
Commutative Algebra MATH 502

Taught by: Dr. James Davis
Written by:Thanic Nur Samin

Class 1: 01/08

Algebraic Geometry Commutative Rings

kn k[x1, . . . , xn]
point (p1, . . . , pn) maximal ideal (x1 − p1, · · · , xn − pn)

varities ideals in k[x1, . . . , xn]
Some shape defined by F = 0 k[x1, . . . , xn]/(F )

Table 1: Relationship between Algebraic Geometry and Commutative Rings

ED =⇒ PID =⇒ UFD

Theorem 1. Gauss Lemma: A UFD =⇒ A[X] UFD

Definition 1. Ring is a five-tuple (A,+, ·, 0, 1)

• A is a set.

• 0, 1 ∈ A

• + : A×A→ A : (x, y) 7→ (x+ y)

• · : A×A→ A : (x, y) 7→ xy

• (A,+, 0) abelian group

• (xy)z = x(yz) associativity

• (x+ y)z = xz + yz distributivity

• x(y + z) = xy + xz distributivity

• x1 = 1x = x

A is commutative if xy = yx, in this course all rings are commutative.

Example 1 (Commutative Rings). Z,Q,R,C,Fp,Fpr , A[x], A/I,Frac(A)

Definition 2. A homomorphism is a function f : A→ B so that,

f(x+ y) = f(x) + f(y)
f(xy) = f(x)f(y)

Definition 3. A subring R of a ring A is a subset so that (R, ·,+, 0A, 1A) is a ring.
x, y ∈ R =⇒ x+ y, xy ∈ R which means R is ‘closed’ under the operations.
Z is an initial ring. This means, for all ring A, there exists a unique ring homomor-
phism Z→ A that sends 1Z → 1A

Definition 4. An ideal I of A is a subset so that (I, 0,+) is an abelian group and
AI ⊆ I.
So we have, 0 ∈ I, x ∈ A, y ∈ I =⇒ xy ∈ I, x, y ∈ I =⇒ x+ y ∈ I

Example 2. Are all subrings ideals? NO
Are all ideals subrings? NO
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I ◁ A means I is an ideal. This gives an equivalence relation on A.
a ∼ a′ ⇐⇒ a+ I = a′ + I ⇐⇒ a− a′ ∈ I
[a] = a+ I equivalence classes.
{a′|a′ ∼ a}

Definition 5. Quotient ring A/I is defined by [x] + [y] := [x+ y], [xy] := [x][y]

A→ A/I is a ring homomorphism with ker = I
f : A→ B is a ring homomorphism. This implies:

• f(A) is a subring ofB

• ker f ◁ A

• A/ ker f is isomorphic to A/I

Definition 6. For a ring A, an element x ∈ A is an unit of there exist y so that
xy = 1.
A× is the group of units.
For example, Z× is the cyclic group of order 2.

Definition 7. x ∈ A is a zero divisor if there exists nonzero y so that xy = 0.

We have units, zero divisors and other elements.

Ring Zero divisors units nonzerodivisors

Z/6Z [0],[2],[3],[4] [1],[5]
Z [0] [1],[-1] [2],[-2],...

Table 2: Units and Zero divisors

Definition 8. A is a domain if the only zero divisor is zero. For example, fields,
subrings of domain, Z[

√
5] etc.

If A is a domain then there exists Frac(A), the field of fractions.
Now, suppose A is a subring of B. let β ∈ B.

Definition 9. A[β] = smallest subring of B containing A and β
= {f(β)|f(x) ∈ A[x]}
We have ev : A[x]→ A[β] given by x 7→ β

Class 2: 01/10
Let A be a domain. This means xy = 0 =⇒ x = 0 or y = 0
Key property: Domain implies cancellation
xy = xz, x ̸= 0 =⇒ y = z as xy = xz =⇒ xy − xz = 0 =⇒ x(y − z) = 0 =⇒
y − z = 0 =⇒ y = z

Definition 10. ED, Euclidean Domain is a domain with extra condition: a function
f : A − {0} → Z>0 so that for all a ∈ A − 0, b ∈ A we have b = aq + r with either
r = 0 or f(r) < f(a).
Alternative formulation (Dummit and Forte) we can have f(0) = 0. Also in some
formulation f(0) = −∞.

Example 3. if A is a field then f can be anything since r = 0 always. We take const.
For Z we have f(x) = |x|.
In k[x] we have f(p(x)) = deg p(x)
Note that Z[x] is not an ED.
Z[i] is an ED. f(a+ ib) = a2 + b2

Lorentz polynomials k[x, x−1] is an ED.
f(axm + · · ·+ bx−n) = m+ n

Definition 11. I ◁ A is principal if there exists a ∈ A so that I = (a) := Aa
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A domain A is a PID (Principal Ideal Domain) if all ideals are principal.

Theorem 2. ED =⇒ PID

Proof. Suppose 0 ̸= I ◁ A and (A, f) is ED.
Choose a ∈ I so that f(a) = min f(I − 0)
for all b ∈ I we have b = aq+ r where r ∈ I. We must have f(r) ≥ f(a) which means
r = 0 and thus b ∈ (a).

Note that Z[x],C[x, y] are not PID and thus they are not EDs.

Theorem 3. By Gauss. Every n ∈ Z − 0 factors into n = ±p1 · · · pn primes unique
upto reordering.

We generalize this.

Definition 12. x ∈ A is irreducible if x ̸= 0, /∈ A× and x = ab =⇒ a ∈ A× or
b ∈ A×.
x ∈ A is prime if x ̸= 0, /∈ A×, x | ab =⇒ x | a or x | b
x, y ∈ A are associates if x = yu where u ∈ A×.

Definition 13. A domainA is a UFD (unique factorization domain) if for any nonzero
nonunit x ∈ A then:
1. x = p1 · · · pr where pj are irreducibles
2. Decomposition is unique upto reordering and associates.
This means if p1 · · · pn = q1 · · · qm then m = n and there is a permutation σ of indices
and units ui ∈ A× so that pi = qσ(i)ui

Theorem 4. All PIDs are UFDs.

Proof. Assume A is a PID. Let x ∈ A− 0, x /∈ A×

First we prove existence (1).
If x is irreducible then we’re done. If it is not, then since it is reducible we have
x = x1x2. If x1, x2 are both irreducible then we’re done. Otherwise x1 or x2 is
reducible. WLOG x1 is reducible. Then x = x11x12x2. We continue. After reordering
we have an infinite chain of ideals (x) ⊊ (x1) ⊊ (x11) ⊊ (x111 ⊊).
We claim that this terminates. Suppose otherwise.
Then there exists an ∞ number of ideals I1 ⊊ I2 ⊊ I3 ⊊ · · ·
Take I =

⋃∞
i=1 Ii. This is an ideal, but I = (x). x ∈ In for some n which means

In = In+1 = · · · so there can’t be any infinite ascending chain and thus we’re done
with te existence.
[Take the tree. If it’s unbounded by AOC we have an infinite chain. If x is not a
finite product of irreducibles then we have an infinite chain.]
Reread Dummit and Forte.
Lemma: in a domain prime =⇒ irreducible, and in a PID prime ⇐⇒ irreducible.
We use this.
p1 · · · pn = q1 · · · qm
p1|q1 · · · qm implies p1|qi for some i. Reorder so that p1|q1. Then q1 = p1u. Since q1
is irreducible u is a unit.
Now we have p2 · · · pn = uq2 · · · qm. We keep going for the proof.

Class 3: 01/12
Today we prove A UFD =⇒ A[x] UFD
Monday MLK day, Wednesday explicit Galois Theory Ga(Fpr/Fp) and Ga(Q(ξn)/Q).
Recall that A is a UFD (Unique Factorization Domain) if A is a domain and every
x ∈ A − (0 ∪ A×) is a product of irreducibles and this factorization is unique upto
reordering and multiplication by units.
Notation: x

•
= means x, y are associates, aka x = yu where u ∈ A×

Two nice properties of UFD:

• prime ⇐⇒ irreducible
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• gcd and lcm exists

Proposition 1. If A is a UFD, x ∈ A is non-unit and non-zero, then x prime ⇐⇒
x is irreducible.

Proof. =⇒
Suppose x is a prime. Assume x is not irreducible. If x = ab we have, x|ab which
implies x|a or x|b.
WLOG, x|a. Then we have a = xy.
So, x = ab = xyb =⇒ yb = 1 =⇒ b ∈ A×

So x is indeed irreducible.
[Note that this is true for arbitrary domains]
⇐=
Assume x is irreducible. If x|ab, we have ab = xy
The uniqueness of factorization implies x is a factor of a and b. So x is a prime.
[We need uniqueness for this]

Definition 14. GCD. First, d is a common divisor of a and b if d|a and d|b. Equiv-
alently, (a), (b) ⊂ (d). To contain is to divide.
d is a gcd of a and b if d is a common divisor and for any other common divisor d′,
we have d′|d ir (d) ⊂ (d′) . In other words, (d) is the unique minimal principal ideal
so that (a), (b) ⊂ (d)

In a general ring, it may or may not exist. But in a UFD, gcd’s exist and unique upto
multiplication by units.
∀a, b ∈ A, if d, d′ are gcd(a, b) then d

•
= d′.

So, 2,−2 = gcd(4, 6)
Formula for gcd:
a = upe11 · · · perr
b = vpf11 · · · pfrr
Where u, v ∈ A×, pj are distinct primes and ei, fi ≥ 0

Thus, gcd(a, b) = p
min(ei,fi)
1 · · · pmin(er,fr)

r

Now, we prove that,

Theorem 5. A is a UFD =⇒ A[x] is a UFD

Note that, if A is a domain, then A[x] is a domain.
Proof is an exercise. Just work through the coefficients.
For the rest of the class, assume A is a UFD. Our canonical example is A = Z. Note
that Z[x] is not a PID.

Definition 15. A polynomial f(x) =
∑n

j=0 an−jx
n−j ∈ A[x] is primitive

if gcd(an, · · · , a1, a0) = 1.

Theorem 6. Gauss’ Lemma: Suppose f, g ∈ A[x] are primitive. Then fg is primitive.

Proof. Note that, h ∈ A[x] is primitive ⇐⇒ ∀ prime p of A, h ̸= 0 ∈ A[x]/(p) =
(A/p)[x] ⇐⇒ ∀ prime p, p ̸ | gcd(an, . . . , a0)
Now, since f, g are primitive, f, g ̸= 0 ∈ (A/p)[x]. Note that (A/p)[x] is a domain.
Now, fg = fg ̸= 0 ∈ (A/p)[x] and thus fg is primitive.

Definition 16. Suppose f ∈ A[x] Then, the content c(f) is the gcd of the coefficients
gcd(an, · · · , a0).

Note that 1
c(f)f is primitive.

Also, ∀f, c we have f
c ∈ A[x] is primitive ⇐⇒ c

•
= c(f)

Note that division doesn’t always make sense in a ring. x
y means if x = yq then q = x

y
A corollary of Gauss’ Lemma: Applying Gauss’ Lemma to non-primitive polynomial
gives us c(fg)

•
= c(f)c(g)
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Proof. 1
c(f)f,

1
c(g)g are primitive, which means 1

c(f)c(g)fg is primitive. This implies

c(f)c(g)
•
= c(fg)

Suppose A is a domain. Let k = Frac(A). EG Q = Frac(Z)
(i.e. A ⊂ k field, ∀x ∈ k×, x = a1

a2
where a1, a2 ∈ A )

For f ∈ k[X] we define c(f) ∈ k× by f
c(f) ∈ A[x] is primitive.

Corollary of Gauss Lemma: ∀f, g ∈ k[x] we have c(fg) = c(f)c(g)u where u ∈ A×

Finally we prove our theorem.

Proof. “Existence”: Suppose 0 ̸= h ∈ A[x].
We can write h = c(h)f where f is primitive.
Factor c(h) = p1 · · · pk as product of primes in A.
Factor f = f1 · · · fr as a product of irreducible in k[x] since k[x] is an Euclidean
Domain.
We say that h = p1 · · · pk f1

c(f1)
· · · fr

c(fr)

Since fj is irreducible in k[x] =⇒ fj
c(fj)

is irreducible in A[x]

Addendum from me: Suppose primitive f ∈ A[x] such that f = g′h′ in the field of

fractions. Then, f = g
u

h
v =⇒ fuv = gh. So, c(g)c(h) = c(gh) = c(fuv)

•
= uv. So

f = g
c(g)

h
c(h)

Class 04: 01/17
We have A UFD =⇒ A[x] UFD
We use Gauss lemma and k[x] UFD.
Since we have A[x][y] = A[x, y] by induction we have A UFD implies A[x1, . . . , xn] is
a UFD.
We give a geometric definition.

Definition 17. A variety V ⊂ kn is the zero set of {fα} ⊂ k[x1, . . . , xn]

For example, if f = x1x2 then the variety is the axes in euclidean space [insert
pictures]
We actually have a correspondence between varieties in kn and ideals I of k[x1, . . . , xn]
V 7→ I(V ) = {f ∈ k[x1, . . . , xn]|f(V ) = 0}
On the other hand V (I) = {x ∈ kn|∀f ∈ I, f(x) = 0}
Is it a bijection? No, V (x) = V (x2) but (x) ̸= (x2)
Is I(v) finitely generated? Yes, by a theorem of Hilbert
If so is it by ≤ n polynomials? by ≤ n irreducible polynomials?
Is V = union of irreducible varieties uniquely?
There are a lot of connections between algebraic geometry and ring theory.

Explicit Galois Theory

eg. Fpr/Fp ≃ Z/r with correspondence between x 7→ xp and 1
eg, Q(ξn)/Q ≃ Z/n with correspondence between ξn 7→ ξkn and k

Field Extensions

Suppose 0 ̸= f ∈ k[x]
1. ∃K such that f has a root in K
2. f(α) = 0 for some α ∈ K then the ring k[α] is a field
3. f(x) has at most deg f roots in k
For proof of 1: Let f1 be irreducible factor of f .

Then, K = k[x]
(f1(x))

, so x+ (f1(x)) is a root of f1 and thus f .

2. Let β ̸= 0 be an element of k[α]
Then, ·β : k[α]→ k[α]
It is injective since k[α] is a domain
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dimh k[α] ≤ deg f
So it must be surjective and thus 1 is in the image.
3. α is a root iff x− α|f then induct.

Definition 18. Splitting Fields (Definition 13.4): K/k is a splitting field for nonzero
f ∈ k[x] if f(x) = a

∏
(x− αi) ∈ K[x]

K—-E—-k =⇒ does not split in E
For example, Q[

√
2] is splitting field for x2− 2 but Q( 3

√
2) is not the splitting field for

x3−2. We need Q( 3
√
2, ξ3).

We define ξn = e2πi/n as the primitive root of 1

Theorem 7. f(x) ∈ k[x].
1. There exists splitting field K/k for f(x)
2. If K/k and L/k are splitting fields for f then there exists ϕ : K → L such that
ϕ|k = Idk

Proof uses observation and induction on deg f
Application 1:
Algebraic Closure:

Definition 19. A algebraic closure k over a field k is k/k such that α ∈ k is algebraic
over k which means ∃f(x) ∈ k[x] that is nonzero and f(α) = 0 and also every nonzero
f ∈ k[x] has a root α ∈ k

Theorem 8. Suppose k is a field. Then,
1: There exists an algebraic closure k/k
2: If there are two algebraic closures of k then there is an isomorphism which restricted
to k is the identity.

Proof: Zorn’s lemma
k is algebraically closed if k = k
Which means every polynomial has a root.

k is algebraically closed which means k = k
C is algebraically closed by Gauss Fundamental theorem of Arithmetic.
We have Q ⊂ Q ⊂ C
Q is countable and algebraically closed.
Fp = ∪Fpr

Application 2 of splitting field is to finite fields.
Let p be a positive prime number.
Fp := Z/pZ
It is a field.
Suppose F is a finite field.
So, we have, |F | > 1 from the definition 1 ̸= 0
There exists a unique prime p so that p1F = 0F
Proof: Consider the map Z → F that sends 1 → 1F . The kernel is nZ. So, the
domain Z/nZ has an injective homomorphism to F which means n is a prime
char(F ) = p means in F field, p1F = 0f
Now, Fp has injective homomorphism to F (sends 1 → 1 ) So we have F is a vector
space over Fp so we have dimFp

= r

Class 05: 01/19

Finite Fields and Galois Theory

Suppose F is a field and char(F ) = p =⇒ p1 = 0.

Definition 20. Frobenius Endomorphism: σ : F → F given by σ(x) = xp

Proposition 2. σ is a field morphism.
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Proof. σ(1) = 1, σ(xy) = (xy)p = xpyp = σ(x)σ(y)
σ(x + y) = (x + y)p =

∑p
k=0

(
p
k

)
xp−kxk = xp + yp since

(
p
k

)
is divisible by p for

1 ≤ k ≤ p− 1 and hence 0 in F since char(F ) = p
Also, kerσ ◁ F but F is a field which means σ is 1− 1 aka injective
Also |F | <∞ =⇒ σ(F ) ≃ F

Consider the field of fractions Fp(t) = Frac(Fp[t]) then we have σ(t) = tp, then σ is
not onto as t /∈ imσ
Let F be a finite field. Last time we showed charF = p and |F : Fp| = dimFp

F = r

Proposition 3. Let q = pr. Then,

• ∃ field of order q

• |F | = q =⇒ F is splitting field of xq − x

• If |F | = q = |K| then F ≃ K

Proof. For 1: Let E be a field where xq−x splits. Let f(x) = xq−x. We claim that f
has distinct roots. One way to look at it is gcd(f, f ′). Then, gcd(xq−x, qxq−1−1) =
gcd(xq − 1,−1) = 1 since we are working modulo p and thus q = 0. This implies f
has q distinct roots in E.
Let F = Eσq

= {x ∈ E : σr(x) = x} = {x ∈ E : f(x) = 0}
Then |F | = q
We claim that F is a field. We have multiplication and inverse easily. If α, β ∈ F then
(α + β)q = αq + βq [Freshmen’s dream] so we have addition too so we have proved
that F is a field.
For 2: If F is a field of order q then for x ∈ F× since |F×| = q − 1 we have
xq−1 = 1 =⇒ xq − x = 0, and this is also true for x = 0. So, xq − x =

∏
α∈F (x− α)

and thus F must be a splitting field.
For 3: Splitting fields are unique.

Note that Fpr means any field of order pr. All such fields are isomorphic, but there
isn’t any canonical ‘god given’ construction of Fpr

Warning: Fpr ̸≃ Z/pr
There’s another basic fact.

Proposition 4. F×
p is cyclic.

In Dummit and Foote there’s a more general fact: ∀ field F , any finite subgroup A
of F× is cyclic. This lemma directly implies the above proposition.

Proof. This uses the third observation from last time. Let n = |A| and let d =
expA = max {ord a|a ∈ A}. This must divide n.
Then, xd − 1 has n roots [namely the elements of A] which means d ≥ n but also d|n
so d = n which means A is cyclic.

Corollary: Fpr/Fp is primitive, i.e. Fpr = Fp[θ] for some θ and ⟨θ⟩ = F×
q

Corollary: ∀r ≥ 1,∃ irreducible polynomial h(x) of degree r
For this, h(x) is just the minimal polynomial of θ

So Fpr ≃ Fp[x]
(h(x))

Review of Galois Theory:
Suppose L/K is a finite extension of field.
Then Aut(L/K) = {σ : L→ L isomorphisms so that σ|K = IdK}

Definition 21. L/K is Galois if |Aut(L/K) = |L : K||

For example, Q(
√
2)/Q is Galois but for 3

√
2 it’s not.
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Definition 22. If L/K is Galois, define,
Gal(L/K) := Aut(L/K)

Theorem 9. Fundamental Theorem of Galois Theory: Suppose L/K is Galois. Then
the map of subgroups of Gal(L/K) to fields E such that L−E−K given by H 7→ LH

is a bijection.

Back to finite fields: σ(x) = xp

Then σ ∈ Aut(Fpr/Fp)
Since F×

q is cyclic, ordσ = r
So, σr = Id
This means r = |Fpr : Fp| ≥ Aut(Fpr/Fp) ≥ r
So, Gal(Fpr/Fp) = ⟨σ⟩ ≃ Z/r
Corollary: For d|r, ∃! su ield F of Fq of order pd

For assignment, we were supposed to analyze the lattice.
Given Fpn1 ,Fpn2 we can embed in Fpn1n2

Note:
Gal(Fpn)/Fp

∼= ZN and the geneeratoris the frobnius map σ : Fpn → Fpn given by
σ(a) = ap

This is true because ap
n

= a

Class 06: 01/22
We start on Atiyah MacDonald on wednesday.
Finite Field Definition: 13.5+14.3
Cyclotomic FIeld Definition: 13.6+14.5

Finite Fields Cyclotomic

Fpn Q(ζn)
Splitting Field of xpn − x Minimal Polynomial Φn

Gal(Fpn/Fp) ∼= Z/n with a 7→ ap
k

Gal(Q(ζn)/Q) ∼= Z/n× with ζn 7→ ζkn

Table 3: Finite vs Cyclotomic Fields

Let ζn = e2πi/n

Let µn = {ζ ∈ C× : ζn = 1} < C×

Then µn = ⟨ζn⟩ and is cyclic of order n

Definition 23. n th cyclotomic polynomial:

Φn(x) =
∏

primitive ζ∈µn

(x− ζ) =
∏

0<a<n,(a,n)=1

(x− ζan)

Note: deg Φn = ϕ(n) by definition.

