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Semisimple and Reductive Lie Algebras

Definition 1 (textbook, non-standard). A complex lie algebra g is called reductive if
there exists a compact (matrix) lie group K with Lie algebra k so that g = kC = k+ ik
A complex lie algebra g is semisimple if it is reductive and its center is trivial.

Definition 2 (standard, equivalent). A lie algebra (real or complex) g is:

• simple if the only ideals of g are 0, g and g is not commutative (or dim g ≥ 2 or
g ̸= R,C )

• semisimple if g =
⊕

(simple ideals)

• reductive if g = center⊕(semisimple ideal) = (commutative ideal)⊕
⊕

(simple ideals)

Definition 3 (Compact Real Forms). Let g be a complex semisimple lie algebra. A
real subalgebra g is a compact real form of g if k can be realized as the lie algebra of
some compact (matrix) lie group and g = k⊗C : every element Z ∈ g can be written
uniquely as Z = X + iY,X, Y ∈ k

Fact: Compact real forms exist and are essentially unique.
By essentially unique we mean that if k, k′ ⊂ g are two compact real forms, then there
exists a lie algebra automorphism g→ g so that k→ k′ is an isomorphism.
Example:
sl(n,C), n ≥ 2, so(n,C), n ≥ 3 are semisimple.
Their compact real forms are su(n) and so(n) respectively.
gl(n,C), n ≥ 1, so(2,C) ≃ C are reductive lie algebras. Their compact real forms are
u(n) and so(2,R) respectively.
Explanation: SU(n), SO(n), U(n) are compact matrix lie groups with lie algebras
su(n), so(n), u(n).
su(n)⊗ C = sl(n,C), so(n)⊗ C = so(n,C), u(n)⊗ C = gl(n,C)

Proposition 1. Let g = kC be a reductive lie algebra. Then there exists an inner
product on g that is real valued on k such that the adjoint action of k on g is unitary.
By unitary we mean:

⟨adx y, z⟩+ ⟨y, adxz⟩ = 0 (∗)

This means adx is skew-adjoint.
Define an operation z 7→ z∗ on g by (x+ iy)∗ = −x+ iy, x, y ∈ k
Then any inner product satisfying (∗) also satisfies

⟨adxy, z⟩ = ⟨y, adx∗z⟩

Motivation: If g = gl(n,C) and k = u(n) , then the definition of ∗ is the matrix adjoint

(conjugate+transpose) A 7→ A⊤
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Proof. Let K be a compact (matrix) lie group with lie algebra k. K acts on k, g via
the Ad action.
Find a K - invariant inner product on k and extend it to g = kC, conjugate-linear
w.r.t. first variable. Since Ad action of K on g is unitary, for k it implies the relation
(∗)

Proposition 2. Suppose g = kC is a reductive lie algebra. Choose an inner product
on g as above. Then if h is an ideal in g , so is h⊥ and we also have g = h⊕ h⊥ as lie
algebra.

Proof. h⊥ is a vector subspace of g from basic linear algebra. We want to prove that
it is an ideal.
Let x ∈ g, y ∈ h⊥

We want to show that [x, y] = adx y ∈ h⊥

Pick any z ∈ h. Then we have,
⟨adx y, z⟩ = ⟨y, adx∗z⟩
Since y ∈ h⊥ and [x∗, z] ∈ h, ⟨y, adx∗ z⟩ = 0. So, ⟨adx y, z⟩ = 0 which means [x, y] ∈ h⊥

which implies that h⊥ is an ideal.
Now, note that g = h ⊕ h⊥ as vector space. For x ∈ h, y ∈ h⊥, [x, y] ∈ h ∩ h⊥ =
{0} =⇒ [x, y] = 0 so this is true as lie algebras.

Proposition 3. Every reductive (complex) lie algebra g decomposes as g = z ⊕ gs
(direct sum of ideals) where z = center of g and gs is semisimple. Note that gs can
be recovered from g as gs = [g, g] .

Proof. The center z is an ideal of g. We define gs = z⊥ . From the previous proposi-
tion, we only need to prove that gs is semisimple.
Suppose z is in the center of gs . Then it must also be in the center of g . Then we
have z ∈ gs ∩ z = {0} . So, center(gs) = {0}
We need to show that there exists a compact group K ′ with lie algebra k′ so that
gs = k′ ⊗ C.
Let k be the compact real form of g . If z = x + iy ∈ z, x, y ∈ k , then z commutes
with k and x, y, x− iy ∈ z =⇒ z = (z ∩ k)C and gs = z⊥ = (gs ∩ k)C
Also, note that Ad : K → GL(k)
Define K ′ := image of this map.
K ′ = Ad(K) ⊂ GL(k)
Since K is compact and Ad is continuous, K ′ is also compact.
Lie algebra tells us, since Ad : K → GL(k) we have ad : k→ gl(k).
kernel of ad is z ∩ k and so k′ ≃ k/(z ∩ k) = gs ∩ k. So, finally, gs = (gs ∩ k)C = k′C

Proposition 4. If K is simply connected compact matrix lie group with lie algebra
k then g = kC is semisimple.

Proof. We need to prove that K being simply connected fores the center of k to be 0.
Caution: K may have non-trivial (discrete) center. If K = SU(2) which is ∼ S3

simply connected, we have center(SU(2)) = {±I}

Class 2: 01/11
Recall the textbook and non-standard definitions of semisimple and reductive lie
algebras.
Most of the time problem with textbook definition is finding the K-compact lie group,
otherwise it is simpler. This is the tradeoff.

Proposition 5. If K is simply connected (matrix) lie group with lie algebra k then
g = kC is semisimple.
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Proof. We need to show that: center(g) = {0}
k decomposes as lie algebra k = z′ ⊕ ks. We have, z′ = center(k)
Earlier Result: (Theorem 5.11, where we need k to be simply connected)
K = Z ′ ×Ks where Z ′ and Ks are closed simply connected subgroup of K with lie
algebra z′ and ks respectively.
K is simply connected.
k = k1 ⊕ k2
k→ k1,K1 =
k→ k2,K2 =
If Z ′ is simply connected, it cannot be compact.
So, (Rdim z′ ,+) is a simply connected lie group with lie algebra z′ ≃ Z ′

So it is simply connected and compact. This forces z′ = {0} .

Theorem 1. Suppose g is semisimple. Then, g =
⊕m

j=1 gj [direct sum of ideals with
each of them simple.]

This bridges the gap between the definition. Also we study the finite sum, because
in the infinite case none of the theory applies.

Proof. Recall that simple means no proper ideals and dimension at least 2.
If h ⊂ g is an ideal, then g = h⊕ h⊥

[If we keep decomposing like that, since the dimension of each are decreasing, at some
point we must stop]
If h′ ⊂ h is an ideal, we need it to be an ideal of g as well. This is true since it is
perpendicular to h⊥.
Since h′ is an ideal of g we see that (h′)⊥ ∩ h = h′′

So we have g = h′ ⊕ h′′ ⊕ h⊥

We can keep doing this.

Proposition 6. If g is (complex) semisimple then the ideals gj in the decomposition
g =

⊕m
i=1 gj are unique.

Clarification: if g =
⊕m

j=1 gj =
⊕n

k=1 g
′
k are two possible decompositions then we

have m = n and we also have some permutation σ so that gj = g′′σ(j) and these are
the same vector subspaces of g.
The similar statement fails for reductive lie algebras. (WHY???)
The statement still applies to the semisimple part though.

Proof. We use representation theory. Treat g as a representation over itself via the
adjoint action ad.
Then ideals of g are subrepresentations of (ad, g).
An ideal of g not containing any proper ideals are irreducible subrepresentations of
(ad, g).
Therefore, we have the decomposition g =

⊕m
j=1 gj each of them an irrdeucible sub-

representation and are pairwise non-isomorphic, then g acts on gj in such a way that
only gj acts non-trivially on gj , any gk where k ̸= j annihilates gj .
Now suppose h ⊂ g is a simple ideal. For each j, 1 ≤ j ≤ m, we have a projection
πj : g→ gj which is identity on gj and 0 everywhere else.
These πj are intertwining maps of representation of g [They commute with the action
of the lie algebra].
Thus, by Schur’s lemma, each πj |h is either 0 or an isomorphism.
Then exactly one πk|h is an identity all others are 0.
So each component of the decomposition comes from a subrepresentation and those
are unique, so we’re done.
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Invariant Bilinear Forms and Semisimplicity, Killing
Form

Doing this is very difficult from the textbook definitions.
Let (ρ, V ) be a representation of g, then a bilinear form B on V is invariant of
B(ρ(x)v1, v2) +B(v1, ρ(x)v2) = 0
Special case: for adjoint representation ad, g a bilinar form B on g is ad-invariant if
B([x, y], z) +B(y, [x, z]) = 0.
Example: we can take g = gl(n,C). We can take B(X,Y ) = Tr(XY ). This is
symmetrc, nondegenerate, invariant.
B is GL(n,C) invariant. [Didn’t understand what was written on the blackboard]
Generalization:
If (ρ, V ) is a representation of g, we can define a bilinear form B on g by BV (X,Y ) =
TrV (ρ(X)ρ(Y )) for all X,Y ∈ g
This is symmetric, invariant. But it might be degenerate.
Invariance:
BV ([X,Y ], Z)+BV (Y, [X,Z]) = TrV (ρ(X)ρ(Y )ρ(Z)−ρ(Y )ρ(X)ρ(Z)+ρ(Y )ρ(X)ρ(Z)−
ρ(Y )ρ(Z)ρ(X)) = 0

Theorem 2. Let (ρ, V ) be a representation of g and BV = TrV (ρ(X)ρ(Y )) be the
corresponding bilinear form. If BV is non-degenerate, then g is reductive according
to the standard definition.

There is a drawback, an uncertainty, we don’t know what the representation might
be. This get simpler in the semisimple case.
Now take (ρ, V ) to be the adjoint representation (ad, g). Then the corresponding
bilinear form is called the Killing Form.
It is defined by K(X,Y ) = Trg(adX adY )
This is symmetric invariant.
Warning: This notation is ambigious. If h ⊂ g is a subalgebra and we have X,Y ∈ h
then K(X,Y ) may denote Trg(adX adY ) or Trh(adX adY )

Theorem 3. Cartan’s Criterion for Semisimplicity: The lie algebra g is semisimple
if and only if its Killing form is non-degenerate.

Killing form is discussed in the exercises. In the homework we have to show one
direction of this.

Theorem 4. Cartan’s criterion for solvability: A lie algebra g is solvable if and only
if K(X,Y ) = 0 for all X ∈ [g, g] and Y ∈ g

Last theorem for today.

Theorem 5. Let G be a connected real lie group. Then G is compact with finite
center if and only if the Killing form on Lie(G) is negative definite.

Keep in mind: G1 = Πn = (S1)n (compact), G2 = (Rn,+) (not compact), but
both have same lie algebra and Killing form is identically 0. So Killing form doesn’t
necessarily say anything about the lie group.
Next time: Cartan Subalgebra

Class 3: 01/16

Cartan Subalgebra

Goal: Learn about reps and structure of g
Know well reps of abelian lie algebras/groups.
Want this subalgebra to be as large as possible.

Definition 4. Cartan Subalgebras: If g is a complex semisimple lie algebra, then a
Cartan Subalgebra of g is a complex subspace h so that:
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• [H1, H2] = 0∀H1, H2 ∈ h

• If for some X ∈ g we have [H,X] = 0∀H ∈ h then X ∈ h

• For all H ∈ h we have adH : g→ g is diagonalizeable

Note, existence would imply, i implies h is abelian, ii implies h is max commutative,
and iii implies restriction of a representation of g to h decomposes into ⊕ irreducible
1-dim subrepresentations of h.
If KR ⊂ GR where GR is non-compact real semisimple lie group and KR is maximal
compact

Proposition 7. (Cartan Subalgebras Exist) Let g = kC be a complex semisimple lie
algebra where k is a compact real form of g and lie algebra of a compact lie group K
and let t be the max commutative subalgebra of k . Then h = tC = t+ it is a Cartan
Subalgebra of g

Proof. i is automatic.
ii: SupposeX ∈ g commutes with every element with h. WriteX = X1+iX2, X1, X2 ∈
k.
X commutes with every H ∈ t ⊂ h
So, 0 = [H,X] = [H,X1 + iX2] = [H,X1] + i[H,X2]
Thus, [H,X1] = [H,X2] = 0
Since t is max commutative we have X1, X2 ∈ t so X = X1 + iX2 ∈ h
iii: Fix H ∈ h. We need to prove that adH is diagonalizeable.
K is compact with lie algebra k
K acts on k as well as kC via Ad.
Since K is compact, we can choose a K-invariant inner product on k.
So, the adjoint action of K on g is unitary.
Hence, for each H ∈ t, (adH)⋆ = − adH [skew adjoint] and hence diagonalizeable.
Finally, if H ∈ h then H = H1 + iH2, H1, H2 ∈ t. H1, H2 commute thus adH1 , adH2

commute. So, adH1
, adH2

can be diagonalized simultaneously.
So, adH is diagonalizeable where H = H1 + iH2

Definition 5. The rank of g is dimC h where h is the cartan subalgebra.

Example: let g = sl(n,C) which is a complex semisimple (actually simple) lie algebra.
g = su(n)C and t = {diagonal matrices in su(n)}
Then h = {diagonal matrices in sl(n,C)}
Therefore, the rank of sl(n,C) = n− 1

Roots and Root spaces

Let g be a complex semisimple lie algebra.
k be the compact real form
g = kC
k is lie algebra of a compact group K
Make this choice of Cartan subalgebra. Let t ⊂ k be max commutative and let
h = tC = t+ it.
Each adH : g→ g is diagonalizeable and all of them commute with each other.

Definition 6 (root). If X ∈ g, X ̸= 0 is a simultaneous eigenvector, then the cor-
responding eigenvalues depend linearly on H ∈ h. Hence, each eigenvalue can be
regarded as an element of h⋆. If it is non-zero, it is called a root.

If we fix a K-invariant inner product on g and we have h ≃ h⋆ (conjugate linear).
The element of h corresponding to roots in h⋆ are also called roots.
We can define another way.

Definition 7. An element α ∈ h, α ̸= 0 is a root (for g relative to h ) if there exists
X ∈ g, X ̸= 0 so that adH(X) = [H,X] = ⟨α,H⟩X for all H ∈ h.
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Notation: R is the set of all roots R ⊂ h

Proposition 8. Each root α ∈ it ⊂ h.

Proof. By the construction of the inner product, it is real valued on t. To prove α ∈ it
it is sufficient to show that each eigenvalue of every adH , H ∈ t is purely imaginary.
Since H is skew-adjoint, the eigenvalues are pure imaginary.

Definition 8. If α is a root, then the root space gα is the space of all X ∈ g such that
adH(X) = ⟨α,H⟩X for all H ∈ h. Non-zero elements in gα are called root vectors for
α.
More generally, if α is any element of h,
define gα {X ∈ g : adH(X) = [H,X] = ⟨α,H⟩X∀H ∈ h}

Note that gα can fail to be a root space for two reasons: i: α = 0 and ii gα = {0}
If α = 0, g0 = {X ∈ g : [X,H] = 0∀H ∈ h} = h
If α ̸= 0 and α is not a root, then gα = {0}

Proposition 9. As a vector space, g = h⊕
⊕

α∈R gα where R is the set of all roots.

