .

2) If {Ui} is a cover of U and for each i, {Ui,j} is a cover of Ui then {Ui,j} is a cover of U .

3) {U} is a cover of U .

If we think about distinguished opens,

a) Every U is a distinguished open of itself.

b) If V is a distinguished open of U and W is a distinguished open of U then V ∩W is a distinguished open
of V and W itself.

Monday, 10/20/2025

We review the QCQS [Quasicompact Quasiseprated] lemma

Lemma 47 (QCQS Lemma). Let X be a QCQS scheme. If F is a quasicoherent sheaf of OX -mod and
f ∈ Γ(X,OX) and Xf = {x ∈ X | f(x) ̸= 0} an open subset of X,

Γ(X,F)
[
1

f

]
∼−→ Γ(Xf ,F).
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Let X =
⋃n
i=1 Ui where Ui = SpecAi.

We can write Ui ∩ Uj =
⋃ni,j

k=1 Ui,j,k where Ui,j,k = SpecAi,j,k.

F
∣∣
Ui

= M̃i and F
∣∣
Ui,j,k

= M̃i,j,k.

Sheaf axioms:

0→ Γ(X,F)→
n⊕
i=1

Γ(Ui,F)→
⊕
i,j,k

Γ(Ui,j,k,F)

Sequence of Γ(X,OX)-modules.

Apply (fZ)−1 to the complex. Recall
⊕

Γ(Ui,F) =
⊕
Mi and

⊕
Γ(Ui,j,k,F) =

⊕
Mi,j,k.

We have,

0→ Γ(X,F)
[
1

f

]
→

⊕
i

Mi

[
1

f

]
→

⊕
i,j,k

Mi,j,k

[
1

f

]

0→ Γ(Xf ,F)→
⊕
i

Γ(Xf ∩ Ui,F)→
⊕
i,j,k

Γ(Xf ∩ Ui,j,k,F)

Intermission: when is a full subcategory of an abelian category abelian?

A full subcategory D of an abelian category C is an abelian category if and only if:

1) 0 ∈ D.

2) ∀X,Y ∈ D, X ⊕ Y ∈ D.

3) ∀X,Y ∈ D, ϕ ∈ HomC(X,Y ) = HomD(X,Y ), we must have kerϕ, cokerϕ ∈ D.

Theorem 48. For any scheme X, the category QcohX is abelian.

Proof. 1) 0 is quasi-coherent.

2) Suppose F ,G ∈ QcohX . Let H(SpecA) = F(SpecA)⊕ G(SpecA) [which we write M ⊕N ]. Then,

H(D(f)) = F(D(f))⊕ G(D(f)) =M

[
1

f

]
⊕N

[
1

f

]

= (M ⊕N)

[
1

f

]
= H(SpecA)

[
1

f

]
So we have F ⊕ G → H. Then x↔ P ∈ SpecA.

Fx⊕Gx =MP ⊕NP = (M ⊕N)P = Hx. So we have an isomorphism at the stalk level. We need to check
that this map respects local compatibility, that would imply we have global isomorphism.

To check compatibility, we need to find sections on an open set containing x. We can shrink those open
sets to only check at affine opens, which we have done. So we’re done.
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3) Now we check kernels and cokernels. Consider F ϕ−→ G. Recall that we can patch an scheme out of
affine schemes. We don’t distinguish between morphisms of sheaves and what it does to SpecA. Let
F(SpecA) ≡M,G(SpecA) = N,ϕ(SpecA) = ϕ.

We have A-module homomorphism M
ϕ−→ N .

Write K →M
ϕ−→ N → C → 0.

Let K(SpecA) = K̃.

Let C(SpecA) = C̃.

We check that these define quasicoherent sheaves. i.e. the following is exact:

0→ K

[
1

f

]
→M

[
1

f

]
→ N

[
1

f

]
→ C

[
1

f

]
→ 0

This means K(D(f)) = kerM [1/f ]→ N [1/f ] = K[1/f ] ≃ K̃(SpecA)[1/f ].

Thus K and C are quasicoherent sheaves. We need to check that they are actually the kernel and cokernel.

In order to do this, we need to check exactness of complexes of abelian groups at the stalk level.

0→ Kx → Fx → Gx → Cx → 0

is exact of all x ∈ SpecA ⊂ X. If x↔ P then,

0→ KP →MP → NP → CP → 0

Suppose X is a locally noetherian scheme. We define a coheren

Definition (Coherent Sheaves). Suppose X is a locally noetherian scheme. We define a coherent sheaf on X

to be a quasicoherent sheaf F such that ∀ SpecA ⊂ X we have F ∼= M̃ where M is an A-module satisfying the
following 3 conditions:

1) M is finitely generated as an A-module.

2) M is finitely presented as an A-module.

3) M is coherent as an A-module

Note: finitely generated means there is a finite set of generators.

Finitely presented means there exists a surjective map of A-modules Ar → M with finitely generated kernel,
i.e. not only is it finitely generated, there are finitely many relations that generate all the other relation.

Coherent means that M is finitely generated M is finitely generated and every A-linear map from Ar to M has
finitely generated kernel.

These conditions are equivalent for modules over noetherian rings.

Why are the conditions equivalent?

If M ⊂ A2 is an A-submodule,
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m1, · · · ,mk m1, · · · ,mk

M M

0 A A2 A 0

∈ ∈

⊂ ⊂

M ∩A = (n1, · · · , nl). M = spanA(m1, · · · ,mk, · · · , n1, · · · , nl).

Theorem 49. If X is a locally noetherian scheme and F ⊂ G are quasiocherent sheaves and G is cooherent,
then F is coherent.

Proof. Taking sections over SpecA it suffices to show that an A-submodule M of a finitely generated A-module
N is again finitely generated.

Lemma 50. If A is noetherian and M ⊂ N are A-modules and N is finitely generated then M is finitely
generated.

Proof: Here is the situation:

Ar

M Ni

We can take the fiber product:

M ′ Ar

M N

i

i

Thus M must be finitely generated.

Theorem 51. If X is locally noetherian, then CohX is an abelian category.

Proof. 1) O is coherent.

2) If F ,G are coherent, SpecA ⊂ X,M = F(SpecA), N = G(SpecA), (F ⊕ G)(SpecA) =M ⊕N .

3) If M,N are f.g. modules, wee need to show kerϕ :M → N and cokerϕ :M → N are fintiely generated.

A coherent sheaf F is locally free if X has an affine cover
⋃
α∈I SpecAα such that F

∣∣
SpecAα

∼= M̃α where Mα

is a free f.g. Aα module, i.e. Mα
∼= Arα.

Locally free sheaves are the algebraic geometer’s version of vector bundles.

Locally free sheaves do not form an abelian subcategory of coherent sheaves. Not even close.
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Example: Suppose A = Z and M,N ∈ Z as modules over A. They’re rank 1 free modules. We further define

M
·2−→ N , which is just Z ·2−→ Z. Then coker ·2 = Z/2Z. But Z/2Z is not free. We want to check it is not free

in all affine neighborhoods of [(2)]. These are SpecZ[1/odd]. Then cokernel is not free.

A sheaf of ideals on a loclly noetherian scheme means a coherent subsheaf of OX .

OX is a locally free sheaf of rank 1.

Is a sheaf of ideals necessarily locally free? Not necessarily.

Example: Let X = Spec k[x, y], I = (x, y).Ĩ is a sheaf of ideals on X.

If it were locally free, we would have some open neighborhood Ĩ
∣∣∣
D(fi)

∼= OSpecA[1/fi].

At the level of ideals, it means I[1/fi] ∼= free A[1/fi]-module. It would actually have to be a free-module of
rank 1. Thus it would need to have a single generator as an A[1/fi]-module. But any open set containing the
origin would need at least two generators.

Wednesday, 10/22/2025

Mentally, algebraic geometers identify locally free sheaves with vector bundles.

Suppose B is a smooth manifold. Then a vector bundle is another smooth manifold
E
π ↓
B

, and if Eb = π−1b then

Eb is a vector space for all b ∈ B.

We could finish the definition in two ways. We can consider E×BE
+−→ E which gives fiberwise vector addition.

Then,

E ×B E E

B

+

We also have scalar multiplication:

C× E E

B

scalar

E also has to be locally trivial. For all b ∈ B there exists an open neighborhood U such that:

π−1U U × Cn

U U

∼=

π pr1

=

We also need:
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π−1(U ∩ V ) (U ∩ V )× Cn

U ∩ V

Then U ∩ V → Map(Cn,Cn) = GLn(C).

Given a vector bundle π : E → B consider all sections:

F(U) =

{
U

s−−−−→
smooth

π−1U : π ◦ s = idU

}

Let OB = sheaf of smooth functions on B.

Claim: F(U) is a sheaf of OB-modules.

Then, we have the key idea:

This sheaf is locally free

U × Cn

U

pr1
s

So locally free sheaves and vector bundles have a lot in commmon.

There’s another object that has a lot in common with them: Finitely generated projective modules.

Let A be a ring and let M,N be A-modules. Suppose we have a surjective A-linear map ϕ :M ↠ N . Suppose
we have an A-linear map Ar → N . Suppose further that we can lift to a map Ar →M .

Ar

M N
ϕ

This categorical property characterizes a somewhat larger class of A-modules, the projective A-modules.

Definition. A module P is projective if and only if for every surjective module homomorphism M ↠ N and
a module homomorphism P → N we can lift to a module homomorphism P →M .

P

M N
ϕ

We’re only interested in finitely generated projective modules. Assume A is Noetherian and P is a f.g. projective
A-module.

For example: A = Z[
√
−5], P = (2, 1 +

√
−5).
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Theorem 52. If P is a f.g. projective module, then there exists an isomorphism Ar ∼= P ⊕Q of A-modules for
some r and some module Q.

Conversely, any direct summand of Ar is projective.

Proof. The converse is easier to see.

Ar

P

M N

pr1

ϕ

For the other direction, P is finitely generated so there exists a surjective f : Ar ↠ P for some r.

P

Ar P

f
id

f : P → Ar is injective. Define Q = coker f .

0 P Ar Q 0
f

ϕ

g

Thus Ar → P ⊕Q. The map is given by (ϕ, g)

P projective ⇐⇒ P̃ locally free.

Suppose X = SpecA. Then P̃x ∼= OrX,x for some r. Px is a finitely generated projective OX,x-module, a local
ring. P ⊕Q = Ar =⇒ Px ⊕Qx = Arx = OrX,x.

Claim: f.g. projective module over a local ring is free.

The proof follows from Nakayama’s lemma.

Examples of Quasicoherent Scheme

Firstly, if X = SpecA then we any M̃ works.

Example: Ar, projective A-modules. Recall they’re like vector bundles.

A/I where I is an ideal. An special case is A/m where m is a maximal ideal.

What is the stalk at a point x corresponding to the ideal P at Ã/I?
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If P /∈ V (I) we claim that (A/I)P = 0. In fact IP = AP because P /∈ V (I) ⇐⇒ I ⊈ P ⇐⇒ ∃a ∈ I \ P .
Then a

a ∈ IP . We have SES 0→ I → A→ A/I → 0 so we have 0→ IP → AP → (A/I)P → 0, and if we have

IP
∼=−→ AP we must have (A/I)P = 0.

Since the stalk at any P ∈ V (I) is 0, any germ must also be 0. We can say the sheaf ‘lives on V (I)’..

More generally any A/I-module M is an A-module on which I acts as 0. In other words I annihilates M .

Notation: let M be an A-module and let m ∈ M . Define the support of m as follows: Suppm = SuppAm =
{P ∈ SpecA : mP ̸= 0}.

Geometrically, m is a section of the sheaf M̃ . We are asking: what points of these scheme is the germ of m
non-zero?

SuppM = {P ∈ SpecA :MP ̸= 0} =
⋃
m∈M Suppm.

Note that mP = 0 means ∃a ∈ A \ P such that am = 0. Meaning, I = AnnA(m) ⊈ P . Meaning P ⊈ V (I).

Suppm is always a closed subset of SpecA. SuppM is often but not always closed.

Example: let A = Z,M = Z(2)/Z. ∀p ̸= 2, 1p (mod 1) is annihilated by (p). Then we have Supp(Q/Z) =

{closed points except (2)} in SpecZ.

Now we talk about associated points.

Definition. AssAM = SpecA ∩ {Ann(m) | m ∈M}

Note that Ann(m) is not necessarily prime. We collect all the annihilators that happen to be prime.

Suppose P = Ann(m). Then Am ∼= A/P ⊂M . Therefore,

AssAM = {P ∈ SpecA : some submodule of M ∼= A/P}

If A is noetherian and M is finitely generated then the set of associated points AssAM is finite and SuppM is
AssAM .