Also: Xn − 1 =
∏
d|n

Φd(X)

This gives us a recursive formula for cyclotomic polynomials:

Φn(x) =
xn−1∏

d|n,d̸=n Φd(x)

n Φn(x)

1 x− 1
2 x+ 1
3 x2 + x+ 1
4 x2 + 1
5 x4 + x3 + x2 + x+ 1
6 x2 − x+ 1

Table 4: Cyclotomic Polynomials
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Corollary: Φn(x) ∈ Q[x]
Corollary of Gauss’ Lemma:
Suppose R is a UFD. Let k = Frac(R). Then f(x) = g(x)h(x) in k[x] with f, g, h
monic and f(x) ∈ R[x] then g, h ∈ R[x]
We can use this to show that all the Φn are monic.

Proof. Since g, h are monic, we can find d, e ∈ R so that dg(x), eh(x) ∈ R[x] and they
are primitive [d, e are lcm of numerators.]
Then, def(x) = [dg(x)][dh(x)], but def(x) and f(x) are both primitive which can
only happen if de is a unit aka d, e are both units. So g(x), h(x) are both primitive
in R(x)

This proves that all the Φn are integer polynomials.
Lemma: Φn(x) are irreducible in Q[x]
This actually implies |Q(ζn) : Q| = ϕ(n)

Proof. Due to Dedekind.
Suppose Φn(x) = f(x)g(x) with f, g both monic.
With f irreducible, deg f > 0
Now, by corroloary of Gauss Lemma, f, g ∈ Z[x]
Claim: Suppose p is a prime, p ∤ n and ζ is a primitive n th root of unity and f(ζ) = 0.
Then, f(ζp)
Proof of Claim by contradiction:
Note that, Φn(ζ

p) = 0. Suppose g(ζp) = 0
Since f is irreducible it is the minimal polynomial of ζ so we have f(x) | g(xp). Then,
g(xp) = f(x)h(x)
Consider (mod p) which gives us g(xp) = f(x)h(x)
Now, g(x)p = g(xp) | f(x) | xn − 1
But xn − 1 has no multiple factor in Fp(x) [formal derivative trick.]

Class 07: 01/24
Recall:

Finite Fields Cyclotomic

Fpn Q(ζn)
Splitting Field of xpn − x Minimal Polynomial Φn

Gal(Fpn/Fp) ∼= Z/n, k 7→ (a 7→ ap
k

) Gal(Q(ζn)/Q) ∼= Z/n×, k 7→ (ζn 7→ ζkn)

Table 5: Finite vs Cyclotomic Fields

Yesterday:

Φn(x) =
∏

primitive ζ ∈ µn

(x− ζ) =
∏

(a,n)=1,0≤a<n

(x− ζan)

That gave us:
deg Φn(x) = ϕ(n)
xn − 1 =

∏
d|n Φd(x)

Φn(x) =
xn − 1∏

d|n,d̸=n Φd(x)
∈ Q[x]

Gauss Lemma:
f ∈ Z[x], f = gh ∈ Q[x], g, h monic implies g, h ∈ Z[x]
Thus Φd(x) ∈ Z[x]
Then we have the hard theorem we were in the middle of.
Φn(x) is irreducible.
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Proof. Φn(x) = fg ∈ Q[x]
ζn must be a root of either f or g. WLOG f(ζn) = 0 and f is irreducible. We want
to show that g = 1
We had a tricky argument by Dedekind. The stuff on last class wasn’t quite right.
Claim:
Suppose we have a primitive ζ, f(ζ) = 0. If p ∤ n then f(ζp) = 0
Proof by contradiction: Assume f(ζp) ̸= 0. We know that Φn(ζ

p) = 0 = f(ζp)g(ζp)
f is irreducible so f is the minimal polynomial for ζ. But g(xp) is a polynomial with
ζ as a 0. So, f(x) | g(xp). Hence, g(xp) = f(x)g(x)
Reducing mod p we see,
(g(x))p = g(xp) = f(x)h(x)
So, f | gp
So, gcd(f, g) ̸= 1
(gcd(f, g))2 | fg = Φn(x) | xn − 1
But gcd(xn − 1, d

dxx
n − 1) = gcd(xn − 1, nxn−1) = 1 so we have no multiple factors

which is a contradiction.
So, f(ζp) = 0
Claim 2: (a, n) = 1 implies f(ζan) = 0
Proof: a is product of primes not dividing n, induct.
So, f has ϕ(n) roots ζan, Φn also has ϕ(n) roots.

Corollary: |Q(ζn) : Q| = degΦn(x) = ϕ(n)

Also, Q[ζn] =
Q[x]

(Φn(x))

ALso, K(α) is the smallest field and K[α] is the smallest ring containing α but it’s
the same if the degree of extension is finite. Not same for π tho.
Claim: Suppose L/K finite. Then,
|Aut(L/K)| ≤ |L : K|

Definition 24. L/K is Galois if |Aut(L/K)| = |L : K| and we call Gal(L/K) :=
Aut(L/K)

Theorem 10. Q(ζn)/Q is Galois and

(Z/n)× ≃ Gal(Q(ζn)/Q)

Where k gets mapped to the map (ζn 7→ ζkn)

Proof. Φn is minimal polynomial. For ζn and ζkn we have the following diagram [draw
commutative digram]

Definition 25. An extension L/K is Abelian if it is Galois and it’s Galois Group
G = Gal(L/K) is abelian.

Definition 26. An extension L/K is simple if L = K[α] for α ∈ L. Then, α is called
a primitive element.

We review the Fundamental Theorem of Galois Theory:

Theorem 11 (Fundamental Theorem of Galois Theory). Let K/F be Galois. Then
there exists a bijection:
Intermediate extension K/E/F ↔ subgroups I −H −G
Given by:
Subgroup H 7→ Extension KH = {k : h(k) = h∀h ∈ H}
Extension E 7→ Subgroup GE = {g ∈ G : ∀e ∈ E, g(e) = e}

We have a Corollary: K/E is also Galois and GE = Gal(K/E)
This is useful in HW P3.
Another Corollary: If Gal(K/E) is normal in Gal(K/F ) then E/F is Galois and we

have Gal(E/F ) = Gal(K/F )
Gal(K/E)

This is useful in HW P5.
Another Corollary: If L/K is Galois and simple [L = K[α] ]

10



Then the minimal polynomial of α is given by:
∏

g∈Gal(L/K)

(x− g(α))

Done.

Class 08: 01/26

Read Chapter 1 of Atiyah MacDonald (AM)

Chapter 1: Rings and Ideals

Definition 27. Ring [Commutative Ring]
Subring
Ideal I ◁ A, (I,+) group, AI = I
Quotient ring A→ A/I
Homomorphism f : A→ B
ker f ◁ A

f : A/ ker f
≃−→ f(A)

zero divisor ∃y ̸= 0 such that xy = 0
domain
PID
units
A×

Proposition 5 (AM 1.1). If I ◁ A then there exists a bijection

{J ◁ A|I ⊂ J} ↔ {J ◁ A/I}

Map is J 7→ q(J) the quotient map, and q−1(J) in the other direction.
Proof is in AM.
Look at Z→ Z/6Z
Z has ideals (2), (3), (6), (1) that contain (6)
Z/6Z has ideals (3), (2), (0 = 6), (1)

Definition 28. Field is a ring such that 1 ̸= 0 and A× = A \ {0}

Proposition 6 (AM 1.2). The Following Are Equivalent (TFAE):

1. A is a field

2. I ◁ A =⇒ I = 0 or A

3. f : A→ B ̸= 0 implies f is injective

Proof. 1 =⇒ 2 : We use contradiction. Suppose 0 ̸= I ◁ A and let 0 ̸= x ∈ I.
So, A = (1) = (x) ⊂ I ⊂ A meaning I = A
2 =⇒ 3 : f(1) = 1 ̸= 0 so 1 ̸= ker f thus ker f ̸= A =⇒ ker f = 0 so A is injective.
3 =⇒ 1 : Suppose x ∈ A − A× then the quotient map q : A → A/(x) is injective
which implies x = 0
Note that A/(x) = 0 ⇐⇒ A = (x) ⇐⇒ x ∈ A×

Prime and Maximal Ideals

Atiyah MacDonald Subsection

Definition 29. I ◁ A is a prime ideal if P ̸= A and if xy ∈ P then x ∈ P or y ∈ P

A principal ideal I = (a) is prime means xy ∈ I =⇒ a | xy =⇒ a | x or a | y
[Euclid’s Lemma] which means a is prime.

Definition 30. I ◁ A is proper if I ̸= A

Definition 31 (Maximal Ideal). I ◁ A is maximal if it is a maximal proper ideal, i.e
I ̸= A , if I ⊂ J and J is a proper ideal of A then I = J
For example, (2), (3) are both maximal ideals of Z

11



Very Useful Trivialities:

I prime ⇐⇒ A/I domain

I maximal ⇐⇒ A/I field

Since all domains are fields, maximal ideal implies prime ideal.
But not the other way around. In R[x, y] we have (x− 1) is prime but (x− 1, y − 1)
is maximal.
A is a domain ⇐⇒ 0 ◁ A is a prime

Theorem 12 (AM 1.3). Every A ̸= 0 has a maximal ideal. [Uses special ase of Zorn’s
Lemma]

Suppose Σ is the collection of subsets of the set X
Then Zorn’s Lemma says that:
If every chain in Σ has an upper bound in Σ then Σ has a maximal element.
Note: C ⊂ Σ is a chain if A,B ∈ C =⇒ A ⊂ B or B ⊂ A
C ⊂ Σ has an upper bound if ∃B ∈ Σ such that A ∈ C =⇒ A ⊂ B
M ∈ Σ is maximal if M ⊂ N ∈ Σ =⇒ M = N

Proof. Let Σ be the set of proper ideals of A. Consider chain C ⊂ Σ then the ideal
I =

⋃
J∈C J is a proper ideal of A

Note that unions of proper ideals is not always proper (or even ideal) but if we have
a chain it is true.
It is proper because 1 /∈ I
Thus, there always exists an upper bound and therefore by Zorn’s Lemma we have a
maximal ideal

Corollary: if A ̸= 0 ring then there exists a surjection A ↪→ field.

Proof. A 7→ A/M

Corollary 1.4: Any proper ideal is contained in a maximal ideal.

Proof. We have quotient A→ A/I then consider the maximal ideal M and then just
take M = q−1(M)
Or Zorn’s lemma: Let ΣI = {J proper ideal of A | I ⊂ J}

Definition 32. A is a local ring if there exists a unique maximal ideal.

It has ‘something’ to do with local in the sense of topology.
A field as unique maximal ideal (0)
Z/p2Z has local ideal (p)
For prime p we have the local ring Z localized at p given by
Z(p) = { rs ∈ Q : r, s ∈ Z, p ∤ s} ⊂ Q
The unique maximal ideal is M = Z(p)p
In fact Z(p)p/(p) ≃ Fp

If A is a local ring then A/M is the residue field.

Class 09: 01/29

Definition 33. A is a local ring if it has a unique maximal ideal.

Another example: you can localize a polynomial ring at a point: C[x1, . . . , xn](p) ={
f
g : f, g ∈ C[x1, . . . , xn], g(p) ̸= 0

}
where p = (p1, . . . , pn) a point.

Proposition 7. Suppose M ◁A and proper and A−M ⊂ A× then A is local and M
is maximal.

12



Proof. We want to show that M is the unique maximal ideal. Let I be a maximal
ideal. We want to show that I = M
By hypothesis, A−M ⊂ A× ⊂ A− I
Note that A× ⊂ A− I is true for any proper ideal I
This implies I ⊂M which implies I = M

Z/pkZ is maximal with (p) as the maximal ideal by the above proposition [p prime].

Proposition 8. maximal M ◁A such that 1 +M ⊂ A× then A is local.

Proof. Let x ∈ A−M , we will show x is a unit.
Then (x,M) = A
=⇒ ax+m = 1 for some a ∈ A,m ∈M
=⇒ ax = 1−m ∈ 1 +M ⊂ A× =⇒ x ∈ A×

Therefore, A−M ⊂ A× and thus by previous proposition A is local.

Exercise: A local ring ⇐⇒ A−A× ◁ A

Definition 34. If A is a local ring with maximal ideal M then we have an associated
canoncial field A/M called the residue field.

Nilradical and Jacobson Radical

Definition 35. Let A be a ring, x ∈ A is nilpotent if xn = 0 for some n ∈ Z>0

Examples: p ∈ Z/pkZ, x ∈ R[x]/(x3),

0 ∗ ∗
0 0 ∗
0 0 0


Note that the last one is not commutative.
Trick: x is nilpotent =⇒ 1± x ∈ A×

This is because 1
1−x = 1 + x+ x2 + · · ·

Which is a finite sum if x is nilpotent. Similar for 1
1+x

Definition 36. The nilradical of a ring A, NilA = N(A) = {x ∈ A : x is nilpotent}

This looks like a set [because it is] but it is actually an ideal!

Proposition 9. If A is a ring then N(A) ◁ A and N(A/N(A)) = 0

Proof. xn = 0 =⇒ (ax)n = 0
xm = 0, yn = 0

=⇒ (x+ y)m+n =

m+n∑
j=0

(
m+ n

j

)
xjym+n−j = 0

Thus N(A) is an ideal.
Now, suppose X ∈ A/N(A). We prove that it is multipotent by contradiction.
Suppose xn = 0
Then xn ∈ N(A)
Thus (xn)k = 0 for some k
Thus xnk = 0
Thus x is nilpotent. So we have a contradiction.

Definition 37. Ring A is reduced ⇐⇒ N(A) = 0

We can reduce any ring by quotienting out the nilradical.
Motivation: In Algebraic Geometry, if V is a variety, then k[x1, . . . , xn]/I(V ) is always
reduced. Having nilpotents is problematic if we want to do algebraic geometry.

Proposition 10 (1.8). N(A) =
⋂

prime ideal P◁A

P

13



Useful in homework.

Proof. We want to show that the sets contain each other.
Suppose x ∈ N(A) =⇒ xn = 0
Let P ◁ A be prime.
Thus 0 ∈ P =⇒ xn ∈ P =⇒ x ∈ P
For other direction, we do contrapositive.
Suppose x /∈ N(A)
Zorn’s Lemma time! We construct a prime ideal x is not inside of.
Let Σ = {I ◁ A : x /∈ N(A/I)} = {I ◁ A : xn /∈ I∀n}
Note: (0) ∈ Σ
Any chain in Σ has an upper bound in Σ and thus there exists a maximal element
P ∈ Σ
Claim: x /∈ P and P is prime.
x /∈ P since P ∈ Σ
To prove P is prime, we prove a, b /∈ P =⇒ ab /∈ P
Assume a, b /∈ P
Then P + (a), P + (b) /∈ Σ
=⇒ xm ∈ P + (a), xn ∈ P + (b)
=⇒ xm+n ∈ P + (ab)
=⇒ P + (ab) /∈ Σ and P ∈ Σ
=⇒ ab /∈ P

Definition 38 (Jacobson Radical). Since nilradical is the intersection of prime ideals,
Jacobson Radical is the intersection of maximal ideals.

J(A) =
⋂

M maximal ideal of A

M

Note that N(A) ⊂ J(A) since maximal ideals are prime.
Example where nilradical and jacobson radical are different:
Let Z(2) =

p
q where q odd.

Then N(Z(2)) = 0 but J(Z(2)) = 2(Z)

Class 10: 01/31

Proposition 11 (AM 1.9). The Jacobson Radical J(A) = {x ∈ A : 1− xA ⊂ A×}

Proof. We show it by the two sided inclusion, and we show that by the contrapositive.
Suppose 1− xa /∈ A×

Then there exists maximal ideal M so that 1− xa ∈M
=⇒ 1 ∈ xa+M
=⇒ xa /∈M
=⇒ x /∈M
=⇒ x /∈ J(A)
Now suppose x /∈ J(A)
=⇒ x /∈M for some maximal ideal M
=⇒ (x,M) = A
=⇒ 1 = xa+m for some a ∈ A,m ∈M
=⇒ 1− xa ∈M
Since M is a proper ideal, 1− xa /∈ A×

14



Operations on Ideals

Suppose we have ideals I, J in A
Then IJ ⊂ I ∩ J ⊂ I + J = (I, J) are all ideals but I ∪ J is not an ideal.
I + J = {i+ j : i ∈ I, j ∈ J} it is an abelian group, and absorbs multiplication so it
is an ideal. It is (I, J) so it is an ideal.
Note that IJ ̸= {ij : i ∈ I, j ∈ J}
Instead, IJ = {

∑n
k=1 ikjk : ikjk : ik ∈ I, jk ∈ J} [finite sum]

Canonical Example: Suppose A = Z
Then (a)(b) = (ab)
But (a) ∩ (b) = (lcm(a, b))
And (a) + (b) = (gcd(a, b))
This is true for PIDs, potentially UFDs?

Direct Product of Rings

If we have rings A1, A2, · · · , An then we can define A1 ×A2 × · · · ×An =
∏

Ai

Given two rings A1 and A2 we can define a ring structure on their cartesian product
A1 ×A2 = {(a1, a2) : a1 ∈ A1, a2 ∈ A2} where sum and product are done componen-
twise. Then A1 × 0 and 0×A2 are zero divisors and 1A1×A2

= (1, 1).
An element e ∈ A is an idempotent if e2 = e. Examples: 0, 1 are trivial idempotents.
A ∼= A1 ×A2 with Aj ̸= 0 ⇐⇒ there exists a non-trivial idempotent in A.
Suppose e is a non-trivial idempotent. We want e = (1, 0) then 1 = e+ (1− e) so we
have A1 = Ae and A2 = A(1− e).
A1 ×A2 is product of A1 and A2 in the category Ring and CRing
[insert R to A1 ×A2, A1 and A2 category picture]
(maps into products are easy)

Definition 39. Ideals I, J are co-prime if I +J = A i.e. 1 = i+ j for some i ∈ I and
j ∈ J

Proposition 12 (AM 1.10). Let I1, . . . , In be ideals of A and let ϕ : A→
∏n

i=1(A/Ii)
then ϕ(a) = (a+ I1, · · · , a+ In)

1. If {Ij} are pairwise co-prime then
∏

Ij = ∩Ij

2. ϕ is surjective if and only if the ideals are pairwise co-prime

3. ϕ is injective if and only if ∩jIj = 0

We only prove for n = 2, induction is automatic.

Proof. 1: I1I2 ⊂ I1 ∩ I2 always true
Conversely, if 1 = i1 + i2, for a ∈ I1 ∩ I2 we see that a = a · 1 = a · i1 + a · i2 ∈ I1I2
2: =⇒ suppose ϕ is surjective. Then, there exists x such that ϕ(x) = (1, 0) and thus
1 = 1 − x + x where 1 − x ∈ I1, x ∈ I2, since [x] = 0 in A/I2 and [x] = 1 in A/I1
implies [1− x] = 0 in A/I1 so I1, I2 are co-prime
⇐= Since co-prime we can find 1 = i1 + i2 so ϕ(1− i1) = (1, 0), ϕ(1− i2) = (0, 1) so
we have that ϕ is onto.
3. Suppose ϕ is injective. Then kerϕ = 0. But for any I1, I2 we have kerϕ = I1 ∩ I2.
So injectivity is equivalent to I1 ∩ I2 = 0

Proposition 13 (AM 1.11). Let P1, . . . , Pn be prime ideals and let I ⊂ ∪Pj then
I ⊂ Pj for some j.
If prime ideal P ⊃ ∩Pj then P ⊃ Ij for some j

Proof. We just do the n = 2 case. We do contrapositive.
Suppose I ̸⊂ P1, P2. We want to prove that I ̸⊂ P1 ∪ P2

Now, P1 and P2 are prime.
Then ∃x1, x2 ∈ I so that x1 /∈ P2, x2 /∈ P1.
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Case 1: x1 /∈ P1 or x2 /∈ P2 in this case we’re done since either x1 /∈ P1 ∪ P2 or
x2 /∈ P1 ∪ P2

Case 2: x1 ∈ P1, x2 ∈ P2. In this case, x1 + x2 ∈ I but x1 + x2 /∈ P1 ∪ P2 which
provides a contradiction.
Thus we’re done with part 1.