Proposition 10. i- For any α, β ∈ h we have [gα, gβ ] ⊂ gα+β

Furthermore, if [gα, g−α] ⊂ h since g0 = h
ii- If α+ β ̸= 0 and α+ β /∈ R then [gα, gβ ] = {0}

Proof. We use Jacobi identity.

[H, [X,Y ]] = [[H,X], Y ] + [X, [H,Y ]]

Let H ∈ h, X ∈ gα, Y ∈ gβ
Then, [[H,X], Y ] = [⟨α,H⟩X,Y ]
[X, [H,Y ]] = [X, ⟨β,H⟩Y ]
Thus, [H, [X,Y ]] ∈ gα+β

Proposition 11. (i) If α ∈ h is a root, so is −α. Specifically, if X ∈ gα, X
⋆ ∈ g−α

(ii) The roots span h (g is semisimple! )

Proof. Notation: If X = X1 + iX2, X = X1 − iX2.
Since [k, k] ⊂ k, if H ∈ t ⊂ k and X ∈ g we have,
[H,X] = [H,X1]− i[H,X2] = [H,X]
Now, suppose X is a root vector with root α ∈ it then ∀H ∈ t, [H,X] = [H,X] =
⟨α,H⟩X = −⟨α,H⟩X
By linearity in H ∈ h, [H,X] = −⟨α,H⟩X
Thus, X is a root vector corresponding to the root −α and so is −X = X⋆.
Thus X⋆ ∈ g−α

Class 4: 01/18
Today: Roots, Root Spaces
Last time, we did Cartan Subalgebras.
g is a complex semisimple lie algebra
h, the cartan subalgebra is the maximal abelian subalgebra of g so that for H ∈ h we
have Adh is diagonalizeable.

Watch out: if g = sl(2,C) and consider the subalgebra

(
0 z
0 0

)
, z ∈ C is maximal

abelian but not Cartan.
Primary reason, this is not of the form t+it where t is the maximal abelian subalgebra
of su(2,C) which is compact real form of sl(2,C)
In general, if g = kC where k is the lie algebra of a compact group K. Choose t to be
the maximal abelian subalgebra of k then tC is a Cartan Subalgebra of g
Fix h [Cartan Subalgebra not unique.]
For each α ∈ h
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gα = {X ∈ g : adH(X) = [H,X] = ⟨α,H⟩X, ∀H ∈ h}

If gα ̸= {0}, α ̸= 0 then gα is called a root space and α is called a root. R ⊂ h is
called the set of all roots.
Note an alternate formation, we can define ⟨α,−⟩ ∈ h⋆ to be the root.
If α = 0 [not a root] we say g0 = h. This is apparent by definition, since [H,H ′] = 0
for H,H ′ ∈ h
We have the root space decomposition as a vector space [not as a lie algebra]

g = h⊕
⊕
α∈R

gα

We also have, [gα, gβ ] ⊂ gα+β

Proposition 12. i: If α is a root then so is −α. Specifically, if X ∈ gα then X⋆ ∈ g−α

ii: The roots span h [For this we need g to be semisimple]

Proof of Part ii: We use contradiction. Suppose the roots do not span h then exists
an element H0 ∈ h that is nonzero and ⟨α,H0⟩ = 0∀α ∈ R
Then, ∀X ∈ gα, [H0, X] = ⟨α,H0⟩X = 0
=⇒ H0 ∈ center of g
Since g is semisimple the center is just {0} which is a contradiction.

Theorem 6. For each root α we can find 3 linearly independent elements Eα ∈
gα, Fα ∈ g−α, Hα ∈ h so that Hα is a scalar multiple of α and [Hα, Eα] = 2Eα,
[Hα, Fα] = −2Fα and [Eα, Fα] = Hα (standard gen relations in sl(2,C) ) and further-
more, Fα can be chosen to be E⋆

α.

This basically means the point {α,−α} 7→ copy of sl(2,C) ⊂ g
Observe: if Eα, Fα, Hα are in the theorem, then [Hα, Eα] = 2Eα, [Hα, Eα] = ⟨α,H⟩Eα

so we can conclude that ⟨α,Hα⟩ = 2 and since Hα is a multiple of α we have to choose

Hα =
2α

⟨α, α⟩

Definition 9. Hα is called the coroot associated to the root α

Corrolary: Let Eα, Fα, Hα be as in the theorem, with Fα = E⋆
α then consider the

following elements:Xα
1 = i

2Hα, X
α
2 = i

2 (Eα + Fα) and Xα
3 = 1

2 (Fα − Eα) then they
are linearly independent of k and satisfy the following relations:
[Xα

1 , X
α
2 ] = Xα

3 , [X
α
2 , X

α
3 ] = Xα

1 , [X
α
3 , X

α
1 ] = Xα

2 .
These are the relations satisfied by the generators of su(2), the pauly matrices:

X1 =
1

2

(
i 0
0 −i

)
, X2 =

1

2

(
0 i
i 0

)
, X3 =

1

2

(
0 −1
1 0

)
So, Span of Xα

1 , X
α
2 , X

α
3 is a subalgebra of k isomorphic to su(2)

Proof. Since α ∈ it ⊂ h [This is a consequence of the fact adH is skew-symmetric
which means it has imaginary eigenvalues], then Hα is a real multiple of α and thus
Xα

1 is an imaginary multiple of α. Therefore, Xα
1 ∈ k

Also, (Xα
2 )

⋆ = −Xα
2 , (X

α
3 )

⋆ = −Xα
3

The map X 7→ X⋆ has two eigenspaces:
+1 eigenspaces given by ik −1 eigenspaces given by k
SinceXα

1 , X
α
2 , X

α
3 are linearly independent [Since Eα, Fα, Hα are linearly independent

and the transformation matrix is invertible] their span is a 3-dimensional subspace of
k

Now we prove the theorem.
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Proof. Suppose X ∈ gα, Y ∈ g−α, H ∈ h. Then, [X,Y ] ∈ h and ⟨[X,Y ], H⟩ =
⟨α,H⟩ ⟨Y,X⋆⟩
Proof of this: [gα, g−α] ⊂ γ0 = h =⇒ [X,Y ] ∈ h
Proposition 7.4: ⟨adX(Y ), Z⟩ = ⟨Y, adX⋆(Z)⟩
So, ⟨[X,Y ], H⟩ = ⟨adX(Y ), H⟩ = ⟨Y, adX⋆(H)⟩ = −⟨Y, [H,X⋆]⟩
So, X ∈ gα, X

⋆ ∈ g−α =⇒ [H,X⋆] = −⟨α,H⟩X⋆

Which implies the lemma:

⟨[X,Y ],H⟩ = ⟨α,H⟩ ⟨Y,X⋆⟩

Proof of the theorem:
Pick any X ∈ gα, X ̸= 0 then X⋆ ∈ gα, X

⋆ ̸= 0
Then, apply the lemma with Y = X⋆

⟨[X,X⋆], H⟩ = ⟨α,H⟩ ⟨X⋆, X⋆⟩

So, [X,X⋆] is perpendicular to every H ∈ h that is perpendiular to α
This implies [X,X⋆] is a scalar multiple of α
If ⟨α,H⟩ ̸= 0 then ⟨[X,X⋆], H⟩ ̸= 0 since ⟨X⋆, X⋆⟩ ̸= 0
Thus, [X,X⋆] ̸= 0
Set H = [X,X⋆] and substitute this to the equation:

⟨[X,X⋆], [X,X⋆]⟩ = ⟨α, [X,X⋆]⟩ ⟨X⋆, X⋆⟩

Since the first and last ones are > 0 we conclude that ⟨α, [X,X⋆]⟩ is real and positive.

Define Hα = 2
⟨α,H⟩H,Eα =

√
2

⟨α,H⟩X,Fα =
√

2
⟨α,H⟩X

⋆ = E⋆
α

Then Hα ∈ h, Eα ∈ gα, Fα ∈ g−α

and also,
[Hα, Eα] = ⟨α,Hα⟩Eα = 2Eα, [Hα, Fα] = ⟨−α,Hα⟩Fα = −2Fα

[Eα, Fα] =
2

⟨α,H⟩ [X,X⋆] = 2
⟨α,H⟩H = Hα

Linear independence: Eα, Fα, Hα are eigenvectors for adHα with eigenvalues 2,−2, 0
so they are linearly independent.
Next big result:
Lemma:If α and cα are both roots, then c = ± 1

2 ,±1,±2 are the only possible values.
Note: c = ± 1

2 ,±2 never happens in complex semisimple lie algebras. But may happen
in “abstract” roots systems.
There are multiple goals. One goal is to classify all simple and semisimple lie algebras,
other is to study all the algebras themselves.
Root systems and abstract root systems are used to classify simple lie algebras.
For abstract root systems, just because things happen in them that doesn’t happen
in complex semisimple lie algebras doesn’t mean they are useless. They can happen
in real simple lie algebras for example.

Proof. Let sα be the span of Eα, Fα, Hα which is a lie subalgebra of g that is isomor-
phic to sl(2,C)
Then, sα acts on g via ad |sα
Then Hα = 2α

⟨α,α⟩ ∈ h [the coroot associated to α ]

Then ⟨α,Hα⟩ = 2
If β = cα is a root and X ∈ gβ , X ̸= 0 then,
[Hα, X] = ⟨β,Hα⟩X = ⟨cα,Hα⟩X = c⟨α,Hα⟩X = 2cX
Then 2c is an eigenvalue of Hα for ad |sα
All such eigenvalues/weights of Hα must be integers [From the sl(2,C) isomorphism]
So 2c and 2

c [by swapping the roles of α and β] must be both integers.
So, c = ± 1

2 ,±1,±2

Next big result:

8



Theorem 7. i: For each root α the only multiples of α that are roots are α and −α.
The ± 1

2 ,±2 never happen for complex semisimple lie algebras.
ii: If g is complex semisimple, then for each root α we have dim gα = 1

Class 05: 01/22
Let g be a complex semisimple lie algebra. Now we don’t have to work with reductive
lie algebras anymore.
Suppose g = kC for some compact lie algebra kC and t is the maximal abelian ideal of
k. Then, h = kC is the Cartan Subalgebra (CSA) of g.
Also, for ∀α ∈ h we define gα = {X ∈ g; adH(X) = [H,X] = ⟨α,H⟩X∀H ∈ h}
If α ̸= 0, gα ̸= {0} then α is a root and gα is a root spaces.
As a vector space, g decomposes into root spaces:
g = h⊕

⊕
α∈R gα

Note that h = g0
Also, if α ∈ R,−α ∈ R
For each α,−α ∈ R we have a copy of sl2(C) ⊂ g
Which is given by the span of Hα, Eα, Fα

Where Eα ∈ gα, Fα = Eαa
⋆ ∈ gα, [Eα, Fα] = Hα ∈ h, [Hα, Eα] = 2Eα, [Hα, Fα] =

2Fα

Lemma: If α and cα are both roots then c = ± 1
2 ,±1,±2

Also, ± 1
2 ,±2 cannot happen so ±1 is the only possible case.

Theorem: i: ∀α ∈ R the only multiples of α that are roots is ±α
ii: ∀α ∈ R, dim(gα) = 1
If α ̸= 0 and not a root then dimension is 0 and if α = 0 then dimension is the
dimension of Cartan Subalgebra which can be very big.

Proof. There are only finitely many roots. WLOG, if cα is a root, then |c| ≥ 1 [we
take the smallest root]. Then, by lemma, c = ±1,±2. Let sα = span(Eα, Fα, Hα) ⊂ g
which is a subalgebra of sl(2,C) and also assume Fα = E⋆

α.
V α = span {Hα, gβ : where β is a root proportional to α } .
So, β may be ±α,±2α
Draw picture:
−2α—−α—Hα—α—2α
Claim: V α is a subalgebra of g

Proof. Let β be a root proportional to α. Consider X ∈ gβ , Y ∈ g−β

Thus, [X,Y ] ∈ h and ∀H ∈ h we have ⟨[X,Y ], H⟩ = ⟨β,H⟩⟨Y,X⋆⟩
Since H ⊥ β we have H ⊥ [X,Y ]
This implies [X,Y ] is proportional to β which is proporitonal to α so it is proportional
to Hα

If we have coroots β, β′ proportional to α and β + β′ ̸= 0 then [gβ , gβ′ ] ⊂ gβ+β′

So β+ β′ would be a non-zero multiple of α. So, V α is indeed a subalge subalgebra.

Now we can finish the previous proof.
sα is a subalgebra of V α

V α is invariant under the adjoint action of sα

sα is ad(sα) invariant subspace.
Take sα⊥ in V α then this is also sα invariant subspace.

Proof. Note that sα is invariant under the map X 7→ X⋆

E⋆
α = Fα by assumption, F ⋆

α = Eα and Hα is a real multiple of α ∈ it so H⋆
α = Hα

Proposition 7.4 tells us:
⟨adX Y,Z⟩ = ⟨Y, adX⋆ Z⟩
Apply this with X ∈ sα, Y ∈ Sα⊥, Z ∈ sα

This gives us adX Y ∈ sα⊥

So, sα⊥ is sα invariant.
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Note that sα is not the same as V α if and only if g2α or g−2α is non-zero or dim(gα) > 1
or dim(g−α) > 1
Since ⟨α,Hα⟩ = 2,Hα acting on V α has eigenvalues (weights):
0 from Hα

±2 from g±α

±4 possibly from g±2α

Weights of Hα acting on V α are a subset of {0,±2,±4} which are all even numbers.
Look at weights of sα⊥: they are also even, subset of {0,±2,±4}
From the theory of representation of sl(2,C) sα⊥ must have a 0 weight. If sα⊥ ̸= {0}
This means, CHα ∈ sα⊥ since this is the only thing that produces 0 weight.
But Hα ∈ sα

So, Hα ∈ sα ∩ sα⊥

This is a contradiction.
So, sα⊥ being non-zero is not possible.
So, sα⊥ is zero.
So, sα = V α

This means the 2α and −2α parts don’t exist, and α,−α parts are one dimensional.

Weyl Group

Recall that h = tC, t is the maximal abelian subalgebra in k
R is the set of roots g related to h so R ⊂ h

Definition 10. For each root α denote a linear map sα : h→ h by the formula:

sα(H) = H − 2
⟨α,H⟩
⟨α, α⟩

α

This is a reflection.

To see this, if α ⊥ H then sα(H) = H
If α = H, sα(H) = H − 2H = −H
So, this is essentially a reflection through the hyperplane perpendicualr to α

Definition 11. The Weyl Group of R denoted W is the subgroup of GL(h) generated
by all the reflections sα with α ∈ R

Note that h is a complex vector space. Since ⟨, ⟩ is real valued on k it s also real
valued on t and it. It follows that, sα maps it → it and hence sα ∈ O(it) and thus
W ⊂ O(it)
Fact: if K is a compact Lie group with lie algebra k such that the complexification of
k is g then the quotient group normalizer of h in K

centralizer of h in K = W
In some textbooks this is also used as the definition of the Weyl Group.