Chapter 7

We know what schemes are but we don’t have the category of schemes. We need morphisms of schemes.

First Idea (Geometric):

If we have map of ringed spaces (X,OX)
π−→ (Y,OY ).

Then we have π∗OY (U) → OX(π−1U) must be a ring homomorphism compatible with restriction. Meaning,
π∗OX is a sheaf of OY -algebras [algebras are modules with ring structure].

OY (U) OX(π−1U)

OY (V ) OX(π−1V )

Second Idea (Algebraic):
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We want MorSchemes(SpecA, SpecB) = MorRings(B,A).

This means, if we have X,Y schemes and affine opens SpecA ⊂ X and SpecB ⊂ X that map then we have the
map B → A.

Official definition is not this.

Friday, 10/24/2025

Recap: π : X → Y, π∗ : OY → π∗OX .

OY (U) OX(π−1U)

OY (V ) OX(π−1V )

π∗(U)

res res

π∗(V )

We can also look at stalks. If we have p ∈ X and π(p) = q ∈ Y , since the map respects restrictions as in the
commutative diagram, we have p ∈ π−1q and a map OY,q → OX,p.

We don’t know a priori that the stalks are local rings. But if we have schemes, which are locally affine schemes
and thus X = SpecA, x↔ P we have OX,x = AP .

Definition. A local homomorphism between local rings:

(B, n)
f−→ (A,m)

is a homomorphism f such that f−1(m) = η.

Noon-example: consider p-adics. A = Qp and B = Zp then we have f : Zp ↪→ Qp. [We can also think about
A = C((t)), B = C[[t]]].

Then m = (0), η = (p). But f−1(m) = (0) ̸= η. So f is not a local homomorphism.

Definition. A morphism π : (X,OX) → (Y,OY ) of locally ringed spaces is a local homomorphism if the map
OY,q → OX,p is local for all q = π(p).

Theorem 53. Let π♯ : B → A be a ring homomorphism. Then the associated map of locally ringed spaces
(SpecA,OSpecA)→ (SpecB,OSpecB) is local.

Suppose π : X → Y where X = SpecA and Y = SpecB. Suppose this sends the ideal P to the ideal Q.

Then Q = π♯−1(P ). We have:

BQ = OY,Q → OX,P = AP

So it is a map BQ → AP .

Note that BQ = B[(B \Q)−1]. We have,

b

f
→ π♯(b)

π♯(q)
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.

Then, BQ = B[(B \Q)−1]→ A[π♯(B \Q)−1] ⊂ A[(A \ P )−1] = AP .

The maximal ideal of AP is PAP . Then, π
♯−1(PAP ) = π♯−1(P )BQ = QBQ.

Then, if we have a local homomorphism (B, n) → (A,m), we claim that we have a well-defined map K(n) =
B/n→ A/m = K(m). It is a field homomorphism so it must be a field extension: we have K(n) = K(m).

We claim that a section of OX at a neighborhood U of x ∈ X has a well-defined value at x, which is an element
of OX,x/mx = K(x).

Now, suppose we have:

(X,OX)→ (Y,OY )

p 7→ q

X = SpecA, Y = SpecB, π : (X,OX)→ (Y,OY ) is a morphism of ringed spaces.

B = OY (Y )→ OX(π−1(Y )) = OX(X) = A

Then if π is a morphism of ringed spaces then it determines a homomorphism B → A which we write π♯(X).

Non-Example: A non-local morphism of ringed spaces betwwen affine schemes: Consider Qp and Zp again.

X Y

{(0)} SpecQp SpecZP {(0), (p)}

(0) = {(0), (p)}

= π =

Then, π({(0)}) = (p). Open sets in SpecZp is ∅, {(0)}, {(0), (p)}.

π#(U) : OY (U)→ OX(π−1(U)),OY (Y )→ OX(X),Zp ↪→ Qp.

However, if we start with Zp
π♯

−→ Qp we get a different map of ringed spaces, π♯−1(0) = (0).

We have two notions. Which one is the ‘right’ notion? The latter one.

Theorem 54. There is only one local homomorphism π : X → Y,X = SpecA, Y = SpecB corresponding to a
given ring homomorphism π♯ : B → A.

Proof. If we have a local homomorphism of affine schemes, then at the level of topological spaces, we want it
to do what it is supposed to do: it sends any prime ideal to the right prime ideal.

Let P ∈ SpecA = X,Q ∈ π♯−1(P ) ∈ SpecB.

Claim: π(P ) = Q.

To prove this: note that π(P ) is the kernel of B → K(P ), where:
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B K(P )

A AP

π♯

Let Q = {x ∈ B | π♯(x) ∈ P}.

We have: B → BQ → AP → K(P ).

Essentially, a a given π♯ induces a map BQ → AP , which forces π(P ) = Q.

Suppose we again have SpecA = X → Y = SpecB and g ∈ B.

π−1(DB(g)) = π−1(DA(π
♯(g)))

Γ(Y,OY ) Γ(X,OX)

B A

= =

π♯

Γ(DB(g),OY ) Γ(DA(π
♯(g)),OX)

B[1/g] A[1/π♯(g)]

= =

B A

B[1/g] A[1/π♯g]

π♯(X)

π♯(DB(g))

b π♯(b)

b
gn

π♯(b)
π♯(g)n

Now we’re ready to define the category of schemes.

Definition. A morphisms between schemes (X,OX) and (Y,OY ) is a local morphism of locally ringed spaces.

Example: what is a morphism from X to SpecB?

X =
⋃
α∈I SpecAα SpecB

SpecAα SpecB

∀α Aα B

SpecAβ ⊂ SpecAα Aα Aβ

B

Then we can say:
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Proposition 55. A scheme together with a morphism to SpecB is in fact a locally ringed space of B-algebras.

Definition. The functor of points of a scheme X is the contravariant functor from schemes to sets given by:

Z → MorSch(Z,X)

For example, Z →W ⇝ MorSch(W,X)→ MorSch(Z,X). This is just the Yoneda embedding.

Slogan: a morphism of schemes from Z to X is just a Z-valued point on X.

For example, X = SpecQ[x, y]/(x2 + y2 − 1),K ⊃ Q. Then what is a SpecK-valued point of X?

Note that we have SpecK → SpecQ[x, y]/(x2 + y2 − 1).

Q[x, y]/(x2 + y2 − 1)→ K.

Monday, 10/27/2025

Recap: we were talking about functor oof points on a scheme.

If X is a scheme, we can find X ⇝ FX(Z) = MorSch(Z,X).

Suppose we’re interested in solving f1(x1, · · · , xn), · · · , fm(x1, · · · , xm) over k, maybe even extensions of k.

Thus the system defines a functor from k-algebras to sets.

Suppose A = k[x1, · · · , xn]/(f1, · · · , fm).

If B is a k-algebra, then there exists a k-algebra homomorphism.

From B we can get Homk-alg(A,B) = solutions in B of the system. Indeed, ϕ(xj) ∈ B are the solutions.

Equivalently, we can think about MorSch /k(SpecB,SpecA).

For example, consider the following:

{[
a b
c d

]
: ad− bc = 1

}
= SL2(−)

[We don’t know a priori where a, b, c, d live.]

Then, we can look at SpecZ[a, b, c, d]/(ad− bc− 1).

Generally, suppose we want to look at A = Z[x]. Consider SpecA = A1
Z = A1. This is a scheme.

Question: what is a Z-point of A1?

Then, what I am really asking is, what is Mor(Z,A1)?

Whenever we have an affine scheme and we look at morphisms to the affine scheme, it is the same thing as
looking at schemes with extra structure.

Then, such a morphism can be thought of as a Z[x]-algebraed [think of ringed space] which is covered by
spectrum of Z[x]-algebras.
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What is a Z[x]-algebra? A Z-algebra is a commutative ring. Then, any Z[x] → B has only the extra data of
where x goes, since Z→ B.

There is no constraint, x can go wherever it wants. So, it contains the same information as an element of B.

i.e. there exists a 1 to 1 correspondence from Z[x] algebra and an element of B.

A Z[x] algebra means a pair consisting of a ring and an element of that ring!

Suppose we have a scheme Z =
⋃
i SpecAi. Then SpecB ⊂ Z.

Z is a ringed space, (Z,OZ). Then, Γ(SpecAi,OZ) = Ai.

This means, Mor(Z,A1) = Γ(Z,OZ).

What is the functor of points on A1? It is just Z 7→ OZ .

Another example: instead of A1, let’s look at SpecZ
[
x, 1x

]
.

What is the functor of point on this?

Let’s look at affine opens. What is Z
[
x, 1x

]
→ A?

Think of Z[x, y]/(xy − 1)→ A.

Then x has to go to something which has a reciprocal. And reciprocal in a ring, if it exists, must be unique:
ab = ac = 1 =⇒ a(b− c) = 0 =⇒ ab(b− c) = 0 =⇒ b− c = 0 =⇒ b = c.

Thus, the data of the homomorphism is just A and a choice of an unit in A.

= A× = multiplicative group of units in A.

Think now about a group scheme. A group scheme G is a scheme G together with some additional data
G × G → G. [Note that we need to show that products exist in the category of scheme. Suppose we have a
reasonable notion of a product now. Now think G as a group scheme over a ground ring S and think about
fiber product, then G×S G→ G].

G×S G→ G is the ‘group law’.

What is the functors of points for P1? Roughly speaking, P1 is A1 together with a point on infinity. We can
define coordinate (x : y) on P1.

If x, y ∈ Γ(Z,OZ) we can send it to (x : y).

Consider the section x
y of Spec k[x, y]. Note that it is not a global section.

There is no way oxtending the obvious map from A2
k \ {(0, 0)} to P1 to all of A2

k!
0
0 is different from 1

0 .

To what extent does a homomorphism of graded rings determine in morphism of Proj schemes?

Let Φ : S• → R• be a homomorphism of graded rings.

What do we know about Proj(R•)→ Proj(S•)?

Consider the irrelevant ideal S+ =
⊕

n≥1 Sn.

Φ defines a morphism of schemes ProjR0 \ V (Φ(S+))→ ProjS•
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Cover of these two schemes by affine opens and ring homomorphism from S to R.

For f ∈ Sn let D+(f) = non-irrelevant homogeneous prime ideals which do not contain f .

Γ(D+(f),OProj(S•)) =
(
S•

[
1
f

])
.

Thus OProj(S•)

∣∣
D+(f)

= Spec
(
S•

[
1
f

])
0
.

Then, Φ : S• → R•

Γ(D+(Φ(f)),OProj(R•)) =
(
R•

[
1

Φ(f)

])
0
.

Φ determines a homomorphism of Z-graded rings:

S•

[
1

f

]
→ R•

[
1

Φ(f)

]
0

and therefore a ring homomorphism S•

[
1
f

]
0
→ R

[
1

Φ(f)

]
0
and therefore a morphism of affine schemes:

SpecR•

[
1

Φ(f)

]
0

SpecS•

[
1
f

]
0

ProjR• ProjS•

⊂ ⊂

For the SpecR•

[
1

Φ(fi)

]
0
to cover ProjR• we need for each homogeneous prime ideals P ⊂ R which is not

contained in R+ a homogeneous fi ∈ S+ such that Φ(fi) /∈ P .

This is possible exactly if P /∈ V (Φ(S+)).

So the following diagram commutes:

S•

[
1
f

]
R
[

1
Φ(f)

]

S•

[
1
fg

]
R•

[
1

Φ(fg)

]

Φ determines a homomorphism of Z-graded rings.

Consider example. Consider the graded ring homomorphism:

k[x, y, z] k[x, y]z 7→0

Then we have Spec k[x, y]→ Spec k[x, y, z].

We can think of it as follows: the xy-plane embeds naturally in the xyz-space.

S+(x, y, z) are polynomials with trivial constant. Φ(S+) = R+, again polynomials with trivial constants.
V (R+) = ∅.
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i.e. Proj k[x, y]→ Proj k[x, y, z] is given by (a : b) 7→ (a : b : 0).

Now consider S• = k[x, y]→ k[x, y, z] = R•.

Then Spec k[x, y, z]→ Spec k[x, y] given by (a, b, c) 7→ (a, b).

S+ = (x, y) so Φ(S+) = ideal (x, y) in k[x, y, z].

V (Φ(S+)) = z-axis → (0 : 0 : 1).

Then we expect Proj k[x, y, z] 99K Proj k[x, y] by (a : b : c) 7→ (a : b).

But (0 : 0 : 1) 7→ (0 : 0) which is not a point.

Rational Maps

Suppose we have reduced schemes X and Y . A rational map is an equivalence class of pairs (U, π) where U is
a dense open subset of X [thought of as an open subscheme] where π : U → Y .