Class 11: 02/02
Ideal P is prime ⇐⇒ compelement is multiplicatively closed
P is prime ⇐⇒ (ab ∈ P =⇒ a ∈ P or b ∈ P ) ⇐⇒ (a /∈ P, b /∈ P =⇒ ab /∈ P )

Proposition 14 (AM 1.11:). 1. Suppose we have prime ideals P1, . . . , Pn and an
ideal I. Then, I ⊂ ∪Pi =⇒ I ⊂ Pi for some i
2. Suppose we have ideals I1, . . . , In and prime ideal P .
2a. If ∩Ij ⊂ P then Ij ⊂ P for some j
2b. If ∩Ij = P then Ij = P for some j

Proof. 1: We prove the contrapositive.
I ̸⊂ Pi for all i =⇒ I ̸⊂ ∪Pi

We induct. For n = 1 it’s trivial.
Assume true for n− 1
Then we have xi ∈ I, xi /∈ ∪j ̸=iPj

Suppose we have some i so that xi /∈ Pi

Then xi /∈ ∪Pi so I ̸⊂ ∪Pi

For the other case, for all i we have xi ∈ Pi

Then, product of xj without i is in Pj for all j ̸= i and it’s not in Pi since Pi is prime.
Let y be the sum of these. Then y is not in any of the Pi so we’re done.
2a: Contrapositive.
∀i , Ii ̸⊂ P =⇒ ∪Ii ̸⊂ P
∀i, ∃xi ∈ Ii − P
y =

∏
xi ∈

∏
Ii ⊂ ∩Ii

y /∈ P since P is prime.
2b. P = ∩Ii
So there exists i so that Ii ⊂ P ⊂ ∩Ii ⊂ Ii

Radicals of Ideals

If I ◁ A we define radical
√
I = {x : xn ∈ I} ◁ A

In integers,
√
(pe11 . . . P er

r ) = (p1 . . . pr)

And of course I ⊂
√
I

So the nilradical N(A) =
√
0

So,
√
I = q−1(N(A)/I) whee q : A→ A/I

Proposition 15 (AM 1.14).
√
I = ∩I⊂P primeP

Proof.
√
I = q−1(N(A)/I) = q−1(∩primeP◁A/I) = ∩q−1P = ∩I⊂PP

Exercise 1.15:

1. I ⊂
√
I

2.
√√

I =
√
I

3.
√
IJ =

√
I ∩ J =

√
I ∩
√
J

4.
√
I = A ⇐⇒ I = A

5.
√
I + J =

√√
I +
√
J

6.
√
Pn = P when P is prime.
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An ideal I is radical if
√
I = I

So
√
: ideals → radical ideals√

I is the smallest radical ideal containing I
The motivation for studying radicals come from algebraic geometry.
Recall the correspondence between varieties in kn and ideals in k[x1, . . . , xn].
So we have V (J) = V (

√
J)

Because x2 = 0 ⇐⇒ x = 0
Another motivation is the Nullstellensatz.
Suppose k is algebraically closed. If we take an ideal J and take its variety V (J) then
I(V (J)) =

√
J where I is the map from varities to ideals.

Ideal Quotient
Suppose we have ideals I, J ◁ A
Then (I : J) is supposed to be like I/J
(I : J) = {x ∈ A : xJ ⊂ I} This is an ideal because it is closed under addition and
multiplication by members of A
From wikipedia: KJ ⊂ I ⇐⇒ K ⊂ (I : J)
Also from wikipedia: I(V −W ) = (I(V ) : I(W )) when varities V,W ⊂ kn

(0 : J) = Ann(J) is the annihilatoz of J
Ann(R× 0) = (0× R)
In AM, {zero divisors} = ∪x̸=0 Ann(x)
Useful in HW.
For a set E ⊂ A we can talk about its radical

√
E = P{x : xn ∈ E} for some n

Then
√
∪Eα = ∪

√
Eα

Proposition 16 (AM 1.15). {zero divisors} = ∩x̸=0

√
Ann(x)

{zero divisors} =
√
{ zero divisor } = ∪x̸=0

√
Ann(x)

Proposition 17 (AM 1.16). If
√
I +
√
J = A then I + J = A

[radicals co-prime means ideals co-prime]
We use 1.15(v).√
I + J =

√√
I +
√
J =
√
A = A

1.15(iv) tells us I + J = A
Next, extension and contraction.
Let f : A→ B
If J ◁ B, Jcf−1J ◁ A contraction
If I ◁ A, Ie = (f(I)) extension

Class 12: 02/05

Extension and Contraction

Consider a ring homomorphism f : A→ B
Then, ideals I ◁ A and ideals J ◁ B has a correspondence:
I

e→ J
J

c→ I
These are extension and contraction.
C = image c = {Jc : J ◁ B} , E = image e
Jc = f−1(J)
Ie = (f(I)) = Bf(I) = {

∑
i bif(ai)|ai ∈ I}

J prime implies Jc prime
Thus we have Spec(f) : Spec(B)→ Spec(A)
Note that Ie ̸= f(I) in general.
Consider f : Z ↶ Q
Then (2Z)e = QZ = Q which is not f(2Z)
If f is onto / surjective,
Ie = f(I)

[insert category theory image of A
f→ B and f(A) here]
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Extension and Contraction are also called going up and going down.
Consider f : Z→ Z[i]
Consider odd prime p ∈ Z

Then Z[i]
(p) = Z[x]

(p,x2+1) =
Fp[x]

(x2+1) =

{
Fp2 , if p ≡ 3 (mod 4);

Fp × Fp, if p ≡ 1 (mod 4);

(2)e = ((1 + i)2) in this case it is called ramified
p ≡ 3 : (p)e is prime and in this case it is called inert
p ≡ 1 : (p)e = Q1Q2 product of distinct primes, here it is called split
There are about 15 properties of extension and contraction.

Proposition 18 (AM 1.17). 1. I ⊂ Iec, Jce ⊂ J

2. Ie = Iece, Jcec = Jc

3. C
e,c←→ E is a bijection, C = {I : I = Iec}, E = {J : J = Jce}

Proof. Exercise. Use map of sets: g : C → D. If Y is a subset, g(g−1(Y )) ⊂ Y with
equality iff Y ⊂ g(C) but X ⊂ g−1(g(X)). Also, Ie = Bf(I) and Jc = f−1(J)

Proposition 19 (AM 1.18). 1. (I1 + I2)
e = Ie1 + Ie2 , (I1I2)

e = Ie1I
e
2

2. (J1 + J2)
c ⊃ Jc

1 + Jc
2 , (J1J2)

c ⊃ Jc
1J

c
2

3. (I1 ∩ I2)
e ⊂ Ie1 ∩ Ie2

4. (J1 ∩ J2)
c = Jc

1 ∩ Jc
2

5. (
√
I)e ⊂

√
Iee

6. (
√
J)c =

√
Jc

7. (I1 : I2)
e ⊂ (Ie1 : Ie2)

8. (J1 : J2)
c ⊂ (Jc

1 : Jc
2)

9. e is closed under sum and product, and c is closed under the other three oper-
ations (??? not sure what this means)

We’re Moving on to Chapter 2 of Atiyah MacDonald!!!

Modules

[The M word]

Definition 40. Let A be a ring. Then a A-module is a abelian group M and a
function A×M →M given by (a,m) 7→ am such that a(x+y) = ax+ay, (a+a′)x =
ax+ a′x, (aa′)x = a(a′x), 1x = x for all a, a′ ∈ A, x, y ∈M

The concept of modules generalize both vector spaces and ideals.
Atiyah Macdonald makes an observation that is obvious but not really:
M is a A-Module if and only if M is a representation of A

Proof. We need a ring homomorphism A→ End(M) where End(M) = Hom(M,M),
the endomorphism ring of M
Here we have addition, multiplication(composition) and multiplication by a is a ho-
momorphism of M

Examples:
I ◁ A is an A-module
Z−module is an abelian group
k-module ⇐⇒ vector space over k
k[x]-module ⇐⇒ vector space over k with T : V → V
Here M = V, xv := T (v)
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k[x, x−1]-module ⇐⇒ vector space over k, T : V
≈→ V

kG-module ⇐⇒ k−represetation of G
Modules form a Category.
There is a Category. ModA is the category of modules of A. The objects are A-
modules. The morphisms [the ones we care about] is an A-module map, or an A-map
f : M → N is an A-module map if it respects the structure: f(x + y) = f(x) +
f(y), f(ax) = af(x)
We need a bit more for categories: composition (f ◦ g) and identity IdM
Compositions of A-module maps are A-module maps.
ModA is a category enriched in ModA [wtf???]
HomA(M,N) [often just called Hom(M,N)] is the set of maps from M to N
This is the set of morphisms MorMOd(A)(M,N)
If f, g : M → N then f + g : M → N and (af)(m) = af(m)
So Hom(M,N) is an A-module.
Hom(M,N)×Hom(N,P )→ Hom(M,P ) is A-bilinear, given by (f, g) 7→ g ◦ f
Related fact: Given f : M → M ′ We can define an A-module map Hom(f, Id) :
Hom(M ′, N)→ Hom(M,N) given by h 7→ h ◦ f
Similarly, given N → N ′ we have a map Hom(M,N) → Hom(M,N ′) given by
h→ g ◦ h
We have Hom(A,M) = M given by ϕ 7→ ϕ(1)
Hom(M,A) = M⋆ the dual of M

Class 13: 02/07

Submodules and Quotient Modules

Definition 41 (Submodule). A submodule M ′ of an A-module M if it is a subgroup
of M such that am′ ∈M ′ for all a ∈ A,m′ ∈M ′

We’ll use notation M ′ ◁ M

Definition 42 (Quotient Module). If M ′ is a submodule of M quotient module is
the module of cosets/equivalence classes m+M ′ = [m] where m ∼ m̂ if m− m̂ ∈M ′

We have the quotient map q : M →M/M ′

Now we talk about Kernels and Cokernels.
Let f : M → N be a module map.
Then ker f ◁ M
im f ◁ N
cok f = N/ im f ← N
ker f = 0 ⇐⇒ f 1-1 or injective
cok f = 0 ⇐⇒ f onto or surjective

Theorem 13 (1st Isomorphism Theorem). If f : M → N onto, then f : M/ ker f
≈−→

N is a well-defined isomorphism.
f([m]) = f(m), f(m+ ker f) = f(m)

[draw commutative diagram of first isomorphism theorem]

Operations On Submodules

Submodules are generalizations of ideals.
Suppose we have a module M and submodules {Mi}i∈I

Then
∑

i Mi ◁ M⋂
i Mi ◁ M

Proposition 20 (AM 2.1). Out of order

1. (third isomorphism theorem)N◁M◁L, A-modules imply (L/N)/(M/N) ∼= L/M
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2. (second isomorphism theorem) If M1,M2 ◁ M then M2/(M1 ∩M2) ∼= (M1 +
M2)/M1

1. Consider θ : L/N → L/M given by θ(l +N) = l +M . Since θ is onto and kernel
is M/N we have the theorem.
[2]
M2 → M1+M2

M1
is onto, kernel is M1 ∩M2 so we have the theorem.

Definition 43. Let ideal I ◁ A and subset Σ ⊂M where M is a module.
Define IΣ = {

∑n
i aiσi : ai ∈ I, σi ∈ Σ} ◁ M

Definition 44. Let Σ ⊂M where M is an A-module.
Then (Σ) = AΣ which is the submodule of M generated by Σ
Think of span.
If M = (Σ) then M is generated by Σ
A module M is finitely generated if we can write M = (Σ) for some finite subset Σ

Definition 45 (module quotient). Let N,P ◁M .
Then module quotient: (N : P ) = {a ∈ A : aP ⊂ N} ◁ A

Definition 46 (Annihilator). Ann(M) = (0 : M) = {a ∈ A : aM = 0} is the
Annihilator of M .

Example: Let A = Z then Ann(Z/15× Z/6) = Z30
M is an A/Ann(M)-module
Exercise 2.2: Ann(M1 +M2) = Ann(M1) ∩Ann(M2) and (N : P ) = Ann

(
N+P
N

)
Category Theory!!!!

Definition 47. A category C is:

1. A collection of objects ObC

2. ∀x, y ∈ ObC, a collection of morphisms, C(x, y) [Alternatie: MprC(x, y) ]

3. ∀x, y, z ∈ ObC we have a map C(x, y)×C(y, z)→ C(x, z) given by (g, f) 7→ f ◦ g
[composition law]

4. ∀x ∈ Obx we have IdX ∈ C(x, x)

So that (f ◦ g) ◦ h = f ◦ (g ◦ h)
And Idy ◦ f = f = f ◦ IdX

We often write f : X → Y or X
f→ Y for f ∈ C(X,Y ) and it might not be a function

because everything is abstract.
We write X ∈ C for X ∈ ObC

Definition 48 (isomorphism). f : X → Y is an isomorphism if ∃g : Y → X so that
f ◦ g = IdY and g ◦ f = IdX and say X and Y are isomorphic, written X ∼= Y

Example: Set, CRing (in 502, Ring), Rng [Rings possibly without identity], Top
If we have a group G we have a category BG so that ObBG = {∗} and BG(∗, ∗) = G
so morphisms need not be maps.

Class 15: 02/09
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Direct Sums and Products

{Mi}i∈I is a family of A-modules.
We can define the direct product and direct sum.

Definition 49 (Direct Produt).
∏

i∈I Mi is direct product, elements are i-tuples
(xi)i∈I , and operations are done componentwise.

Definition 50 (Direct Sum). The direct sum is a submodule of direct product.
bigoplusi∈I ⊂

∏
i∈I Mi containing (Xi)i∈I which vanish a.e.

#{i|Xi ̸= 0} is finite.∏
i∈I Mi, pi :

∏
Mi →Mi is a product in the category of A-modules.

∀(M, {ϕi : M →Mi}i∈I) there exists a unique map ϕ : M →
∏

Mi so that pi ◦ϕ = ϕi

[Insert category theory picture of M,
∏

Mi and Mi]
Maps into products are easy. We can write ϕ =

∏
ϕi and we can call it ‘universal

property’.
Direct sum is a co-product and we reverse all the arrows in this case.
Suppose we have (

⊕
j∈I Mj , ij →

⊕
Mj) is a coproduct in the category of A-modules.

∀(M, {ϕ : Mj →M}j∈I) there exists a unique map ϕ :
⊕

Mj → N so that ϕ ◦ ij = ϕi

[insert reverse commutative diagram here]
Notation: ϕ =

⊕
ϕj

There is a map
⊕

Mj →
∏

Mj . It is an isomorphism if |J | <∞
Remark: A ∼= Ii ⊕ I2 if and only if A ∼= A1 ×A2

Finitely Generated Modules

Definition 51 (Finitely Generated Modules). A is a ring and M is a A-module. If
there is a finite subset Σ ⊂M so that M = AΣ then M is finitely generated.

Definition 52. B ⊂M is a basis for M if any m ∈M can be expressed uniquely as
a linear combination of elements of B: m = a1b1 + · · ·+ anbn

Lemma:
M has a basis iffM ∼=

⊕
i∈I A

Proof. Exercise

Definition 53. M is free if either side of previous lemma holds.

Example:
∏

∞ R is a free R-module, but
∏

∞ Z is not a free Z-module

Proposition 21 (AM 2.3). M is finitely generated ⇐⇒ ∃An →M

Proof. Atiyah Macdonald

Proposition 22 (Nakayama’s Lemma). Suppose M is finitely generated.
Then J(R)M = M ⇐⇒ M = 0
textbook version: LetM be finitely generated and I◁J(R) then IM = M =⇒ M = 0

Applications:
Assume Nakayama’s Lemma.
Corollary AM 2.7:
Suppose M is a finitely generated A-module and N is a submodule (N ◁M).
M = J(A)M +N implies M = N

Proof. We apply Nakayama’s lemma to the quotient.
J(A)(M/N) = (J(A)M +N)/N = M/N =⇒ M/N = 0 =⇒ M = N

Proposition 23 (AM 2.8). Let A be a local ring. Let J be the uniuqe maximal ideal
of A. Let k = A/J . Suppose M is a finitely generated A-module. Let {x1, . . . , xn} ⊂
M so that x1, . . . , xn is a k-basis for M/JM [which is a A/J module or a k-module].
[In other words, x1, · · · , xn generate M/JM as A-module ]
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Proof. Let N = A{x1, . . . , xn} ◁ M
Then N ←↩ M →M/JM [hooked arrow means onto] composition is into.

Thus N + JM = M
27
=⇒ M = N

Proposition 24 (AM 2.4). Suppose M = A{x1, . . . , xn} is a finitely generated mod-
ule. Let ϕ : M →M be an endomorphism and I ◁ A and ϕ(M) ⊂ IM .
Then ϕn + a1ϕ

n−1 + · · ·+ a0 = 0 with ai ∈ I. [Cayley Hamilton].

Recall that, for square matrix P , there is adjugate matrix adj(P ) so that P ·adj(P ) =
(detP )I which is the transpose of matrix of cofactors.
This generalizes to commutative rings.
We want to come up with matrices ϕ(xi) =

∑
aijxi, aij ∈ I

Then
∑

j(δijϕ− aij)Xj = 0. Let P be the matrix (δijϕ− aij)Xj = 0
Then, Px = 0 =⇒ (detP )x = adj(P )P (x) = 0
This means, for all Xi we have (detP )(xi) = 0 so detP letting it be an endomorphism
on M must be 0.
Let P ∈MnA[t]. Consier detP and plug in t = ϕ.

Class 15: 02/12

Proposition 25 (AM 2.4). Suppose M is a finitely generated A-module generated
by u1, . . . , un [we write it M = A{u1, . . . , un} ]. Suppose I ◁A, there is ϕ : M →M so
that ϕ(M) ⊂ IM . Then ∃a1, . . . , an ∈ I sp that there exists equation ϕn + a1ϕ

n−1 +
· · ·+ a0I=0.

Remark: If I = A = k [a field] then this is Cayley-Hamilton Theorem. We let
p(x) = det(xI − ϕ). Then p(ϕ) = 0.

Proposition 26 (AM Corollary 2.5). If M is a finitely generated A-module and
IM = M ,

1. Then ∃x ≡ I (mod I) so that x ∈ Ann(M)

2. ∃i ∈ I so that ∀m ∈M, im = m.

Proof. 1: use 2.4. Let ϕ = Id and let x = 1 + a1 + · · · + an. Then, xm = (Idn +
a1Id

n−1 + · · ·+ a0)m = 0m = m.
2: Let i = x+ 1, then im = xm+m = m

Recall the Jacobson Radical:

J(A) =
⋂

maximal ideal

I
AM1.9
= {j ∈ A : 1 + jA ⊂ A×}

We also have Nakayama’s Lemma:

Proposition 27 (Nakayama’s Lemma). Let M be finitely generated A-module.
Then,

J(A)M = M =⇒ M = 0

Atiyah Macdonald gives two proofs, second proof is cooler. - Davis
First Proof:
J(A)M = M , by AM2.5 we have ∃x ≡ 1 (mod J(A)) such that xM = 0. Using 1.9,
x ∈ A×, xM = 0 =⇒ M = 0.
Second Proof:
Let M = A{u1, . . . , un}, n is minimal, J(A)M = M , and M ̸= 0. We try to find a
contradiction.
un ∈M = J(A)M
Thus, un = j1u1 + · · ·+ jnun where ji ∈ J(A).
Thus, (1− jn)un = j1u1 + · · ·+ jn−1un−1

1− jn is a unit by 1.9, which means un can be written in terms of u1, . . . , un−1. This
contradicts minimality of n.
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Exact Sequences

Definition 54. Let M,M ′,M ′′ be A-modules.

M ′ α→M
β→M ′′

is exact at M if imα = kerβ

Note that imα ⊂ kerβ ⇐⇒ β ◦ α = 0

Definition 55. Sequence of homomorphisms

Mn →Mn−1 → · · · →M0

is exact if it is exact at Mn−1, . . . ,M2,M1

Note, 0 → M
α→ N is exact if and only if α is injective. This is equivalent to saying

kerα = 0 ⇐⇒ α is 1-1 or injective.

M
β→ N → 0 is exact if and only if imβ = N ⇐⇒ β is onto.

If M ↪→ N then 0→M → N → N/M → 0 is exact.
Memorize these.
Most important special case:

0→M ′ α→M
β→M ′′ → 0

is called a short exact seuqence.
This means α is injective, β is surjective.

We have β : M/ imM ′ ∼=→M ′′.
So, M ′ ∼= α(M ′),M ∼= M,M ′′ ∼= M/α(M ′)
[insert commutative diagram about this here]
Example of short exact sequence:

0→M ′ →M ′ ⊕M ′′ →M ′′ → 0

Question: are all short exact sequences created this way?
Answer: No! example:

0→ Z/2 ·2→ Z/4 q→ Z/2→ 0

Multiplication by 2 sends [m] to [2m].

When is it created this way? If we have pseudo-inverse: If there exists M
s←M ′′ such

that β ◦ s = IdM .

Proposition 28. Suppose A = k, a field. Then,

0→ U → V →W → 0

implies dimV = dimU + dimW .

Theorem 14 (Consequence of Third Isomorphism Theorem:). If we have L ◁M ◁N
then,
0→M/L→ N/L→ N/M → 0 is a short exact sequence.

Hom

Hom(−,−) A-module ×A-module → A-module
This is a bifunctior, and contravariant in the first variable. It is also left exact.
Suppose we have a short exact sequence 0→M ′ →M →M ′′ → 0. Then, for all N ,

0→ Hom(N,M ′)→ Hom(N,M)→ Hom(N,M ′′)

is exact,

0→ Hom(M ′′, N)→ Hom(M,N)→ Hom(M ′, N)

Atiyah Macdonald has a fancier way to show this.
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Proposition 29 (AM 2.9:). 1. M ′ → M → M ′′ → 0 is exact if and only if ∀N ,
we have 0→ Hom(M ′′, N)→ Hom(M,N)→ Hom(M ′, N) is exact.