Theorem 8 (Weyl Group maps roots to roots). The action ofW on h (or it) preserves
R. That is, if α is a root then w · α is also a root for all w ∈W

Proof. For each α ∈ R consider an invertible linear operation Sα : g → g given by
Sα = eadEα e− adFα eadEα

This operators maps one root space into another.
This will map root space gβ into root space gsα·β

Class 06: 01/25
For matrix groups / lie algebra:
g ⊂ gl(n,C)
For X,Y ∈ g typically XY /∈ g
But [X,Y ] = XY − Y X ∈ g
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Suppose G is an abstract lie group. This means it is a C∞ manifold with group
operations G×G→ G and G→ G given by multiplication and inverse, and they are
smooth.
Then, associated lie algebra g = TeG ≃ Left invariant vector fields on G
So, a ∈ G we have the smooth operation left multiplication by a given by La : G→ G
which gives a new vector field g→ g
If X,Y are two vector fields, XY − Y X is a vector field.
Every lie algebra g ⊂ U(g) the universal enveloping lie algebra.
For all X,Y ∈ g we have [X,Y ] = XY − Y X where this product is evaluated in the
universal enveloping lie algebra.
Lets go back to Weyl Groups.
g is a complex semisimple lie algebra
g = kC where k is the lie algebra of a compact lie group K
t is a maximal commutative subalgebra of k
h = tC is the Cartan Subalgebra (CSA) of g
R = roots ⊂ it ⊂ h
So that if X is an eigenvector of one adH and hence all adH then [H,X] = ⟨α,H⟩X
for all H ∈ h. α ∈ H are the roots of H

Definition 12. For each α ∈ R, define linear maps on h [reflection] denoted sα

sα ·H = H − 2
⟨α,H⟩
⟨α, α⟩

when H ∈ h
The Weyl Group of R denoted by W is the subgroup of GL(g) generated by sα, α ∈ R

Since each sα : it→ it
we have w : it→ it, ∀w ∈W
Therefore, W ⊂ O(it)

Theorem 9. The action of W on h (or it ) preserves R. In other words, ∀α, β ∈ R
we have sα · β ∈ R

Proof. Consider an operator Sα : g→ g given by:

Sα = eadEα e− adFα eadEα

We want to prove that Sα somehow maps the root space of β to the root space of
sα · β
Claim: Sα adH S−1

α = adsα·H for all H ∈ h
Proof: Consider first H ∈ h so that ⟨α,H⟩ = 0
Then, [H,Eα] = ⟨α,H⟩Eα = 0
[H,Fα] = −⟨α,H⟩Fα = 0
So H commutes with Eα, Fα

So adH commutes with adEα
and adFα

So adH commutes with Sα

So, Sα adH S−1
α = adH

Again, if H ∈ h and H ⊥ α meaning ⟨α,H⟩ = 0 we have sα · H = H so we have
prooved this case.
If H = α [or proportional]
By theorem 4.34(iii) applied to sα = span(Eα, Fα, Hα) ≃ sl(2,C) and adjoint repre-
sentations on g we have
Sα adHα

S−1
α = − adHα

This proves the claim for proportional case, and subsequently for all of h
Suppose β ∈ R and let X ∈ g, X ̸= 0
Consider S−1

α (X) ∈ g
Then, adH(S−1

α (X)) = S−1
α [Sα adH S−1

α ](x)
= S−1

α adsα·H(X)
= ⟨β, sα ·H⟩S−1

α (X)
= ⟨s−1

α · β,H⟩S−1
α (X)

11



= ⟨sα · β,H⟩S−1
α (X)

So, S−1
α (X) is a root vector with root sα · β

Note that, s2α = Id and so sα · sα · β = β which implies sα is bijetive.
So, R gets mapped to R

Corollary: the Weyl Group is finite.
This is how the textbook states it. But not only is it finite, it is a subgroup of the
permutation group.
So, better way of saying it is W is a subgroup of the permutation group on R

Proof. roots of R span h since g is semisimple.
So, as a linear transformation h → h each w is uniquely determined by its action on
R.
Thus, the weyl group is a subgroup of permutation group on R which is finite.

Root Systems

For each α ∈ R the element Hα ∈ h , we have Hα = 2α
⟨α,α⟩ , the coroot associated to

the root α

Proposition 13. ∀α, β ∈ R we have:

⟨β,Hα⟩ = 2
⟨α, β⟩
⟨α, α⟩

∈ Z

Proof. Let sα = span(Eα, Fα, Hα) the lie subalgebra of g that is isomorphic to sl(2,C)

Where Hα ↔
[
1 0
0 −1

]
Let X ∈ gβ (Let X be a root vector associated to β )
Then [Hα, X] = ⟨β,Hα⟩X
Therefore, ⟨β,Hα⟩ is an eigenvalue / weight for the adjoint representation of sl(2,C)
on g.
Weights/Eigenvalues of H are integers.
Therefore, ⟨β,Hα⟩ ∈ Z

Geometric Interpretation:
The orthogonal projecton of β onto α is:

⟨α, β⟩
⟨α, α⟩

α =
1

2
⟨β,Hα⟩α

Since ⟨β,Hα⟩ ∈ Z we see that the projection of β onto α must be of the form n
2α.

Also:

sα · β = β − 2
⟨α, β⟩
⟨α, α⟩

α

=⇒ β − sα · β = 2
⟨α, β⟩
⟨α, α⟩

α = nα

Think of roots R as subset of real vector space E = it

Theorem 10. The set of roots R is a finite set of non-zero elements of a real vector
space E such that:

• R spans E

• If α ∈ R then −α ∈ R and the only multiples of α that are in R are ±α

• If α, β ∈ R then so is sα · β

12



• ∀α, β ∈ R, 2
⟨α, β⟩
⟨α, α⟩

∈ Z

Any collection of vectors satisfying these conditions is called a root system.
We can also have abstract root systems.
Their main purpose is classifying simple and semisimple lie algebras.

Simple Lie Algebras

The main point of this section: A root system “knows” when your lie algebra can be
decomposed into ideals.
In other words, the root system contains all the information we need to know about
the lie algebra.
Recall: A lie algebra (real or complex) is simple if it doesn’t have any proper ideals
and is not commutative.
So, the ideals of a simple lie algebra g are {0} and g and g is not commutative, which
means dim g ≥ 2

Proposition 14. Suppose g is a real lie algebra, and it’s complexification gC is simple.
Then g is simple as well.

Proof. Trivial.
g is not commutative since gC cannot be commutative.
If g is not simple it has a proper ideal h and then hC is a proper ideal of gC which is
a contradiction.

Now think of the converse. If g is simple is gC simple? The answer is not always!!!
Consider so(3, 1) which is a simple lie algebra [lie algebra of the orthogonal group of
transformations that preserves the minkowski metric.] It’s complexification is not a
simple lie algebra! The complexification is so(4,C) ≃ sl(2,C)⊕ sl(2,C) direct sum of
ideals.
Note that, so(3, 1) is the underlying real lie algebra of sl(2,C).
So we started with something that is real simple, then complexify it. We get something
that is complex simple. We consider that as simple, complexify again and it doesn’t
remain simple.
So, gC simple =⇒ g is simple
But g simple ̸ =⇒ gC simple.
The bulk of this section is dancing around this statement, given g is simple, when is
gC simple?

Definition 13. A real lie algebra g admits a complex structure if there is a complex
lie algebra g′ and an isomorphism of real lie algebras g ≃ g′

Lemma: Suppose K is a compact (matrix) lie group whose lie algebra k is not
commutative. Then k does not admit a complex structure.

Proof. We use contradiction. Suppose k admits a complex structure. Then k ≃ k′ for
some complex lie algebra k′. Let J denote the multiplication by i on k.
Fix an AdK-invariant inner product on k then ∀H ∈ k we have adH is skew-adjoint
and hence diagonalizeable in kC with purely imaginary eigenvalues.
If H ∈ k \ z where z is the center of k then adH ̸= 0 and it has at least one non-zero
eigenvalue in kC and thus it is not nilpotent.
Consider adH acting on a complex vector space k ≃ k′

adH is not nilpotent and thus there is at least one non-zero eigenspace. Let that be
λ = a+ ib ∈ C
Let x be a corresponding eigenvector.
Then adH(X) = [H,X] = λx = aX + bJX
Consider λH = aH − bJH ∈ k
Then adH′ X = [H ′, X] = |λ|2X = (a2 + b2)X
So, H ′ ∈ k has non-zero real eigenvalues which is a contradiction.
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Class 07: 01/30

Theorem 11. The set R of roots is a finite set of non-zero elements of a real vector
space E, and R satisfies:

1. R spans E

2. If α ∈ R then −α ∈ R and the only multiples of α that are in R are ±α

3. If α, β ∈ R then so is sα · β and ∀α, β ∈ R the quotient 2 ⟨α,β⟩
α,α ∈ Z

Lemma: Suppose K is a compact matrix lie group whose lie algebra k is not commu-
tative. Then k does not admit a complex structure.
g⇝ gC
gC simple =⇒ g simple
g simple ̸ =⇒ gC simple in general.
Canonical example: Consider real lie algebra so(3, 1), its complexification is sl(2,C)⊕
sl(2,C) so not simple. This is because so(3, 1) ∼= sl(2,C) and so so(3, 1) admits a
complex structure.

Theorem 12. Suppose K is a compact matrix lie group whose lie algebra k is simple
as a real lie algebra then the complexification g = kC is simple as a complex lie algebra.

Proof. We use the lemma. The proof is by contradiction.
Suppose g = kC is not simple.
So we can decompose g = z⊕ simple ideals =

⊕
j gj

Since k is simple there is no center. There are thus at least two simple ideals.
Note that if gj is an ideal then gj is an ideal as well.
Uniqueness of decomposition implies gj = gk
Case 1: we have some gj = gj and in that case ∩gj ∩ k is a proper ideal of k which is
impossible since k is simple and thus we have a contradiction.
Case 2: we have gj = gk. In that case gj ⊕ gj is a non-zero ideal of k which means it
is all of k
So, g has exactly 2 ideals g1, g2 with g1 = g2
Define a real linear map ϕ : g1 → k given by ϕ(x) = x+ x
If X ∈ g1, X ∈ g2 and [X,X] = 0
So [ϕ(X), ϕ(Y )] = [X +X,Y + Y ] = [X,Y ] + [X,Y ] = ϕ([X,Y ])
So ϕ is a homomorphism.
Also, ϕ is injective since g1 ∩ g2 = {0}
Also, ϕ is surjective since k has real dimension n and g has complex dimension n and
g1, g2 both have real dimension n
So ϕ is an isomorphism of real lie algebras g1 → k
So, k has a compelx structure [that it inherits from g1]. But this is a contradiction
since k cannot have a complex structure by the Lemma.

Informal Statement:
Decompositions of g into direct sum g1 ⊕ g2 corresponds to (↭) decomposition of
root systems R = R1 ⊔R2

Theorem 13. Let g = kC be a complex semismiple lie algebra and let t be a maximal
commutative subalgebra of k and let h = tC be the associated Cartan Subalgebra.
Let R ⊂ h be the root system for g relative to h. If g is not simple, then h decomposes
as a orthogonal direct sum of subspaces h1, h2 in such a way that every element of R
is either in h1 or h2.
Conversely, if h decomposes this way, then g is not simple.

Alternative Formulation: Under the same conditions, g is simple if and only if there
does not exist an orthogonal decomposition of h as h1⊕ h2 with dim h1, dim h2 > 0 in
such a way that every root is either in h1 or h2.
Root systems are classified by Dynkin Diagrams.
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g is simple ⇐⇒ Dynkin Diagram of its root system is connected.
g is not simple ⇐⇒ Dynkin Diagram of its root system is not connected.
Idea: For =⇒ suppose g = kC is not simple. Then, k is not simple. Then, k = k1⊕ k2.
Let g1 = k1C, g2 = k2C then g = g1 ⊕ g2
Let h1 be a Cartan Subalgebra of g1 and h2 be a Cartan Subalgebra of g2
The bulk of the argument on the textbook shows that h = h1 ⊕ h2 is a Cartan
Subalgebra of g. The reason it takes so much effort is because the definition is
different from the usual formulation. But the statement is intuitive, this is exactly
what we’d expect.
It follows that each root space gα is a subspace of g1 or g2.
It follows that R = R1 ⊔R2 where R1 is a root system of g1 relative to h1 and R2 is
a root system of g2 relative to h2
That takes care of one direction.
Conversely, if h = h1 ⊕ h2, R = R1 ⊔ R2 where R1 ⊂ h1, R2 ⊂ h2 the define gi =
hi

⊕
α∈Ri

gα
Then g = g1 ⊕ g2 as vector space. We can further prove that g1, g2 are ideals. So
g = g1 ⊕ g2 as direct sum of lie algebras so g is not simple.

Root Systems of Classical Lie Algebras

The book discusses root systems of sl(n,C), so(n,C), sp(n,C)
This gives us 4 infinite families of root systems [so is different based on whether n is
even or odd]
sl(n+ 1,C)↭ An root system
so(2n+ 1)↭ Bn root system
sl(2n)↭ Dn root system
sp(n,C)↭ Cn root system
Exceptional root systems/lie algebras: E6, E7, E8, F4, G2

Lets look up sl(n+ 1,C) in detail. This is su(n+ 1)C, this is our k
Then t is traceless diagonal matrices with pure imaginary entries.
Then h = tC is traceless complex diagonal matrices, this is the “standard” Cartan
Subalgebra of sl(n+ 1,C)

Let H =

λ1 0 0

0
. . . 0

0 0 λn


Let Ejk be matrix with jk entry 1 and 0 elsewhere.
Then [H,Ejk] = (λj − λk)Ejk∀H ∈ h
So Ejk is a root vector, spans root space if j ̸= k
These are all the root spaces since sl(n + 1,C) decoposes into direct sum of h ⊕⊕

j ̸=k CEjk

So, λi − λk identifies the roots of sl(n+ 1,C) as elements of h⋆

To identify them as elements of h we need a SU(n + 1)-invariant inner product on
sl(n+ 1,C)
We choose the product ⟨X,Y ⟩ = Tr(X⋆Y )
Where X⋆ is the conjugate transpose.
Note that Schur’s Lemma says that any other inner product is a multiple of this. For
simple lie algebra we have this.
Let ek be diagonal matrix with 1 at k, k place and 0 elsewhere.
Then the root corresponding to CEjk root space is αjk = ej−ek, 1 ≤ j, k ≤ n+1, j ̸= k
So we have a root. Each root αjk has length

√
2

Compute ⟨αjk, αj′k′⟩. We’re applying the trace inner product to two diagonal matrix.
Depending on the overlap between {j, k}, {j′, k′} it can be 0,±1,±2.
Next Up: Weyl Group

Class 08: 02/01
Recall:
“Standard Cartan Subalgebra” of sl(n + c,C) consists of h = complex diagonal ma-
trices with trace 0
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Root vectors are Ejk, matrices in 1 in jk, 0 elsewhere.

If H =

λ1

. . .

λn+1


Then [H,Ejk] = (λj − λk)Ejk

So Ej,k are root vectors.
sl(n+ 1,C) = h⊕

⊕
j ̸=k CEjk as vector space.

The root system of sl(n+ 1,C) = su(n+ 1,C), An

We need SU(n + 1)-invariant inner product on sl(n + 1,C), we choose ⟨X,Y ⟩ =
Tr(X⋆Y ) where X⋆ is the conjugate transpose of X
Other invariant inner products are proportional to this.
Let ek be the diagonal matrix with 1 in kk and all others 0
Then ej − ek ∈ h
The root corresponding to the root space CEjk is αjk = ej − ek where j ̸= k
Since [H,X] = (λj − λj)X and ⟨H,αjk⟩ = λj − λk

Each root αjk has length
√
2

Thus ⟨αjk, αj′k′⟩ = 0,±1,±2 depending on whether they have 0, 1 or 2 elements in
common.
If we look at the cosine of the angle between the roots, then we have the formula:

cos θ =
⟨αjk,αj′k′ ⟩

||αjk||||αj′k′ || = 0,± 1
2 ,±1

cos θ = ±1 happens when αjk = ±αj′k′

So the possible angles between rots are π
2 ,

π
3 ,

2π
3 aka 90, 60, 120 degrees.