(U1, π1) ∼ (U2, π2) if there exists a dense open set V ⊂ U1 ∩ U2 such that π1
∣∣
V
= π2

∣∣
V
.

A morphism of schemes π : X → Y is dominant if π(X) is dense in Y . If X,Y are irreducible with generic
points ηX and ηY this is the same as π(ηX) = ηY .

A rational map is dominant if it is represented by (U, π) where π : U → Y is dominant.

Wednesday, 10/29/2025

Recall the setup. Suppose X,Y are reduced schemes. f : X 99K Y is a rational map, i.e. an equivalence class:

(U, π : U → Y ) where U is a dense open subscheme of X.

(U, π) ∼ (U ′, π′) iff there exists an open dense V ⊂ U ∩ U ′ such that π
∣∣
V
= π′

∣∣
V
.

Suppose we have dominant rational maps X
f
99K Y, Y

g
99K X. Since they’re dominant it makes sense to compose

them:

f ◦ g : Y 99K Y

g ◦ f : X 99K X

Suppose these are identity maps rational maps. Then f, g are birational maps.

Definition. We say X and Y are birationally equivalent if and only if there exists a birational map X 99K Y .

Theorem 56. Reduced schemes X,Y are birationally equivalent if and only if there exists dense open sub-

schemes U ⊂ X and V ⊂ Y and an isomorphism U
≈−→ V .

Proof. Suppose X and Y are birationally equivalent. We want dense open subsets X1 and Y1 of X and Y
respectively. Consider:
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X Y

X1 Y1

f−1(Y1) = X2

X3 Y2 = g−1(X3)

f−1(Y3) = X4 Y3

⊂

f

⊂g

⊂

f

⊂

f

⊂

g

⊂

f

⊂

Then g ◦ f is identity on X3, f ◦ g is identity on Y3.

Proposition 57. Let k be a field, X an integral k-scheme, and Y an integral k-scheme of finite type.

Y = ∪α SpecAα

Aα = k[x1, · · · , xnα
]/Iα

Suppose K(Y )
π♯

−→ K(X) by field inclusion.

There exists a rational map X → Y which induces π♯.

Note that if ηX is the generic point of X, then K(X) = K(ηX) and ηX ∈ U ⊂ X for any dense open U .

Proof. WLOG we replace Y by an affine open: Spec k[x1, · · · , xn]/I = SpecB.

We have a field extension. Then.

K K(Y ) K(X)

B

⊂ π♯

⊂

Now we consider the image of B under π♯.

Then K(X) contains k[π♯(x1), · · · , π♯(xn)]/π♯(I).

Here π♯(xi) ∈ Γ(Ui,OX). Let U =
⋂n
i=1 Ui. Choose V ⊂ U to be affine. A ⊂ Γ(V,OX) so that Frac(A) = K(X).

We claim that SpecA is an affine open subscheme of X, which we use as U . There exists a morphism SpecA→
SpecB ⊂ Y which realizes π♯.

SpecA Y

X

⊂
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Example: consider the map:

Spec k[x, y]/(x2 + y2 − 1)→ Spec k[z]

circle→ A1

(x, y) 7→ y

x− 1

In fact we can extend this to a morphism in P1:

(x, y) 7→
[

y

x− 1
: 1

]
= (y : x− 1) = (x+ 1 : y)

So the map is defined on the circle.

For another example, consider the affine curve y2 = x3 + x2. We claim that (x, y) 7→ y
x is birational. Why?

Suppose y
x = m. Then we have m2x2 = x3 + x2. As long as x ̸= 0 we have x = m2 − 1. Thus we have the map

m 7→ (m2− 1,m3−m). We similarly have a birational map Spec k[x, y]/(y− x3− x2)→ P1 by (x, y) 7→ (y : x).

Note that at (0, 0) this morephism is not well defined.

Given a property of schemes, we can ask for an analogous property of morphism:

X π−1(SpecA) has property P

Y SpecA

π

⊃

A property P of morphisms is reasonable if it satisfies the following:

i) Isomorphisms satisfy P .

ii) Compositions of morphisms satisfying P satisfies P .

iii) If X → S satisfies P and Y → S is arbitrary, then X ×S Y → Y also satisfies P .

Fiber product:

Z

X X ×S Y

S Y

has P also has P

A morphism X → S has P if and only if X ×S U → U has P for all open U ⊂ S in an open cover.
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X X ×S U π−1(U)

S U

π

=

Examples: Isomorphism is a reasonable property.

Open immersion is a reasonable property.

Now we do some commutative algebra.

Suppose we have a map B → A and a ∈ B.

We say a is integral over B if it satisfies some monic polynomial with coefficients in B.

We say A is integral over B if a is integral over B for all a ∈ A.

We say A is an integral extension over B if it is integral and B → A is injective. i.e. we can think about B is a
subring of A.

Lemma 58. a ∈ A is integral over B if and only if there exists a subring A′ of A containing a such that A′ is
a finitely generated B-module.

Proof. Suppose a satisfies the polynomial equation:

xn + b1x
n−1 + · · ·+ bn = 0

We can define A′ = SpanB(1, a, a
2, · · · , an−1).

Note that an = −b1an−1 − · · · − bn ∈ A′. Thus A′ is indeed a finitely generated B-module.

Now, suppose A′ exists and spanned over B by a1, · · · , an. aai ∈ A′ =⇒ aai =
∑
j bijaj where bij ∈ B.

Then we have a matrix (bij)

a1...
an

 = a

a1...
an

.

Thus, (aI − (bij))

a1...
an

 = 0.

Therefore det(aI − (bij))

a1...
an

 = 0.

Therefore, det(aI − (bij))A
′ = 0 =⇒ det(aI − (bij)) = 0.

Computing the determinant, we see that it belongs to an + SpanB(1, a, a
2, · · · , an−1).
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Friday, 10/30/2025

No class Nov 7,12,14

If X,Y are schemes over a sheme S, i.e. we have morphisms π : X → S and ρ : Y → S then an S-morphism
σ : X → Y means a morphism which commutes with π, ρ.

X Y

S

σ

π ρ

An S-rational map is (U, σ) where U ⊂ X is a dense open subscheme and σ : U → Y is an S-morphism.

Proposition 59. Let X and Y be integral schemes over k and assume Y is of finite type. Given a field extension
π♯ : K(Y )→ K(X) there exists a k-rational map (U, π) from X to Y which gives π♯

Let SpecA be an affine open in X.

Let SpecB be an affine open in Y .

So, Frac(A) = K(X),Frac(B) = K(Y ).

Also B = k[y1, · · · , yn]/I.

yi ∈ B ⊂ K(Y )
π♯

⊂ K(X).

π♯yi =
ai
fi
; ai, fi ∈ A .

Let f = f1f2 · · · fn.

A
[
1
f

]
is a f.g. k-algebra with fraction field Y and π♯yi ∈ A

[
1
f

]
. Therefore,

yi
ai
fi

B A
[
1
f

]

K(Y ) K(X)

U = SpecA
[
1
f

]
π−→ SpecB with π♯ : B → A

[
1
f

]
with Frac(B)→ Frac

(
A
[
1
f

])
.

U ⊂ SpecA ⊂ X.

Suppose B → A ∋ a.

Theorem 60 (Lying over theorem). Let A be an integral extension of B. Then SpecB → SpecA is surjective.

Let us prove something more basic first.
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Lemma 61. If A is an integral extension of B and S is a multiplicative system of B then S−1A is an integral
extension of S−1B.

Proof. i : B ↪→ A.

Define: S−1i : bs 7→
i(b)
i(s) ∈ i(S)

−1A

Suppose i(b)
i(s) = 0 in i(S)−1A. Then ∃i(t) ∈ i(S) such that i(bt) = i(b)i(t) = 0 =⇒ bt = 0 =⇒ b = b

1 = 0 =⇒
b
s = 0. Let a

s ∈ S
−1A.

a is integral over B. Thus, we can find monic polynomial xn + b1x
n−1 + · · ·+ bn ∈ B[x] such that:

an + b1x
n−1 + · · · bn = 0

=⇒
(a
s

)n
+
b1
s

(a
s

)n−1

+ · · ·+ bn
sn

= 0

Lemma 62. If A is an integral extension of B and A is a field, then B is a field.

Let 0 ̸= b ↪→ A ∋ 1
b .

Then
(
1
b

)n
+ b1

(
1
b

)n−1
+ · · ·+ bn = 0 =⇒ 1 + b1b+ b2b

2 + · · ·+ bnb
n = 0.

Now the original proof:

Proof. A is an integral extension of B. Let Q ∈ SpecB. Let S = B \Q.

Replace B by S−1B = BQ.

Replace A by S−1A.

We have B ↪→ A but B is a local ring. Let P be a maximal ideal of A. Then P ∩B is a prime ideal of B.

B A

B/P ∩B A/P

B/P ∩B is a field, so P ∩B is a maximal ideal. B is a local ring with unique maximal ideal. Thus P ∩B = Q.

Lemma 63 (Nakayama 1). If M is a f.g. A-module and I is an A-ideal such that IM =M then ∃a ∈ I, a ∼= 1
(mod I) such that aM = (0).

Proof. Suppose m1, · · · ,mn generate M . Write mi =
∑
j aijmj .

[
a11 a12
a21 a22

] [
m1

m2

]
=

[
m1

m2

]
=⇒

[
a11 − 1 a12
a21 a22 − 1

] [
m1

m2

]
=

[
0
0

]

((a11 − 1)(a22 − 1)− a12a21)
[
1 0
0 1

] [
m1

m2

]
=

[
0
0

]
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Then ami = 0 if ∀i =⇒ aM = 0 where a ∼= 1 (mod I).

Lemma 64 (Nakayama 2). If I is contained in the Jacobson radical of A and IM =M then M = 0.

Proof. Recall J(A) =
⋂

m m.

Lemma: If a ≡ 1 (mod J(A)) then a is invertible.

Proof: If a is not invertible then (a) is proper so (a) ⊂ m for some m. Then a ∈ m so a − 1 /∈ m which is a
contradiction.

Lemma 65 (Nakayama 3). Let N ⊂M be finitely generated and suppose N/IN →M/IM is surjective [Here
(N + IM) =M ]. Then N =M .

Proof. Claim: I(M/N) =M/N . Thus M/N = 0.

Lemma 66 (Nakayama 4). Let (A,m) be a local ring, M a finitely generated module and f1, · · · , fn elements
of M such that f1, · · · , fn spans M/mM . Then f1, · · · , fn generate M .

Proof. Let N = Span(f1, · · · , fn) and I = m. Then N/IN ↠M/IM .

Definition. A morphism π : X → Y is quasicompact if ∀U ⊂ Y affine open, π−1(U) is quasicompact.

Equivalently, if U ⊂ Y is a quasi-compact open then π−1(U) is quasi-compact.

Proposition 67. X
π−→ Y is quasi-compact if and only if ∃ an affine open cover Y =

⋃
α Uα such that π−1Uα

is quasi-compact for all α.

Proof. Use the affine communication lemma.

1) If π−1 SpecA is quasi-compact, then π−1(SpecA
[
1
f

]
) is quasi-compact.

2) If SpecA =
⋃n
i=1 SpecA

[
1
fi

]
and π−1D(fi) are quasi-compact,

then π−1(SpecA) is quasi-compact.

1) π−1(SpecA) =
⋃N
j=1 SpecBj .

SpecBj
π|

SpecBj−−−−−−→ SpecA

A
π♯
j−→ Bj

π−1(D(f)) =

N⋃
j=1

SpecBj

[
1

π♯j(f)

]

2) π−1(SpecA) = π−1 (
⋃
iD(fi)) =

⋃
i π

−1(D(fi))
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Monday, 11/3/2025

Theorem 68. π : X → Y is a quasi-compact morphism if and only if ∃ affine cover Y =
⋃
Bα such that

π−1(SpecBα) is quasi-compact for all α.

Theorem 69. π : X → Y is quasi-separated morphism if and only if ∃ affine cover Y =
⋃
SpecBα such that

π−1(SpecBα) is quasi-separated for all α.

Proof. 1) Let X
π−→ SpecB where X is quasi-separated. Then π−1(D(f)) is quasi-separated.

2) If SpecB
⋃
D(fi) and π

−1(D(fi)) is quasi-separated for all i then X is quasi-separated.

Proofs:

Let SpecA1 and SpecA2 be affine opens in X. Then, we want to show SpecA1 ∩SpecA2 =
⋃n
i=1 SpecCi. Note

that, we can find π♯ : B → A1 and π♯ : B → A2 so that if f ∈ B we have π♯ : B
[
1
f

]
→ A1

[
1
π♯f

]
, B

[
1
f

]
→

A2

[
1
f

]
.