Sample proof: i: M ′ u→M
v→M ′′ → 0 is exact.

We want to show 0→ Hom(M ′′, N)
v⋆

→ Hom(M,N)
u⋆

→ Hom(M ′, N)
Id v⋆ injective? 0 = v⋆(ϕ) = ϕ ◦ v, moreover ϕ(M ′′) = ϕ(b, V )
ϕ(M ′′) = ϕ(u(M)) = 0 so ϕ = 0
[insert commutative diagram here].
Since u⋆ϕ = 0, ϕ = (ϕ ◦ v−1) ◦ v ∈ im v⋆

Class 16: 02/14
Question: Are all short exact sequences same?
Answer: Yes and No.
Yes: all are 0→M ′ ↪→M →M ′/M → 0

No: Not all are 0→M
i→M ⊕M ′ p→M ′ → 0

Proposition 30 (AM 2.10, Snake Lemma). If white stuff is in short exact, then
yellow is exact [picture]
[just see Ivan notes]
∂m′′ =

[
(v′)−1fu−1m′′] ∈ cokf ′

‘Euler Characteristic’

Let C = a collection of A-modules
G = abelian group
Then λ : C → G is additive if every short exct sequence

0→M ′ →M →M ′′ → 0

with modules in C has λ(M) = λ(M ′) + λ(M ′′)
eg A = Q and C = finite dimensional vector spaces over Q and λ(M) = dimQ(M)
If C = finitely generated abelian groups, A = Z and λ(M) = rank(M) [rank is the
dimension of the free part. In other words, it is maxn : ∃Zn ↪→M . For all abelian
groups, rank is a non-negative integer or infinity. for example, rankQ = 1]. C′ = all
abelian groups of finite rank.
Suppose C is the collection of finite (abelian) groups and G = Q× and λ(M) = |M |.
This works, but + is actually the group operation of Z

Proposition 31 (AM 2.11). If we have an exact sequence

0→Mn →Mn−1 → · · · →M1 →M0 → 0

With Mi ∈ C and Ki = ker(Mi →Mi−1) ∈ C
And λ additive,
Then

∑n
i=1(−1)iλ(Mi) = 0

Consequene: Consider finite abelian groups Fj . Suppose:

0→ Fn → · · · → F1 → F0 → 0

Then,

n∏
i=0

|Fi|(−1)i = 1 or
∏

i even

|Fi| =
∏

ivodd

|Fi|

Proof. For all homomorphism f : M → N we have a short exact sequence 0 →
ker f →M → imf → 0
Thus, 0→ Ki →Mi → Ki−1 → 0 Thus,

n∑
i=0

(−1)iλ(Mi) =
∑

(−1)iλ(Ki) +
∑

(−1)iλ(Ki−1)

We’re not actually going to talk about Euler Characteristics.
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Tensor Products

It is a functor:
−⊗A − : A−mod×A−mod→ A−mod
First we want some notation for free module.
If we have a ring A and a set S then we have:
A[x] (or A(s)): the free module with basis S.
Then a1s1 + · · ·+ ansn ∈ A[S] where si distrinct.
If S is finite we have no problem, if S is infinite just consider it to be the formual
sum.
A[S] ∼=

⊕
S A

This is the set of (set-theoretic) functions S → A that vanish almost everywhere.

A[S] ∼= {f : S → A : f(s) = 0 a.e.}

If M,N,P are A-modules and we have bilinear f : M × N → P so that f(−, n) :
M → P and f(m,−) : N → P are both linear for all m,n,
We sometimes write (P, f : M ×N → P ) as (P, f)
Goal: Associate bilienar maps f : M → N → P with a linear map f ′ : M ⊗A N → P

Proposition 32 (AM 2.12). Suppose we have A-modules M and N .
i: Existence: ∃(T, g : M × N → T ) a bilinear map which is ‘initial/universal’ in the
following sense: Any bilinear map factors through this. That is, for any bilienar map
f : M × N → P , there exists a unique map f ′ : T → P so that f ′ ◦ g = f [insert
commutative diagram here].
ii: Uniqueness: Given (T, g), (T ′, G′) there exists a unique j : T → T ′ such that it is
an isomorphism and g′ ◦ j = g

We’re going to construct g and show that it has this property.

Proof. Existence =⇒ Uniqueness

Suppose M × n
g→ T and M × N

g′

→ T ′ [insert commutative diagram]. We want to

say T and T ′ are the same. By i there exists unique j such that T
j→ T ′ and we also

have a unique j′ : T ′ j′→ T .

Now we have M ×N
g→M ×N and M ×N

g→ T so there is unique T
Id→ T

So we have j′ ◦ j = Id
Proof of Existence:

Let T := A[M×N ]
R [‘generators M ×N relations’]

Where R is the submodule generated by (m+m′, n)− (m,n)− (m′, n) and (m,n+
n′)− (m,n)− (m,n′) and (am, n)− a(m,n) and (m, an)− a(m,n).
We call M ⊗A N := T and call m⊗ n := [(m,n)]
We have g : M × N → M ⊗A N so that g(m,n) → [(m,n)]. This is bilinear by
definition, and given f : M ×N → P, we have F : A[M ×N ] → P [by exercise 3 in

next assignment], thus, since F is bilinear, we have f ′ : A[M×N ]
R → P

This is true since R ⊂ kerF .

Class 17: 02/16

Recall: Tensor Products are given by M ⊗A N = A[M×N ]
R . We write ⊗A = ⊗

We have universal property: any bilinear map factors through the tensor product
[insert commutative diagram here]

We have a map M ×N
g→M ⊗N

Let m⊗ n := g(m,n)
Then m1 ⊗ n1 + · · ·+mk ⊗ nk ∈M ⊗N
Due to the relations we modded out, we have these relationships:

• (m+m′)⊗ n = m⊗ n+m′ ⊗ n
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• m⊗ (n+ n′) = m⊗ n+m⊗ n′

• (am)⊗ n = m⊗ (an) = a(m⊗ n)

Note, 0Mp× n = 0A(0M ⊗ n) = 0M⊗N

Basically 0× n = 0

Proposition 33 (AM 2.14). We have the following:
i. M ⊗N ∼= N ⊗M with isomorphism m⊗ n↔ n⊗m
ii. (M ⊗N)⊗ P ∼= M ⊗ (N ⊗ P ) with isomorphism (m⊗ n)⊗ p↔ m⊗ (n⊗ p)
iii. (M ⊕N)⊗P ∼= (M ⊗P )⊕ (N ⊗P ) with isomorphism (m,n)⊗ p↔ (m⊗ p, n⊗ p)
iv. A⊗M ∼= M with a⊗m 7→ am, 1⊗m 7→m

Proof. i: Consider maps from M ×N to M ⊗N,N ⊗M . By universal property there
is an invertible map between them.
iv: Consider the maps from A ×M to M and A ⊗M . By universal property, there
exists a unique map from A⊗M to M . a⊗m 7→ am gives that to us.

Note that 2.14 immedialtely givs us that:
Am ⊗A An ∼= (

⊕
m A) ⊗ An ∼=

⊕
m(A ⊗ An) ∼=

⊕
m(A ⊗

⊕
n A) ∼=

⊕
m,n A ⊗A A ∼=⊕

m,n A
∼= Amn

A Z-module T is torsion if ∀t there exists non-zero n so that nt = 0. Basically, every
element has an [additive] order.
Exercise: T is torsion if and only if T ⊗Z Q = 0
for example T = Q/Z is torsion.

Proposition 34 (AM Corollary 2.13). If
∑

i mi ⊗ ni − 0 ∈ M ⊗ N then ∃ finitely
generated M0 ◁ M,N0 ◁ N so that:
mi ∈M0

ni ∈ N0

And
∑

i mi ⊗ ni = 0 ∈M0 ⊗A n0

Proof. This is a corollary of the construction

Use the fact that M ⊗N = A[M×N ]
R .∑

i mi ⊗ ni = 0 =⇒
∑

i[mi, ni] =
∑

j rj ∈ R
Thus, rj =

∑
jk ajk(mjk, njk)

Let M0 = (mi,mjk), N0 = (ni, njk)
That gives us the answer.

Now we prove the previous fact.

Proposition 35. Let T be a Z module. Then T ⊗Q = 0 ⇐⇒ T torsion

Proof. ⇐= (easy)
For any t ∈ T there exists n ̸= 0 so that nt = 0.
Then t⊗ q = t⊗ n

nq = nt⊗ q
n = 0× q

n = 0
=⇒ (uses the corollary)
Assume T ⊗Q = 0. We want to prove that T is torsion.
For any t ∈ T we have t⊗ 1 = 0
2.13 says: t⊗ 1 = 0 in T0 ⊗Q0 where T0,Q0 are finitely generated.
Since Q0 is a finitely generated submodule of Q it has to be 1

qZ ∼= Z
Then T0 ⊗ 1

nZ ∼= T0 with map x⊗ k
n 7→kx

t⊗ 1 must go to nt, since t⊗ 1 = 0 we have nt = 0.
[???]

Definition 56 (Functor). A functor F : C → D is F : ObC → ObD so that if we have
a morphism, then F : C(x, y)→ D(F (x), F (y)) such that F (f ◦ g) = F (f) ◦ F (g) and

F (1X) = 1F (X). So X 7→ F (X), X
f→ Y 7→ F (X)

F (f)→ F (Y )
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Now, −⊗A − is a functor.
If we have f : M → M ′ and g : N → N ′ we can define the corresponding thing on
morphism: we have a map f ⊗ g : M ⊗ N → M ′ ⊗ N ′ given by f(⊗g)(m ⊗ n) =
f(m)⊗ g(n)
Since tensor product is a functor it respects maps.

Proposition 36 (AM 2.18). Tensor Product is Right Exact

This is useful for computation. See Exercise 7. 7 helps in 8.
Suppose M ′ →M →M ′′ → 0 is exact.
Then, for all N ,

M ′ ⊗N →M ⊗N →M ′′ ⊗N → 0

is exact. Even the maps are given by f ⊗ 1 and g ⊗ 1.

Proof. (g ⊗ 1) ◦ (f ⊗ 1) = (g ◦ f)⊗ 1 = 0⊗ 1 = 0
Define: g ⊗ 1 : M⊗N

im(f⊗1) →M ′′ ⊗N

Take [m⊗ n] ∈ M⊗N
im(f⊗1) . Then [m⊗ n] 7→ g(m)⊗ n

Take m′′ ⊗ n. Since onto, we can lift it: [m̂′′ ⊗ n] 7→m′′ ⊗ n whee g(m̂′′) = m′′

AM adjoint proposition: Hom(M ⊗ N,P ) ∼= Hom(M,Hom(N,P )) so that ∅ 7→
(m 7→ (n 7→ ϕ(m⊗ n)))

Class 18: 02/19

Flat Modules

−⊗A N is right exact, but not exact.
For example, −⊗Z Z/2 is not exact. Consider the following exact sequence:

0→ Z 2→ Z→ Z/2→ 0

But from homework, tensoring doesn’t make it exact.

Definition 57. N is a flat A-module if − ⊗A N is an exact functor, i.e. any short
exact sequence 0→M ′ →M →M ′′ we have 0→M ′⊗N →M ⊗N →M ′′⊗N → 0
is also short exact sequence.

For example A is flat since M ⊗A A = M
An is flat since M ⊗A An = Mn

Any free module is flat. Recall free module is given by
⊕

S A = A[S], (
⊕

S A)⊗M =⊕
S M

Note that Z/2 is not a flat Z-module.
Atiyah Macdonald says: Q is a flast Z module.
N is a flat Z-module if and only if N is torsion-free, which means it has no element
of finite order.

Proposition 37 (AM 2.19). Let N be an A-module. TFAE:

1. ∀ · · · → Mi+1 → Mi → Mi−1 → . . . exact =⇒ · · · → Mi+1 ⊗N → Mi ⊗N →
Mi−1 ⊗N → . . . is exact

2. ∀0→M ′ →M →M ′′ → shot exact sequence implies 0→M ′⊗N →M⊗N →
M ′′ ⊗N → 0 short exact sequence

3. For any injection M ′ →M we have an injection M ′ ⊗N →M ⊗N

4. For any injection M ′ → M so that M ′,M are finitely generated, we have an
injection M ′ ⊗N →M ⊗N
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Proof. 1 ⇐⇒ 2:

Suppose we have · · · → Ci+1
fi+1→ Ci

fi→ Ci−1 → . . .
Let Bi = imfi+1, Bi−1 = imfi

Then → Ci+1
fi+1→ Ci

fi→ Ci−1 is exact if and only if:
0→ Bi → Ci → Bi−1 is exact for all i.
So 1 ⇐⇒ 2
2 ⇐⇒ 3 by AM 1.18 [right exactness of −⊗A N ]
3 =⇒ 4 4 is just a special case of 3.
4 =⇒ 3: We use AM 2.13. Consider an injection f : M ′ → M . Consider u ∈
ker(f ⊗ 1 : M ′ ⊗N →M ⊗N)
Let u =

∑
i x

′
i ⊗ yi

0 = (f ⊗ 1)i =
∑

i f(x
′
i)⊗ yi Let M

′
0 = A(x′

i) ◁ M
′

2.13 implies there exists finitely generated M0 ◁ M,N0 ◁ N so that
∑

i f(x
′
i ⊗ yi) =

0 ∈M0 ⊗N0

WLOG M0 ⊃ f(M ′
0). Let M0 = (M0, f(x

′
i))

Thus u ∈ ker(f ⊗ 1)[M ′
0 ⊗N →M0 ⊗N ]. By 4, we have u = 0 so we’re done.

Corollary: Q is a flat Z module.
Idea: M finitely generated means M = torsion ⊕ free.

Restriction and Extension of Sclalars

Extension of Scalars is also called induction.
Suppose we have a homomorphism f : A→ B.
Then we have the module homomorphisms:
f∗ : B −mod→ A−mod
f∗ : A−mod→ B −mod
Restriction: f∗N is N as an abelian group like a · n := f(a)n.
AM writes N instead of f∗N
Induction / Extension of Scalars:
f∗M = B ⊗A M [or f∗B ⊗A M ]
Note that B is A-module with a · b = f(a)b
f∗M is a B-module by b′(b⊗m) = b′b⊗m

Proposition 38 (AM 2.16). If N is finitely generated and B is finitely generated as
A-module,
f∗N is finitely generated as A-module.

Proposition 39 (AM 2.17). If M is finitely generated A-module then f∗ is finitely
generated B-module.

M = A(xi), f∗M = B(1⊗ xi)
Observaton:
f∗ preserves exactness.
f∗ preserves freeness.
If N ′ → N → N ′′ is exact then f∗N ′ → f∗N → f∗N ′′ is exact.
f∗A = B ⊗A A = B
f∗A

n = Bn

Algebra

:

Definition 58 (Algebra). Consider rings A,B.
If we have a homomorphism f : A→ B we call B an A-algebra
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homomorphism of A-algebra: a ring map B
h→ C so that h ◦ f = g where A

f→ B and

A
g→ C

Category: A-algebra = A ↓ Ring
So, Z-algebra = Ring
Suppose k is a field. If we have f : k → B then f is injective. So, k-algebra is the
same thing as a ring B so that k ⊂ B.
Note that f need not be injective so this is not necessarily true.
If B is an A-algebra =⇒ B is an A-module with a · b = f(a)b.
Consider the following ‘competing’ definition:

Definition 59. B is a finite A-algebra if B is a finitely generated A-module

Definition 60. B is a finitely generated A-algebra if ∃b1, · · · , bn such that B =
f(A)[b1, · · · bn] polynomials with bi coefficients in f(A)

Note that finite =⇒ finitely generated.
B is a finitely generated A-algebra ⇐⇒ ∃A[t1, · · · , tn]→ B where a 7→ f(a), ti 7→ bi
eg C is a finite R-algebra:
R[x, y] = R[x,y]

(y−x2) is a finitely generated R-algebra but it is not finite.

Class 19:02/21

Proposition 40. If B,C are A-algebras then B ⊗A C is also an A-algebra

Proof. To give a map out of tensor product, we need to check what it does on pure
tensors and then check if it is bilinear. We check the multiplication map:

(b1 ⊗ c1) · (b2 ⊗ c2) := (b1b2)⊗ (c1c2)

We want to check if it is well defined. For that, we need to check bilinear. That is
trivial.

We have Universal Property: An algebra map out of B ⊗A C is the same thing as
giving algebra maps out of B and C.
In other words, if we have algebra maps:

f : B → D

g : C → D

Then there exists a unique algebra map

f ⊗ g : B ⊗A C → D

Such that f ⊗ g(b⊗ 1) = f(b) and f ⊗ g(1⊗ c) = g(c)
Warning: This is a class on commutative algebra, so we can assume everything is
commutative, but in this case commutativity is essential. (b⊗1) and (1⊗c) commute!
This is NOT fine in non-commutativity case. We need a map such that the images of
B and D commute.

Rings and Modules of Fractions

If D is a domain [example: Z] we can construct a field of fractions Frac(D) [example:
Q] which is constructed as D×D̸=0/ ≡ an equivalence class so that (a, s) ≡ (b, t) ⇐⇒
at−bs = 0 which we write a/s. We can give it a ring structure by (a/s)·(b/t) = (ab/st)
and (a/s) + (b/t) = (at+ bs)/st.
This is a ring, and D ↪→ Frac(D) by x 7→ x/1. Moreover, Frac(D) is a field with
(a/s) · (s/a) = 1. So we have a multiplicative inverse as long as a ̸= 0 but a = 0
implies a/s = 0 so all non-zero elements have inverses.
We can generalize this construction in two different ways.
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First way: General Commutative Rings [not just domains]
Second way: Only inverst some elements [instead of all nonzero elements]
Note that if we make generalization one then we must make generalization two, but
not the other way around. This is because we can’t invert all elements of general
rings.
Example: Dyadic Rationals: Fractions whose denominator is a power of 2. This is a
ring.
Another example: fractions with odd denominator. Multiplication of odd denomina-
tors is odd, and lcm of odd numbers is odd so this is also rings.
Questions: What kind of subsets of A should we be allowed to invert?
If two things are allowed to be a denominator then their product must also be allowed
to be a denominator.
We want 1 to be an allowed denominator since we wand a 7→ a/1 to be a valid map.

Definition 61. S ⊂ A is a multiplicatively closed subset [not subring or ideal] if
1 ∈ S and S is closed under multiplication.

Definition 62. S−1A is defined as A×S/ ≡ so that (a, s) ≡ (b, t) if (at−bs)·u = 0 for
some u ∈ S [we can’t use the previous one because in order for it to be an equivalence
relationship, we need transitivity which we don’t have. So zero divisors play the role
of zero].
We still have addition and multiplication like before.

Lemma: ≡ is an equivalence relationa and S−1A is a ring.
Warning: There is always a map A → S−1A with x 7→ x/1. This will be a ring
homomorphism, but if might not be injective anymore.

Example: if 0 ∈ S then S−1A is isomorphic to the zero ring, since everything will be
equivalent.
Example: if S = {1, 2, 4} in Z/6 then S−1Z/6 ∼= Z/3
So, if we try to invert a zero divisor, it only kills the things that it multiplies with to
make zero. If we try to invert zero then that kills everything so we can only have the
zero ring.
Univeral Property If g : A → B is a ring homomorphism such that g(s) is invertible

in B for all s ∈ S, then there exists a unique map h : S−1A→ B
[draw commutative diagram of A,B, S−1A]
Example, we have a map from Z/6 to Z/3 so it must factor through some S−1A where
S = {1, 2, 4}

Proof. Uniqueness: h(a/s) must be equal to h(a/1) ·h((s/1)−1) = g(a) · g(s)−1 so the

only possible way to define this map is h(a/s) = g(a) · g(s)−1

Existence: Define h(a/s) := g(a) · g(s)−1 and check that it is well-defined [does it
respect equivalence?]
Suppose (a, s) ≡ (a′, s′). Then (as′ − a′s)t = 0 for some t ∈ S.
Then (g(a)g(s′)− g(a′)g(s))g(t) = 0. Since g(t) is invertible, we can cancel it.
=⇒ g(a)g(s′) = g(a′)g(s) =⇒ g(a)g(s)−1 = g(a′)g(s′)−1

So the map indeed exists.

Corollary: If g : A→ B is a ring homomorphism such that:

1. s ∈ S =⇒ g(s) is invertible

2. g(a) = 0 =⇒ as = 0 for some s ∈ S

3. Every element of B is of the form g(a)g(s)−1

Then ∃!h : S−1A→ B that is an isomorphism such that g = h ◦ f
1 tells us that a map exists, 2 tells us that the map is injective [kernel is 0] and 3
gives us surjectivity.
Example:
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In the map Z/6 → Z/3 and we have 1 7→ 1, 2 7→ 2, 4 7→ 1 all of whom are invertible,
and 3, 6 gets mapped to 0 for whom 2 · 3, 1 · 6 = 0.
Example: If f ∈ A, we can set S = {fn}n∈Z>0

. Then we can look at Af := S−1A for
this particular S.
This includes the dyadic rationals, Z2.
Other example: Consider ideal p. Then A− p is multiplicatively closed if and only if
p is a prime ideal. Then we can take S = A− p.
Ap := S−1A for this A. We can consider the fractions with odd denominators Z(2).