The reflection sαjk
·H 7→ H − ⟨ej − ek, H⟩(ej − ek)

So it basically switches j and k th entries of H
Conclusion: theWeyl Group [generated by reflections] is actually generated by switches.
So, the Weyl Group of sl(n+ 1,C) is the group of permutations of (n+ 1) objects.
The objects are the diagonal entries of H

W ⊂ Sroots = S(n+1)2−(n+1)

W ∼= Sn+1

Abstract Root Systems

Now we think about root systems on their own without thinking about their associated
lie algebras.

Definition 14. A (reduced) root system (E,R) is a finite dimensional real vector
space E with an inner product ⟨⟩, together with a finite collection R ofnon-zero
vectors in E satisying:

1. The vectors in R span E

2. (optional) If α ∈ R and c ∈ R then cα ∈ R if and only if c = ±1

3. To each root α ∈ R define a linear transformation [reflection] on E so that

aα · v = v − 2 ⟨v,α⟩
⟨α,α⟩α. Then α, β ∈ R =⇒ sα · β ∈ R

4. For all α, β ∈ R we have 2 ⟨β,α⟩
⟨α,α⟩ ∈ Z

But all abstract root systems actually come from lie algebras!
Condition 2 can be dropped, then we get the definition of non-reduced root-systems.
Then α, cα ∈ R =⇒ c = ± 1

2 ,±1,±2

Definition 15. The dimension of the vector space E is called the rank of the root
system and elements of R are called the roots.

Property 3 implies that if α is a root then so is −α. This also follows from property
2, but even if property 2 is dropped we see that this follows from property 3.
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Definition 16 (Weyl Group). If (E,R) is a root system, the Weyl Group W of
R is the subgroup of the orthogonal group of E [O(E)] generated by the reflection
sα, α ∈ R

Then W ⊂ O(E), W maps R into itself, R spans E
Every w ∈W, as a linear transformation of E is determined by its action on R .
So W is a subgroup of the group of permutations of R
So W must be finite.

Proposition 15. Suppose (E,R) and (F, S) are two root systems. Consider E ⊕ F
with natural inner product determined by the inner products of E and F [⟨(x, y), (p, q)⟩ =
⟨x, y⟩+ ⟨p, q⟩ ]. Then R∪S is a root system of E ⊕F called the direct sum of R and
S.

Clarification: we identify element e ∈ E with (e, 0) in E ⊕ F , f ∈ F with (0, f) in
E ⊕ F
So we can think of R ∪ S as a subset of E ⊕ F
Elements of the form (α, β) with α ∈ R, β ∈ S are not in R ∪ S

Definition 17. A root system (E,R) is called reducible if there exists an orthogonal
decomposition E = E1 ⊕ E2 with dimE1 > 0 and dimE2 > 0 so that every element
of R is either in E1 or E2

If no such decomposition exists we call the function irreducible.

If (E,R) is reducible, then by definition we have E = E1⊕E2. Let R1 = E1 ∩R and
R2 = E2 ∩R then R1, R2 are roots of E1 and E2 exactly.
(E,R) is reducible ⇐⇒ (E,R) can be realized as a direct sum of two other root
system.

Theorem 14 (Hall 7.35). A complex semisimple Lie algebra g is simple ⇐⇒ its
root system is irreducible.

The idea is, for any two roots, you can find intermediate roots and jump to the other
root this way.

Definition 18. Two root systems (E,R) and (F, S) are said to be isomorphic if there
exsits an invertible linear transformation A : E → F such that A maps R onto S such
that ∀α ∈ R and v ∈ E, we have A(sα · v) = sAα · (Av).
A map A with this property is an isomorphism
Note that this does not necessarily preserve inner product. It only preserves reflections
of the roots.

Rescaling inner product: Suppose you rescale the inner product. Note that sα · v =

v − ⟨v,α⟩
⟨α,α⟩α so as long as ratio of inner product is satisfied reflection is satisfied. So

rescaling doesn’t change reflection. More complicated: if E = E1 ⊕ E2 then we can
have different rescaling in E1 and E2.

Proposition 16. Suppose α, β are two roots that are not multiples of each other.
For simplicity assume that ⟨α, α⟩ ≥ ⟨β, β⟩. Then one of the following must hold:

1. ⟨α, β⟩ = 0

2. ⟨α, α⟩ = ⟨β, β⟩ and the angle between α, β is either π
3 or 2π

3

3. ⟨α, α⟩ = 2⟨β, β⟩ and the angle is π
4 or 3π

4

4. ⟨α, α⟩ = 3⟨β, β⟩ and the angle is π
6 or 5π

6

Conclusion: Possingle angles are π
2 ,

π
3 ,

2π
3 , π

4 ,
3π
4 , π

6 ,
5π
6

The main purpose of this result is simplification of root systems.
[insert picture of possibilities]
α, β generate lattices in R2
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Proof. Let m1 = 2 ⟨α,β⟩
⟨α,α⟩ ,m2 = 2 ⟨β,α⟩

⟨β,β⟩
Since α is the larger root, |m2| ≥ |m1|
Assume α, β are not perpendicular, since in that case m1 = m2 = 0 and not interest-
ing.

Then, m2

m1
= ⟨α,α⟩

⟨β,β⟩ ≥ 1

And m1m2 = 4 ⟨α,β⟩2
⟨α,α⟩⟨β,β⟩ = 4 cos2 θ

So m1m2 = 1, 2, 3, 4
m1m2 = 4 =⇒ cos2 θ = 1 so α, β are proportional
Other cases the angles give us lattices.

Class 09: 02/06
The plan for today is root systems, rank 2 systems, dual root systems

Definition 19. A (reduced) root system (E,R) is a finite-dimensional real vector
space E with an inner product ⟨, ⟩ together with a finite collection R of non-zero
vectors in E so that:

1. R spans E

2. If α ∈ R and c ∈ R then cα ∈ R if and only if c = ±1

3. ∀α ∈ R, define a reflection sα so that sα · v = v − 2 ⟨v,α⟩
⟨α,α⟩α, v ∈ E. Then, for all

α, β ∈ R, sα · β ∈ R

4. ∀α, β ∈ R we have 2 ⟨β,α⟩
⟨α,α⟩ ∈ Z

Originally they were introduced for classifying complex semisimple lie algebras. They
can be repurposed to classify real semisimple lie algebras [drop condition 2]. This
is also useful for sphere packing, data transmission, error correcting codes [because
these provide multi-dimensional lattices].
Weyl Group ⊂ O(E)
Weyl group ⊂ permutation group of R which tells us Weyl Group is finite.
We can take direct sum of root systems (E,R)⊕ (F, S)
We also have reducible and irreducible root systems. Essentially, if root system de-
composes into direct sum of two root system it is called reducible, otherwise it is
called irreduible.
Important result: A complex semisimple lie algebra is simple if and only if its root
system is irreducible.
Isomorphism of Root Systems: It’s a little beat counterintuitive. It is a linear map
between the vector space, and a bijection between roots, but we do not require it to
preserve inner product. We only require it to preserve the reflections.
Question: What are the possible angles between two roots?

They are π
2 ,

π
3 ,

2π
3 , π

4 ,
3π
4 , π

6 ,
5π
6 .

In degrees: 90◦, 60◦, 120◦, 45◦, 135◦, 30◦, 150◦

Proposition 17. Suppose α, β are two roots and they are not proportional. WLOG
suppose ⟨α, α⟩ ≥ ⟨β, β⟩. Then one of the following must be true.

1. ⟨α, β⟩ = 0 [not much to say]

2. ⟨α, α⟩ = ⟨β, β⟩ and the angle between α, β is π
3 or 2π

3

3. ⟨α, α⟩ = 2⟨β, β⟩ and angle is π
4 or 3π

4

4. ⟨α, α⟩ = 3⟨β, β⟩ and angle is π
6 or 5π

6
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Proof. [Insert Picture of the acute angles here. Draw α, β and drop perpendicular
from tip of β to α]

m1 = 2 ⟨α,β⟩
⟨α,α⟩ ,m2 = 2 ⟨β,α⟩

⟨β,β⟩
Then we have |m2| ≥ |m1|
Suppose ⟨α, β⟩ ̸= 0 then,
m2

m1
= ⟨α,α⟩

⟨β,β⟩ ≥ 1

m1m2 = 4 ⟨α,β⟩2
⟨α,α⟩2⟨β,β⟩2 = 4 cos2 θ

Where θ = angle between α, β
Thus 1 ≤ m1m2 = 4
So m1m2 = 1, 2, 3, 4
m1m2 = 4 =⇒ cos θ = ±1 so α, β are perpendicular, we assumed it won’t be that.
m1m2 = 1 =⇒ cos2 θ = 1

4 so θ = π
3 or 2π

3

m1 = m2 = 1 or m1 = m2 = −1 so m2

m1
= ⟨α,α⟩

⟨β,β⟩ = 1

If m1m2 = 2 then cos2 θ = 1
2 so θ = π

4 or 3π
4 so m1 = 1,m2 = 2 or m1 = −1,m2 = −2

m2

m1
= ⟨α,α⟩

⟨β,β⟩ = 2

If m1m2 = 3 then cos2 θ = 3
4 so θ = π

6 or 5π
6

m1 = 1,m2 = 3 or m1 = −1,m2 = −3 so m2

m1
= ⟨α,α⟩

⟨β,β⟩ = 3

One of the main application of this corollary is to show that a root has a basis, a set
of ‘positive’ roots.
Corollary: Suppose α, β ∈ R, not proportional. If the angle between them is strictly
obtuse (> π

2 ), then (α + β) and −(α + β) are roots. If the angle between them is
strictly acute (< π

2 ), then (α− β) and (β − α) are roots.
Note that we only work on the non-perpendicular case.

Proof. Assume α is the longer root [⟨α, α⟩ > ⟨β, β⟩]
Draw picture of the acute case. Drawing a perpendicular from β to α always results
in intersecting at α

2 . So, sα·; b = β−α so β−α is a root and thus α−β is a root too.
The obtuse case is similar, only the perpendicular drops at −α

2

There is not much to say about rank 1 systems but we can talk about rank 2 systems.

Root Systems of Rank 1 and 2

Rank 1: In a straight line, we have 0, α,−α. So, the only reduced root system is
R = {α,−α}. This is realized by sl(2,C). This is called A1, and the Weyl Group has
only two elements: identity and reflection so it’s W = C2

Rank 2: In 2d, we can have α,−α and perpendicular to them β,−β [they don’t have
to be the same length]. So, R = ⟨α,−α, β,−β⟩ so it is A1 ×A1 so it is reducible and
decomposes. W = C2 × C2. This is uninteresting.
More interesting is the one of sl(3,C). Let α, β have an angle of 2π

3 between them,
then they make a hexagon and thus our root system is {α,−α, β,−β, α+β,−α−β}.
It is of type A2, and W = D3 [not D6 since it doesn’t contain rotations by π

3 ].
Angle 3π

4 gives us a ‘square’ of roots. Our root space is then R = {α,−α, β,−β, α+
β,−α− β, α+ 2β,−α− 2β}. This is of type B2 and W = D4

Angle 5π
6 gives us the star of david. The roots are R = {α,−α, α + β,−α − β, α +

2β,−α − 2β, α + 3β,−α − 3β, 2α + 3β,−2α − 3β}. This is of type G2, and we have
two hexagons [outer and inner], and the reflections preserve the hexagons. We have
W = D6

Note that we have integer coefficients, and all coefficients are positive or negative. No
mixing!

Proposition 18. Every rank 2 root system is isomorphic to one of these: A1 ×
A1, A2, B2 or G2. The subscript refer to the rank of the system.
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Proof. Assume E = R2 with standard inner product. So the root system R ⊂ R2

Let θ be the smallest angle between any two roots in R.
We know that R spans R2 so we can find two roots α, β that are linearly independent,
and look at the angle between them.
If ⟨(α, β)⟩ [angle between α, β] is > π

2 then ⟨(α,−β)⟩ < π
2 .

So θ ≤ π
2

So θ = π
2 ,

π
3 ,

π
4 ,

π
6 .

Note: −sβ · α ∈ R and β bisects the angle between α,−sβ · α
So, we can keep reflecting and keep getting roots in angles θ, 2θ, 3θ, · · · and by the
nature of θ we come back to the original root. We get a picture of alternating long
root, short root andon and on. Also, angle between the roots determine the ratio of
their lengths.
So, we must end up in one of the mentioned cases.

Proposition 19 (A statement about Weyl Groups). Basically the Weyl Groups, with
the exception of the first case, we get dihedral groups or product of two groups of
order 2. This is proved by working case by case. It is clear that it must be a subgroup
of a dihedral group.

This concludes the story of the rank 2 systems.

Dual Root Systems

Definition 20 (coroot). Let (E,R) be a root system. For each root α ∈ R define
the coroot Hα = 2α

⟨α,α⟩ . The set of all coroots is denoted by R∨ and this is called the

dual root system.

Proposition 20. If R is a root system, then so is R∨. (R∨)∨ ∼= R

Proof. Each Hα is proportional to α so Hα span E. The only scalar multiple of Hα

in R∨ are Hα and H−α = −Hα.
sα = sHα so the Weyl Group must be the same.
Now some calculation:
⟨Hα, Hα⟩ = 4 ⟨α,α⟩

⟨α,α⟩2 = 4
⟨α,α⟩

2 Hα

⟨Hα,Hα⟩ = 2 Hα

⟨Hα,Hα⟩ = 2 2α
⟨α,α⟩

⟨α,α⟩
4 = α

So (R∨)∨ = R

2
⟨Hα,Hβ⟩
⟨Hα,Hα⟩ = ⟨α,Hβ⟩ = 2 ⟨α,β⟩

⟨β,β⟩ ∈ Z
Interestingly, (Hα, Hβ)↭ (β, α)

sHα
·Hβ = sα ·Hβ = 2 sα·β

⟨β,β⟩ = 2 sα·β
⟨sα·β,sα·β⟩ = Hsα·β ∈ R∨

Example: If all roots in R has the same length (type An) then R∨ ∼= R by rescaling.
If the roots are of different lengths R∨ may or may not be isomorphic to R

Class 10: 02/08
Plan for today’s class: Bases and Weyl Chambers
Recap: root system has dual root system α 7→ Hα = 2α

⟨α,α⟩ . Long roots become short,

short roots become long.
If all roots in R have the same length [(An)] then R∨ ∼= R
If there are roots of different length, this may or many not be true.
For a case where we have an isomorphism, look at B2

[insert picture of B2 and B∨
2 ]

Last class we classified all root systems of rank 2.
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Bases and Weyl Chambers

We want classification of irreducible representation (π, V )
If g is a simple lie algebra, then the adjoint representation (ad, g) is irreducible.

Definition 21. If (E,R) is a root system, a subset ∆ of R is called a base of R if
the following conditions are satisfied:

1. ∆ is a basis for E as a vector space

2. Each root α ∈ R can be expressed as a linear combination of roots in ∆ where
the coefficients are integers, and all coefficients have the same sign.

Will prove the existence soon.
Now we have notions of positive roots R+ relative to ∆ [the one with positive coeffi-
cients] and negative roots R− relative to ∆ the ones with negative sign.
The elements of ∆ are called simple positive roots

Proposition 21. If α, β ∈ ∆, α ̸= β then ⟨α, β⟩ ≤ 0 [the angle between them is right
or obtuse]

Proof. Since α ̸= β, ⟨α, β⟩ > 0 =⇒ acute angle.
By corollary from previous class, α− β ∈ R
But this root has both negative and positive coefficients. This is a contradiction, since
∆ is a basis. So acute is not possible, it must be right or obtuse.