Where SpecAi

[
1
π♯f

]
is the inverse image of D(f) in SpecAi.

Note that we also have π♯ : B → Ci.

SpecA1

[
1
π♯f

]
∩ SpecA2

[
1
π♯f

]
=

⋃n
i=1 SpecCi

[
1
π♯f

]
.

Note that,

SpecAj =
⋃n
i=1 SpecAj

[
1

π♯fi

]
.

SpecA1 ∩ SpecA2 =
⋃n
i=1 SpecA1

[
1

π♯fi

]
∩ SpecA2

[
1

π♯fi

]
We have SpecA1

[
1

π♯fi

]
∩ SpecA2

[
1

π♯fi

]
can be written as the union so we’re done.

Definition. We say π : X → Y is affine if ∃ affine cover Y =
⋃
α SpecBα such that π−1(SpecBα) is affine ∀α.

Theorem 70. If π : X → Y is affine and SpecB ⊂ Y is any affine open, then π−1(SpecB) is affine.

Proof. Replace X by π−1(SpecB) so that π : X → SpecB.

Affine implies quasi-compact and quasi-separated.

1) If X is affine and f ∈ B and X
π−→ SpecB then π−1(D(f)) is affine.

X = SpecA

π−1(D(f)) = SpecA
[

1
π♯f

]
.

2) SpecB =
⋃n
i=1 SpecB

[
1
fi

]
and π−1

(
SpecB

[
1
fi

])
= SpecAi ∀i then X is affine.

X → SpecA is the same thing as an A-algebra’d space which is locally the spectrum of an A-algebra (X,OX).
Then OX is a sheaf of A-algebras.
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For any scheme we may define A to be the ring of global sections of the structure sheafs: A = Γ(X,OX) where
(X,OX) is the sheaf of A-algebras.

Thus we have a universal morphism X → Spec Γ(X,OX).

Let’s define Spec Γ(X,OX) = SpecA.

Then we have:

X SpecA

SpecB

π

ρ

Since we have X → SpecB, we must have a map B → A which tells us there must be a map SpecA→ SpecB
so that the diagram commutes.

Now write SpecB =
⋃
iD(fi)

X =
⋃
i π

−1(D(fi)) =
⋃
i SpecAi.

SpecA =
⋃
i ρ

−1(D(fi)) =
⋃
i SpecA

[
1

π♯fi

]
.

∀fi,

Γ(Xπ♯fi ,OX) ∼= Γ(X,OX)

[
1

π♯fi

]
= A

[
1

π♯fi

]

via the qcqs lemma.

Countereample when a map is not affine: consider A2 \ {(0, 0)} → A2 given by immersion.

Definition. A morphism π : X → Y is finite if it is an affine morphism and there exists an affine open cover
Y =

⋃
α SpecBα such that π−1(SpecBα) = SpecAα (i.e. Aα is automatically a Bα algebra) which makes Aα

a finitely generated Bα-module.

Note that SpecA
π−→ SpecB is affine by definition. When is it finite?

We have B
π♯

−→ A. Finiteness in this case means A is a finitely generated B-module.

Example: A1
k → Spec k ⇝ k → k[x].

As dimk k[x] =∞ this is not finite.

Now consider Spec k → A1
k given by • 7→ 0⇝ k[x]→ k, P (x) 7→ P (0).

This is finite since k is a finitely generated k[x]-module.

More generally if A = B/I then A is a finitely generated B-module: it is generated by 1 [Note: we’re not talking
about finitely presented, I can be whatever].

Now consider x 7→ x2 = y,A1
k → A1

k, Spec k[x]→ Spec k[y], k[y]→ k[x], y 7→ x2
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Claim: this is finite. We can think ‘x =
√
y’.

Then k[x] = k[y][
√
y] i.e. k[x] = k[y][t]/(t2 − y).

Is it finitely generated as a module?

As k[x2]-module, k[x] is spanned by 1 and x: P (X) = a0+a1x+a2x
2+· · · = (a0+a2x

2+· · · )+(a1x+a3x
3+· · · ).

Now consider Spec k
[
x, 1x

]
= X = A1 \ {0} and Y = A1 = Spec k[x]. X ↔ Y .

Is k
[
x, 1x

]
a finitely generated k[x]-module?

Definition. π : X → Y is quasi-finite if and only if π−1(y) is finite ∀y ∈ Y .

Theorem 71. Every finite morphism is quasi-finite.

Theorem 72 (Zariski’s Main Theorem, Grothendieck version). For locally noetherian schemes X → Y a
quasi-finite morphism is always an open immersion followed by a finite morphism.

Proposition 73. If X → Spec k is a finite morphism then X is a finite discrete set.

Proof. By definition, X = SpecA. k → A makes A a finitely generated k-module, i.e. a finite dimensional
k-vector space.

If SpecA = SpecA1 ⊔ SpecA2 ⊔ · · · ⊔ SpecAn then A = A1 × · · · ×An.

dimk A =
∑
i

dimk Ai so n ≤ dimk A

Let SpecAi be an irreducible component. Ai is a finite dimensional k-algebra.

Let Ai = Ai/ rad(Ai).
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Then Ai is irreducible and reduced. Therefore Ai is an integral domain and also [since it is a quotient of a finite
dimensional k-vector space] a finite dimensional k-vector space.

Therefore SpecAi is a field. i.e. SpecAi is a single point.

Modding out the radical does not change the underlying topological space. Thus SpecAi ∼= SpecAi. Therefore,
SpecAi is a single point.

Thus, A is a finite discrete space.

This proves the theorem over a point. What about in general?

To prove that π : X → Y is quasi-finite, choose y ∈ Y . We want to show that π−1(y) is finite.

Let y ∈ SpecB ⊂ Y .

Replace X by π−1 SpecB = SpecA ⊂ X. B → A where A is a finitely generated B-module. Call the map π♯.

y ∈ Y 7→ Q ∈ SpecB.

Let S = B \Q.

BQ = S−1B
S−1π♯

−−−−→ π♯(S)−1A

Since A is a finitely generated B-module, it follows that π♯(S)−1A is a finitely generated BQ-module.

WLOG assume B is a local ring and Q is its maximal ideal.

(B,Q) local ring, A is a B-algebra, which is a finitely generated B-module. We want to show that the inverse
image of Q in SpecA is a finite set.

A A/QA

B B/Q

Since A is f.g. over B we conclude that A/QA is f.g. over B/Q.

Then we’ve reduced to the case where B/Q is a field so we’re done.

Notice: We will meet: Nov 5, Nov 10, Nov 17.

We will not meet: Nov 7, Nov 12, Nov 14.

Wednesday, 11/5/2025

Recap:

Definition. A morphism π : X → Y is integral if for all affine open SpecB ⊂ Y , π−1(SpecB) is an affine
scheme SpecA where B → A is integral.

Proposition 74. Every finite morphism is integral.
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Proposition 75. Every integral morphism π : X → Y maps closed sets to closed sets.

Proof. To prove that f : X → Y is closed, it suffices to show that Y has an open cover
⋃
α Uα such that

f−1(Uα)
f−→ Uα is closed for all α, i.e. X ∩ f−1(Uα) is closed in the subspace topology on f−1(Uα).

C ⊂ X is closed =⇒ f(C ∩ f−1(Uα)) = f(C) ∩ Uα is closed in Uα.

Now, π : X → Y = SpecBα and Bα → Aα is integral.

SpecAα = π−1(SpecBα)→ SpecBα is integral. If C ⊂ SpecAα is closed, then π(C) ⊂ SpecB is closed:

Let C = V (I) for some ideal I of Aα. Let J = (π♯)−1(I) ⊂ Bα.

Bα/J → Aα/I is an integral extension. By the lying over theorem, V (I) = SpecAα/I → SpecBα/J is
surjective.

V (I) = SpecAα/I → SpecBα/J → SpecBα.

π(V (I)) = imSpecBα/J in SpecBα, which is V (J).

Definition. A morphism π : X → Y is locally of finite type if ∀ SpecB ⊂ Y affine open, we can write:

π−1(SpecB) =
⋃
α

SpecAα

where each Aα is a finitely generated B-algebra. Key word: we didn’t say B-module. So they’re not necessarily
finite in the module sense: they’re finite in the ring sense.

π is of finite type if it is both quasicompact and locally of finite type.

Every affine variety over k is of finite type over Spec k.

Recall an affine variety V is as follows: V = k[x1, · · · , xn]/I.

Every projective variety over k is also of finite type.

Recall: Pnk = Proj k[x0, · · · , xn]

=
⋃n
i=0 Spec k[x0/i, x1/i, · · · , xn/i].

Pnk → Spec k is therefore of finite type.

Theorem 76. A composition of two morphisms of finite type is of finite type.

Theorem 77. An open immersion of Noetherian schemes is of finite type.

Suppose I want to show An \ 0 is of finite type over An.

Think about the case n = 2. We can form an open cover by first taking away the x-axis Spec k[x, y, 1/y] and
then the y-axis k[x, 1/x, y]. So that is of finite type. But we need the noetherian condition: if we had infinitely
many variables then we wouldn’t have this.

Spec k[x1, x2, · · · ]→ Spec k is not of finite type.

SpecQ→ SpecZ is not of finite type: Z→ Q, and Q is not finitely generated as a Z-algebra.

Proposition 78. If X → Y is of finite type and Y is Noetherian, then X is Noetherian.
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Constructible subsets of a Noetherian space

A constructible set is a finite disjoint union of locally closed sets. A locally closed set is C ∩ U , intersection of
a closed and an open set. We can think about it like removing a closed subset from a closed set.

Theorem 79. The constructible subsets of a Noetherian topological space form a Boolean Algebra, i.e. they
are closed under finite unions, finite intersections and complements.

Proof. Suppose X =
∐m
i=1 Ci ∩ Ui, Y =

∐n
j=1Dj ∩ Uj .

X ∩ Y =
∐
i,j(Ci ∩Dj) ∩ (Ui ∩ Vj).

Now, note that (C ∩ U)c = Cc ∪ U c −D ∪ V .

Note that D ∪ V = V ∪ (D \ V ) = V
∐
(D ∩ V c).

What about (
∐
Ci ∩ Ui)c? This boils down to the intersection case.

Union follows from intersection and complements.

Consider A2 → A2 given by (x, y) 7→ (x, xy).

In order to unpack what this is, consider Spec k[x, y] 7→ Spec k[u, v] so that u 7→ x and v 7→ xy.

We want to answer: Is (u, v) is in the image?

x = u, xy = v has solutiion x = u, y = v
u when u ̸= 0.

So, if u ̸= 0 there is no problem.

If u is 0 and v ̸= 0 then it is not in the image.

If u = 0, v = 0 then x = 0, y = anything is a solution.

Then the image is constructible.

Theorem 80 (Chevalley’s Theorem). If π : X → Y is a morphism of finite type between Noetherian schemes
and C is any constructible subset of X then π(C) is constructible.

Corollary 81. π(X) is constructible.

We really need the finite type condition: Look at SpecQ→ SpecZ. Then π(SpecQ) = η ∈ SpecZ.
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Opens in SpecZ are cofinite sets where we’re not allowed to throw out η.

Constructible sets are also open and closed sets. Just having the generic point is not constructible.

Elimination Theory

If we’re trying trying to generalize high-school algebra: trying to bring together solving simultaneous linear
equations and polynomials? Suppose we want to solve Ax2 + Bxy + · · · + F = 0, A′x2 + B′xy + · · · + F ′ = 0.
i.e. I’m trying to find intersections of two conic sections.

This is what elimination theory does. There is an object called the resultant.

Definition (Resultant). The resultant of two polynomials is an expression [in terms of the coefficients] which
vanishes exactly when the two equations have a common root.

Suppose we have y2 +Ay +B and y2 + Cy +D, and we want to find common roots.

First one: we have r1 + r2 = −A, r1r2 = B.

Second one: we have s1 + s2 = −C, s1s2 = D.

Then our resultant should be (r1− s1)(r1− s2)(r2− s1)(r2− s2). We want to show that we can write it in terms
of the cooefficients.

(r1 − s1)(r1 − s2)(r2 − s1)(r2 − s2) = (r21 + Cr1 +D)(r22 + Cr2 +D) = r21r
2
2 + C(r21r2 + r1r

2
2) +D(r21 + r22) +

C2(r1r2) + CD(r1 + r2) +D2. Each r1, r2 poly can be written in terms of A and B.

Now let’s look at a more complicated case: P (x, y, z) = 0 and Q(x, y, z) = 0. We can project this into the
xy-plane: this is what elimination theory does for us.

Suppose C ⊂ X π−→ Y =
⋃
SpecBi.