Class 20: 02/23
We finish with one more example.
Take C[x], and localize at the ideal generated by x.
The fraction field of C[x] are rational functions
C[x](x) then are the rational functions defined at 0.
C[x](x−a) are the rational functions defined at a

Definition 63. If S is a multiplicatively closed subset of A and M is an A-module
then we define S−1M is defined to beM×S/ ≡ so that (m, s) ≡ (m′, s′) ⇐⇒ ∃t ∈ S, t
so that t(sm′ − s′m) = 0

We need to check:
1. ≡ is a equivalence relation
2. S−1M is an S−1A-module
Again, we write Mf where f is an element and Mp where p is a prime ideal of A.
Category theory: “S−1 is functorial”. That is to say, not only does it make sense to
apply S−1 to a module, but it also makes sense to apply S−1 to maps.
If f : M → N is a map then we have the map S−1f : S−1M → S−1N that is defined

by: m
s 7→

f(m)
s .

Check that it is a module.
We also need: S−1(idM ) = idS−1M

S−1(f ◦ g) = S−1f ◦ S−1g

Proposition 41. S−1 is exact.

What does this mean?

If we have M ′ f→M
g→M ′′ is exact, then:

S−1M ′ S−1f→ S−1M
S−1g→ S−1M ′′

Is exact.
Corollary: If f is injective then S−1f is injective.

If f is surjective then S−1f is surjective.
Proof is by putting 0 in the exact sequence.

Proof. We want to show that:
ker(S−1g) = im(S−1f).
We are going to show inclusion in both direction.
ker(S−1g) ⊇ im(S−1f) by functoriality.
For ⊆:
Suppose m

s ∈ S−1g.
Then, S−1g(ms ) = 0

S−1g(ms ) =
g(m)
s

Thus, there exists t ∈ S such that t·g(m) = 0 =⇒ g(tm) = 0 =⇒ tm ∈ ker g = im f
So, f(x) = tm =⇒ S−1f( x

ts ) =
mt
ts = m

s

Corollary:
If N,P are submodules of M ,

1. S−1(N + P ) = S−1N + S−1P
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2. S−1(N ∩ P ) = S−1M ∩ S−1P

3. S−1(M)/S−1(N)
∼→ S−1(M/N)

Proof. 1. We use the definition and how we add fraction.
2. S−1(N ∩ P ) ⊆ S−1M ∩ S−1P is easy.
For ⊇, suppose y

s = z
t where y ∈ N, z ∈ P .

So, there exits u ∈ S so that u(ty − sz) = 0 =⇒ ∃w = uty = usz.
Thus, w ∈ N ∩ P .
Finally, y

s = w
uts

3. [this is actually the corollary].
Take the exact sequence:

0→ N →M →M/N → 0

Then,

0→ S−1N → S−1M → S−1(M/N)→ 0

Thus, first map is injective, last map is surjective, kernel is image.
Thus S−1(M/N) ∼= S−1(M)/S−1(N)

Proposition 42. S−1A⊗A M
∼→ S−1M

Proof. We prove it works on pure tensors and check it’s bilinear.

a

s
⊗m 7→ am

s

This is a map of S−1A-modules. It exists by the universal property of tensor products
since it is bilinear.
It is also an S−1A module map.
It is also surjective: everything of S−1M is of the form m

s . We have: 1
s ⊗m 7→ m

s
For injectivity:
Lemma: Every element of S−1A⊗M is of the form 1

s ⊗m.
Note that usually tensor products are usually huge sum. The way we write it as one
sum is: common denominators!

n∑
i=1

ai
si
⊗mi =

1∏
si

∑
i

∏
j ̸=i

sj

 ai ⊗mi =
∑
i

1

s
tiai ⊗mi

=
∑
i

1

s
⊗ aitimi =

1

s
⊗

∑
i

aitimi =
1

s
⊗m

Thus we have proved the lemma.
Suppose 0 = f( 1s ⊗m) = m

s , then ∃t ∈ S so that mt = 0 thus 1
s ⊗m = t

st ⊗m =
1
st ⊗ tm = 1

st ⊗ 0 = 0.
So, the kernel is 0 and thus it is injective.

Class 21: 02/26
Localization review.
Suppose we have a ring A and a multiplicatively closed set S.

Definition 64. S ⊂ A is multiplicatively closed [mc] if S is a submonoid of (A,×).
By monoid, we mean 1 ∈ S, a, b ∈ S =⇒ ab ∈ S.
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In this situation, we can localize, or invert in S.
If M is an A-module, we define an equivalence relation on M × S so that (m, s) ∼
(m′, s′) if there exists s′′ ∈ A such that (ms′ −m′s)s′′ = 0
We write m

s = [(m, s)] the equivalence class.
We write S−1M = M × S/ ∼.
S−1M is an abelian group.(

m
s + m′

s′

)
= ms′+sm′

ss′

If M = A then S−1A is a ring,
(
a
s

) (
a′

s′

)
= aa′

ss′

We have a map f : A→ S−1A given by a 7→ a/1.
f is S-inverting (f(S) ⊂ (S−1A)×) and initial.
Universal Property (3.1):

If g : A → B is S-inverting, that is, g(S) ⊂ B× then g factors through the map
f : A→ S−1A so we have a unique map h so that h ◦ f = g.
Examples: If 0 ∈ S, that’s bad because we shouldn’t be able to invert S. Then
S−1A = 0.
If A is a domain and S = A− 0, then S−1A = Frac(A).
An ideal I of A is prime if and only if A − I is multiplicatively closed. This is just
the contrapositive of the definition of the prime ideal.
If we have a prime ideal P in A then A − P is multiplicatively closed, then AP is
defined to be (A− P )−1A, and it is called the localization of A at P .
AP is a local ring with maximal ideal PAP .
We have a correspondence: Ideals of Ap ↔ {I ◁ A|I ⊂ P}
Note that A→ S−1A is injective if and only if S ⊂ non-zero divisors.
If we have f ∈ A then we can look at the multiplicatively closed subset {1, f, f2, · · · }
and then we can look at {1, f, f2, · · · }−1A. AM notation for this is Af , better notation
is A[ 1f ].

Example: Z(2), where we invert everything outide (2) so it is {ab ∈ Q|a, b ∈ Z, 2 ̸| b}.
This contains Z.
Also, Z2 = Z[ 12 ] = {

a
2k
∈ Q}

In 3.3, we proved S−1 : A−mod→ S−1A−mod is flat.
A functor F is flat if it takes exact sequences to exact sequences, and −⊗A M is flat
then we say the module M is flat.

In 3.5, we proved S−1A⊗A M
≈→ S−1M .

3.3 and 3.5 implies corollary 3.6:
S−1A is a flat A-module, since S−1A⊗− is flat.
For example, Q is a flat Z-module.

Also, 3.5 and chapter 2 implies Proposition 3.7, which says S−1M ⊗S−1A S−1N
≈→

S−1(M ⊗A N)

Local Properties

Proposition 43 (AM 3.8). “Being zero is a local property”.
Let M be an A-module. Then TFAE:

1. M = 0

2. MP = 0∀ prime P ◁ A

3. MI = 0∀ maximal ideal I ◁ A

Proof. 1 implies 2 is obvious, 2 implies 3 since all maximal ideals are prime.
Instead of 3 implies 1 we prove the contrapositive.
M ̸= 0 =⇒ ∃x ̸= 0 ∈M .
Thus, Ann(x) is a proper ideal of A since it doesn’t contain 1.
By Zorn’s lemma, Ann(x) is contained in a maximal ideal I.
For all s ∈ A− I, s /∈ Ann(x) thus sx ̸= 0.
x
1 ̸= Mi is nonzero if and only if ∀s ∈ A− I, sx ̸= 0, which we proved before.
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Thus, MI ̸= 0.

Proposition 44 (AM 3.9). Let ϕ : M → N be a module map. Then TFAE:

1. Φ is 1-1.

2. ΦP is 1-1 for all prime P .

3. ΦI is 1-1 for all maximal I.

Same hold for onto.

Proof. 1 implies 2 is true since localization is exact [3.3]. Think of the morphism
ΦP : MP → NP

2 implies 3 since maximal are prime.
3 implies 1 since if ϕ : M → N and let M ′ be the kernel of Φ then we have the exact
sequence 0 → M ′ → M → N is exact, and by 3.3 we have 0 → M ′

I → MI → Ni is
exact, and by the hypothesis we must have M ′

I = 0 for all I , and by 3.8 we have
M ′ = 0 therefore Φ is injective.
For the onto part, reverse the arrows.

Proposition 45 (AM 3.10). ‘Flatness is a local property’.
A module is flat if and only if its localization and prime ideals are flat [or maximal].

Class 22: 02/28

Proposition 46 (AM 3.10). “Flatness is a Local Property”
Let M be an A-module. Then the following are equivalent:

1. M is flat, that is tensor with M is an exact functor

2. For all prime P ◁ A, MP is flat AP module

3. For all maximal I ◁ A, MI is flat AI module.

Proof. i =⇒ ii:
Note, flatness means it takes injective maps to injective maps.
Suppose M is flat, and we have a injective map N → Q of AP modules.
Then M ⊗A N →M ⊗A Q is injective since M is flat
Then AP ⊗A M ⊗A N → AP ⊗A M ⊗A Q is injective since S−1A is a flat A-module
Note that AP ⊗A M ⊗A N = MP ⊗AP

N and AP ⊗A M ⊗A Q = MP ⊗AP
Q

So, MP ⊗AP
N →MP ⊗AP

Q is injective
Thus MP is flat AP module.
ii =⇒ iii follows from the fact that maximal ideals are prime.
iii =⇒ i :
Suppose N → Q is injective A-module map. Since injectivity is a local property [3.9]
we have for all maximal I, NI → QI is injective.
Therefore, for all I, MI ⊗NI →MI ⊗QI is injective [since MI is flat by hypothesis]
Note that MI ⊗NI = (M ⊗N)I and MI ⊗QI = (M ⊗Q)I by 3.7
Therefore, M ⊗N →M ⊗Q is injective by 3.9, injectivity is local property.

Extension, Contraction, Localization

Preview: Corollary 3.13:
We can look at ideals in AP where P is prime, which is equal to (A − P )−1A by
definition.
We want to show that ideals in AP are in a bijective correspondence with ideals
I ⊂ P ◁ A.
I ⊂ P ◁ A, I ∩ S = ∅ c,≈←− ideals in AP

So, we have f−1J ←− J where f : A→ S−1A.
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Example: consider Z(2). This has ideals
a

odd ∈ Z(2).

Then contraction gives us ideals Z2k of Z
In general, if we have f : A→ B, we have a correspondence between I ◁ A and J ◁ B
by extension and contraction: Jc = f−1(I) and Ie = Bf(I)
If C = im c and E = im e then we have a bijection from C to E.
Now we are going to apply this to A→ S−1A.

Ie = S−1I = { f(i)s |s ∈ S, i ∈ I}

Proposition 47 (AM 3.11). i: Every ideal in S−1A is extended
ii: I ◁ A =⇒ Iec =

⋃
s∈S(I : s)

ii’: Ie = (1) ⇐⇒ I ∩ S ̸= ∅
iii: I ∈ C ⇐⇒ no element of S is zero divisor in A/I
iv:

Proof. i: Suppose J ◁ S−1A. We have J ⊃ Jce by 1.17
Consider x

s ∈ J this implies x
1 ∈ J this implies x ∈ Jc this implies x

s ∈ Jce

So J ⊂ Jce. Therefore J = Jce so J must be an extended ideal
ii:
Recall (I : s) = (I : (s)) = {x|xs ∈ I} ‘ideal quotient’
x ∈ Iec = (S−1I)c

⇐⇒ x
1 = i

s ∈ S−1A for i ∈ I, s ∈ S
⇐⇒ (xs− i)s′ = 0 ∈ A where i ∈ I, s, s′ ∈ S
⇐⇒ xss′ ∈ I
⇐⇒ xs′′ ∈ I
⇐⇒ x ∈ (I : s′′)
iii: I ∈ C ⇐⇒ Iec = I
⇐⇒ (sx ∈ I =⇒ x ∈ I)
⇐⇒ s is not zero divisor in A/I

Class 23: 03/01

{ideals (2k) ◁ Z} ←→ {ideals of Z(2)}

Z/2kZ ∼= Z(2)/2
kZ(2)

Proposition 48 (AM 3.11). Consider A 7→ S−1A.

i Every ideal in S−1A is extended

ii Iec =
⋃

s∈S(I : s), (I : s) = {x ∈ A|xs ∈ I}

iii I contracted if and only if im(S → A/I) ⊂ nzd(A/I)

iv {prime P ◁ A,P ∩ S ̸= ∅} bijection←→ {prime ideals in S−1A}

v S−1 commutes with finite sums, finite products, finite intersections and radicals.

For v, we use 1.18 and 3.4.

Proof. (iv):
Map from left to right: P 7→ P e

Map from right to left: Q 7→ Qc

Pick prime Q ◁ S−1A. Note that Qc is a prime ideal.
[Qc is prime if and only if A/Qc is a domain, which embeds A/Qc ↪→ S−1A/Q which
is a domain].
Q = Qce by (i). So we get an identity. So contraction has a one sided inverse.
Suppose we have prime P ◁ A. Then A/P is a domain. Let S be the image of S in

A/P . Then S
−1

(A/P ) = S−1A/S−1P [which is 3.4].
We have two cases here. Case 1: when this ring is zero, case 2: where it is nonzeo.
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Case 1: S
−1

(A/P ) = 0: This means 0 ∈ S
−1

which means S ∩ P ̸= ∅ so it doesn’t
satisfy the condition.

Case 2: S
−1

(A/P ) ̸= 0. This implies S ∩ P = ∅, thus S
−1

(A/P ) ⊂ Frac(A/P ) =⇒
S−1A/S−1P is a domain, thus S−1P = P e is prime.
Corollary 3.12: Nil(S−1A) = S−1Nil(A)

Proof. Follows from 3.11

Corollary 3.13 Suppose P ◁ A is prime. Then,

{prime ideal of A ⊂ P} ←→ {prime ideals of AP}

Proof. Let S = A− P and use 3.11(iv).

Remark: P,Q prime in A. Then Spec is a contravariant function:

Spec(Ap) ↪→ Spec(A)

We also have:

Spec(A/P ) ↪→ Spec(A)

Image in P ′ ⊃ P
Suppose we have P ⊂ Q ◁ A where P,Q are prime. consider:

imSpecAQ ∩ imSpec(A/P ) = {P ⊂ sP ′ ⊂}, A/Q/P ∼= A/PQ

And also AQ/S
−1P ∼= A/PQ

When P = Q AP /P = Frac(A/)
residue field.

Proposition 49 (AM 3.14). Suppose M is a finitely generated A-module. Then,

S−1Ann(M) = Ann(S−1M) ◁ S−1A

Proof. Case 1: M is cyclic

0→ Ann(M)→ A→M → 0

0→ S−1AnnM → S−1A→ S−1M → 0

S−1M =
S−1A

S−1AnnM

0→ S−1Ann(M)→ S−1A
π→ S−1M → 0

Ann(S−1M) = kerπ = S−1Ann(M)
Case 2: Assume we have S−1Ann(M) = Ann(S−1M)
S−1Ann(N) = S−1Ann(S−1N)
Claim: S−1Ann(M +N) = Ann(S−1(M +N))
Note tha the claim implies the proposition.
proof of claim:
S−1Ann(M +N) = S−1(Ann(M) ∩Ann(M)) [2.2]
= S−1AnnM ∩ S−1AnnN [3.11(v)]
= Ann(S−1M) ∩Ann(S−1N) [hypothesis]
= Ann(S−1M + S−1N) [2.2]
= Ann(S−1(M +N)) so we’re done.
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Corollary 3.15: Suppose we have N,P ◁ A , P finitely generated. Maybe P is not
prime. Then,

S−1(N : P ) = (S−1N : S−1P )

Proposition 50 (AM 3.16). For a general homomorphism f : A → B and prime
P ◁ A, P ∈ C ⇐⇒ P = P ec

Class 24: 03/04

Some Algebraic Geo

Let k be a field, and I ◁ k[x1, . . . , xn]
f ∈ k[x1, · · · , xn] gives function f : kn → k
By the evalutation map f(a1, · · · , f(an)).
Given a polynomial f we can look at its variety, V (f) = f−1(0) = {a ∈ kn :
f(a1, · · · , an) = 0}
If f ̸= 0 then V (f) ⊂ kn is called a hypersurface.

For example draw V (x2
2 − x1(x

2
1 − 1)) or V (x2

2 − x2
1(x1 + 1)) or V (x

2−(x2
1+x2

2)
3 ) or

V (x2
2 − x1x2 − x2

1x2 + x3
1) which is V ((x2 − x1)(x2 − x2

1)). The last case is reducible:
a variety is reducible if it is union of two varieties.
Suppose S ⊂ k[x1, · · · , xn]

Definition 65. V(S) =
⋃

f∈S V(f) ⊂ kn

Remark: V (S) = V (I(S)) where I(S) is the ideal generated by S.

Definition 66. A variety is a subset of kn of the form V(I) for some ideal I ◁
k[x1, · · · , xn].

Suppose X ⊂ kn ideal of X
I = {f ∈ k[x1, · · · , xn] : f(X) = 0} ◁ [x1, · · · , xn]
If X = kn define the coordinate ring of X.

Γ[X] = k[x1,··· ,xn]
I(X)

Then each [f ] ∈ Γ[X] defines f : X → k by [f ](X) = f(x)
Lemma:

• S ⊂ I(V (S)) for any S ⊂ k[x1, · · · , xn]

• X ⊂ V (I(X)) for any X ⊂ kn

• I(X) = I(V (I(X))) for ideal I ⊂ k[x1, · · · , xn]

• V (S) = V (I(V (S))) for any X ⊂ kn

Now, in 0 characeristics, V (f) = V (fn).
In a general ring,

√
I = {a ∈ A : an ∈ I} and Nil(A) =

√
0. A is a reduced ring

NilA = 0 aka
√
0 = 0

Lemma:
I(X) is a radical ideal and Γ(X) is a reduced ring.

Definition 67. A variety V is reducible if V = V1 ∪ V2 where Vi are varieties with
Vi ̸= V

eg V (x1x2) is reducible.
We also have the following lemama:
The following are equivalent:

• V is irreducible

• Γ(V ) is a domain
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• I(V ) is a prime ideal

from definiton we already have 2nd iff 3rd.
In AM: variety, in others algebraic set.
AM: irreducible variety, in others variety
Important theorems: Hilbert Basis ts,heorem and Nullstellensatz.

Theorem 15 (Hilbert Basis Theorem). Any ideal I ◁ k[x1, · · · , xn] is finitely gener-
ated.
Equivalently, any variety is intersection of finite number of hypersurfaces.

Questin: is a variety the intersection of n hypersurfaces?

Theorem 16 (Nullstellensatz). Explanation: zero place theorem. We need k be
algebraically closed.

1. (Weak Nullstellensatz) Let I ◁ k[x1, · · · , xn] be a proper idal. Then V (I) is
non-empty.

2. (Strong Nullstellensatz) I(V (I)) =
√
I

Exam review recitation
6 question.
We have ED =⇒ PID =⇒ UFD
PID is nicer than UFDs. If all primes are maximal ideals, then UFD is a PID.
Example: Z[x] is not a PID, since Z[x]/(x) = Z which is not a field but an integral
domain, which means (x) is prime but not maximal. (2, x) contains it, for example.
Galois theory:
Cyclotomic polynomial: Φn(x) product of (x - primitive roots)
eg find Φ10(x)
We have Φ10(x)|x10−1 = x10−1 = (x5−1)(x5+1) = (x5−1)(x+1)(x4−x3+x2−x+1)
So we have x4 − x3 + x2 − x+ 1
order of galois group is also 4. So it is Z4 or Z2 × Z2

Nil(A) = intersection of primes
Jac(A) intersection of max
A ∼= A1 ×A2 if and only if there exists nontrivial idempotent
Spec(A) is all prime ideals of A.
f : A→ B gives us Spec(f) : Spec(B)→ Spec(A)
This means Spec is a contravariant functor
Nakayama’s Lemma.
If M if finitely generated and I ⊂ Jac(A) and IM = M then M = 0
If A is a local ring with max ideal I and M finitely generated and A

I ⊗A M = 0 then
M = 0
If k is a field andM,N are k algebra thenM⊗kN is a k algebra, and so (a⊗b)(c⊗d) =
ac⊗ bd
If M,N are finitely generated then M,N are finite dimensional with basis ei and fj
respectively. M ⊗k N is also a finite dimensional vector space with basis {ei ⊗ fj}

Class 25: 03/08
We skip chapter 4.

Chapter 5: Integrality/Valuations

It’s analogous to what we learned from fields.
Suppose we have a field extenstion K over k.