Proposition 22. ∃ hyperplane V through the origin in E that doesn’t contain any
roots.

Proof. For each root α define hyperplane Vα perpendicular to α. So, vα = {v ∈ E :
⟨α, v⟩ = 0}
Observe hyperplane V that is perpendicular to v ∈ E does not contain α if and only
if v ∈ Vα for each root α.
Let v be a vector so that it is in none of the Vα. Since R is finite, we need to avoid
finitely many hyperplanes, and U =

⋃
α∈R Vα ̸= E. So we can let v ∈ E \ U

The hyperplane perpendicular to v gives us the desied hyperplane (V ∩R) = ∅

We will first talk about positive and negative roots and then discuss what to put in
our base.

Definition 22. Let (E,R) be a root system, V - hyperplane through the origin that
avoids roots [V ∩ R = ∅ ]. Choose one “side” of V and let R+ be the roots on that
side, and R− be the roots on the other side.

What do we mean by the same side? Recall that we characterize a hyperplane V
through a vector that is perpendicular to it, lets say v. Then we can choose direction
by same or opposite direction as v
Let V = {v ∈ E, ⟨H, v⟩ = 0} .
An element α ∈ R+ is decomposable if there exists β, γ ∈ R+ so that α = β + γ
Otherwise it is called decomposable.
The main result in this section [if we start with the root system] is that the indecom-
posable roots form a base.

Theorem 15. Suppose (E,R) is a root system, V is a hyperplane passing through
the origin that doesn’t intersect the roots. Thus we have R+ and R−. The set of
indecomposable elements of R+ is a base for R.

If we prove this we have actually proved existence.

Proof. Notation: ∆ = {indecomposable elements in R+}
H-vector in R such that H ⊥ v
⟨H,α⟩ > 0 for all α ∈ R+

Part 1: Every α ∈ R+ can be expressed as a linear combination of elements from ∆
with ≥ 0 integers as coefficient.
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Proof for this is from contradiction. Then suppose some roots can’t be chosen, and
take the root α with the smallest possible ⟨H,α⟩. If the same value is achieved by
multiple roots pick one randomly.
Then α /∈ ∆ [otherwise coefficient 1]
Thus α = β1 + β2 for β1, β2 ∈ R+

But ⟨H,α⟩ = ⟨H,β1⟩+ ⟨H,β2⟩.
The latter two are positive and thus we have positive root with smaller inner product,
which is a contradiction.
So all values can be expressed as a linear combination of elements from ∆ with non-
negative coefficients.
Part 2: If α, β ∈ ∆, α ̸= β, ⟨α, β⟩ ≤ 0 .
Suppose not. Then ⟨α, β⟩ > 0 implies α− β, β − α ∈ R+. One of them is in R+ and
we have α = (α − β) + β or β = (β − α) + αwhich contradicts the fact that they’re
indecomposable.
Part 3: The elements of ∆ are linearly independent.
Suppose not. Then Σα∈∆cαα = 0.
Seperate the sum: cα > 0 and cα = −dα when cα < 0
Then

∑
cαα =

∑
dββ

Sums range over disjoint subsets of ∆.
Let this be u

⟨u, u⟩ =
〈∑

cαα, cββ
〉
=

∑
cαdβ⟨α, β⟩

Since cα, dβ ≥ 0 and ⟨α, β⟩ ≤ 0 we have ⟨u, u⟩ = 0 =⇒ u = 0
Thus ⟨H,u⟩ =

∑
cα⟨H,α⟩ = 0 =⇒ cα = 0 for all α

Part 4: ∆ is a base.
∆ is linearly independent.
Every element of R+ is a linear combination of ∆ with non-negative integer coefficient.
If β ∈ R− then −β ∈ R+ which means −β is a linear combination of ∆ with non-
negative integer coefficients and thus β is a linear combination of ∆ with non-positive
integer coefficients.
Since every element of R is expressible as a linear combination of ∆ and R spans E
we can say that ∆ spans E.
So ∆ is a basis.

Note that our choice of ∆ is fairly arbitrary. Must the choice be the ones made by
the theorem above?

Theorem 16. For any base ∆ for R, ∃ hyperplane V and a side of V such that ∆
arises as in the previous theorem.

Sketch. Let r be the rank of the system and let ∆ = α1, . . . , αr.
For each c1, . . . , cr ∈ R there exists H ∈ E such that ⟨H,αi⟩ = ci for i = 1, . . . r
Choose c1, . . . , cr > 0 and solve for H.
The hyperplane perpendicular to H works.
We need to show that each element of ∆ is indecomposable.
If not, there exist β ∈ ∆ so that β = β1 + β2 where β1, β2 =

∑
cαα,

∑
dαα. Linear

independence implies cβ + dβ = 1 and other cα + dα = 0 but 1 can’t be written as
sum of two integers so one of β1, β2 must be β

Lemma: Let ∆ be a base, R+ be associated positive roots, α ∈ ∆. Then α cannot
be expressed as a linear combination of elements R+ \ {α} with non-negative real
coefficients.

Proof. Let α = α1 and other elements of ∆ be α2, . . . αr.
Suppose α = linear combination of roots β ∈ R+, β ̸= α with non-negative coefficients.
Each β ∈ R+ is a linear combination of α1, . . . , αr with non-negative coefficients.
Thus,
α1 = c1α1 + c2α2 + · · ·+ crαr for cj ≥ 0
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All α are linearly independent.
So c1 = 1, cj = 0 for j ≥ 2
Thus, each β is proportional to α
So, β = ±α
Since −α ∈ R−, β = α.
This contradicts that β ∈ R+ \ {α}

Proposition 23. If ∆ is a base of R, then the set of all coroots Hα, α ∈ ∆ form a
base for the dual root system R∨

Proof. Note that the basis part is trivial since corooting is just scaling.
We need to show that all coefficients are integer and have the same sign.
Proof is in the book.

Next up: Weyl Chambers.

Class 11: 02/13
HW correction: if g is a real simple lie algebra then we can have more than ‘one’
invariant bilinear form.
Suppose g has complex structure, eg g = sl(2,C)R = so(3, 1).
Then, K(X,Y ),K(iX, Y ) are both invariant bilinear form but not proportional.
Now back to class. Recap:

Definition 23. ∆ ⊂ R is a base if:

1. ∆ is a vactor space basis of E

2. Every β ∈ R can be expressed as β =
∑

α∈∆ cαα with coefficients cα ∈ Z and
either all are non-negative or all are non-positive.

After we have chosen a base ∆ we have positive roots R+ and R−

Definition 24. Given ∆, Positive roots R+ are those with non-negative coefficients,
Negative roots are those with non-positive coefficients.

Theorem 17. Bases exist and can be constructed as follows:
Choose a hyperplane V ⊂ E such that V ̸∋ α for all α ∈ R. We can do this since R
is finite.
Any time we have an hyperplane, we describe it with a vector perpenducular to it.
Let R+ be roots on one ‘side’ of the hyperplane, and R− be the roots on the other
side of the hyperplane.
We call a root in R+ is indecomposable if it cannot be written as a sum of two other
positive roots.
Then ∆ = indecomposable roots in R+

Actual theorem: ∆ is a base.
Actual theorem 2: Every possible can be constructed this way.

Now we talk about Weyl Chambers

Definition 25 (Weyl Chambers). The open weyl chambers for a root system (E,R)
are the connected components of E \

⋃
α∈R Vα where Vα is the hyperplane through

origin perpendicular to α [Vα = {v ∈ E : ⟨α, v⟩ = 0} ].

Definition 26. If ∆ = {α1, . . . , αr} is a base forR, then then it has the open fundamental weyl chamber.
The open fundamental Weyl chamber in E (relative to ∆ ) is the set of all v ∈ E such
that ⟨αj , v⟩ > 0 for all j = 1, . . . , r.
Note: all other roots are given by linear combination of the base. So, for other roots,
inner product with positive roots will be positive, inner product with negative roots
will be negative.
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Why should this be non-empty? Recall that ∆ are roots in one side of a hyperplane,
and the side of that hyperplane is given by a vector h that is perpendicular to the
hyperplane, which means ⟨h, αj⟩ > 0. Thus the Weyl Chamber is non-empty.
Example: Consider the root system A2 associated to sl(3,C). Recall that this means
all roots lie on a regular hexagon. Choose a hyperplane, then positive roots are
α1, α2, α1 + α2.
Consider the half space on side of α1, and half space on side of α2 [given by hyperplanes
perpendicular to α1, α2]. Their intersection gives us the Weyl Chamber.
[insert picture]
The ‘walls’ of are NOT the roots. Instead, they are the hyperplanes perpendicular to
the roots.

Proposition 24. We have a bijection between Weyl Chambers and Bases.
∀ open Weyl Chamber C, ∃ a unique base ∆C for R such that C is the open funda-
mental weyl chamber associated to ∆C . The positive roots with respect to ∆C are
precisely those elements α of R such that α has > 0 inner product each element of C.

Basically, given ∆, we have
C = {v ∈ E; ⟨α1, v⟩ > 0, . . . , ⟨αr, v⟩ > 0}
Given open Weyl Chamber C, we have,
R+

C = {α ∈ R : ⟨α, v⟩ > 0∀v ∈ C}
∆C = indecomposable elements in R+

c

Proof. Let H ∈ C and associated to H is a hyperplane through origin V that is
perpendicular to H
Since H ∈ open Weyl Chamber, we have ⟨H,α⟩ ̸= 0 for α ∈ R.
Thus, α /∈ V for all α ∈ R
H,V thus gives us a base ∆.
R+

H = {α ∈ R : ⟨α,H⟩ > 0}
R−

H = {α ∈ R : ⟨α,H⟩ < 0}
Given R+

H we have ∆C indecomposable elements. This is our ∆C

What is the open fundamental Weyl Chamber associated to ∆C?
Suppose H is in this fundamental Weyl Chamber.
Then, for each root αj , all v ∈ C satisfies ⟨αj , v⟩ > 0.
Since C is conneted, it does not change sign. So, the associated Weyl Chamber is just
C.
Finally, we prove that two different bases ∆c,∆

′ cannot have the same open funda-
mental Weyl chamber.
Suppose it has. Then, for all α ∈ ∆′ we have ⟨α,H⟩ > 0. This means the positive
roots associated to ∆C are the same as those of ∆′.
Since base is given by indecomposable elements given a selection of positive roots,
∆C and ∆′ have to be the same.

Thus we have a bijection between open Weyl Chambers and basis.

Proposition 25. Every root α ∈ R is an element of some base.

The proof of this is very technical.
Idea of Proof: Consider the hyperplane Vα ⊂ E associated to the root α. Then (part
of) Vα appears as the (n − 1) dimenstional “wall” of some open Weyl Chamber. It
actually appears as a face of co-dimension 1. Lets call the Weyl Chamber C.
Then, associated to this Weyl Chamber C we have a base ∆C . Thus C is the funda-
mental Weyl Chamber of ∆C .
Then, α ∈ ∆C
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Weyl Chambers and The Weyl Group

Proposition 26. The following are true:

1. The Weyl Group acts transitively on the set of open Weyl Chambers.

2. If ∆ is a base, then W is generated by sα · α ∈ ∆.

Proof. Fix a base ∆, let C be the associated open fundamental Weyl Chamber and
let W ′ be the subgroup of W generated by sα, α ∈ ∆.
To prove (1), it’s sufficient to prove that W ′ acts transitively.
Let D be any other open Weyl Chamber. Puck H ∈ C,H ′ ∈ D. Choose w ∈ W ′ so
that |w ·H ′ −H| is minimal. [Since W is finite, W ′ is finite so we’re talking about
finitely many distances so it is always possible to pick the minimal. If they’re multiple
pick one at random.]
If w ·H ′ /∈ C there must be some α ∈ ∆ such that ⟨α,w ·H ′⟩ < 0
Then |w ·H ′−H|2− |sα ·w ·H ′−H|2 = |H ′|2 + |H|2− 2⟨w ·H ′, H⟩ − |H ′|2− |H|2 +
2⟨sα · w ·H ′, H⟩
= 2⟨sα · w ·H ′ − w ·H ′, H⟩ = −4⟨w ·H ′, α⟩ ⟨α,H⟩

⟨α,α⟩ > 0

So, the distance is not actually minimal, there is a shorter distance. So, there is a
contradiction, and W ′ indeed acts transitively.

Class 12: 02/15
Recap:
Open Weyl Chamber: Connected component of E \

⋃
α∈R Vα where Vα is the hyper-

plane perpendicular to the root α
We have a bijection between bases ∆ of R and open Weyl Chambers:
Base ∆ for R 7→ Open fundamental Weyl Chamber associated to ∆ : C = {v ∈
E; ⟨α, v⟩ > 0∀α ∈ ∆}
And Open Weyl Chamber C 7→ positive roots R+

C = {α ∈ R : ⟨α, v⟩ > 0∀v ∈ C} and
we get ∆C the base from these positive roots.
We also had the proposition above.
We proved the fact that W ′ ⊂ W , the subgroup generated by sα, α ∈ ∆ acts transi-
tively.
It remains to show that W ′ = W .

Proof. #|W | = #{open weyl chamber} = #{all possible bases ∆}
Let sβ be reflection associated to the arbitrary root β ∈ R.
We want to show that sβ ∈W ′

A result we didnt prove but is in the book because it’s too technical: β belongs to
some base ∆D which is associated to open weyl chamber D.
Choose w ∈W ′ so that w ·D = C
Where C is the fundamental Weyl Chamber associated to ∆.
Thus, w · β ∈ ∆ and sw·β = w · sβ ·w−1 [conjugating by w is just a change of basis so
it is still a reflection. Both sides are reflection and w · β 7→ −wβ].
Thus, sβ = w−1 · sw·β · w ∈W ′

Thus, every generator of the Weyl Group belongs to W ′ so W ′ = W .

Lemma: Let ∆ be a base for R and let C be the associated fundamental Weyl Cham-
ber. Let w ∈W,W ̸= I, w = sα1

· sα2
· · · sαk

with αj ∈ ∆ be a minimal expressionfor
w. Then, C and w · C lie on opposide sides of the hyperplane Vα1 [the hyperplane
perpendicular to α1]. Basically, only the last reflection applied matters.
The proof is on the book and is quite technical.

Proposition 27. Let C be a Weyl chamber, and let H,H ′ ∈ W [closure of C]. If
w ·H = H ′ then H = H ′
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We will prove this using the preceeding lemma.
Explanation: C is a open Weyl chamber, so the closure is the original open set union
it’s boundary. We will see soon that if H,H ′ ∈ C then w · H ∈ C =⇒ w · C = C
and thus w must be the identity, so H = H ′. On the other hand, if H,H ′ ∈ ∂C then
this proposition tells us that w · ∂C ∩ ∂C ̸= ∅ which means w|w·∂C∩∂C = I
Now we do the formal proof.

Proof. Let ∆C be the base corresponding to the Weyl Chamber C. Write w =
sα1
· · · · · sαk

with αj ∈ ∆C - minimal expression for w. Use induction on k
If k = 0, w = I
Suppose k > 0.
By the lemma, C and w · C are on opposide side of Vα

Thus, (w · C) ∩ C ⊂ Vα1 and w ·H = H ′ ∈ Vα1

Apply sα1
to both sides.

sα1
· w ·H = sα and H ′ = H

Thus, sα1
w = sα2

· sα3
· · · sαk

Also maps H to H ′.
By induction, H = H ′

Recall: Free action:
If a group G acts on the set X, then the action is free if for all x ∈ X, g · x = x =⇒
x = I
The stabilizer of each x ∈ X is {I1}

Proposition 28. The Weyl Group acts freely on a open set channel V ◦W . If H
belongs to an open weyl chamber C and w ·H ∈ C for some w ∈W then w = I.