π(C) constructible ⇐= π(C) ∩ SpecBi is constructible for all i. Thus WLOG Y = SpecB.

Let X =
⋃
i SpecAi. It suffices to prove that π(SpecAi ∩ C) is constructible. WLOG X = SpecA.

SpecA→ SpecB where A is a finitely generated B-algebra.

Suppose A = B[x1, · · · , xn]/I.

C = SpecA = V (I) ⊂ SpecB[x1, · · · , xn]→ SpecB.

Monday, 11/10/2025

Recall:

Theorem 82 (Chevally). Let π : X → Y be a morphism of finite type, Y Noetherian, and Z be a constructible
subset of X. Then π(Z) is a constructible subset of Y .

Proof. Reductions:

Since Y is Noetherian we can write it as a finite union Y =
⋃m
i=1 SpecBi. Then we can look at π−1(SpecBi)→

SpecBi where π
−1(SpecBi) are open subsets of X. Then Z∩π−1(SpecBi) are open subsets of Z. Furthermore,
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π(Z) =

m⋃
i=1

π(Z ∩ π−1(SpecBi))

If we prove that π(Z ∩ π−1(SpecBi)) are constructible subsets then π(Z) will be a constructible subset.

WLOG assume Y = SpecB. Since π is of finite type, it follows that X =
⋃n
i=1 SpecAi where each Ai is a f.g.

B-algebra. Agaun, Z =
⋃n
i=1 Z ∩ SpecAi and π(Z) =

⋃n
i=1 π(Z ∩ SpecAi). Thus WLOG assume X = SpecA.

Then,

Z SpecA SpecB[x1, · · · , xn]/I AnB

SpecB

⊂ =

A B[x1, · · · , xn]

B

i(Z) ⊂ AnB is constructible.

WLOG assume A = B[x1, · · · , xn]. Then,

Z X AnB

...

A2
B

A1
B

Y SpecB

⊂ =

=

By induction, enough to prove the case n = 1.

Assumme A = B[x]. A1
B → SpecB.

SpecB[x] = A1
B is noetherian since B is noetherian.

Let Z =
⋃n
i=1 Zi where Zi = Ci ∩ Ui.

π(Z) =
⋃n
i=1 π(Zi)

WLOG assume Z = C ∩ U . U is noetherian. ∀x ∈ U, ∃D(fx) an affine open neighborhood of x ∈ U .

U =
⋃
xD(fx) =

⋃k
i=1D(fxi

) =⇒ Z =
⋃k
i=1 C ∩D(fi).

WLOG Z = C ∩D(f). Then C = V (I).
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Special case: suppose C = A1
B . Then f =

∑
i bix

i where bi ∈ B. For prime ideal P ⊂ B, does there exist a
prime ideal Q of B[x] such that f /∈ Q but Q ∩B = P?

Of course, it is impossible if all coefficients ∈ P , since then bi ∈ Q =⇒ f ∈ Q. Otherwise Q exists.

Q corresponds to a prime ideal in K(P )[x]. This prime ideal is in V (f) if and only if f ∈ Q. If f is non-zero,
there is some prime ideal Q to which is doesn’t belong, thus ∃Q ∈ D(f) mappping to P . If P ∈ V (b1, b2, · · · )
then ̸ ∃Q, otherwise ∃Q.

Therefore, π(D(f)) =
⋃
iD(bi) ⊂ SpecB.

Now consider a general closed set in B[x]: C = V (I).

Then we can consider Spec(B[x]/I).

We claim that B[x]/I is a finitely generated B-module. Since B is noetherian, we can find generating set
1, x, · · · , xk−1 of B[x].

Claim: Suppose fxi ≡
∑
i,j bijx

j (mod I). We have a matrix (bij) where bij ∈ B.

Then, for each P ∈ SpecB we can look at the matrix (bij) ∈Mk(K(P )).

This matrix is nilpotent iff ∃ prime ideal Q ∈ D(f) lying over P . [Claim finishes]

Nilpotent =⇒ matrix of multiplication by fN kills K(P )[x]/I. Therefore f cannot be invertible on any prime
ideal over P in SpecB[x]/I.

The other direction also works, suppose not nilpotent, then since nilradical is the intersection of all prime ideals
there is some prime ideal it is invertible over.

The nilpotence of a k × k matrix M is equivalent to Mk = 0. Then (bij)
k = (βij) ∈ Mk(B). Now consider

V (βij).

Fundamental Theorem of Elimination Theory

Theorem 83. Let π : PnB → SpecB. Let Z be a closed subset of PnB . Then π(Z) is also closed.

Proof. Z = V (I) for some homogeneous ideal I ⊂ B[x0, · · · , xn]. Suppose P ∈ SpecB.

IP ⊂ BP [x0, · · · , xn]

IP ⊂ BP [x0, · · · , xn] = K(P )[x0, · · · , xn]

This gives us P 7→ IP where {P | V (IP ) ̸= ∅}

If J is a homogeneous ideal over k[x0, · · · , xn], how to tell if V (J) is non-empty?

V (J) is non-empty iff ∃ a homogeneous non-irrelevant prime ideal containing J .

If the only prime ideal containing J is the irrelevant one, that means rad(J) = (x0, · · · , xn).

Equivalently, for all i, ∃N such that xNi ∈ J . Equivalently, (x0, · · · , xn)Nn+1 ⊂ J . Let M = Nn + 1. Then
SM = (x0, · · · , xn)M ⊂ J . Then SM contains homogeneous degM polynomials.
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Let J = (f1, · · · , fk), homogeneous generator of deg d1, · · · , dk

Does every element of SM lie in J for some M?

SM = f1SM−d1 + · · ·+ fkSM−dk

Therefore, there exists a map:

SM−d1 × · · · × SM−dk → SM

(s1, · · · , sk) 7→
∑
i

fisi

WTS: this is surjective. A matrix irepresents a non-surjection of linear transformation ⇐⇒ all minors of
size = target space have zero determinant. i.e. it is the zero locus of all minors of max size. It is a closed
condition.

Consider two homogeneous polynomials x2t
2 + x1tu+ x0u

2 and y3t
3 + y2t

2u+ y1tu
2 + y0u

3.

Look at P1
k[x0,x1,x2,y0,y1,y2,y3]

Take the set V (x2t
2 + x1tu+ x0u

2, y3t
3 + y2t

2u+ y1tu
2 + y0u

3)

Consider the projection of V (· · · ) in P1
k[x0,x1,x2,y0,y1,y2,y3]

into Spec k[x0, x1, · · · , y3]. We still get a closed set.
That is the resultant.

Monday, 11/17/2025

0.1 Closed immersions/embeddings

Let X = SpecA be an affine scheme. If I is an ideal, V (I) is a closed subset of X.

SpecA/I has the space V (I) ⊂ X. We think of SpecA/I as a closed subscheme of X.

SpecA/I → X is injective with closed image.

In general, a closed set has more than one structure of a closed subscheme.

Eg if X = Spec k[x], I = (x), J = (x2), then V (I) = V (J) = {0}.

One might think of the subscheme for J as a point with a tangent vector. But they have the same geometry.

If B ↠ A is surjective, then A ∼= B/I.

Thus SpecA ∼= SpecB/I ⊂ SpecB.

Thus, morphisms SpecA→ SpecB is the closed embedding.

e.g. k → k[x]/(x2) gives us Spec k[x]/(x2)→ Spec k.

Definition. A morphism X
π−→ Y is a closed embedding if:
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1) π is affine

2) For all affine open SpecB ⊂ Y if π SpecB = SpecA then B → A is surjective.

Theorem 84. If Y =
⋃
α SpecBα such that π−1 SpecBα ∼= SpecAα and Bα → Aα is surjective ∀α then π is a

closed embedding.

Proof. Affine Communication Lemma.

B → A surjective means B[1/f ]→ A[1/f ] is surjective.

Then we only need to check if B → A is a ring homomorphism and B[1/fi]→ A[1/fi] is surjective for all i and
the fi generate the unit ideal then B → A is surjective.

If it is not surjective then we can take cokernel, and taking cokernel commutes with localization.

If cokernel is non-zero then we have some f killed by the localization, which cannot happen if fi generate the
unit ideal.

If we have a closed embedding X
π−→ Y then we can find OY → π∗OX is surjective. Then it is characterized by

it’s kernel.

Let I = ker(OY → π∗OX).

Then I is a sheaf of OY ideals. In fact it is a quasi-coherent sheaf of OY ideals. We only need to check if affine
opens and distinguished opens behave properly.

Let D(f) ⊂ SpecB ⊂ Y . Then OY (SpecB) = B, π∗OX(SpecB) = A, I = ker(B ↠ A), I(SpecB) = I.

We then essentially want:

I

[
1

f

]
→ I(D(f)) = I

(
SpecB

[
1

f

])

to be an isomorphism. Which means we want ker
(
B
[
1
f

]
→ A

[
1
f

])
∼= I

[
1
f

]
which is true.

Definition (Locally Closed Embedding).

X
closed−−−−→ Y

open−−−→ Z

Proposition 85. X
open−−−→ Y

closed−−−−→ Z is always a locally closed embedding.

This implies compositions of locally closed embedding is locally closed.

Let Y = Pnk = Proj k[x0, · · · , xn].

Let I be a homogeneous ideal. Let X = Proj k[x0, · · · , xn]/I.

Then X is naturally a closed subscheme of Y .

So X
π−→ Y is a morphism of schemes.

Y =
⋃n
i=0 Spec k[x0/i, x1/i, · · · , xn/i] =

⋃n
i=0 Ui.

Then the inverse image of Ui in X is:
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Spec k[x0/1, · · · , xn/i]/“I”

Let I = (f1, · · · , fm) where fj has degree dj , each homogeneous.

We have
fj

x
dj
i

= Fj

(
x0

xi
, · · · , xn

xi

)
Then “I” =

(
F1(x0/i, · · · , xn/i), · · · , Fm(x0/i, · · · , xn/i)

)
.

Fiber Products

Suppose we have schemes X,Y, Z and morphisms X → Z, Y → Z.

Then, the fiber product X ×Z Y is a scheme with morphisms called ‘projection maps’ to X and Y which
commute in the sense of the following diagram:

X ×Z Y

X Y

Z

This is also universall in the following sense:

W

X ×Z Y

X Y

Z

Recall the functor of points:

hX(W ) = MorSch(W,X) = ‘Set of W -points of X’

Then hX×ZY (W ) = hX(W )×hZ(W ) hY (W ).

hX×ZY = hX ×hZ
hY .

Example: Let X = A1
k, Y = A1

k, Z = Spec k.

Then X ×Z Y = A2
k.

Theorem 86. Fiber products exist in the category of schemes.

Proof. Basic cases:
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1) If Y ⊂ Z is an open subscheme and π : X → Z is any morphism, then the fiber product X×Y Z = π−1(Y ).

π−1(Y )

X Y

Z

π|
π−1Y

π

We check that this satisfies the universal property.

Suppose we have:

W

π−1(Y )

X Y

Z

f

π|
π−1Y

π

Then π ◦ f(W ) ⊂ Y . So, there exists W 99K π−1Y .

We need to check if this satisfies universal property.

2)

SpecA⊗B

SpecA SpecB

SpecC

For the following:

A⊗C B

A B

C

MorSch(W, SpecD) = MorRing(D,P (W,OW )).

We can build these up to the general case. We know it is true when everything is affine.

Now suppose,

1) X,Z are affine and Y is ‘quasi-affine’ [i.e. open subscheme of an affine scheme]. Suppose Y ⊂ Y ′. Further
suppose Y → Z comes from Y ′ → Z.

X X ×Z Y ′ (X ×Z Y ′)×Y ′ Y X ×Z Y

Z Y ′ Y

=
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Suppose,

W

X X ×Z Y ′ (X ×Z Y ′)×Y ′ Y X ×Z Y

Z Y ′ Y

=

2) X and Z affine, Y arbitrary.

Y =
⋃
α SpecBα then X ×Z

⋃
α SpecBα =

⋃
αX ×Z SpecBα.

Wednesday, 11/19/2025

We elaborate on the X and Z affine, Y arbitrary case.

Wα := X ×Z Yα.
Note that Wα ∩Wβ doesn’t quite make sense without an ambient space and everything.

However, Wα ∩Wβ = X ×Z (Yα ∩ Yβ) which is a subset of both X ×Z Yα and X ×Z Yβ . We glue these
together t obtain X ×Z Y .

2′) Z affine, X ⊂ X ′ affine (so X quasi-affine), Y anything.

3) Z affine, X and Y arbitrary. Y =
⋃
α SpecBα.

Let Uα = X ×Z SpecBα, Uβ = X ×Z SpecBα.