Definition 68. x ∈ K is algebraic over k ⇐⇒ it satisfies some polynomial, aka

a0x
n + a1x

n−1 + · · ·+ an = 0

where all ai ∈ k not all zero
⇐⇒ |k[x] : k| <∞
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What about rings? Suppose we have x ∈ B where B is a ring over A.
Throughout today, A is a subring of B. It does contain the identity. We will also
have x ∈ B.

Definition 69. x ∈ B is integral over A if there exists an equation:

xn + a1x
n−1 + · · ·+ an = 0

with ai ∈ A.
Notice that the polynomial is monic.
i.e. x is a root of a monic polynomial in A[t].

We can think of k ∈ K, or we can look at Z ⊂ Q, we can think of Z ⊂ Q or Z ⊂ Q[i]

or Q[t] ⊂ Q(t
1
2 )

If we have k ⊂ K extension of fields, then x integral /k is the same thing as saying x
is algebraic /k, since we can divide by the leading term.
5.0 claim: x ∈ Q integral over Z =⇒ x ∈ Z

Proof. Suppose x = r
s with r, s integers, (r, s) = 1. So,

(
r

s
)n + a1(

r

s
)n−1 + · · ·+ a0 = 0

=⇒ rn = −a1rn−1s− · · · − a0s
n

Thus, s | rn but since (r, s) = 1 this implies s | ±1 which means x ∈ Z

Now, consider Z ⊂ Q ⊂ C.
Recall that Q is {x ∈ C : x algebraic over Q}, these are called ‘algebraic numbers’
It is due to Gauss that C is algebraically closed.
Define A = {x ∈ C : x integral over Z}. These are called ‘algebraic integers’. For
example,

√
2 ∈ A

Note that 1
5 /∈ A

Is A a ring?

Theorem 17 (Proposition 5.1). : we have A a subring of B and x ∈ B. Then TFAE:

1. x integral / A

2. A[x] is a finitely generated A-module

3. There exists subring C such that A[x] ⊂ C ⊂ B and C is finitely generated as
A-module.

4. ∃A[x] module M which is faithfull (Ann(M) = 0) and M is finitely generated.

Proof. We prove 1 =⇒ 2 =⇒ 3 =⇒ 1 we will not use iv. AM uses 2.4 [the
determinant trick]
Assume we have xn + a1x

n−1 + · · ·+ a+ 0 = 0.
Claim: A[x] = (1, x, · · · , xn−1) = I. If this is true we have A[x] is finitely generated.
Note that, xn = −a1xn−1 − · · · − · · · − a0 ∈ I.
Multiplying by xn+r we see that this is also in I by induction. Thus we are done.
2 =⇒ 3 just take C = A[x]
3 =⇒ 1: Suppose C is generated by c1, · · · , cn. We have, xC ⊂ C. This implies,

x

c1...
cn

 = [aij ]

 c1
· · ·
cn


Since xc1 = a11c1 + · · ·+ x1ncn
Thus,
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=⇒ (xI − (aij))

c1...
cn

 =

0...
0


But we need to prove the last implication. So we multiply by the adjugate on the
left. Just see proof of 2.4.
Thus,

dI

c1...
cn

 =

0...
0


This means dci = 0 for all i. Since 1 ∈ C, 1 =

∑
i fici so all can’t be 0 Which means

d = 0 whih gives us a monic polynomial.

Now we do a sequence of definitions which we’ll use to answer whether the set of
algebraic integers is a ring.

Definition 70. B is integral over A if every x ∈ B is integral. B can also be called
an integral extension.

Definition 71. Integral closure of A in B
notation: IC(A ⊂ B) = {x ∈ B : x is integral / A}

Definition 72. A is integral closed in B if A = IC(A ⊂ B). Exxample: Z is integral
closed in Q

Definition 73. A domain A is integrally closed if it is integrally closed in Frac(A)
eg Z is integrally closed.

Two obvious question about integrably closed IC(A ⊂ B):
One: Is this a ring? we are going to say yes, it’s a consequence of the theorem.
Two: Is IC(A ⊂ B) integrally closed in B?
Corollary 5.2: Let x1, · · ·xn ∈ B be integral / A. Then [this statement is stronger
than AM]

1. A[x1, · · · , xn] is finitely generated A-module [this is in AM]

2. A[x1, · · ·xn] is intgegral / A

Proof. 1: by induction on n. For n = 1 we want to know if A[x1] is a finitely
generated A-module which is implied by 5.1. Assume An−1 := A[x1, · · · , xn−1] is a
finitely generated A-module. Then, An−1[xn] is a finitely generated An−1 module,
and the previous things imply An is finitely generated A-module.
2: Let x ∈ A[x1, · · · , xn]. Then, A ⊂ A[x] ⊂ A[x1, · · · , xn]. Since 3 implies 1 in 5.1
this implies x is integral over A.

Thus, x, y integral over A implies x+ y, xy integral over A.
Also, corollary: IC(A ⊂ B) is a ring.
corollary: A is a ring.

Class 26: 03/18
Subring A ⊂ B
x ∈ B is integral over A ∃ monic f ∈ A[t] such that f(x) = 0
eg x ∈ A is a root of t− x

Definition 74. B is integral over A if ∀x ∈ B, x is integral over A. For example, Z[i]
is integral over Z since if x = a+ ib then (t− (a+ ib))(t− (a− ib)) ∈ Z[t]

Definition 75. Integral closure of A in B

IC(A ⊂ B) = {x ∈ B | x integral over A}

40



Corollary 5.3: IC(A ⊂ B) is a ring
Corollary 5.4: ‘transitivity’
If we have B is integral over A and C is integral over B then C is integral over A

Proof. If x ∈ C then there exists:

xn + b1x
n−1 + · · ·+ bn = 0

bi ∈ B. We had B′ = A[b1, · · · , bn] a finitely generated A-module.
B′[x] is a finitely generated B′-module, so B′[x] is a finitely generated A-module.
By 5.1(iii) we have x is integral over A.

We have

B

IC(A ⊂ B)

A

Definition 76. A is integrally closed in B if A = IC(A ⊂ B)

eg Z ⊂ Q is I.C.
eg Q ⊂ R not I.C.√
2 ∈ IC(Q ⊂ R),

√
2 /∈ Q

Z ⊂ Z[i] not I.C.
Corollary 5.5: IC(A ⊂ B) is I.C. in B

Proof. Let x ∈ B be integral over IC(A ⊂ B). We have:

B

IC(A ⊂ B)[x]

IC(A ⊂ B)

A

int

int 5.2

int

5.4 implies IC(A ⊂ B)[x] is integral over A which means x is integral over A

Proposition 5.6: Suppose B is integral over A. Then,
i: J ◁ B, I = A ∩ J implies B/J is integral over A/I
ii: If S is multiplicatively closed subset of A then S−1B is integral over S−1A.

Proof. ∀x ∈ B we have the equation *:

xn + a1x
n−1 + · · ·+ an = 0

for i: reduce * mod J
ii: Let x

s ∈ S−1B where x ∈ B, then multiply * by s−n

Remark/Definition: B is an integral A-algebra if:
We have a ring homomorphism f : A→ B and B is integral over f(A)
We can define more generally over subrings.
Note: finite type + integral = finite
finite type means finitely generated as an A-module and finite means finitely generated
as A-algebra.
This follows from 5.1 and 5.2.
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Example: Z/6[t] is not integral Z-algebra. But Z/6 is integral as Z-algebra.
Recall, if we have a field k then x is algebraic over k if and only if k[x] is a field.

Going Up Theorem

Suppose we have rings A ⊂ B and prime ideals P ◁ A and Q ◁ B,
If we have P = Qc = A ∩Q then:

B

Q A

P

We say Q lies above P
We also say P lies below Q.
We have:

Q[i]

Z[i] Q

3Z[i] Z

3Z

Claim: 3Z[i] is prime in Z[i]
Proof:

Z[i]
(3)

=
Z[t]/(t2 + 1)

(3)
=

Z[t]
(3, t2 + 1)

=
F3[t]

(t2 + 1)
= Fq

Observation: If we have A ⊂ B and

B

Q A

P = Q ∩A

For all prime Q ◁ B there exists prime P lying under Q.
A/P ↪→ B/Q domain.
Proposition 5.7: If A ⊂ B domains, B is integral over A then A is a field if and only
if B is a field.
Proof: =⇒ : 0 ̸= y ∈ B, choose smallest degree polynomial yn+a1y

n−1+· · ·+an = 0.
Since domain, an ̸= 0 Solve for an and factor for y. We have:

y

[
−yn−1 − · · · − an−1

an

]
= 1

So y−1 ∈ B so we have field.
⇐= : supposse 0 ̸= x ∈ A. THen x−1 ∈ B which is integral over A so we have
polynomial:
x−m + a′1x

−m−1 + · · ·+ a′m = 0
Solve fore x−m and multiply by xm−1

42



x−1 = −(a′1 + · · ·+ amxm−1) ∈ A

So a field.

Class 27: 03/20
Recall

Proposition 51 (AM 5.7). If A ⊂ B and B is a domain, B is integral over A, then
A is a field if and only if B is a field.

In the same spirit, if x is algebraic over k then k[x] is a field.
Corollary 5.8: If we have

B

Q A

P

int

Then Q maximal if and only if P maximal.

Proof. B/Q is integral over A/P by 5.6.
Q maximal iff B/Q field iff A/P field iff P maximal.

Corollary 5.9:

B

Q ⊂ Q′ A

P

Q ∩A = P,Q′ ∩A = P
then Q = Q′

idea. Replace A by local AP and use 5.8.
S = A− P ⊂ A. Then,

S−1B = BP

S−1Q ⊂ S−1Q′ S−1A = AP

S−1P

S−1P is maximal since AP is local, which gives us S−1Q ⊂ S−1Q′ maximal by 5.8
which tells us S−1Q = S−1Q′. Therefore, (S−1Q)c = (S−1Q′)c =⇒ Q = Q′

Theorem 18 (AM 5.10). Suppose B is integral over A and P is a prime ideal of A.
Then there exists a prime Q lying over P .
Basically, we can complete the following:

B

A

P

int
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Proof. Consider the following commutative diagram:

B S−1B

A AP = S−1A

β

i

α

j (int by 5.9)

Let N ◁ S−1B be maximal. Then,

Q = B−1N N

Q ∩A M := N ∩AP

N exists by Zorn’s lemma
By 5.8 M is maximal.
Now, Q ∩ A = i−1β−1N = α−1j−1N = α−1M = α−1(PAP ) = P since AP local and
PAP maximal.

Remark: Q may not be unique. See:

(2 + i)Z[i], (2− i)Z[i] Z[i]

5Z Z

Note: 5Z[i] = ((2 + i)Z[i])((2− i)Z[i])
Now we have the Going-up theorem.

Theorem 19 (AM 5.11). Suppose we have integral extension B over A and we have
chain of prime ideals P1 ⊂ P2 ⊂ · · ·Pn of A and chain of prime ideals Q1 ⊂ · · · ⊂ Qm

of B and ∀i ≤ m,Qi ∩A = Pi then we can extend the chain of Q’s to Q1 ⊂ · · · ⊂ Qn

such that for all i, Qi ∩A = Pi.
We basically have,

Q1 ⊂ · · · ⊂ Qn ⊂ · · · ⊂ Qm B

P1 ⊂ · · · ⊂ Pn A

Proof. We use 5.10. Base case is 5.10.
We want to define Qm+1. If n > m > 0,
Recall: quotient of integral extensions are integral by 5.6. Let B = B/Qm, A = A/Pm.
So we have by 5.10

∃Qm+1 B = B/Qm

Pm+1 A = A/Pm

int by 5.6

Let Qm+1 = Qm+1
c
and we are done.

Context:
Krull dim A = max{n|P0 ⊊ · · · ⊊ Pn primes in A}
A corollary of 5.11 tells us, if B is integral over A then dimB ≥ dimA.
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Going down theorem

Proposition 52 (AM 5.12). Localization respects integral closure.
Suppose B is integral over A and S ⊂ A is multiplicatively closed. Then, we have
C = IC(A ⊂ B) the integral closure. Then, S−1C = IC(S−1A ⊂ S−1B)

Proof. 5.6 implies S−1C ⊂ IC(S−1A ⊂ S−1B). We have one direction. For the other
direction,
Let b

s ∈ IC(S−1A ⊂ S−1B). So there is some integral dependense relation:(
b

s

)n

+

(
a1
s1

)(
b

s

)n−1

+ · · ·+ an
sn

= 0

Let t = s1 · · · sn. Multiply the polynomial by (st)n so we have

(bt)n + · · ·+ (st)n
an
sn

= 0

Thus, bt ∈ C = IC(A ⊂ B)
Thus, b

s = bt
st ∈ S−1C

So we’re done.

Class 28: 03/22
Recall the going up theorem.
(krull) dimA = maxn{∃Po ⊊ P1 ⊊ · · · ⊊ Pn ◁ A}
dim field = 0
dim Z = 1
dim k[x1, · · · , xn] = n

variety V,dimV = dim k[x1,··· ,xn]
I(V )

Corollary:
If B is integral over A then dimA = dimB
Another corollary
A domain, dimA = 0 if and only if A field.
Simply:
Let A ⊆ B.
Going up:
If B is integral over A
P1 ⊆ P2 ⊆ · · · ⊆ Pn in A
Q1 ⊆ Q2 ⊆ · · · ⊆ Qm in B
implies Q1 ⊆ Q2 ⊆ · · · ⊆ Qn

Going down:
If B is integral over A and is a domain
P1 ⊇ P2 ⊇ · · · ⊇ Pn in A
Q1 ⊇ Q2 ⊇ · · · ⊇ Qm in B
implies Q1 ⊇ Q2 ⊇ · · · ⊇ Qn

Proposition 53 (AM 5.13). Let A be a domain. Integral closure is a local property.
Meaning TFAE:

i A is IC

ii ∀ prime P ◁ A,AP is IC

iii ∀ maximal M ◁A,AM is IC.

Proof. Let k = Frac(A) and let C = IC(A ⊂ k)
Inclusion: f : A ↪→ C

fP : AP ↪→ Cp := (A− P )−1
5.12
− IC(AP ⊂ k) ⊂ k

fM : AM ↪→ CM

Now,

 A
AP

AM

 ic IC ⇐⇒

 f
fP
fM

 is surjective

3.9 implies surjectivity is a local property so we are done.
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Going up iff SpecB → SpecA is closed map
Going down iff SpecB → SpecA is open map

Definition 77. Suppose A ⊂ B rings and I ◁ A and x ∈ B.
x is integral over I, if there exists equation

xn + a1x
n−1 + · · ·+ an = 0

where ai ∈ I.

eg 2 is integral over 4Z ◁ Z since 2 satisfies x2 − 4

Definition 78. Suppose B is integral over A and I ◁ A. We can define the integral
closure of this ideal.

IC(I ⊂ B) := {x ∈ B : x is integral over I}

Lemma 5.14: Suppose B is integral over A and I ◁ A. Then

B

IC(I ⊂ B) ◁ IC(A ⊂ B)

A

In fact IC(I ⊂ B) =
√
Ie =

√
IC(A ⊂ B)I

Proof. C := IC(A ⊂ B) ring

IC(I ⊂ B) =
√
Ie

def
=
√
CI

Want to show IC(I ⊂ B) =
√
CI

⊆:
x ∈ IC(I ⊂ B)

ie ∃xn+a1x
n−1+···+a0=0 where ai ∈ I

Thus xn ∈ CI
So x ∈

√
CI

⊇:
x ∈
√
CI

So xn =
∑

i aici where ai ∈ I, ci ∈ C
5.2 implies,
M := A[c1, · · · , cp] finitely generated A-module.
and xnM ⊂ IM
by 2.4 xn integral over I
So x integral over I
So we’re done.

Class 29: 03/25
Special Case of 5.14

B

I◁ A = IC(A ⊂ B)

Then IC(A ⊂ B) =
√
I

Proposition 54 (AM 5.15). Suppose B is a domain, B is integral over A and A =
IC(A ⊂ B). Let I ◁ A
Then x ∈ B is integral over A.
Suppose K = Frac(A). Then IrrK(x)(t) = tn + a1t

n−1 + · · · + an ∈ K[t] [minimal
polynomial] satisfies ai ∈

√
I.
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Proof. x integral over over I implies x is algebraic over K.
Let L be a splitting field for Irr(x).
Irr(x) =

∏
(t− xi)

xi’s are the conjugates of x
Claim: xi are integral over I.
This is becaue they are conjugates of x.
x is integral over I means there exists monic polynomial g(t) = tk + b1t

k−1 + · · ·+ bk
where bk ∈ I, g(x) = 0 where Irr(x) | g
So g = h Irr(x)
So g(xi) = h(xi)(Irr(x)(xi)) = 0 so xi is integral over I.
Now,∏
(t− xi) = Irr(x) = tn + a1t

n−1 + · · ·+ an
aj are polynomials in x1, · · · , xn ∈ IC(I ⊂ B) =

√
I

[elementary symmetric polynomials]

This will be useful in hw.
Useful even when I = A
Note: integral means some monic polynomial with good coefficient exists, this propo-
sition lets us take the minimal polynomial.

Proposition 55 (AM 5.17). Let A be a domain.

IC(A ⊂ L) = B L

IC(A ⊂ K) = A K = Frac(A)

Where L is a field with characteristic zero.
Suppose n = |L : K| <∞
Then there exists basis u1, · · ·un and v1, · · · , vn of L/K such that:∑

Aui ⊂ B ⊂
∑

Avi

If we have

K ∩ A = Ok K

Z Q

5.17 implies OK is free abelian of rank n.
OK
∼= Zn as abelian group.

Trace
Suppose K is the algebraic closure of K.
Suppose x ∈ K is algebraic over K.
Define Tr(x) =

∑
i xi

Now, suppose:

K

x ∈ L

K

finite

then TrL/K(x) = |L : K(x)|Tr(x) fact
= Tr(L

·x→ L)
T = TrL/K : L→ K is K-linear.
Tr(1) = n, the dimension.
Also,
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d∏
i=1

(t− xi) = Irr(x) = td + a1t
d−1 + · · ·

So T (x) = TrL/K(x) = (nd )(−a1)
Corollary of 5.15: [special case where I = A]
TrL/K(B) ⊂ A.
Claim 1: ∀v ∈ L,∃a ̸= 0 ∈ A such that av ∈ B.
Proof: v is algebraic over K so we have some polynomial

vn +
a1
b1

vn−1 + · · ·+ ar
br

0

where ai ∈ A
multiply by a = (

∏
bi)

multiply by ar

(av)r + aa1

b1
(av)r−1 + · · ·+ (a)r ar

br
= 0

So av ∈ B
Claim 2:
There exists basis u1, · · · , un of L/K such that ui ∈ B

Proof. Let w1, · · · , wn be basis of L/K. By claim 1, choose ai such that aiwi = B
Let ui = awi

Class 30: 03/27
Correcting previous class:
If B is a domain, I ◁ A and B is integral over A and K = Frac(A)
A is integrally closed (ie A = IC(A ⊂ K))
and x ∈ B is integral over I
Then,
If IrrK(x) = tn + a1t

n−1 + · · ·+ an
Then ai ∈

√
I.

We want to prove 5.17, which is important in algebraic number theory.

Proposition 56 (AM 5.17).

B L

A K

Where L,K fields, n = |L : K| and char = 0 and K = Frac(A), B = IC(A ⊂ L)

Then ∃ bases
u1, · · · , un

v1, · · · , vn
of L/K such that

∑
Aui ⊂ B ⊂

∑
Avi

Lemma 5.14: Suppose I ◁ A and B is integral over A. Let C = IC(A ⊂ B). Then
IC(I ⊂ B) =

√
CA

5.14 implies,
1. IC(I ⊂ B) is closed under + and ×
2. Special case(A = B):
IC(I ⊂ A) =

√
I

eg IC(4Z ◁ Z) =
√
4Z

2 is root of t2 − 4
Special case of 5.15: A = I
If x ∈ B is integral over I = A then coefficients lie on A.
Similar to HW.

Proof. IrrK(x) =
∏
(t− xi) ∈ L[t]

xi are conjugates.
IrrK(x) = IrrK(xi) [we proved in last class].
This implies xi are integral /A
So xi ∈ IC(I ⊂ B)
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So, 5.14 closed implies ai = σi(x1, · · · , xn) ∈ IC(I ⊂ B) ∩ A =AIC IC(I ⊂ A) =5.14√
I

trace T = TrL/K : L→ K
K-linear
T (1) = n
T (B) ⊂ A by 5.15.
Claim: ∃ basis uj for L/K such that

∑
i Auj ⊂ B

Proof. Clear denominator

Claim: there exists basis {vi} of L/K such that T (viuj) = δij

Proof. Define β : L× L→ K by β(x, y) = T (xy). This is a K-bilinear form.
So we have Adβ : L→ L∗ = HomK(L,K) by x 7→ (y 7→ β(x, y))
Adβ is 1− 1 ie B is non-degenerate:
x ̸= 0 means Adβ(x)(x−1) = Tr(xx−1) = Tr(1) = n ̸= 0 so it is actually non-
degenerate.
So, Adβ : L→ L∗ is actually an isomorphism.
Let ûi be the ui dual basis of L
ie ûi(uj) = δij
Let vi = (Adβ)−1ûi

Now we prove B ⊂
∑

i Avi

Proof. Consider x ∈ B =⇒ x =
∑

i kivi, where ki ∈ K
Note that xuj ∈ B
5.15 means A ∋ T (xuj) = T (

∑
i kiviuj) = kj so we’re done.