Proof. W maps open Weyl Chambers. w ·H ∈ C implies w · C = C and the above
proposition implies w = identity on all of C. C-non-empty open set. Thus, W =
identity as linear map on E. Thus, w = I as element of W .

Proposition 29. Forany two bases ∆1,∆2 for root system R, there exists unique
w ∈W such that w ·∆1 = ∆2

Proof. First: this statement for open weyl chambers. The group action on weyl
chambers is transitive and free. Thus, for any two weyl chambers there exists a
unique member of W that maps one to the other. Since the weyl chambers are in
bijection with bases and this bijection commutes with action of the weyl group, we
have the result.

Proposition 30. Let C be a Weyl chamber and H ∈ E. Let W · H denote the
W -orbit of H. Then W ·H ∩ C = {one point}

Clarification There are two possibilities: generic H will be in E \
⋃

α∈R Vα, then

w ∈W such that wH ∈ C is unique.
But, if H ∈

⋃
α∈R Vα [possibly H = 0] then w ∈ W is not unique, but rather the

point of intersection of the orbit of W ·H and C is unique.

Proof. Existence:
We want to show there exists w ∈W so that w ·H ∈ C
Weyl chambers are open connected components, so their union is the whole E except
the boundaries, and thus union of their closure is the whole E. So, H ∈ D for some
open Weyl chamber D.
Suppose there exsits w ∈W so that w ·D = C
Then w ·D = C
Thus w ·H ∈ C
The uniqueness of the intersection follows from the proposition [8.25 in the hall, 1
from the beginning of this lecture]
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Proposition 31. Suppose we have ∆-base of R and positive roots R+. Let α ∈
∆, β ∈ R+, β ̸= α. Then, sα · β ∈ R+

Restatement: Reflection sα maps α 7→ −α, and R+ \ {α} 7→ R+ \ {α}

Proof. Write β =
∑

γ∈∆ cγγ, cγ ∈ Z, cγ ≥ 0, β ̸= α =⇒ some cγ0 > 0 for some
γ0 ̸= α.

By definition, sα · β = β − ⟨α,β⟩
⟨α,α⟩α = β − nα

Thus, sα · β =
∑

γ∈∆ c′γγ where c′α = cα − n and c′γ ≥ 0 if γ ̸= α
Importantly, cγ0 doesn’t change, it’s still positive. Thus, the root must be positive.
Thus, sα · β ∈ R+

Class 13: 02/20

Dynkin Diagrams (8.6)

Start with a root system (E,R) and fix a base ∆. A particular choice of base is not
essential.
Recall: If α, β ∈ ∆, α ̸= β then the angle between α, β is ≥ π

2 .
Possible angles: π

2 ,
2π
3 , 3π

4 , 5π
8 .

We associate (E,R) to a graph called Dynkin Diagram as follows:
Its vertices {v1, · · · , vr} correspond to elements of ∆ = {α1, · · · , αr}
And edges: if vi, vj are two distinct vertices i ̸= j, then there is:

• no edge if αi ⊥ αj

• 1 edge if ∠(αi, αj) =
2π
3 , no arrows since roots have equal length.

• 2 edges if ∠(αi, αj) =
3π
4 , place an arrow (or >) from the vertex associated to

the longer root to the vertex associated to the shorter root.

• 3 edges if ∠(αi, αj) =
5π
6 , place an arrow (or >) from the vertex associated to

the longer root to the vertex associated to the shorter root.

Put examples of dynkin diagrams here.
In class: A1 ×A1 [disconnected], A2, B2

Definition 27. Two Dynkin Diagrams are isomorphic if there is a bijective map of
the vertices of one dynkin diagram to the vertices of the other such that the map
preserves the number of edges between vertices and the direction of the arrows.

Let ∆1,∆2 be two different bases of the same root system. Then, they are related by
an element of the Weyl Group. So w ·∆1 = ∆2.
Then w induces an isomorphism of respective dynkin diagrams. Since w is generated
by reflections, it preserves angles and length.

Proposition 32. The following statements are true:

1. A root system is irreducible ⇐⇒ its Dynkin diagram is connected.

2. A root system is determined (upto isomorphism) by its Dynkin diagram. If
R1, R2 are two root systems with isometric Dynkin diagrams, then R1

∼= R2.

Sketch of Proof:
1: Suppose R is reducible. This happens iff we have R = R1 ⊔R2, and E = E1 ⊕E2

with E1 ⊥ E2 so that R1 ⊂ E1, R2 ⊂ E2.
Then, ∆ = ∆1⊔∆2 so that they are bases of R1 and R2 respectively. Since ∆1 ⊥ ∆2.
Note that this is equivalent to the fact that we have a disconnected Dynkin Diagram.
The other direction requires more work. We need to show that if ∆ = ∆1 ⊔∆2 then
R is either in E1 or E2.
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Skipping some details, let W1,W2 be the weyl groups generated by ∆1 and ∆2 then
W = W1 ×W2, since W1 leaves E2 unchanged and W2 leaves E1 unchanged. Every
root in R belongs to some base, and w ·∆ = w1 ·∆1 ⊔ w2 ·∆2. Depending on which
of these R is in, it is in either E1 or E2.
So this is equivalent to having a disconnected dynkin diagram.
Contrapositive gives us the proof.
2: By part 1 we can deal with each connected component seperately. So assume the
root systems are irreducible and the Dynkin diagrams are connected.
Suppose we have ∆1 = {α1, · · · , αr} and ∆2 = {β1, · · · , βr}, bases for R1 and R2

ordered so that the isomorphism of Dynkin diagram takes the vertex associated αk

to the vertex associated to βk.
Rescale inner products on E1, E2 so that ∥α1∥ = ∥β1∥.
Define linear map A : E1 → E2 so that A(αj) = βj for all 1 ≤ j ≤ r. This is well
defined since ∆1 is a vector space basis for E1 and ∆2 is a vector space basis for E2.
We claim that it is an isometry.
Note that not only ∥α1∥ = ∥β1∥ but also ∥αj∥ = ∥βj∥ = ∥Aαj∥. This is because the
Dynkin diagram is connected, and since Dynkin diagram fixes the lengths. It also
fixes the lengths, so ∠(αj , αk) = ∠(βj , βk) = ∠(Aαj , Aαk).
Since the lengths and angles are same, we can say that A preserves the inner product
between the basis vectors.
Thus, A is an isometry.
Thus, it preserves reflections. So Sαj

↔ sβj
means ASαj

= SAαj
, A = sβj

A
W1 is generated by sαj , αj ∈ ∆1

W2 is generated by sβj , βj ∈ ∆2

So W1
∼= W2

So ASα = sAαA for all α ∈ R.
Corollary: A compslex semisimple lie algebra g is simple ⇐⇒ its root system is
irreducible ⇐⇒ the associated Dynkin diagram is connected.

Irreducible Root System [8.10]

Pictures.
An is realized by sl(n+ 1,C)
Bn is realized by so(2n+ 1,C), n ≥ 2
Cn is realized by sp(n,C), n ≥ 3
Dn is realized by so(2n,C), n ≥ 4
These are the Classical Root Systems.
Corollary: These lie algebras are simple:
sl(n+ 1,C), n ≥ 1; so(2n+ 1,C), n ≥ 1; sp(n,C), n ≥ 1; so(2n,C), n ≥ 3
Mismatch between indexing is because for some small values it is just duplicate of
previous.
In Helgason’s book there is a detailed treatment of isomorphism of lie algebra.
Insert pictures of E6, E7, E8, F4, G2

Theorem 18. 1. The graphs E6, E7, E8, F4, G2 can be realized as Dynkin diagrams
of some root system.
2. Every irreducible root system is isomorphic to exactly one of the above root system.

Main theorem of this chapter:

Theorem 19. 1. If g is a complex semisimple lie algebra, and we have two cartan
subalgebras h1, h2 of lie algebra g then there exists an automorphism ϕ : g → g so
that ϕ(h1) = h2
2. If g1, g2 are complex semisimple lie algebras with isometric root system, g1 ∼= g2.
3. Each root system can be realized by some complex semisimple lie algebra.
4. Every simple complex lie algebra is isomorphic to one algebra from the list.

Class 14: 02/22
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Integral and Dominant Integral Elements (8.7)

Recall that, associated to each root α ∈ R we have a coroot Hα = 2α
⟨α,α⟩ ∈ E.

Definition 28. An element µ ∈ E is an integral element if, ∀α ∈ R, the quantity

⟨µ,Hα⟩ = 2 ⟨µ,α⟩
⟨α,α⟩ ∈ Z

Definition 29. Given a base ∆ of R, an element µ ∈ E is a dominant element
[relative to ∆] if ⟨α, µ⟩ ≥ 0 for all α ∈ ∆. It is called strictly dominant if ⟨α, µ⟩ > 0
for all α ∈ ∆

[Alternative definition: µ ∈ E is strictly dominant relative to ∆ if and only if µ ∈
open fundamental weyl chamber C associated to ∆. µ is dominant if and only if µ ∈
closure of open fundamental weyl chamber C associated to ∆ ]
Example: Roots are obviously integral elements. Integer linear combination of roots
are also integral elements. However, there are more.
Concrete example: Consider the A2 root system [the hexagon]. Pick a base α1, α2.
Define µ1 := 2

3α1 +
1
3α2, µ2 := 1

3α1 +
2
3α2.

These are not integer coefficients. But they are integral elements.
⟨µ1, Hα1⟩ = 1, ⟨µ1, Hα2⟩ = 0.
⟨µ2, Hα1⟩ = 0, ⟨µ2, Hα2⟩ = 1

Proposition 33. If we have element µ ∈ E that has the property that 2 ⟨µ,α⟩
⟨α,α⟩ ∈ Z

for all α ∈ ∆ then the same holds for α ∈ R, and thu µ is an integral element.

Proof. Recall that coroots {Hα, α ∈ R} form the dual root system R∨ and {Hα, α ∈
∆} form a base for R∨. Thus, each Hβ , β ∈ R, can be expressed as a Z-linear
combination of Hα where α ∈ ∆. The result follows.

Definition 30. Let ∆ = {α1, . . . , αr} be a base. Then the fundamental weights

[relative to ∆ ] are the elements µ1, · · · , µr ∈ E such that 2
⟨µj ,αk⟩
⟨αk,αk⟩ = δjk for j, k =

1, . . . , r.

Note that ⟨Hαj , µk⟩ = δjk so {µ1, · · · , µr} is the dual basis to Hα1 , · · · , Hαr .
Then, the set of dominant integral elements µ is equal to the set of linear combinations∑r

j=1 njµj with nj ∈ Z and nj ≥ 0. Each coefficient nj = 2
⟨µ,αj⟩
⟨αj ,αj⟩

Dominant integral elements µ occur as highest weights of representations.

Definition 31. Let ∆ be a base for R,R+ the corresponding set of positive roots
and δ = half the sum of positive roots = 1

2

∑
α∈R+ α

This appears in many formulas in representation theory.

Proposition 34. δ is a strictly dominant element.

Also, 2 ⟨β,δ⟩
⟨β,β⟩ = 1 for all β ∈ ∆

Proof. It is sufficient to show that 2 ⟨β,δ⟩
⟨β,β⟩ = 1

If β ∈ ∆, then by proposition 8.30, sβ permutes R+ \ {β}.
Decompose R+ \ B = E1 ⊔ E2 so that E1 is fixed under sβ [{γ ∈ R+ : γ ⊥ β}] and
E2 gets changed under sβ [{γ ∈ R+ \ β : γ ̸⊥ β} ]
The elements of E1 contribute 0 to 2 ⟨β,δ⟩

⟨β,β⟩
The elements of E2 can be split up into pairs {α, sβα} and they cancel each other out
since ⟨sβ · α, β⟩ = ⟨α, sβ , β⟩ = −⟨α, β⟩
So we conclude that

∑
α∈E2

2
2
⟨β,α⟩
⟨β,β⟩ = 0

2 ⟨β,δ⟩
⟨β,β⟩ = 2 ⟨β,β⟩

⟨β,β⟩ = 1

Example:
In A1, δ = 1

2A
In A2, [hexagon case] δ = 1

2 (α+ β + (α+ β)) = α1 + α2

In B2, [square case] δ = 1
2 (α1 + α2 + (α1 + α2) + 2α1 + α2) so δ = 2α1 +

3
2α2
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The Partial Ordering [8.8]

Fix a base ∆ = {α1, · · · , α} for a root system R.

Definition 32. Let λ, µ∈E, we say µ is higher than λ, write µ ⪰ λ, λ ⪯ µ if µ− λ =
c1α1 + · · ·+ crαr with each cj ∈ R, cj ≥ 0.

Equivalently we can define λ is lower than µ
This gives us a partial ordering since all elements λ, µ cannot be compared with each
other.

Proposition 35. If µ is dominant them µ ⪰ 0

Caution: The converse is not true. Think of the A2 root system [hexagon]. Draw
perpendicularsto α1, α2 and you get a region that contians all the dominant elements.
Stuff between α1, α2 are ⪰ 0 but there are stuff outside the set of dominant elements.
For the proof of this statement, we need a lemma.
Lemma: Let v1, · · · , vr be basis of E. Then we have the dual vector space E∗ of
linear functionals E → R [or C]
We have a dual basis for E∗: {ξ1, · · · , ξr} ⊂ E∗ so that ξj(vk) = δjk
In our case, E has an inner product so we have an isomorphism E ∼= E∗.
Then the dual basis for E is a set {v∗1 , · · · , v∗r} so that ⟨v∗j , vk⟩ = δjk
Lemma: If {v1, · · · , vr} is an obtuse basis for E [meaning ⟨vj , vk⟩ ≤ 0 for all 1 ≤
j, k ≤ r, j ̸= k ] then the dual basis {v∗1 , · · · , v∗r} is acute [⟨v∗j , v∗k⟩ ≥ 0]
Proof: Basic linear algebra, in textbook. Check r = 2 directly and then use induction
on r.
For each m, 1 ≤ m,≤ r define E′ = span(v∗1 , · · · , ̸ v∗m, · · · , v∗r ) and apply induction
on the basis Pv1, · · · , ̸ Pvm, · · · , Pvr where P : E → E′ is the orthogonal projection.
Nowwe prove the proposition.

Proof. Any u ∈ E can be expressed as u =
∑r

j=1 cjαj with cj = ⟨α∗
j , u⟩.

Take {α∗
1, · · · , α∗

r} the dual basis. When u = α∗
j we get:

α∗
j =

r∑
k=1

⟨α∗
k, α

∗
j ⟩αk

If µ is dominant, µ =
∑r

j=1 cjαj . Thereforem

cj = ⟨α∗
j , µ⟩ =

r∑
k=1

⟨α∗
k, α

∗
j ⟩⟨αk, µ⟩

⟨α∗
k, α

∗
j ⟩ ≥ 0 because they form an acute basis, ⟨αk, µ⟩ ≥ 0 because µ is dominant.

Class 15: 02/27
Today we finish the discussion on partial ordering, section 8.8. Once we’re done with
that, we will move on to the next chapter.