Uα,β = X ×Z (SpecBα ∩ SpecBβ).

4) Z ⊂ Z ′ affine. Then X ×Z Y ∼= X ×Z′ Y .

W

X Y

Z Z ′⊂

5) X,Y, Z arbitrary. Suppose X
π−→ Z

ϕ←− Y . Let Z =
⋃
α Zα. Then π−1(Zα) ×Zα

ϕ−1(Zα) exists. We can
glue them together.

Now we loook at an example: extension by a single variable. Suppose we have B → A. Then A ⊗B B[x] =
SpanA(1, x, x

2, · · · ) ∼= A[x]. We have:

B[x] A[x]

B A

This gives us:
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A1
A

A1
B SpecA

SpecB

Let Z = SpecZ. Let X = A1
Z = SpecZ[x]. Let Y be any scheme. We have Y → Z then we have X ×Z Y = A1

Y .

Let’s think about SpecZ[x].

Suppose P ⊂ Z[x] is a prime ideal. Then P ∩ Z = (0) or (p) where p is a prime number.

If P ∩ Z = (p) there are two possibilities. First, we can have P = (p). We can also have P = (p, fi(x)) where
fi are irreducible polynomials over Fp.

So, P → p looks like prime ideals in Fp[x].

P → 0 looks like prime ideals in Q[x].

Now consider this:

B/I V (I)

B A SpecB SpecA
ϕ

Proposition 87. A⊗B (B/I)
∼←− A/Ie where Ie is the extension, ideal in A generated by ϕ(I).

Proof. I → B → B/I → 0.

A⊗B I → A→ A⊗B (B/I)→ 0.
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Then im(A⊗B I → A) = Ie.

What ends up happening:

V (I) V (Ie)

SpecB SpecA

For example consider SpecZ[i]→ SpecZ. Consider V ((n)) and V ((p)) in SpecZ.

Z→ Z/pZ gives us SpecZ← SpecFp.

SpecZ[i]⊗Q Z/pZ = SpecZ[i]/pZ[i].

Recall Z[i] = Z[x]/(x2 + 1).

Then Z[i]⊗ Z/pZ = Fp[x]/(x2 + 1).

p ≡ 1 (mod 4) =⇒ (p) = (π1)(π2).

p ≡ 3 (mod 4) =⇒ (p) is prime in Z[i].

But x2 + 1 is factorizable in some field extension in the second case.

Special case: p = 2.

Then F2[x]/(x
2 + 1) ∼= F2[x]/(x+ 1)2.

What about (0)? It goes to (0). Looks like prime ideals in Q,Q(i).
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SpecQ(i)

SpecQ SpecC

• ••

• •

Now suppose B
ϕ−→ A with S ⊂ B local system.

S−1B S−1B ⊗B A

B A

Recall S−1B ⊗B A ∼= ϕ(S)−1A.

0→ kerϕ→ B
ϕ−→ A→ cokerϕ→ 0

0→ S−1 kerϕ→ S−1B → S−1A→ S−1 cokerϕ→ 0

If X = {z} ⊂ Z and π : Y → Z, then,

X ×Z Y ∼= π−1(z) (as topological space homeomorphism).

Here {z} = SpecK(z).

This is an example of what we expect.

WLOG Z = SpecC. Then z 7→ P a prime ideal of C.

V (P ) = z.

P is then the generic point of SpecC/P .
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Passing from Z to V (P )

Passing from Spec(C/P ) to η = (0)

We need to check:

Y Y ×Z SpecC/P Y ×Z SpecK(P )

Z Spec(C/P ) SpecFrac(C/P ) = K(P )
closed immersion localization

Friday, 11/21/2025

Theorem 88. Suppose we have morphisms

Y

X Z

closed embedding

Then we can deduce we have:

X ×Z Y Y

X Z

π

such that X ×Z Y
π−→ X is also a closed embedding.

Slogan: ‘Closed embeddings are preserved by base change’.

Proof. Enough to find an affine cover
⋃
α SpecAα of X such that π−1(SpecAα) is a closed embedding.

Take an affine cover
⋃
γ SpecCγ of Z.

For each x ∈ X take some SpecCγ containing ϕ(x). Choose some affine open SpecAα contained in ϕ−1(SpecCγ)
and containing α.
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π−1(SpecCγ) = SpecBγ ⊂ γ

Cγ → Bγ surjective.

SpecBγ = π−1(SpecCγ)

π−1
Z (SpecAα) = SpecAα ×Z Y

= SpecAα ×SpecCγ
π−1(SpecCγ)

= SpecAα ⊗Cγ Cγ/I.

Aα ⊗Cγ
Cγ/I ∼= Aα/I

e.

π−1
Z (SpecAα)→ SpecAα.

π−1
Z (SpecAα) = Spec(Aα/I

e).

So, Spec(Aα/I
e)→ SpecAα is a closed embedding.⋃

α SpecAα = X so πX is a closed embedding.

X ×Z Y Y

X Z

πX π

X ×Z Y Y

X = SpecS−1C SpecC = Z

πX π
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Proposition 89. X ×Z Y → Y is injective and the topology on X ×Z Y is the subspace topology.

Proof. Sufficient to prove this true after intersecting with SpecBβ for each SpecBβ in an affine cover of Y .

May assume Y = SpecB.

B

S−1C C

π♯

S−1C ⊗C B ∼= π♯(S)−1(B).

Suppose z ∈ Z and consider residue field K(z). Then we have:

SpecK(z)×Z Y Y

SpecK(z) Z

Y ×Z SpecK(z) Y ×Z {z} Y

{z} {z} Z⊂ ⊂

Reduce to the case Z = SpecC. Let I be the radical ideal in C with V (I) = {z}.

Let K = K(z) = Frac(C/I).

π−1(SpecC/I)

Y ×SpecC SpecK Y ×SpecC SpecC/I Y

SpecK SpecC/I SpecC

∼=

π

Y ×Z {z} Y

{z} {z} Z

⊂

⊂ ⊂

Morphisms as families of varieties

Let z ∈ Z ← Y . Define Yz = SpecK(z)×Z Y .

We have Yz → SpecK(z).
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Suppose we’re interested in looking at the family of all degree 2 varieties.

We have k[x, y]/(Ax2 +Bxy + Cy2 +Dx+ Ey ++F ).

We can instead look at:

Y = SpecC[x, y,A,B,C,D,E, F ]/(Ax2 +Bxy + Cy2 +Dx+ Ey + F )

Now we look at:

Yz =? Y =
SpecC[x, y,A,B,C,D,E, F ]

(Ax2 +Bxy + Cy2 +Dx+ Ey + F )

{z} = SpecC SpecC[A,B,C,D,E, F ]

We can look at:

C[x, y,A,B,C,D,E, F ]
(Ax2 +Bxy + Cy2 +Dx+ Ey + F )

⊗C[A,B,C,D,E,F ]
C[A,B,C,D,E, F ]

(A− a,B − b, C − c,D − d,E − e, F − f)

C[x, y,A,B,C,D,E, F ]
(Ax2 +Bxy + Cy2 +Dx+ Ey + F,A− a,B − b, · · · , F − f)

∼=
C[x, y]

(ax2 + bxy + cy2 + dx+ ey + f)

We can generalize this as follows:

Suppose we have some family of varities and we have a map Y → Z with the property that each variety in the
family occurs exactly once as a fiber over a closed point [these are Yz].

Now let W → X be another family of same kind of varieties such that for each x ∈ X there exists a fiber Wx

corresponding to exactly one of the Yz [we denote this via x 7→ z].

It would be nice if this map comes from a morphism X → Z.

W ×X {x} W

Wx X ×Z Y Y

x = SpecK(x) X Z

x z

= =

Wx =W ×X {x} = Y ×Z {x} = Yz.

It hapennes ‘more often than we expect but not as often as we’d like.’
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Fiber over Generic Points

It is a variety since we’re working over a field.

What does it look like? In our example,

C(A,B,C,D,E, F )[x, y]
(Ax2 + · · ·+ F )

The reason it is called a generic fiber is because it captures ‘generic behaviour’.

There are a lot of special behaviour that particular fibers will exhibit.

It can be a pair of line, × or =.

It can be just a double line, −.

All A through F can be 0, then it is the whole plane □.

‘Generic’ ones don’t have these behaviour.

Theorem 90 (Meta Theorem). Let π : Y → Z, η ∈ Z the generic point [we’re assuming Z is irreducible] and
Yη the generic fiber.

Then Yη has property X [not always, but usually true] if and only if there is a dense open subset U of Z such
that ∀z ∈ U the fiber Yz has property X.

‘For many properties, being true for the generic point is equivalent to being true for a dense open subset’

generic points: minimal amount of constraints

closed points: maximal amount of constraints

Interesting example: Generically Finite.

Here is a list of properties of morphisms which are preserved via base change:

1) Affine morphisms

2) Closed embeddings (we already talked about)

3) finite morphisms

4) Morphisms of finite type

5) Quasicompact morphisms

And more

Monday, 12/1/2025

Reminder:

A ‘reasonable’ property (of a morphism) P is such that:
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The composition of two P -morphisms is a P -morphism. Meaning, if we have X → Z and Y → Z such that
Y → Z is a P -morphism, then X ×Z Y is a P -morphism.

X ×Z Y Y

X Z

∴P P

A pullback of a P -morphism is a P -morphism.

P is affine local on the target. Meaning: if Uα ×Z Y → Uα always has P then Y → Z is P .

Uα ×Z Y Y

Uα Z

P ∴P

There are commonly use properties which don’t respect pullback.

1) Open

2) Closed

3) Irreducible fibers

4) Connected fibers

5) reduced fibers

etc.

For non-example, consider the pullback:

C× C SpecC⊗R C SpecC

SpecC SpecR

∼=

What happens if we have a property which doesn’t respect pullback?

If P is such a property, define ‘universally P ’ to mean that all pullbacks have property P .

For any P , universally P respects pullback.

Suppose Y → Z is universally P . Now suppose we have X → Z. Then by definition X ×Z Y → X is P . How
do we know if it is universally P?

W ×X Y W ×X (X ×Z Y ) X ×Z Y Y

W X Z

=

Thus cancellation of fiber product implies X ×Z Y → X is universally P .
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Why is cancellation of fiber products true?

(X × Y )× Z = X × (Y × Z)

=⇒ (X × Y )(W ) = (X × Y )(W ) × Z(W ) = (X(W ) × Y (W )) × Z(W ). Same for the other. It is true in the
category of sets so it is true in all categories.

Then we need X ×Y Y
≈−→ X.

X ×Y Y Y

X Y

=

WTS: pullback of isomorphism is isomorphism.

(X ×Y Y )(W ) = X(W )×Y (W ) Y (W )
≈−→ X(W ).

Suppose P = connected fibers. Checking universally-P .

When is X → Spec k universally P?

Theorem 91. When k is algebraically closed and X is connected, then it is universally connected.

Suppose we have:

Y

X Spec k

Pick a point x ∈ X then it corresponds to SpecK(x) the residue field.

Y ×Spec k SpecK(x) (Y ×Spec k ×X)×X SpecK(x) Y ×Spec k X Y

SpecK(x) X Spec k

=

Recall: X is connected iff every idempotent element of Γ(OX) is 0 or 1.

Theorem 92. Suppose k = k and f1, · · · , fm ∈ k[x1, · · · , xn]. Suppose K ⊃ k. Then,

f1(x1, · · · , xn) = 0, · · · , fm(x1, · · · , xn) = 0 has a solution in k if and only if it has a solution in K.

i.e. bigger field doesn’t give you solution if smaller field is algebraically closed.

Proof. Let I = (f1, · · · , fm) ⊂ A = k[x1, · · · , xn].

Consider the SES:

0→ I → A→ A/I → 0

Let Ie = (f1, · · · , fm)K ⊂ K[x1, · · · , xn] = A⊗k K.
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We have SES:

0→ I ⊗k K → A⊗k K → (A/I)⊗k K → 0

Furthermore, im(I ⊗k K → A⊗k K) = Ie. I ⊗k K = Ie.

If A/I = 0 then (A/I)⊗k K = (0) so Ie = A⊗k K.

If f1 = · · · = fm = 0 has no solutions in k then I = A. Then Ie = A. Then there is no maximal ideal of
K[x1, · · · , xn] containing Ie. i.e. no solution to the system in K.

We can use this result in the connectedness problem.

It suffices to consider the case that X is an affine scheme over k.

Consider SpecA so that A has no non-trivial nilpotents.

Claim: A⊗k K has no non-trivial nilpotents.

Assume not true. Let e ∈ A⊗k K satisfy e2 = e, e ̸= 0, 1.

Write e =
∑n
i=1 ai ⊗ li where li ∈ K.