Valuation Rings

Let B be a domain and let K = Frac(B)

Definition 79. B is a valuation ring of K if x ∈ K× =⇒ x ∈ B or x−1 ∈ B

Basically B ∪ (B − 0)−1 = K
eg Z(p) is a valuation ring.
But Z not a valuation ring.
Suppose A is a domain and K = Frac(K)
Then IC(A ⊂ K) = ∩A⊂B⊂K,B valuation ringB

Proposition 57 (AM 5.18). Let B be a valuation ring (over K). Then,
i: B is a local ring
ii: B ⊂ B′ ⊂ K implies B′ is a valuation ring.
iii: B is integrably closed.

Proof. i: Let M = B −B×, non-units.
We want to show M is an ideal, then we’re done.
M = {0} ∪ {x ∈ B : x−1 /∈ B}
First: M is closed under multiplication by B.
If a ∈ B,m ∈ M , for contradiction assume am /∈ M . Then (am)−1 ∈ B [since
valuation ring], so m−1 = a(am)−1 ∈ B so we have contradiction.
Second: M is closed under addition.
x, y ∈M − 0 then xy−1 ∈ B or x−1y ∈ B since valuation ring.
WLOG xy−1 ∈ B
Then x+ y = (1 + xy−1)y ∈M
ii is clear
iii: Suppose x ∈ K is integral over B.
Then xn + b1x

n−1 + · · ·+ bn = 0
If x ∈ B then we’re done.
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If x−1 ∈ B then solve for xn and multiply by x1−n so x ∈ B

Class 31: 03/29
One to One Correspondence Between Valuation and Valuation Ring
Ex 30 and 31
A valuation on field is homomorphism v : K∗ → Γ where Γ is totally ordered abelian
group such that v(x+ y) ≥ min(v(x), v(y)).
If Γ is discrete it is called a discrete valuation.
Totally Ordered Abelian Group: We have order, and a ≥ b =⇒ a+ c ≥ b+ c∀c.
eg p-adic valuation on Q.
vp : Q× → Z given by:
vp(p

k a
b ) = k where p ∤ a, b

Note: if we define for x ∈ Q, |x|p := p−vp(x) it is like an absolute value. It is actually
a non-archemedian absolute value.
We can define a metric: dp(x, y) = |x− y|p
Completion of this metric space is the p-adic numbers Qp

Valuation ←− valuation ring
v : K× → Γ 7→ B = {x ∈ K : v(x) ≥ 0}
Γ = K×/B× ← B

[x] ≥ [y]
def⇐⇒ xy−1 ∈ B

B = v−1
p [0,∞) = Z(p)

Now, let K be a field and Γ be an algebraically closed field.
Σ = {(A, f)|A ⊂ K subring f : A→ Γ homomorphism}
Poset (A, f) ≤ (A′, f ′)

def⇐⇒ A ⊂ A′, f ′|A = f
Zorn’s lemma implies: ∃max(B, g) ∈ Σ
eg suppose Ω = K. Then B = K.
eg K = Q implies Ω = Fp = ∪Fpr

Theorem 20 (AM 5.21). Let K be a field and Ω be algebraically closed field. Let
(B, g) be maximal element of Σ. Then B is a valuation ring of K.

Lemma 5.19: B is a local ring with maximal ideal M = ker g

Proof. M = ker g
So B/M ∼= g(B) ⊂ Ω =⇒ M prime since g(B) is a domain
g(B −M) ⊂ Ω×

=⇒ g such that (BM , g) ≥ (B, g) maximal.
So BM = B
M maximal since BM is local.

Lemma 5.20: Let x ∈ B×.
Then M [x] ̸= B[x] or M [x−1] ̸= B[x−1]
Note: M [x] = M{1, x, x2, · · · } ◁ B[x]

Proof. Of 5.20
By contradiction.
Suppose M [x] = B[x] and M [x−1] = B[x−1]
ie 1 ∈M [x], 1 ∈M [x−1]
Then 1: u0 + u1x+ · · ·+ umxm = 1 [ui ∈M ]
Also 2: v0 + v1x

−1 + · · ·+ vnx
−n [v∈M ]

WLOG m ≥ n with m,n minimal.
3: v1x

n−1 + · · ·+ vn = (1− v0)x
n

1− v0 ∈ B −M [since M proper] =⇒ (1− v0)
× ∈ B since M maximal.

4: w0 + w1x+ · · ·+ wmxm−1 = xm

Plug 4 to 1, that contradits minimality.
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Finally, we prove 5.21.

Proof. x ∈ K×

WTS x ∈ B or x−1 ∈ B
M = ker g ◁ B. Maximal.
WMA (5.20) M ′ = M [x] ⊴ B[x] =: B′

M = M ′ ∩B since M maximal.
B/M is a field.
So we have map B/M → Ω
If we go to B′/M ′

By universal property, B′/M ′ = B/M [x]
So x algebraic over B/M
B′ → B′/M ′ → Ω
(B, g) ∈ Σ maximal implies B = B′ = B[x] =⇒ x ∈ B.

Class 32: 04/01
Let K be field and Ω be an algebraically closed field.
Consider the poset Σ = {(B, g)|B ⊂ K, g : B → Ω}
Since the set has an upper bound, every chain has an upper bound.
Using Zorn’s Lemma, there must exist a maximal element.
Most interesting case: K = Q and Ω is the algebraic closure of Fp

Theorem 5.21 states that if (B, g) is a maximal element then B is a valuation ring.
Meaning x ∈ K× =⇒ x or x−1 ∈ B
Corollary 5.22: Let A be a subring of the field K. Then the integral closure of A in
K [IC(A ⊂ K)] is the intersection of valuation ring containing K

IC(A ⊂ K) =
⋂

A⊂B⊂K, B valuation ring

B

Example: IC(Z ⊂ Q) =
⋂
Z(p)

Proof. ⊂: Let B be a valuation ring. 5.18(iii) implies B is IC =⇒ IC(A ⊂ K) ⊂ B
so we’re done with this direction.
⊃: Suppose x ∈ IC(A ⊂ K). Note that x integral if and only if x ∈ A[x−1] = A′.
Thus, x−1 ∈ A′ but is not a unit.
Thus there exists a maximal ideal containing x−1. So, x−1 ∈M ′.
We have a map A′ → A′/M ′ = k′ since M ′ is a maximal ideal. We can include
k′ ↪→ k′ = Ω the integral closure.
Note that x−1 7→ 0
Extend to maximal (B, g)
g(x−1) = 0 =⇒ x−1 not a unit in B =⇒ x /∈ B
B is a valuation ring by theorem 5.21

Proposition 58 (AM 5.23). Suppose B is extension of ring A and B is finitely
generated over A, meaning B = A[x1, · · · , xn] where xj are elements of B and B is a
domain.
Suppose 0 ̸= v ∈ B.
Then ∃u ∈ A such that:
For any homomorphism f : A→ Ω where Ω is algebraically closed with f(u) ̸= 0
∃g : B → Ω such that g|A = f and g(v) ̸= 0

Proof. By induction. Key case: n = 1
Assume B = A[x]
Consider v ∈ B nonzero.
Two cases: x is not algebraic over A.
Let v = a0x

n + · · ·+ an ∈ B
Let u = a0
∀f : A→ Ω such that f(u) ̸= 0 we can define:
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f(a0)t
n + · · ·+ a0 ∈ Ω[t]

has n roots.
Choose nonroot ξ ∈ Ω
define g : B → A[x]→ Ω by g(x) = ξ
Then g(v) ̸= 0 and we’re done.
Case ii: x is algebraic over A
Then Frac(A)[x] is a field
Then v−1 is algebraic over A
x algebraic.
1: a0x

m + · · ·+ am = 0
v−1 algebraic
2: a′0v

−n + · · ·+ a′n
Let u = a0a

′
0

Let f : A→ Ω, f(a0a
′
0) ̸= 0

f extends to f1 : A[u−1]→ Ω by f1(u
−1) = f(u)−1

Now, (A[u−1], f1) ≤ (C, h)
Let g = h|B
5.21 =⇒ C is valuation ring, 5.18 =⇒ C integrally closed.
1 =⇒ x integral over A[u−1] =⇒ x ∈ C =⇒ B ⊂ C
2 =⇒ v−1 integral over A[u−1] =⇒ v−1 ∈ C =⇒ v is a unit in C =⇒ h(v) ̸=
0 =⇒ g(v) ̸= 0

We have a nice corollary:
Corollary 5.24 [Zariski’s Lemma]: Suppose we have a field k and a polynomial ring
B = k[x1, · · · , xn] field. Then |B : k| = dimk B <∞

Proof. Apply 5.23 with v = 1,Ω = k, f = inclusion.
So, ∃g : B → k, injective since B field
k ⊂ g(B) ⊂ k
g(B) = B
B/k algebraic and B finitely generated implies |B : k| <∞

Corollary: Weak Nullstellensatz (HWK)
Let k be algebraically closed. Let I be a proper ideal of k[t1, · · · , tn]
Week: V (I) ̸= ∅
Strong: I(V (I)) =

√
I

‘counterexample’: I = (x2 + 1) ◁ R[x] but then V (I) = ∅. This is not really a
contradiction since R is not algebraically closed.

Class 33: 04/03

Chapter 6 Chain Conditions

Proposition 59 (AM 6.1). Let (Σ,≤) be a poset.
TFAE:
i: Ascending chain condition (acc): Every x1 ≤ x2 ≤ x3 ≤ · · · is stationary: ∃n such
that for all i, j ≥ n we have xi = xj

ii: Maximal condition: every ϕ ̸= T ⊂ Σ has a maximal element.

Proof. ¬ii =⇒ ¬i:
0 ̸= T no max. x1 ∈ T . x1 < x2 < x3 · · ·
ii =⇒ i: x1 ≤ x2 ≤ · · · has a maximal xn

Definition 80. Module M is Noetherian/Artinian
if (Σ = submodules, ⊆) satisfies acc (iff maximal condition) / dcc (iff minimal condi-
tion)

Definition 81. Ring A is Noetherian/Artinian if it is so as an A-module.
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Remark: Submodule of A ⇐⇒ ideal of A. So we are talking about chains of ideals.
eg A = k field, M = V vector space.
If V is finite dimensional, it satisfies this condition.
Call length of chain l(x0 < x1 < · · · < xn) = n. Then length of chain of n-dimensional
vector space is n.
So, dimV <∞ ⇐⇒ V is N.
R∞ satisfies dcc, but not acc. So it is Artinian.
k = Q, V = R is not Artinian.
eg A = Z or any PID. It is Noetherian, but not Artinian.
eg (6) ⊂ (2) ⊂ (1) and (6) ⊂ (3) ⊂ (1)
eg (2) ⊃ (4) ⊃ (8) ⊃ · · ·
If A = field, then it is noetherian and artinian ring.
eg Z-modules aka abelian groups.
Z is noetherian not artinian.
Q/Z is artinian not noetherian.
(1) ⊂ ( 12 ) ⊂ (14 ) ⊂ · · ·
Q is neither artinian nor noetherian [as a Z-module]
eg k-algebras where k is a field.
If one variable k[t] then we are in a PID situation. So noetherian not artinian.
First: k[t1, t2, · · · ] infinite not Artinian, not Noetherian.
We have two other possibilities:
k[α1, · · · , αn] finitely generated, and other possibility is finite type, dimk <∞
k[α1, · · · , αn] finitely generated is Noetherian.
k[α1, · · · , αn] finite type, dimk <∞ is Artinian and Noetherian.

Proposition 60 (AM 6.2). M is Noetherian A-module if and only if every submodule
is finitely generated.

Corollary: Ring A is Noetherian if and only if every ideal is finitely generated.

Proof. =⇒ : P ⊂M where M is noetherian.
Let T = {finitely generated submodules of P}
6.1 =⇒ ∃ maximal P0 ∈ Σ
So, ∀x ∈ P, (P0, x) ⊂ P =⇒ (P0, x) = P .
P0 maximal means x ∈ P
⇐= suppose M0 ⊆M1 ⊆ · · · ⊆M .
Take

⋃
Mi. It is finitely generated.

Choose n≫ 0 such that Mn contains all generators.

Proposition 61 (AM 6.3). Consider SES0 −→M ′ α−→M
β−→M ′′ −→ 0.

i: M is noetherian if and only if M ′,M ′′ are noetherian.
ii: M is artinian if and only if M ′ and M ′′ are artinian.

Proof. i: ascending chain in M ′ (or M ′′) gives ascending chain in M via α (or β−1).
Hence stationary.
⇐= let M0 ⊂M1 ⊂ · · · ac in M . Then α−1Mi is ac in M ′ and β(Mi) is ac in M ′′.
So, there exists n such that α−1Mi and β(Mi) are stationary at n. Then ∀j > n

0 α−1Mn Mn βMn 0

0 α−1Mj Mj βMj 0

= =

By the five lemma, Mn = Mj

Corollary 6.4: If M1, · · · ,Mn are N/A then ⊕Mi is N/A

Proposition 62 (AM 6.5). If A is N/A ring and M is finitely generated, then M is
N/A.
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Proof. M finitely generated iff we have a surjection An →M . 6.4 implies An is N/A.
6.3 implies M is N/A.

Class 34, 35 skipped
Due to Ben:

Proposition 63. I ◁A,A is noetherian (resp Atinian) implies A/I is noetherian (resp
artinian)

Proof. A/I noetherian A-module implies A/I noetherian A/I module.

Composition Series:
M = M0 ⊋ M1 ⊋ · · · ⊋ Mn = 0 maximal
i.e. Mi−1 ⊋ Mi maximal proper, i.e. Mi/Mi−1 simple.
eg Z/12 as a Z-module.
Z/12 ⊃ 2Z/12 ⊃ 6Z/12 ⊃ 0. Simple factors Z/2,Z/3,Z/2
Neg: 12Z has no composition series.

Proposition 64 (Jordan-Holder). Suppose M has a c.s. of length n. Then,
i: Any strict chain in M can be extended to a c.s.
ii: Any two c.s. for M has the same simple factors up to isomorphism, hence the
same length.

Proposition 65. 0→M ′ →M →M ′′ → 0 SES implies l(M) = l(M ′) + l(M ′′)

Proposition 66. M has a c.s. ⇐⇒ M is noetherian and artinian.

Proof. Suppose M has a c.s. Then all strict chains have length ≤ l(M) <∞.
Thus, M is noetheian AND artinian.
Suppose M is both noetherian and artinian.
M0 = M has a maximal proper submodule M , since M is noetherian. Continue
M0 ⊋ M1 ⊋ M2 ⊋ · · · will be stationary since M is artinian.

Proposition 67. V is a vector space over k. Then TFAE:
i: dimV <∞
ii: l(V ) <∞ in which dimV = l(V )
iii: V is noetherian.
iv: V is artinian

Proof. i =⇒ ii clear
ii =⇒ iii, iv by previous proposion
¬ i =⇒ ¬ iii, ¬ iv: If dimV =∞ then there exists linearly independent x1, x2, x3, · · ·.
Let un = span(x1, · · · , xn) and vn = (xn+1, xn+2, · · · )

Corollary: Ring A, suppose ∃ maximal M1, · · · ,Mn with M1 · · ·Mn = 0
Then A is noetherian ⇐⇒ A is artinian.

Proof. Consider the chain: 0 = M1 · · ·Mn ⊂M1 · · ·Mn−1 ⊂ · · · ⊂M1M2 ⊂M1 ⊂ A.
Each factor M1···Mi

M1···Mi+1
is a vector space over A

Mi+1
. Then acc ⇐⇒ dcc for each factor.

Then acc for A ⇐⇒ dcc for A

Chapter 7: Noetherian Rings

Proposition 68. A ↣ B. Then A noetherian =⇒ B noetherian

Proof. B ∼= A/ ker noetherian

Proposition 69.

B f.g. A-module

A Noetherian

=⇒ B is noetherian
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Class 35:
Lemma: Ring A noetherian =⇒ S−1A noetherian.

Proof. I ◁ A =⇒ I = (x1, · · · , xn) =⇒ S−1I = (x1

I , · · · , xn

I )

Corollary: P prime, A Noetherian =⇒ AP Noetherian.

Theorem 21 (Hilbert Basis Theorem). If A is Noetherian then so is A[t]

Corollary: A noetherian implies A[t1, · · · , tn] is noetherian.
Corollary A noetherian implies so is any finitely generated A-algebra.

Proof. (Proof of Hilbert Basis theorem skipped. Look it up)

Proposition 70.

C = A[x1, · · · , xn] “f.g. A-algeba”

B

A noetherian

Suppose either i: C is f.g. as a B-module or ii: C is integral /B. Then B is f.g. as
an A-algebra.

Proof. Note: 5.1 + ii =⇒ i so we may assume i.
So, C =

∑m
j=1 Byj . Then xi =

∑
j xijyj .yiyj =

∑
k bijkyk. Let B0 = A[bij , bijk].

Let B0 = A[bij , bijk]. We know C is f.g. as a B0 module/
B0 noetherian =⇒ B is f.g. as a B0-module (since (A noetherian =⇒ B noethe-
rian.)) =⇒ B0 is f.g. as an A-algebra.
=⇒ B f.g. as an A-algebra.

Proposition 71 (Zariski Lemma).

E = K[x1, · · · , xn]

K

E field =⇒ |E : K| <∞ hence E/K alg.

Proof. After reordering x1, · · · , xn,

E = K[x1, .., xn]

K(x1, · · · , xr) = K[z1, · · · , zs] = K
[
f1
g1
, · · · , fs

gs

]

K

alg

transcendental

where fi, gi ∈ K[x1, · · · , xn]
Choose irreducible h ∈ K(x1, · · · , xr) such that h is relatively prime to g1.

Claim: h−1 /∈ K[x1, · · · , xr] = K
[
f1
g1
, · · · , fs

gs

]
=⇒ h−1 = l∏

g
di
i

, (l, gi) = 1

=⇒ h−1 ∈ K[x1, · · · , xr] contradicting h irreduible.
claim =⇒ r = 0

Class 36: 04/12
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Primary Decomposition

Chapter 4 and 7

Definition 82. Q ◁ A proper is primary if every zero divisor in A/Q is nilpotent.

eg pnZ ◁ Z is primary.
Zero divisors of Z/pnZ is p(Z/pnZ). This is both the set of zero divisors and the set
of nilpotents.
Note that nilpotents are automatically zero divisors.
Note: Powers of maximal ideals are primary.

Proposition 72. Contraction of prime ideal is a prime ideal.

If we have A
f→ B ▷ Q then:

A/f−1Q ↣ B/Q

Proposition 73 (AM 4.1). If primary Q ◁ A then:
√
Q is smallest prime ideal

containing Q.
Most interesting thing is: radical of a primary ideal is a prime ideal.

Proof. (Special Case) Q = 0. This is primary.√
0 = Nil(A). We want to show that this is prime.

Suppose xy ∈ Nil(A). Then (xy)n = 0
So, xnyn = 0
Thus, either xn = 0 or yn = 0 or x, y are both zero divisors.
Thus, x ∈

√
0 or y ∈

√
0 or x, y are both zero divisors.

So, Nil(A) is indeed prime.
Since Nil(A) = ∩primeP
So Nil(A) is indeed the smallest prime containing 0.
General Case: this implies the special case.
Note: A/

√
Q = (A/Q)/

√
0 domain

If Q ◁ A is primary, then 0 ◁ A/Q is primary.
So,
√
0 is the smallest prime of A/Q

Thus
√
Q is smallest prime of A containing Q.

So, given a primary ideal we get an associated prime by proposition 4.1. We make
this into a definition.

Definition 83. If Q ◁ A is primary then P =
√
Q is prime.

Then say: Q is P -primary.

Now we talk about primary decomposition.

Definition 84. Primary decomposition of I ◁ A is I = Q1 ∩ · · · ∩ Qn where Qj are
distinct primary ideals.

Contrast it with: n = pe11 · · · perr and (n) = (pe11 ) ∩ · · · ∩ (pr)
er where A = Z

Irreducible components are unique, but we are not going to prove that.

Theorem 22. (AM 7.13)
A is Noetherian =⇒ every ideal has a primary decomposition.

Proof is not trivial, but uses usual Noetherian tricks.

Definition 85. I ◁ A is irreducible if I = J ∩ K =⇒ (I = J or I = K). eg min
prime implies irreducible.