Proposition 36. If µ is dominant, then w · µ ⪯ µ for all w ∈W .

Proof. Let O = W · µ be the weyl group orbit of µ. Since weyl group is finite, this is
finite.
Let λ ∈ O be any maximal elment. So, there does not exist another element λ′ in the
orbit such that λ′ ⪰ λ where λ′ ̸= λ.
Claim: λ must be dominant, that is to say, ⟨α, λ⟩ ≥ 0 for all α ∈ ∆.
Proof: Suppose otherwise. If some ⟨α, λ⟩ < 0, we can apply reflection with respect to
α and still be in O.
sα · λ = λ− 2 ⟨λ,α⟩

⟨α,α⟩α

Then sα · λ ⪰ λ, sα · λ ̸= λ. This contradict the maximality of λ.
Thus, every maximal element in O is dominant.
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By proposition 8.29, µ is the unique dominant element in O. Thus, we must have
λ = µ.
It remains to prove that every λ′ ∈ O is lower than µ.
For each λ′ there exists a λ ∈ O such that λ′ ⪯ λ and λ is maximal in O. So we must
have λ′ ⪯ µ

Proposition 37. δ = 1
2

∑
α∈R+ α is the minimal strictly dominant integral elment.

This means, if µ is strictly dominant integral element, then δ ⪯ µ

Proof. If µ is integral and strictly dominant, then ⟨µ,Hα⟩ ≥ 1. δ has the property:
⟨δ,Hα⟩ = 1 for all α ∈ R.
Therefore, µ− δ is integral and dominant, thus µ− δ ⪰ 0.

Lemma:
Suppose K is a compact convex subset of E and λ is an element of E and λ /∈ K.
Then there exists an element γ ∈ E such that ⟨γ, λ⟩ ≥ ⟨γ, η⟩ for η ∈ K.
Sketch of Proof:
This essentially says that γ and K can be seperated by hyperplanes.
Let η0 ∈ K be the element with minimal distance to λ. This exists due to compactness.
Let γ = λ− n0.
Idea is, if we draw a hyperplane perpendicular to the line between γ and η0 at η0
then the hyperplane seperates γ and K. This hyperplane is characterized by a normal
vector, which gives us the result.
If µ ∈ E let Conv(W · µ) be the convex hull of the weyl group orbit of µ.
Lemma: If λ, µ ∈ E are dominant and λ /∈ Conv(W ·µ), then there exists a dominant
element γ ∈ E so that ⟨γ, λ⟩ > ⟨γ,w · µ⟩ for all w ∈W .
Sketch of Proof:
This is similar to the previous lemma with the convex setK replaced with Conv(W ·µ).
We also require γ to be dominant.
By the previous lemma, there exists some γ′ such that it satisfies all the properties,
except it might not be dominant.
In particlar, ⟨γ′, λ⟩ > ⟨γ′, w · λ⟩ for all w ∈W .
Our solution is to replace γ′ with a relevant w0γ

′ where w0 ∈ W so that w0 · γ′ is
dominant, and then argue that ⟨γ, λ⟩ ≥ ⟨γ′, λ⟩ and the set of values {⟨γ,w ·µ⟩|w ∈W}
and {⟨γ′, w · µ⟩|w ∈W} are the same.
Thus, γ′ ⪯ γ and λ makes any non-neg inner product with each simple/base root.

Proposition 38. 1. If λ, µ ∈ E are dominant, then λ ∈ Conv(W ·µ) ⇐⇒ λ ⪯ µ

2. If λ, µ ∈ E and µ is dominant, then λ ∈ Conv(W · µ) if and only if w · λ ⪯ µ
for all w ∈W .

Proof. Regarding 1, recall that λ ∈ Conv(W · µ) if and only if w · λ ∈ Conv(W · µ)
for all µ ∈W , if and only
1: is equivalent to: Conv(W · λ) ⊂ Conv(W · µ)
1′ : If λ, µ ∈ E are dominant, then Conv(W · µ) ⊂ Conv(W · µ) if and only if λ ⪯ µ
1: Suppose λ ∈ Conv(W · µ). Introduce the set Λ = {n ∈ E : η ⪯ µ}. Then Λ is
convex, contains each w · µ,w ∈W .
Hence, λ ∈ Conv(W · µ) ⊂ Λ. Tis proves that λ ⪯ µ
Conversely, assume λ ⪯ µ and suppose λ /∈ Conv(W · µ). By the lemma, there must
exist a dominant γ ∈ E such that ⟨γ, λ⟩ > ⟨γ,w · µ⟩ for all w ∈W .
Subtracting, ⟨γ, µ− λ⟩ < 0. On the other hand, λ ⪯ µ, so each coefficient of µ− λ is
non-negative.
Thus, µ − λ =

∑
α∈∆ cαα for cα ≥ 0. Since γ is dominant, we have ⟨γ, µ − λ⟩ =∑

α∈∆ cα⟨γ, α⟩ ≥ 0
For part 2: Now λ is not necessarily dominant. Suppose first that w · λ ⪯ µ for all
w ∈ W , and choose w0 so that w0λ is dominant. Then part 1 applied to w0λ ⪯ µ
tells us w0λ ∈ Conv(W · µ). Thus, λ ∈ Conv(W · µ)
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Conversely, suppose λ ∈ Conv(W · µ). By a previous proposition, each element of
Conv(W · µ) is lower than µ. In particular, w · λ ⪯ µ for all w ∈W .

Now we move on to chapter 9.
Main result of chapter 9:

Proposition 39. Let g be a complex semisimple lie algebra. The irreducible fi-
nite dimensional repesentations of g are in bijection with dominant integral elements
(highest weights).

Hard part: given a particlar highest weight, we need to show there is a irreducible
representation.
We need: Universal enveloping algebras.

Universal Enveloping Algebras (9.3)

Let K be a field, g be a lie algebra over K, not necessarily semisimple.
Goal: to embed g into a (large) assoicative algebra U so that [X,Y ] = XY − Y X for
all X,Y ∈ g in the algebra U .
We will deal with finite dimensional lie algebra, but U will still be infinite dimensional.
First we form tensor algebra

⊗
g =

⊕∞
k=0⊗kg where ⊗0g = K.

Then
⊗

g is associative non-commutative algebra over K with unit, generated by g .
It is universal in the sense that any other one is a quotient of

⊗
g.

Similarly, we can construct the symmetric algebra:
S(g) =

⊕∞
k=0 Sk(g), where S0(g) = K and Sk(g) = k th symmetric power.

S(g) is the algebra of polynomials over g∗.
Sk(g) = homogeneous polynomials of degree k on g∗

S(g) is the associative commutative algebra over K with unit. It contains g as a
linear subspace and is generated by it. So,it is universal in the sense that any other
symmetric algebra must be a quotient of it.
By universal property, S(g) =

⊗
g/I for some ideal I.

Class 16: 02/29
Plan for today is to construct the universal enveloping algebra U(g). Let K be a field,
and let g be a lie algebra over K, not necessarily semisimple.
Our goal is to embed g into an associative algeba U so that [X,Y ] = XY − Y X for
all X,Y ∈ g
We constructed

⊗
g and S(g).

It is universal in the sense that:

g A

⊗
g

linear

∃!

Also, the symmetric one is universal in the sense that

g A, commutative

S(g)

linear

∃!

We have:

S(g) =
⊗

g/I

where I is a two sided ideal generated by XY − Y X where X,Y ∈ g
When characeristic is 0 we can also realize S(g) as a subalgeba of ⊗g:
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∑
σ∈Sn

1

n!
Xσ(1) · · ·Xσ(n) ↔ X1 · · ·Xn

We need char 0 since we’re dividing by n!.
Both

⊗
g and S(g) are N graded algebras. Meaning they are direct sum of components

of grade in N and if we mulitply components of grade m and compontents of grade n
we get a component of degree m+ n

Definition 33. The universal enveloping algebra of g is U(g) =
⊗

g/J where J is
the two sided ideal generated by {XY − Y X − [X,Y ];X,Y ∈ g}

Then U(g) is an associate algebra over field K equipped with a K linear map i : g→
U(g).
The map is given by the image of ⊗1g = g in U(g), the first graded element.

Proposition 40. We have the following properties:

1. i is a lie algebra homomorpism where U(g) is a lie algebra with [a, b] = ab− ba

2. U(g) is generated by i(g) as a K albera

Will see: i : g→ U(g) is an injection, that is, it is 1-1. The easiest way to see this is
to use the PBW theorem.

Caution: if X =

(
0 1
0 0

)
in sl(2,C) then X2 = 0 as a 2 by 2 matrix but X2 ̸= 0 as

an element of U(sl(2,C)). It will be obvious when we see the PBW theorem.
U(g) is universal in the following sense: let A be an associative lie algebra over K with
unit and let j : g → A be a linear map such that j(X)j(Y ) − j(Y )j(X) = j([X,Y ])
for all X,Y ∈ g. Then, j can be uniquely extended.

g A

U(g)
i

j

∃!

Corollary: Any representation of g (not necessarily finite dimensional) has a canonical
structure of a U(g)-module.
Conversely, every U(g) module has a canonical structure of a representation of g
Reason: Apply the universality property to π : g→ End(V )
Restatement: The categories of representations of g and U(g) modules are equivalent.
Recall that this means morphisms are preserved. In representations of g morphisms
are intertwining maps, and morphisms U(g)-modules are simply module homomor-
phisms.
Example:

Definition 34. Casimir element in U(sl(2,C)):
Ω = XY + Y X − 1

2H
2 ∈ U(sl(2,C))

Where X,Y,H are the classical generators of sl(2,C) . ie X =

(
0 1
0 0

)
, Y =(

0 0
1 0

)
, H =

(
1 0
0 −1

)
Proposition 41. Ω is central in U(sl(2,C0)). Basically, for all Z ∈ U(sl(2,C)) we
have ΩZ = ZΩ

Proof. Part of homework. But we only need to check it for generators, since U(sl(2,C))
is generated by them. So we need t

o check ΩX = XΩ,ΩY = Y Ω,ΩH = HΩ
Note:

Y Ω = Y XY + Y 2X +
1

2
Y H2
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ΩY = XY 2 + Y XY +
1

2
H2Y

So, we have
Y XY + Y 2X + 1

2Y H2

= Y XY + Y (XY −H) + 1
2 (2Y +HY )H

= 2Y XY + 1
2HYH

= 2Y XY + 1
2H(2Y +HY )

= Y XY − (Y X +H)Y + 1
2H

2Y
= Y XY +XY 2 + 1

2H
2Y

So it is indeed in the center.

Proposition 42.
ZU(sl(2,C)) = C(Ω)

Proposition 43. Let (π, V ) be a representation of sl(2,C). Then π(Ω) : V → V
commutes with the action of sl(2,C)

This gives us an intertwining operator. Thus, if (π, V ) is an irreducible decomposition,
we can use Schur’s lemma to deduce that π(Ω) is multiplication by a scalar. If (π, V )
is not irreducible, the eigenspaces of π(Ω) are subrepresentations of (π, V ) and can
be used for decomposition of (π, V ) into irreducible components.
If (π1, V1) and (π2, V2) are two irreducible representations and π1(Ω) ̸= π2(Ω) then
V1 ̸∼= V2

So, casimir element can be used to deduce whether representation is irreducible or
not: if it doesn’t act by multiplication by scalar then it is not irreducible. We can
also use it to decompose into irreducible components.

Proposition 44. Casimir element for Ω ∈ U(g) when g is semisimple exists.

If (π, v) is realized in a space of functions, then π(Ω) often looks very much like a
Laplacian or wave operator.
Recall: adjoing representation of g on g.
Then g ∋ X 7→ adX = [X,−] : g→ g
We can extend ad to a representation of g on U(g): g ∋ X 7→ adX : U(g) → U(g)
where adXa = Xa− aX where a ∈ U(g)

Proposition 45. 1. The adjoint action of g on itself can be uniquely extended to
an action of g on U(g) which satisfies Leibniz rule: adX(a, b) = (adXa)b + a(adXb).
Moreover, adXa = Xa− aX.
2. Let Z(U(g)) be the center of the universal enveloping algebra. Then Z(U(g)) =
(U(g)adg)

Proof. Fact 2 follows from the fact that g generates U(g)
1: Define adXa = Xa− aX where X ∈ g, a ∈ U(g).
First we check that it is a representation.
We need: ad[X,Y ]a = adXadY a− adY adXa
ad[X,Y ]a = [X,Y ]a− a[Y,X] = (XY − Y X)a− a(XY − Y X)
adXadY a− adY adXa = X(Y a− aY )− (Y a− aY )X − Y (Xa− aX) +X(Y a− aY )
After all the cancellation, we see that we are done.
So we have a representation.
Now we check that the Leibniz rule is satisfied.
adX(ab) = Xab− abX
(adXa)b+ a(adXb) = (Xa− aX)b+ a(Xb− bX) = Xab− abX
So we have leibniz rule
Uniqueness of the extension follows from the leibniz rule.
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Poincaré-Birkhoff-Witt / PBW

U(g) is a filtered algebra.
K = U0(g) ⊂ U1(g) ⊂ . . .Un(g) ⊂ · · · ⊂ U(g) =

⋃∞
n=0 Un(g)

Where U(g) =
⊗

g/J , and Un(g) = image of o
∑n

k=0⊗kg in U(g).
Note that Um(g) · Un(g) ⊂ Um+n(g)
It is not a graded algebra, since stuff can get messed up inside quotient.

Class 17: 03/05
About homework: Problem 8b:
We needed to show that ⟨γ, α∗

i ⟩ ≥ 0.
If α∗

i in C this statement would be trivial.
This is not true. Actually α∗

i ∈ C
Consider α∗

1 + ϵ(α∗
2 + · · ·+ α∗

r)
This is in C for ϵ > 0 [inner product either 1 or ϵ]
Letting ϵ→ 0 we see the result.
Back to Class:

U(g) =
⊗

g/J

J is a two sided ideal generated by XY − Y X − [X,Y ] for X,Y ∈ g
U(g) is a filtered algeba. That is to say,

ℸ = U0(g) ⊂ U1(g) ⊂ U2(g) ⊂ · · · ⊂ Un(g) ⊂ . . .U(g) =
∞⋃

n=0

Un(g)

We also have

Um(g)Un(g) ⊂ Um+n(g)

Here,

Un(g) =
n⊕

k=0

⊗kg

in U(g)
Caution U(g) is not a graded algebra.
This is because the generators XY − Y X − [X,Y ] are not homogeneous.

Proposition 46. 1. If X ∈ Up(g) and Y ∈ Uq(g) then XY − Y X ∈ Up+q−1(g)

2. Let X1, · · · , Xn be an ordered basis for g. Then monomials (X1)
k1 · · · (Xn)

kn

where
∑n

i=1 ki ≤ p span Up(g). Note: we have fixed the order of basis elements.

Proof. 1: By induction on p. If p = 1 and X ∈ i(g) then,

XY1Y2 · · ·Yq − Y1Y2 · · ·YqX = XY1Y2 · · ·Y1 − Y1XY2 · · ·Yq + Y1XY2 · · ·Y1 − · · ·

+Y1 · · ·Yq−1XYq − Y1 · · ·YqX

We can make a telescoping sum this way.