Let A = k[l1, · · · , ln] ⊂ K.

Let B = k[a1, · · · , an].

Claim: any polynomial equation in the elements ai with coefficients in k can be encoded as a set of linear
equatino in the coefficients:

∑
cr1,··· ,rna

r1
i · · · a

rn
n = 0 cr1,··· ,rn ∈ k

ar11 · · · arnn is a k-vector space.

e =
∑
i ai ⊗ ei

e2 =
∑
i,j aiaj ⊗ lilj .

e2 − e has a non-trivial solution in l1, · · · , ln.

A system of homogeneous linear equations in the variables xi = li, yi,j = lilj gives a system of polynomial
equations in the variables li.

We need the following lemma to make the argument rigorous.

Let X be an affine variety, /k = k.

Y ⊂ X a closed subvariety.

Then X(k) ⊋ Y (k) =⇒ X(k) ⊋ Y (k).

Take X \ Y .
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Segre Embeddings

This is a useful and nice geometric construction.

∃ closed embedding PmA × PnA → Pmn+m+n
A .

((x0 : · · · : xm), (y0 : · · · : yn)) 7→ (x0y0 : x0y1 : · · ·x0ym : x1y0 : · · · : xmyn)

We can’t always take homogeneous coordinates in graded rings. What should we do?

Consider homomorphism from graded ring: A[zi,j | 0 ≤ i ≤ m, 0 ≤ j ≤ n]→ A[x0, · · · , xm]⊗AA[y0, · · · , yn] by:

zi,j 7→ xi ⊗ yj

Proj(S•)×SpecA Proj(T•)
≈−→ Proj(S• ⊗A T•).

If Ui and Vj are the i’th and j’th standard affine opens of PmA and PnA respectively then we can write:

Ui = SpecA[x0/i, · · · , xm/i]

Vj = SpecA[y0/j , · · · , yn/j ]

Then we need:

SpecA[x0/i, · · · , xm/i]⊗A A[y0/j , · · · , yn/j ]→ SpecA[zab/ij ] ⊂ Pmn+m+n

On the other hand,

A[zab/ij ]→ A[x0/i, , · · · , xm/i]⊗A A[y0/j , · · · , yn/j ]

zab/ij 7→ xa/i ⊗ yb/j

This is a surjective homomorphism. So the corresponding map of affine scheme is a closed immersion. Since
being a closed immersion is reasonable, the original map is a closed immersion.

Wednesday, 12/3/2025

Zariski topology has so few open sets we cannot often have Hausdorff property. How do we deal with it?

Let X be a topological space. Consider the diagonal map δ : X → X × X given by x 7→ (x, x). This map is
continuous.

δ(X) = ∆ ⊂ X ×X. Question: is ∆ a closed subset?
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Note that ∆c = {(x, y) ∈ X2 | x ̸= y}.

Any open neighborhood of (x, y) contains an ipen neigborhood of the form Ux × Vy where Ux and Vy are open
neighborhoods of x and y in X.

Ux × Vy ⊂ ∆c ⇐⇒ (Ux × Vy) ∩∆ = ∅ ⇐⇒ Ux ∩ Vy = ∅.

Consider the sequence x1, x2, · · · and X
f−→ Y .

If limn→∞ f(xn) = y0 then there is at most one x0 ∈ X such that f(x0) = y0 and x0 is a limit of x1, x2, x3, · · ·.

X → Y is not a morphism of schemes.

X ×X X

X

X Y

id

δ

id

Definition. X → Y is sepearated means that δ is a closed embedding.

Non-example: considered the origin doubled complex line as X : − : − over C

Theorem 93. Any morphism of affine schemes is separated.

Proof. SpecA = X
π−→ Y = SpecB, π, π♯ : B → A

X ×Y X − SpecB ⊗A B.

X ×Y X X B⊗A B

X Y A B

[Part of proof skipped]

A monomorphism is a morphism X → Y such that W
π1−→
π2

X → Y commutes iff π1 = π2.

Theorem 94. If X → Y is a monomorphism then it is separated.

Proof. X → Y is a monomorphism ⇐⇒ δ : X → X ×Y X is an isomorphism.

(X ×Y X)(W ) = {ϕ1 :W → X,ϕ2 :W → X | π ◦ ϕ1 = π◦}

Therefore the claim is that every isomorphism of schemes is a closed embeddings.

Examples: both open and closed embeddings are monomorphisms.

Given any property P of morphism the property Pδ means property P of for δ : X → X ×Y X.
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Example: If Pδ is ‘isomorphism’ then P is monomorphism.

If Pδ is closed embedding then P is separated.

Theorem 95.

X Y

Z

f

∴

P

δP

assuming P is a reasonable property.

Proof. Y
P−→ Y ×Z Y

X
P−→ Z.

Together,

X = X ×Y Y
P−→ X ×Z Y

P−→ Z ×Z Y = Y

Theorem 96. If P is reasonable then Pδ is reasonable.

Proof. i) Composition: take X
Pδ−−→ Y

Pδ−−→ Z.

Take X
P−→ X ×Y X,Y

P−→ Y ×Z Y .

X X ×Y ×Z X ×Z X

Y
P−→ Y ×Z Y

P P

ii) Pullbacks. Take Y
Pδ−−→ Z and Y

P−→ Y ×Z Y . Want X ×Z Y
”Pδ”−−−→ X.

X ×Z Y
”P”−−→ (X ×Z Y )×X (X ×Z Y ) = X ×Z Y ×Z Y .

Y
P−→ Y ×Z Y .

iii) Pδ is affine local on the target. Suppose Y =
⋃
α Uα

X ×Y Uα is Pδ ∀α

X ×Y Uα
P−→ (X ×Y Uα)×Uα

(X ×Y Uα) = X ×Y X ×Y Uα. Thus we have X → X ×Y X.

Thus, P is affine local on the target.

Corollary 97. Separated morphisms are reasonable.

Example: PnA → SpecA is separated.

Note: we can check whether X → Y is a closed embedding by checking wether ∆ ⊂ X ×Y X

Closed embeddings are reasonable, therefore affine local on the base.

For any X → Y and any (x1, x2) ∈ X ×Y X,
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∃ affine neighborhood of (x1, x2) whose inverse image in Y is of the form SpecC/I.

(x1, x2) ∈ SpecA1 ×SpecB SpecA2 = SpecA1 ⊗B SpecA2.

If (x1, x2) ∈ im∆ then x1 = x2 and we can take A1 = A2.

C = A1 ⊗B A1 ↠ A1 = C/I.

Finish Monday

Friday, 12/5/2025

Consider continuous f : X → Y .

The following are always true: f−1(open) = open, f−1(closed) = closed, f(compact) = compact.

But maybe we want f(open) = open, f(closed) = closed, f−1(compact) = compact.

Definition. f proper means f−1(compact) = compact.

Theorem 98 (?). If X is Hausdorff then f : X → Y is proper if and only if it is universally closed.

A map X
f−→ Y is universally closed if and only if for all continuous maps W → Y we have:

W ×Y X W

X Y

fW

f

fW is closed.

Example: Consider Z→ {·}. This is a closed map. But it is not univerally closed: let W be a nice space with
a discrete sequence which converges: x1, x2, x3, · · · → x0. Then W ×Y X fais to be closed since the associated
fibers to the sequence doesn’t converge in W ×X Y .

Definition. X
π−→ Y is proper if and only if it is separated, of finite type, and universally closed.

Theorem 99. The property of being proper is reasonable.

X ×Y (Y ×Z W )

W ×Z X Y ×Z W W

X Y Z

=

cl. cl.

u.c. u.c.

X X ×Y Uα (X ×Y Uα)×Uα
W X ×Y W

⋃
Wα W Y Uα W

⊃ =

= ⊃

This proves the theorem.
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Example: A1
k → Spec k is not proper.

A1
k A1

k × P1
k P1

k

x (x, x)

δ

SpecL→ SpecK where K ⊂ L is proper.

Theorem 100. Every finite morphism is proper.

Proof. 1) Finite =⇒ Affine =⇒ Separated.

2) Module-finite =⇒ Finitely generated =⇒ Finite =⇒ Finite type

3) Finiteness is a reasonable property. Enough to check finite morphisms are closed.

We also have Finite =⇒ Integral =⇒ Closed.

Recall lying over theorem: if B ⊂ A is an integral extension then SpecA→ SpecB is surjective.

We can reduce to proving that if A is an integral extension of B then SpecA
π−→ SpecB is closed.

Essentially wts π(V (I)) = V (J) for some J .

We have π♯B → A and I ⊂ A.

Define J = (π♯)−1(I). We have the diagram:

B A

B/J A/I

SpecB SpecA

V (J) V (I) = SpecA/I

SpecA/I → SpecB/J

A int. over B =⇒ A/I is an integral extension of B/J . Surjectivity follows.

Theorem 101. PnA → SpecA is proper.

Proof. 1) Separated we proved last time.

2) Finiteness is clear from the cover by finitely many copies of AnA.

3) Consider any W → SpecA. WTS: PnA ×SpecA W → W is closed. It suffices to take an open cover of W
and show that all pullbacks are closed.

105



W =
⋃
α SpecBα.

PnA ×SpecA SpecBα ∼= PnBα
.

PnBα

closed?−−−−→ SpecBα

Closedness follows from fundamental theorem of elimination theory.

Corollary 102. Every projective variety over k is proper over Spec k.

X → Pnk → Spec k

Theorem 103. If X is proper over Spec k and k = k and X is integral then Γ(X,OX) = k.

Non-examples: SpecC→ SpecR.

X = Spec k
∐

Spec k = Spec k × k → Spec k

X = Spec k[ϵ]/(ϵ2)→ Spec k

If f ∈ Γ(X,OX) and f : X → A1
k

X A1
k P1

k is proper

Spec k

The image of X in P1
k is closed. But X cannot contain the point at infinity. Thus image of X must be finite.

The image of X in P1
k is closed.

Dimension

Definition (Krull Dimension). The Krull dimension of a ring A is the max. length of a strictly increasing
chain of prime ideals.

P0 ⊊ P1 ⊊ · · · ⊊ Pn has length n

A maximal chain is a chain that cannot be lengthened by insertion. Note that it isn’t necessarily the longest
chain.

Example:

The krull dimension of k[x] is 1 since all ideals are of the form (P (x)) or (c), and if the ideal is prime then P is
irreducible or (0).

Theorem 104. dim k[x1, · · · , xn] = n

Definition. The dimension of a scheme is the max length of a chain of ‘points’ x0, x1, · · · , xn ∈ X such that
xk+1 ∈ {xk}.
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Monday, 12/8/2025

Recall dimension. We can think of it very geometrically:

As in (x1, · · · , xn) ⊃ (x1, · · · , xn−1) ⊃ · · · ⊃ (x1) ⊃ (0)

Theorem 105. Suppose B ↪→ A is an integral extension. Then dimB = dimA.

Proof. SpecA→ SpecB so if we have Q0 ⊊ Q1 ⊊ · · · ⊊ Qn and P0 ⊊ P1 ⊊ · · · ⊊ Pn where Pi = Qi ∩B.

Suppose Q0 ⊊ Q1 ⊊ · · · ⊊ Qn ⊂ A.

We can define Pi = Qi ∩B.

Then P0 ⊂ P1 ⊂ · · · ⊂ Pn ⊂ B.

We need to show Pi ̸= Pi+1 for all i.

Suppose,

Qi Qi+1 SpecA

xi Pi SpecB

⊊ ∈

= ∈

We know that if B
π♯

−→ A is any integral map then the fibers of SpecA
π−→ SpecB are discrete sets. Replace B

by (B \P )−1B = BP and A by (A \ π♯(P ))−1A. So we may assume P is the unique closed point of B. We may
replace B by B/P and A/P e and assume B is a field.
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So, we claim that for an integral extension of a field, SpecB is discrete.

Suppose P1 ⊂ P2 in A. Replace A by A/P1. Then P1 becomes the zero ideal, P2 becomes P2/P1.

Then B is a field, A is an integral domain that is integral over B.

If a ∈ A then it satisfies a monic polynomial over B:

an + b1a
n−1 + · · ·+ bn = 0

=⇒ 1

a
= −a

n−1 + · · ·+ bn−1

bn

Note, in general, π−1(y) ∼= X ×SpecK(y) Y . So, prime ideal P of Y corresponding to Y then the associated ideal
in A is Frac(B/P )⊗B A.

Definition (Codimension). Suppose we have irreducible X ⊂ irreducible Y .

Then codimX Y = longest chain of irreducibles:

X = X0 ⊊ X1 ⊊ X2 ⊊ · · · ⊊ Xn = Y

Then dimX + codimX Y ≤ dimY .