Lemma 7.11: A noetherian. Then every I ◁ A is a finite intersection of irreducible
ideals.
Lemma 7.12: A noetherian, Q irreducible means Q is primary.
Proof of 7.11: By contradiction.
Let T = set of ideals which are not finite intersection of irreduible.
∅ ̸= T =⇒ ∃ maximal M ∈ T since A is noetherian.
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M = J ∩K,J,K /∈ T by maximality.
So, M = J∩K = (intersection of irreducible) intersecting (intersection of irreducibles)
Which is a contradcition.
Proof of 7.12: We may replace A by A/Q and assume 0 is irreducible.
We want to show that 0 is a primary ideal of A/Q
So, we want to show x zero divisor implies x is nilpotent.
Suppose x is a zero divisor.
We have xy = 0, y ̸= 0.
Note that Ann(x) ⊂ Ann(x2) ⊂ · · · which is stationary from noetherian.
So, Ann(xn) = Ann(xn+1) eventually.
Claim: (xn) ∩ (y) = 0.
Claim along with the fact that 0 is irreducible means (xn) = 0 or (y) = 0. Thus,
(xn) = 0 =⇒ xn = 0.
Proof of Claim: Suppose a ∈ (y). So, a = cy. Thus, ax = cxy = 0.
Thus, a ∈ (xn) =⇒ a = bxn =⇒ ax = bxn+1 =⇒ ax ∈ (xn+1)
Now, ax = 0. So, b ∈ Ann(xn+1) = Ann(xn)
So, bxn = 0 =⇒ a = 0.
Uniqueness of Primary Decomposition

Example: Consider k[x, y]. Then (x) = (x) ∩ (x2) [How???]

Definition 86. I =
⋂
Qi is minimal if:

i:
√
Qi distinct

ii: ∀i we have Qi ̸⊃ ∩j ̸=iQj

Fact: I has primary decomposition implies I has minimal primary decomposition.
Are minimal primary decomposition unique? NO.
Consider k[x, y] and (x2, xy) = (x) ∩ (x, y)2 = (x) ∩ (x2, y)

Theorem 23. (AM 4.5, 1st uniqueness theorem)
I =

⋂
Qi minimal primary decomposition implies Pi =

√
Qi are uniquely determined

upto reordering by I.

Definition 87. I =
⋂
Qi minimal primary decomposition. Let Pi =

√
Qi.

Qi (or Pi) is isolated if Pi is a minimal element of {P1, · · · , Pn}

eg in the above example (x) is isolated.

Theorem 24. (AM 4.10,4.11, 2nd Uniqueness Theorem)
Let I =

⋂
Qi be minimal primary decomposition.

i: [corollary] Isolated Qi are uniquely determined by I.
ii: If Qi1 , · · · , Qim are isolated (primary) then Qi1 ∩· · ·∩Qim is uniquely determined.

Class 37: 04/15

Dedekind Domain

Definition 88. A domain A is a dedekind domain if it satisfies the three following
properties.

1. A is Noetherian

2. Nonzero primes are maximal

3. A is integrally closed

Comment on ii: ii is equivalent to saying the krull dimension dimA ≤ 1.
A field is a dedekind domain, in that case dimA = 0. This is stupid.
Classical Example: If we have a finite extensionK of Q and look at the ring of integers
OK :
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OK K

Z Q

finite

So OK = IC(Z ⊂ K) = K ∩ A.

Theorem 25 (AM 9.5). OK is a dedekind domain.

Proof. i: OK is noetherian by 5.17
Review of proof: let n = |K : Q|.
∃u1, · · · , un ∈ OK and linearly independent over K.
Then

⊕
Zui ⊂ OK ⊂

⊕
Zûj

where Tr(uiûj) = δij
Thus OK

∼= Zn as Z-module thus OK is noetherian.
ii: First proof (AM): Take prime 0 ̸= P ◁OK .
Claim: P ∩ Z ̸= 0
Proof of claim: if P ∩ Z = 0 then 0 ⊂ P both lie above 0 so by 5.8 0 = P .
5.9 gives P maximal ⇐⇒ P ∩ Z maximal.
2nd Proof: Let 0 ̸= α ∈ P .
norm Nα =

∏
conjugates of α.

Nα ̸= 0
Nα ∈ Q ∩ A = Z
(Nα)/α ∈ K ∩ A = OK
So, Nα =

(
Nα
α

)
α ∈ OKP = P

(so P ∩ Z ̸= 0)
Now, we have
OK/P ↢ OK/α ↢ OK/Nα

so, OK/P is finite domain hence OK/P is a field.
Thus, P is maximal.
Also, integrally closed by 5.5

Theorem 26. (Main Theorem) Let A be a domain which is not a field. Then TFAE:

1. A is a Dedekind Domain.

2. Every ideal I ◁ A factors uniquely as a product of prime ideals I = P e1
1 · · ·P er

r

3. Every fractional ideal is invertible

4. If I ⊂ J ◁ A, ∃K ◁ A such that I = JK. ‘To contain is to divide’

5. ∀ nonzero prime P ◁ A,AP is a DVR

6. Every ideal of A is a projective A-module

7. Every submodule of An is projective

Definition 89 (Fractional Ideal). Suppose K = Frac(A). Let M = yI ⊂ K where
y ∈ K×, I ◁ A. Then M is a fractional ideal. M is invertible if there exists N such
that M ·N = A

Lets talk about 2:
Recall “Ideals” is ‘ideal numbers’
Numbers factor into product of primes, similarly ideals factor into product of ideals.
Suppose K = Q[

√
2] over Q

Then OK = Z[
√
2]

Take p ∈ Z
How does pOK factor?
2Z[
√
2] = (

√
2Z[
√
2])2 = Q2

Suppose p odd, p ̸≡ 1 (mod 8)
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Then pZ[
√
2] = Q prime

If p ≡ ±1 (mod 8) then pZ[
√
2] = Q1Q2, Q1 ̸= Q2

Note: C[x, y] is not dedekind domain since dimC[x, y] = 2 or (x) a prime ideal is not
maximal.
Fact: suppose A is a Dedekind Domain.
Ten A PID ⇐⇒ A UFD
Suppose K = Q[

√
−5]

Then OK = Z[
√
−5]

Not a UFD since 2 · 3 = 6 = (1 +
√
−5)(1−

√
−5)

So, Z[
√
−5] is a DD that is not a PID.

Note: Z[
√
8] is not Integrally Closed and hence not a Dedekind Domain.

If A is a domain and K = Frac(A)
M ⊂ K is a fractional ideal if it is a fraction times an ideal: M = yI where I ◁A, y ∈
K×

eg 2
5Z ⊂ Q is fractional ideal.

AM equivalent definition: M is an A-submodule of K such that ∃x ∈ K× such that
xM ⊂ A
Lemma: If M is a finitely generated A submodule of K = Frac(A) then M is a
fractional ideal.
Suppose M =

∑
Awi

zi
. If x =

∏
zi then M =

∑
Ayi

x so xM ⊂ A
Claim: if A is Noetherian, every fractional ideal is finitely generated: M = yI and I
is finitely generated
If M,N ⊂ K are fractional ideals, then MN = {

∑
i mini} is a fractional ideal.

Definition 90. M is invertible ∃N such that MN = A

Here
(
2
5Z

)−1
= 5

2Z
Proof of 4 =⇒ 3
Let M be a fractional ideal. Then M = yJ for some J ◁ A
Choose 0 ̸= a ∈ J , by 3 we have ∃L such that (aA) = JL
Then M−1 = y−1a−1L

Class 38: 04/17
Recall:

Definition 91. Domain A is a dedekind domain if:
i: A is noetherian
ii: nonzero primes are maximal
iii: A is IC

Theorem 27. Let A be a domain. TFAE:
i: A is DD
ii: ∀ nonzero ideal I, I = P e1

1 · · ·P er
r [uniquely]. The equivalence is true with or

without uniqueness.
iii: Every nonzero fractional ideal is invertible.
iv: To contain is to divide: I ⊂ J ⊂ A means ∃L ◁ A such that I = JL
v: ∀0 ̸= P ◁ A means AP is a DVR [ring with unique nonzero prime ideal]
vi: Every ideal of A is a projective module
v: Every submodule of An is a projective module

Yesterday we did iii ⇐⇒ iv which is easy.
ii′: ∀ non-zero fractional ideal, ∃!M = P e1

1 · · ·P er
r

Different from ii in the sense that instead of ideal we have fractional ideal, and we
allow negative exponent.
Recall:

Definition 92. A subset M ⊂ K = Frac(A) is a fractional ideal if M = yI where
y ∈ K× and I is an ideal of A

A f.i. is invertible if ∃ f.i M−1 such that MM−1 = A

Definition 93. M is principal f.i if M = yA for some y ∈ K
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Definition 94. Ideal class group of dedekind domain A:

Cl(A) =
(nonzero frac ideal, ·)
(nonzero prime f.i.)

We have Cl(Z) = 0
Also Cl(A) = 0 ⇐⇒ A is PID

Survey of Algebraic Number THeory

Clasically it’s about finite extensions.

K ∩ A = OIC
K K

Z Q

finite

Theorem 28. Cl(OK) finite.

hK = |Cl(OK)|
Let prime p ∈ Z
pOK = P e1

1 · · ·P er
r

fi = |OK/Pi : FP |
|K : Q| =

∑
eifi

Suppose K integral over Q and galois.
Then for all ϕ : K ↪→ C we have ϕ(K) = K
In Gal(K/Q) permute Pi

e = e1 = · · · = er
f = f1 = · · · = fr
Then |K : Q| = efr
e is ramification index
Suppose K over Q galois abelian.
Class field theory implies: ∃N such that factorization of p in OK depends on p
(mod N)
There exists n such that K ⊂ Q(ζn)
K/Q abelian
quadratic Q[

√
d]/Q, d squarefree

If d ≡ 2, 3 (mod 4) then OK = Z[
√
d]

If d ≡ 1 (mod 4) then OK = Z
[
1+

√
d

2

]
cyclotomic extension Q(ζn)
What is the ring of integers?
OQ(ζn) = Z[ζn]
We have: for odd prime p

Q(ζp)

Q[
√
p] Q[

√
−p]

p≡1 (mod 4) p≡3 (mod 4)

Cl(OQ[
√
−d]) = 0

d > 0 iff d = 1, 2, 7, 11, 19, 43, 67, 163
Cl(Z[ζp]) = 0 if and only if p < 23
Complex geometry:
Suppose X is compact complex 1-manifold. “Riemann Surface”
Riemann sphere C ∪∞ is one example.
Let A be a ring of holomorphic functions of X
X → C
points in X ↔ nonzero prime ideals A
Explicitly,
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x0 7→ {f ∈ A | f(x0) = 0} = Px0

We can think about local rings:
APx0

= “germs of holomorphic functions at x0 ”
Claim: only ideals of APx0

are (Pn
x0
)

f ∈ APx0
then n = orderx0f

Implies APx0
is a DVR

So A is a Dedekind domain.
Divisor class group

Cl(A) = Z[x]
{
∑

x∈X orderxf |f :X→C∪∞ meromorphic}
Cl(S2) = Z
for higher genus, Cl = uncountable.
Cl(A) is useful for characterizing the zeroes and poles of f : X → C ∪ {∞}

Class 39: 04/19
Today we prove:

Proposition 74. domain A is DD ⇐⇒ every ideal is a projective module

What is a projective module?

Definition 95. Module P is projective if ∀ epimorphism f : N ↣ M,∀g : P → M
there exists lift h : P → N such that f ◦ h = g

P

N M 0

h g

f

Nonexample: Z/2 is not projective Z module

Z/2

Z Z/2 0

̸∃

A = Z/6Z
Z/6Z A−modules

= 2Z/6Z︸ ︷︷ ︸
P

⊕ 3Z/3Z︸ ︷︷ ︸
Q

P projective not free.
Exercise: module P projective ⇐⇒ ∃Q such that P ⊕Q free ⇐⇒ ∀ SES 0→ A→
B → P → 0 splits.
Discrete Valuation Ring (DVR): local version of DD

Definition 96. DVR is a PID with a unique nonzero maximal ideal.

Example: Z(p) = {ab p
k : (b, p) = 1} ⊂ Q

pkZ(p)

M = pZ(p)

eg DVR:
suppose prime 0 ̸= P ◁ A PID
Then AP is DVR
iireducible f ∈ k[x]
Then k[x](f) is DVR

Definition 97. A discrete valuation on a field K:
Homomorphism ν : K× ↣ Z
ν(x+ y) ≥ min(ν(x), ν(y))
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eg: νp : Q× → Z
νp(

a
b p

k) = k, p ̸| a, b
Extend: ν(0) = +∞
Lemma: Let A be a domain. TFAE:
a: A DVR
b: [AM definition] ∃ DV ν : Frac(A)→ Z such that A = ν−1[0,∞]

Proof. =⇒ : A PID means A UFD
Let x ∈ A be ‘unique’ [upto unit] irreducible in A.
Define ν(uxk) = k for u ∈ A×

⇐= Claim: u ∈ K
u ∈ A× ⇐⇒ ν(u) = 0
IE A× = ν−10
proof: 0 = ν(1) = ν(uu−1) = ν(u) + ν(u−1) tells us ν(u) = 0
ν(u) = 0 =⇒ ν(u−1) = −0 = 0 =⇒ u, u−1 ∈ A // Claim
b =⇒ a
Let ν : K → Z be a DV
Choose x ∈ K such that ν(x) = 1
x “uniformizing parameter”
Then, ∀a, a = uxν(a), uinA× (claim)
=⇒ A is PID with unique maximal ideal (x)

Proposition 75 (AM 9.2). Let A be noetherian local with dimA = 1
TFAE:
i: A is DVR
ii: A IC
iii: The maximal ideal is principal
iv: resudue field k = A/M , dimk(M/M2) = 1
v: Every nonzero ideal is a power of M
vi: ∃x ∈ A such that I is nonzero ideal, then I = (xk)

Example of noetherian local domain with dimA = 1 but not DVR
Example: (

k[x, y]

(y2 − x3)

)
(x,y)

Lemma [p95]: Let A be local, noetherian, dimA = 1
A: If 0 ̸= I ◁ A proper, ∃m such that I ⊃Mm

B: ∀n,Mn ̸= Mn+1

Question: is
⋂
Mn 0 for a local ring?

No, but Yes for DVR.

Proof. B: It is a consequence of Nakayama’s Lemma
Recall: Nakayama: For M finitely generated A-module, I ⊂ J(A) =

⋂
maximal M then

IM = M =⇒ M = 0
We use contradiction.
Assume Mn = Mn+1

So, M(Mn) = Mn

M finitely generated since Noetherian
Nakayama’s Lemma means Mn = 0
Contradiction since A is a domain

Add:
Chapter 4: Definition of Primary along with Proposition 4.1, Definition of Primary
Decomposition
??: Uniqueness? Probably not.
Chapter 7: Theorem 7.13, Dedekind domains and DVRs
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Class 40: 04/22

Proposition 76 (AM 7.14). Let A be Noetherian and I ◁ A. Then ∃m such that
(
√
I)m ⊂ I

Proof. Since A is noetherian,
√
I is finitely generated.√

I = (x1, · · · , xk)
∀i, ∃ni such that xni

i ∈ I
(x1, · · · , xk)

m is finitely generated. It’s generators are monomials: xr1
1 · · ·x

rk
k where∑

i ri = m
Let m = (

∑
i(ni − 1)) + 1

Then ∃i such that ri ≥ ni

So, xri
i ∈ I

Thus, (
√
I)m ⊂ I

Corollary 7.13 If A is Noetherian, then the ‘ideal of nilpotents is nilpotent’.
∃m such that the nilradical (radA)m = 0

In other notation,
√
0
m

= 0
Consider the polynomial ring with infinitely many variables and take a quotient.

A =
Z[x1, x2, x3, · · · ]
(x1, x2

2, x
3
3, · · · )

Now, ∀m, (radA)m ̸= 0
Counterexample!
Lemma (p95) Let A be local domain, noetherian, dimA = 1
Note that dimA = 1 means nonzero primes are maximal.
Let M be a maximal ideal of A
A: 0 ̸= I ◁ A [proper] implies ∃n such that Mn ⊂ I
B: Mn ̸= Mn+1∀n

Proof. A:
√
I =

⋂
I⊂P P

Since dimA = 1 we have
√
I = M

Thus, by 7.14 we’re done.
B: We already did with nakayama’s lemma

Proposition 77 (AM 9.2). Let A be a local noetherian domain, dimA = 1. Let
k = A/M . TFAE:
i: DVR
ii: A IC
iii: M principal
iv: dimK M/M2 = 1
v: 0 ̸= I ◁ A =⇒ I = Mk

vi: ∃x ∈ A s.t. (0 ̸= I ◁ A =⇒ I = (xk) for some k )

Canonical example: A = Z(p) where x = p

Proof. i =⇒ ii: 5.18, ‘valuation ring is IC’
ii =⇒ iii: “hardest part”
Choose 0 ̸= a ∈M
A =⇒ ∃n such that Mn ⊂ (a),Mn−1 ̸⊂ (a)
Choose b ∈Mn−1, b /∈ (a)
Let x = a

b ∈ Frac(A)
Claim: M = Ax

63



Proof. b /∈ (a) =⇒ x−1 /∈ A
So x−1 not integral over A
=⇒ x−1M ̸⊂M by 5.1 contrapositive
x−1M = b

aM ⊂
Mn

a ⊂ A
Thus, x−1M is an ideal not contained in a max ideal
So, x−1M = A and thus M = Ax
iii ⇐⇒ iv:
M principal implies dimk M/M2M = 1
by B say M ̸= M2; thu dim−kM/M2 = 1
⇐= 2.8
iii =⇒ v: 8.8
postponed.
vi =⇒ i:
Note that M = (x)
Note that (xk ̸= xk+1) by B
Define ν : A−
Define ν : A− {0} → Z≥0

ν(a) = k if a ∈ (xk)− (xPk+1)
define ν : K× − Z
ν(ab ) = ν(a)− ν(b)

Correction to DD theorem
Recall: if A is domain, tfae: a: A DD, b: i: A is noetherian, ii: dimA = 1, iii: ∀P,AP

is DVR

Theorem 29 (AM 9.3). : Let A be a noetherian domain with dimA = 1
a: A is IC
b: ∀P,AP is DVR

A =⇒ B. : proof comes from 9.2, 5.13.
5.13: integrably closed is a local property

Class 41: 04/24

Limits, Colimits, Completion

Functor X : I → C “I-diagram in C ”

Definition 98. limI X is an object in C with map limI X → X(i)∀i ∈ I such that:
1: ∀i→ i′ we have:

limI X

X(i) X(i′)

2: ‘Initial’
∀(L ∈ C, {L→ X(i)}i∈I)

L

X(i) X(i′)

∃!L→ limI X such that:
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L

X(i) limI X

∃!

Define colimI X by reverse arrow.
X(i) −→ colimI X

L

limI L

X(i) X(i′)

∃!

If (co)limit exist, they are unique (upto isomorphism)
(co)limits exists:
C = Ab,A-mod, Group, Ring, CRing, Top, Set etc
(co)liit doesn’t exist: C = Field.
Let I = ., C = A-mod
limI X = X0 ×X1

colimI X = X0 ⊕X1

Example: I discrete category (only morphisms are id)
limI X =

∏
X(i)

colimI X =
⊕

X(i)
Note that

∏
X(i) ⊃

⊕
X(i), inclusion strict for infinite I

Theorem 30. If C = A-mod then (co)limits exist.

Proof. Consider functor X : I → C
We can construct the limit as a submodule:

lim
I

X ⊂
∏
i

X(i)

‘submodule of compactible tuples’
limI X = {(xi) | X(i→ i′)(xi) = xi′}
colimI X =

⊕
Xi

({xi−X(i→i′)xi})

Example:
Suppose I = (N,≥)
Then we have ‘morphisms’ 5→ 3 aka 5 ≥ 3
Then, functor means we hve morphisms:

· · · → X4 → X3 → X2 → X1

Then, lim(N,≥) X is called limn→∞ X(n)
This is called an “inverse limit”
Note: limn→∞ X(n)→ Xk for all k
Think of limits as ‘intersections’ and colimits as ‘unions’
If the morphisms are ‘inclusion’:

· · · ⊂ X3 ⊂ X2 ⊂ X1 ⊂ X0

Then limn→∞ Xn =
⋂∞

n=1 Xn

Classic example: p-adic

· · · → Z/p3 → Z/p2 → Z/p

Then p-adic integers Ẑp = limn→∞ Z/pn
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Note that all these are rings so essentially I → CRing.
I ◁ A
We can have · · · → A/I3 → A/I2 → A/I
Then ÂI = limn→∞ A/In

Application:
Krull’s Intersection Theorem Let A be a noetherian and A is either local or a domain.
Then A→ ÂI is injective, ie ∩In = 0
Consider categories:

· ·

·
colim is called pushout

·

· ·
limit is called pullback
Now suppose X : I → C and consider SES:

0→ X ′ → X → X ′′ → 0

Question: colimit and limit SES??

Galois Theory

Suppose

E

F
Galois

What if extension not finite?
Example of not Galois:

Q[ 3
√
2]

Q
Not Galois since not contain all roots.
But we also have Q/Q,Fp/Fp

Makes sense as union of finite extensions:
Gal(E/F ) := limE/L/finiteF Gal(L/F ). Note:

limK Gal(L/K)

L

F
finite galois

Fundamental Theorem of Galois Theory: ∃ 1-1 correspondence between closed sub-
groups of Gal(E/F ) and E/L/F
by H 7→ EH

Note:

Gal(Fp/Fp) = Ẑ =
∏
p

Zp
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