Now suppose A is a finitely generated k-algebra and also an integral domain.

We can define K = Frac(A) ⊃ K.

Then we can look at the transcendence degree. We define Tr degkK.

A subset S ⊂ K ⊃ k is algebraically independnent over k if there is no nontrivial polynomial relation with
k-coefficients among elements of S.

A maximal algebraically independent set is called a transcendence basis.

Theorem 106. The cardinality of any two transcendence basis of K over k are the same.

To prove this we need exchange lemma.

Lemma 107 (Exchange lemma). If S is a transcendence basis and a ∈ K then there exists s ∈ S such that
(S \ {s}) ∪ {a} is a transcendance basis.

Then we can define the Transcendance dimension:

dimA = tr degk Frac(A)

Example 1: tr degkk(x1, · · · , xn) = n

Example 2:tr degk Frac(k[x1, x2]/f(x1, x2)) if f irreducible and {x1} and {x2} are both tr. bases. Let A be the
quotient. x2 is algebraic over k(x1). So anything is a polynomial over k(x1). Then anything in A is polynomial
over k(x1).
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Example 3: If k = C and X is a compact Riemann surface and K = mero(X). Then tr degCK = 1.

f ∈ K \ C must have a poly at some x0 ∈ X.

{f} must have a pole at some x0 ∈ X. {f} is algebraically independent.

Then {f, g} correspond satisfy:

{f, g}

{f igj}

{f igj | 0 ≤ 0 < i, j}

Big theorem:

Theorem 108. If A is an int. degree finitely generated over k then tr degk Frac(A) = dimA.

Theorem 109 (Noether Normalization). If A is as above and n = tr degk FracA then there exists a basis
{a1, · · · , an} ⊂ A s.t.

A is integral over k[x1, · · · , xn] withthe injective map:

[x1, · · · , xn]→ A, x1 7→ ai via the injective map: L

Proof. Let A = k[y1, · · · , ym].

y1, · · · ., ym are generators of A so m ≥ n. If m = n we can just take a1 = y1, · · · , am = ym

Otherwise we find elements z1, · · · , zm−1 of A such that A is finitely generated as a module over the k-subalgebra
generated by these elements.

Wednesday, 12/10/2025

Recall we were proving that:

Theorem 110.
dimAnk = n

As an intermediate step we had:

Theorem 111 (Noether). Let A be a f.g. k-algebra which is also an integral domain. Let tr degFrac(A) = n.

Then ∃ algebraically independent element a1, · · · , am ∈ A such that A is a f.g. k[a1, · · · , am]-module.

Note that k[a1, · · · , am] ∼= k[x1, · · · , xm].

Proof. We use induction on m. Case that m = 0 is trival: it just just the fact that a field extension which is
finitely generated in the sense of rings is module-finite.

Induction hypothesis for m: if A is generated by b1, · · · , bm then it is a f.g. module over k[a1, · · · , an] for some
algebraically independent set {a1, · · · , an}.

Suppose we know this for some m.
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Let A = k[b1, · · · , bm+1]. If the bi are algebraically independent then they are a transcendence basis for Frac(A).
Then n = m+ 1. We can take a1 = b1, a2 = b2, · · · , am+1 = bm+1 and we’re done.

Suppose they’re not algebraically independent. Then ∃f(x1, · · · , xm+1) a non-zero polynomial such that
f(b1, · · · , bm+1) = 0.

Claim: There exists positive integers r1, r2, · · · , rm such that:

f
(
x1 − xr1m+1, x2 − x

r2
m+1, · · · , xm − x

rm
m+1, xm+1

)
is a k-multiple of a monic polynomial in xm+1.

To see this, note that f is a k[xm+1]-linear combination of monomials in x1, · · · , xm+1.

xc11 · · ·x
cm+1

m+1 7→ (c1, · · · , cm+1).

Use lexicographic order to sort the monomials.

Consider xc11 · · ·xcmm x
cm+1

m+1 .

Plugging in,

(x1 − xr1m+1)
c1(x2 − xr2m+1)

c2 · · · (xm − xrmm+1)
cmx

cm+1

m+1

Then the highest exponent of xm+1 would be r1c1 + r2c2 + · · ·+ rmcm + cm+1.

Pick r1 ≫ r2 ≫ r3 ≫ · · · ≫ rm ≫ 1 so that highest lexicographic order can ’win’

After this substitution and multiplying by an element of k we get a polynomial in x1, · · · , xm+1 monic in xm+1

where:

f(b1, · · · , bm+1) = 0

g(x1, · · · , xm+1) = f(x1 − xr1m+1, · · · , xm − x
rm
m+1, xm+1)

0 = f(b1, · · · , bm+1) = g(b1 + br1m+1, · · · , bm + brmm+1, bm+1)

So bm+1 is integral over:

k[b1 + br1m+1, · · · , bm + brmm+1]

So A = k[b1, · · · , bm+1] =

k[b1 + br1m+1, · · · , bm + brmm+1, bm] ⊂ A

Define

B = k[b1 + br1m+1, · · · , bm + brmm+1] ⊂ A

Then A = B[bm+1] and bm+1 is integral over A.
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Thus A is a f.g. B-module.

A = SpanB(1, bm+1, b
2
m+1, · · · , bd−1

m+1)

d = degxm+1
g

By the induction hypothesis, B is module finite over k[c1, · · · , cn] for some ind. set c1, · · · , cn ∈ B ⊂ A.

A is module-finite over B

B is module finite over k[c1, · · · , cn]

Thus A is module finite over k[c1, · · · , cn].

We have proved, if n = trdegFracA then there exists an injective ring homomorphism:

k[x1, · · · , xn]
inj−→ A integral extension

Then SpecA→ An is an integral dominant morphism.

Then dimSpecA = dimAn where n = trdegFrac(A).

So we just have to prove it for affine n-space.

Theorem 112. dimAnk = n.

Proof. Recall we already have:

(0) ⊂ (x1) ⊂ (x1, x2) ⊂ · · · ⊂ (x1, · · · , xn)

is a strict chain of prime ideals in k[x1, · · · , xn].

This tells us dimAnk ≥ n.

For the other direction we use induction on n.

Suppose P0 = (0) ⊊ P1 ⊊ P2 ⊊ · · · ⊊ Pm are pprime ideals in k[x1, · · · , xn].

Let f ∈ P1 be non-zero and thus non-constant. f has a non-constant irreducible factor g in P1.

k[x1, · · · , xn] is a UFD. g generates a prime ideal. We have (0) ⊊ (g) ⊆ P1.

Now consider k[x1, · · · , xn]/(g). It has a chain of prime ideals:

P1/(g) ⊊ P2/(g) ⊊ · · · ⊊ Pm/(g)

Thus dim k[x1, · · · , xn]/(g) ≥ m− 1.

Claim: trdegFrac(k[x1, · · · , xn]/(g)) = n− 1.

By the induction hypothesis, n− 1 ≥ m− 1 so n ≥ m. We already know m ≥ n so m = n. So the claim implies
the theorem.
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Proof of Claim: WLOG assume g is non-constant in xn.

Then {x1, · · · , xn−1 ∈ k[x1, · · · , xn]/(g)} is a transcendence basis of Frac(k[x1, · · · , xn]/(g)).

Note that xn is algebraic over x1, · · · , xn−1 by the equation g. Then it is enough to show that x1, · · · , xn−1 are
algebraically independent.

Say h(x1, · · · , xn−1) = 0.

Then h(x1, · · · , xn−1) ∈ (g). Then g | h which cannot happen since g is non-constant in xn.

Theorem 113. Let X,Y be varieties over k.

dimX ×Spec k Y = dimX + dimY

Example: note that dim(SpecZ) = 1.

What about SpecZ×SpecZ SpecZ = Z. This is a non-example.

If A and B are f.g. k-algebras and also fintegral domains then,

dimA⊗k B = dimA+ dimB

One way to see this is Noether Normalization.

A is module-finite over k[a1, · · · , an] and B is module-finite over k[b1, · · · , bm] then A⊗kB is module finite over
k[a1, · · · , an]⊗ k[b1, · · · , bm] = k[a1 ⊗ 1, · · · , an ⊗ 1, 1⊗ b1, · · · , 1⊗ bm].

Friday, 12/12/2025

Theorem 114. Suppose we have fields K1 ⊂ K2 ⊂ K3.

Then, tr degK1
K3 = tr degK1

K2 + tr degK2
K3

Proof. Suppose {α1, · · · , αm} ∈ K2 is a transcendence basis over K1 and {β1, · · · , βn ∈ K3} is a transcendence
basis over K2.

Then α1, · · · , αm, β1, · · · , βn is a transcendence basis of K3.

K3

K2(β1, · · · , βn)

K2 K1(α1, · · · , αm, β1, · · · , βm)

K1(α1, · · · , αm)

K1

alg

alg?

alg
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We also need independence.

P (α1, · · · , αm, β1, · · · , βn) = 0

0 ̸= P (x1, · · · , yn) ∈ K1[x1, · · · , yn]

∑
Qi1,··· ,in(x1, · · · , xm)yi11 · · · yinn

Then 0 = Qi1,··· ,in(α1, · · · , αm) ∈ K2

Theorem 115. Suppose X → Y is a dominant morphism of k-varieties and η is generic. Then dimX =
dimY + dimXη.

Proof. Reduce to the case SpecA→ SpecB where A and B are integral domains.

Let K1 = k,K2 = K(η) = Frac(B),K3 = Frac(A)

Bc
π♯

−→ A gives us K1 ⊂ K2 ⊂ K3.

Theorem 116. If X → Spec k is of dimension n and K is a field extension of k then X ×Spec k SpecK has
dimension n.

Theorem 117 (Cohen-Seidelberg; Going Down). Suppose B ⊂ A is an integral extension of integral domains
and B is normal.

If P1 ⊊ P2 ⊊ · · · ⊊ Pn in B and Qn ∈ SpecA maps to Pn = Qn∩B then ∃ a chain of prime ideals Q1 ⊊ · · · ⊊ Qn
such that Qi 7→ Pi.

Corollary 118. Given any maximal chain of prime ideals in A:

P0 ⊊ P1 ⊊ · · · ⊊ Pn

in any finitely generated k-algebra A1 we have n = dimA.

Sketch. 1) Equivalent to proving the theorem for An. Indeed, use Noether normalization to map X → An
which is integral and dominant. Use ‘going down’ on this map.

k[x1, · · · , xn] ⊂ A. We can lift the ‘intermediate dimension’ stuff on An to A.

2) Suppose P0 ⊊ · · · ⊊ Pm is a maximal chain in k[x1, · · · , xn] but m < n.

Let f ∈ P1 be an irreducible polynomial so that P0 ⊊ (f) ⊂ P1 =⇒ (f) = P1.

k[x1, · · · , xn]/(f) has a maximal chain of prime ideals P1/P1 ⊊ P2/P1 ⊊ · · · ⊊ Pn/P1 with length m− 1.

Continuing, we see that we must have m = n.

Theorem 119 (Krull). Let X be a noetherian scheme. Let f ∈ Γ(X,O(X)). Then every irreducible component
of V (f) has codimension 0 or 1.

Theorem 120. If X ⊂ Pnk is any closed subset of dim > 0 and H is any hyperplane in
PPPnk then H ∩X ̸= ∅.
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Proof. Think about X corresponding to a homogeneous ideal (Pm(x0, · · · , xn)) in k[x0, · · · , xn]. This defines a
cone.

Then dim cone(X) = dimX + 1.

Now consider hyperplane H. Point (0, · · · , 0) is in the intersection when we project.

Take the cone of the intersection.

Suppose X,Y are integral and X → Y is dominant. Let η ∈ Y be generic point and Xη be the generic fiber.

Then dimXη = dimX − dimY .

Claim: dimXs = dimXη for all s in a dense open subset S of Y .

Think about the map A2 → A2 given by (x, y) 7→ (x, xy).

Fiber of (a, b) when a ̸= 0 is (a, b/a) which is 0 dimensional.

(0, b) 7→ (0, 0) so fiber of (0, 0) is 1-dimensional.

So not all fiber dimensions have to be same, even though generic dimension is the same.

Suppose y1, y2 ∈ Y and y2 ∈ {y1} and fibers Xy1 , Xy2 are non-empty.

Then, dimXy2 ≥ dimXy1 .

‘The dimension of Xy is an upper semicontinuous function’.

An integer-valued function f : X → Z is upper semicontinuous if f−1((−∞, a)) is open for all z ∈ Z.

All non-empty fibers thus have dim ≥ dimX − dimY .

In fact, every irreducible component of every non-empty fiber satisfies the same inequality.
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This describes how fibers of morphisms look like.
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