=

q∑
i=1

Y1 · · · [X,Yi] · · ·Yq

Since [X,Yi] has degree one, this is actually in Uq(g)
Thus, if X ∈ U1(g) and Y ∈ Uq(g) then XY − Y X ∈ Uq(g)
In other words, XY ≡ Y X (mod Uq(g))
Therefore,

X1 · · ·XpXp+1Y ≡ X1 · · ·XpY Xp+1 ≡ · · · ≡ Y X1 · · ·Xp+1 (mod Uq(g))
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Part 1 follows.
2: We again induct on p.
U1(g) is spanned by {1, X1, · · · , Xn}. So we have base case.
Note that Up+1 = U1(g)Up(g). By induction hypothesis,
Up(g) = span{(X1)

k1(X2)
k2 · · · (Xn)

kn :
∑

i ki ≤ p}
By part i,
Xi(X1)

k1 · · · (Xn)
kn − (X1)

k1 · · · (Xi)
ki+1 · · · (Xn)

kn is in Up(g)
Thus, Xi(X1)

k1 · · · (Xn)
kn ∈ span{(X1)

l1 · · · (Xn)
ln ,

∑
i li ≤ p+ 1}

This completes the proof.

Informally, this means U(g) is almost commutative.
Corollary: The associated graded algebra GrU(g) =

⊕∞
p=0 Up(g)/Up−1(g) is commu-

tative. This is because XY − Y X ∈ Up−1(g) so quotient makes it 0.
We have S(g) the universal associated commutative algebra generated by g. We thus
get a unique map of algebras:

S(g)→ GrU(g)

Such that for all X ∈ g,S(g) ∋ X 7→ i(X) ∈ GrU(g)
Now we go to Poincare Birkhoff Witt formula.

Theorem 20 (PBW). THe map S(g) → GrU(g) is an isomorphism of algebras for
any field K even of nonzero characteristic.

note: Clearly, this map is onto. We essentially just proved that. The hard part is
proving that it is actually one to one / injective. Equivalently:

Theorem 21. The ordered monomials (X1)
k1 · · · (Xn)

kn ;
∑

i ki ≤ p form a vector
space basis of Up(g). We have already shown span, the hard part is linear indepen-
dence!

Proof. In the book.

Corollary: The map i : g → U(g) is one to one. Thus, we can regard g as a vector
subspace of U(g).
Corollary: If h ⊂ g subalgebra then h ↪→ g induces U(h) ↪→ U(g). Noreover, U(g) is
free as a left U(h) module.
Corollary: If h1, h2 ⊂ g are lie subalgebra such that g = h1 ⊕ h2 as vector spaces. h1
and h2 need not commute.
Then the multiplication map U(h1)⊗ U(h2)→ U(g) is a vector space isomorphism.
Corollary: U(g) has no zero divisors.

eg X =

(
0 1
0 0

)
∈ sl(2C) then Xn ̸= 0 in U(sl(2,C))

Weights of Representations (9.1)

Setup: Let g = kC be a complex semisimple lie algebra with compact real form k
Then k is the lie algebra of a compact lie group K and g = k⊗ C
Let t ⊂ k be a maximal commutative subalgebra.
Then h = tC is the cartan subalgebra.
R ⊂ it are the roots of g with respect to h
Let ⟨, ⟩ be a k-invariant inner product on g.
Let ∆ be fixed base for R.
Let R+, R− be positive and negative roots relative to ∆
The coroots Hα = 2α

⟨α,α⟩ ∈ h for each root α ∈ R and let W be the weyl group.

Definition 35. Let (π, V ) be representation of g (possibly infinite dimensional).
Then an element λ ∈ h is a weight of π if ∃v ∈ V, v ̸= 0 such that:

π(H)v = ⟨λ,H⟩v
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For all H ∈ h
The weight space corresponding to λ is {v ∈ V : π(H)v = ⟨λ,H⟩v for all H ∈ h}
So v is the space of the common eigenvectors of of π(H)
The multiplicity of λ is the dimension of the space above.

Compare with roots and root spaces for (ad, g)
What are the weights of the adjoint representation?
They are the roots and 0, R ∪ {0}
The weight spaces of (ad, g) are root spaces ∪h where h is associated to 0
multiplicity is 1 if λ ∈ R and rankg = dim h if λ = 0

Proposition 47. If π, V is a finite dimensional representation of g then every weight
is an integral element. Caution: not true for infinite dimensional representation.

Proof. Simple, just reduce to sl(2,C)
Let v ∈ V be a weight vector with weight λ.
To show that it is integral, we need to show it has integer inner product with every
coroot.
Thus, we need to show ⟨λ,Hα⟩ ∈ Z for all α ∈ R
For each coroot α ∈ R let sα = span{Xα, Yα, Hα} whhich is a subalgebra of g
isomorphic to sl(2,C). Restrict V to sα

Basic facts of finite dimensional representations of sl(2,C) is the representation of
Xα, Yα, Hα: the weights are integers.

π(H)v = π(Hα)v = ⟨λ,Hα, v⟩

This tells us ⟨λ,Hα⟩ ∈ Z

Theorem 22. If (π, V ) is a finite dimensional representation of g the weight of π and
their multiplicities are invariant under the action of te weyl group on h. Not true for
infinite dimensions.

Proof. See the textbook. Proof is same for corresponding result for roots.
Essentially saying: W maps R into itself.
Done by constructing: for each root α ∈ R an invertible operator Sα : V → V that
maps weight vectors with weight λ into weight vector with weight Sα · λ

This is the main result of this chapter, the Theorem of the Highest Weight

Theorem 23 (Theorem of Highest Weight for Complex Semisimple Lie Algebras).
Here we only consider finite dimensional representations.

1. Every irreducible representation of g is the direct sum of its weight spaces.

2. Every irreducible representation of g has a highest weight, the multiplicity of
the highest weight is one.

3. Two irreducible representation of g with the same highest weight are isomorphic.

4. If (π, V ) is an irreduible representation of g with highest weight µ then µ is
dominant integral.

5. Conversely, if µ is dominant integral, there exists an irreducible representation
of g with highest weight µ

Informally, there is a bijection between finite dimensional representations and integral
dominant theorem.
The hard part of the theorem is part v. Parts i through iv are easy - we will prove
them next time.
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Class 18: 03/07
We begin from before.
There is a one to one correspondence between:
Irreducible finite dimensional representations of g
And dominant integral elements.
We start the proof of 1-4 today.

Proof. 1: For each λ ∈ h, notation:

Vλ = {v ∈ V ;π(H)v = ⟨λ,H⟩v, ∀H ∈ h}

This is the weight space corresponding to λ.
Then, λ is a weight if and only if Vλ ̸= {0}
Then Weights(V ) = {all weights of V } ⊂ h
We need to show,

V =
⊕

λ∈Weights(V )

Vλ

Note that statement and proof is very similar to root space decomposition:

g = h⊕
⊕
α∈R

gα

Let α ∈ R be a root from sα = {Xα, Yα, Hα}
This is a subalgebra of g ∼= sl(2,C)
Regard V as a representation of this sα ∼= sl(2,C)
ρ(Hα) is diagonalizeable.
Hα where α ∈ R spans h
The sum of two commuting diagonalizeable operators is diagonalisable.
Thus, each ρ(H), H ∈ h is diagonalizeable.
Thus, ρ(H),H ∈ h are diagonalizeabe and commuting.
This means we get decomposition:

V =
⊕

λ∈Weights(V )

Vλ

2: Lemma: let α ∈ R,X ∈ gα, λ ∈ h, v ∈ Vλ then,

π(X)v ∈ Vλ+α

If λ+ α is not a weight, then π(X)v = 0
Proof: for all H ∈ h we have:

π(H)π(X)v = π(X)π(H)v + π([H,X])v

π(H)v = ⟨λ,H⟩v, π([H,X])v = ⟨α,H⟩X

So, that is equal to:

= ⟨λ+ α⟩π(X)v

Thus we have proved the lemma. Now we go back to the previous:
dimV < ∞ means weights(V) is a finite set. Let µ ∈ weights(V) be a max element
in the set in the sense that there doesn’t any λ ∈ weights(V) such that λ ≥ µ, λ ̸= µ
Pick any v ∈ Vµ, v ̸= 0
Lemma implies π(X)v = 0 for all X ∈ gα, α ∈ R+

Now, let W be the C-span of:
{π(Yj1)π(Yj2) · · ·π(Yjk)v; k = 0, 1, 2, each Yjl ∈ gαjl

, αjl ∈ R−}
Claim: W is g-invariant. Hence W = V by irreducibility.
Proof: Let R+ = {α1, · · · , αN}
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choose a vector space basis for g : X1 ∈ gα1 , · · · , XN ∈ gαN

Y1 ∈ g−α1
, · · · , Yn ∈ g−αN

Where H1, · · · , Hr is basis for h
Need to show that W is invariant under each π(Yj) and π(Hj) and π(Xj)
Yj and Hj we have automatically from the definition.
For Xj :
π(Xj)π(Yj1) · · ·π(Yjk)v ∈W by induction on k. k = 0 we already have.
π(Xj)π(Yj1) · · ·π(Yjk)v
= π(Yj1)π(Xj)π(Yj2) · · ·π(Yjk)v
+π([Xj , Yj1])π(Yj2) · · ·π(Yjk)v
[Xj , Yj1] can be 0,∈ h or one of the root vectors.
0, h we’re done. Negative root implies this belongs to the span, positive root we have
less elements so we can invoke induction hypothesis.
Or we can apply PBW.
Analyzing weights of W = V , we see that ∀λ ∈ Weights(V), λ ≤ µ and the multi-
plicity of µ = dimVµ is 1.
We prove 4 and then come back to 3.
4: All weights of V are integral, so µ is integral.
Now the dominant part.
Theorem 9.3 implies: the weights of V and their multiplicities are invariant under
Weyl group W .
Proposition 8.29 implies, there exists w ∈ W such that wµ ∈ C [closure of the
fundamental weyl chamber].
Then wµ is dominant and in Weights(V).
Since wµ is dominant, µ ⪯ w · µ
Since µ is maximal, µ = w · µ is dominant.
Finally, we do part 3.
Suppose (π1, V1) and (π2, V2) are irreducible representation with same highest weight
µ.
Let v1 ∈ V1µ, v1 ̸= 0, v2 ∈ V2µ, v2 ̸= 0 are highest weight vectors of V1, V2

Form (π1 ⊕ π2, V1 ⊕ V2) and let U ⊂ V1 ⊕ V2 be the smallest invariant subspace
containing (v1, v2) ∈ V1 ⊕ V2.
Claim: U is irreducible with highest weight µ.
Proof: First observation: V1⊕ V2 is completely reducible since it is direct sum of two
irreducibles.
Proposition 4.26 implies U is completely reducible as well.
Hence, U =

⊕
j Uj where each Uj is irreducible.

Since dimUµ = 1, exactly one Uj contains Uµ.
This implies (v1, v2) generates this particular Uj and U = Uj .
So, irreducible and the highest weight of Uj = U is µ
We can have two projections P1, P2 from V1 ⊕ V2, projection to V1 and projection to
V2.
P1(v, w) = v, P2(v, w) = w
these are intertwining maps, and P1|U , P2|U are not identically 0, P (v1, v2) ̸= 0, P2(v1, v2) ̸=
0
We can invoke Schur’s lemma:
U, V1, V2 are irreducible, by Schur’s lemma: P1|U : U → V1 and same to V2 are
isomorphisms.
So, V1

∼= U ∼= V2

This proves 3.

Highest Weight Cyclic Representations (0.2)

Definition 36. A representation (π, V ) of g [possibly infinite dimensional] is called
a highest highest weight cyclic representation with highest weight µ if there exists
v ∈ V, v ̸= 0 such that:
i: π(H)v = ⟨µ,H⟩v for all H ∈ h
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ii: π(X)v = 0∀X ∈ gα with α ∈ R+

iii: The only invariant subspace containing v is V .
Example: if (π, V ) is irreducible finite dimensional with highest weight µ, then it is a
cyclic representation.

Comments:

1. The definition does not require µ to be dominant or integral

2. Highest weight representation may or may not be irreducible

3. Two highest weight cyclic representations (π1, V1) and (π2, V2) with the same
highest weight need not be isomorphic.

4. It is true that two finite dimensional highest weight cyclic representation with
the same highest weight are irreducible and isomorphic.

5.

Example:
Let µ ∈ C. Then sl(2,C) has an ∞-dim highest weight cyclic representation πµ, Vµ

such that:

· · · v3 v2 v1 v0

πµ(Y ) πµ(Y ) πµ(Y ) πµ(Y )

finish diagram later.
πµ(Y )vj = vj+1, πµ(H)vj = (µ− 2j)vj
πµ(X)v0 = 0, πµ(X)vj = j(µ− (j − 1))vj−1

If µ = m,m ∈ Z,m ≥ 0, πµ(X)vm+1 = 0
Insert another picture here.
The quotient Vm/V−m−2 - finite dimensional irreducible weight as Vm

Class 19: 03/19
Recall that we have a bijection

Integral dominant µ ∈ h ↔ irreducible finite dimensional representation of g

Table 1: bijection

Hard part: starting with µ find / construct the corresponding irreducible representa-
tion of g.
g is a complex semisimple lie algebra.
So we talk about Verma Modules (9.5)

Verma Modules (9.5)

Let g be complex semisimple lie algebra, h the cartan subalgebra. We have the root
decomposition:

g = h⊕
⊕
α∈R

gα

Fix a base ∆ ⊂ R, that gives us positive and negative roots.
R = R+ ⊔R−

So we can write:
g = n+ ⊕ h⊕ n−

Where n+ =
⊕

α∈R+ gα, n
− =

⊕
α∈R− gα

These are (nilpotent) subalgebras.
Fix µ ∈ h (any!), consider left ideal Iµ ⊂ U(g) generated by X ∈ n+ abd H −
⟨µ,H⟩1,H ∈ h.
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Form a quotient Wµ = U(g)/Iµ - left U(g)-module.
↭ representation (πµ,Wµ) of g (∞-dim) called the Verma module with highest
weight µ.

Theorem 24. Let v0 ∈Wµ = U(g)/Iµ be the image of 1 ∈ U(g) in the quotient.
Hard part: Prove that v0 ̸= 0
Easier: Wµ is a highest weight cyclic representation with highest weight µ and highest
weight vector v0.

Proof. (assuming v0 ̸= 0): Need to check the following properties.

1. ∀H ∈ h,Hv0 ≡ H1 ≡ 1⟨µ,H⟩ ≡ ⟨µ,H⟩v0 (mod Iµ). This tells us v0 has weight
µ.

2. ∀X ∈ n+, Xv0 ≡ X ≡ 0 (mod Iµ)

3. v0 generates Wµ

For proving 3: clearly 1 ∈ U(g) generates all of U(g) as a left U(g)-module.
Thus, since v0 is the image of 1 in the quotient, v0 generates all of Wµ as a left
U(g)-module.
Thus, v0 generates Wµ as a representation of g.
So, all that is left to be proved is that v0 ̸= 0.
Let b = h⊕ n+, subalgebra of g.
Then U(b) ⊂ U(g) [consequence of PBW theorem].
Lemma: Let Jµ ⊂ U(b) be the left ideal generated by X ∈ n+ and H−⟨µ,H⟩1, H ∈ h.
Then 1 /∈ Jµ.

Proof. Define a 1-dimensional representation σµ of b by:
σ(H+X) = ⟨µ,H⟩ [think of this as a 1×1 matrix with entry in C. HereH ∈ h, X ∈ n+

]
This is a representation of b: if H1 +X1, H2 +X2 ∈ b = h⊕ n+ then:

[H1 +X1, H2 +X2] ∈ n+

Thus, by definition,

σµ([H1 +X1, H2 +X2]) = 0 = [σµ(H1 +X1), σµ(H2 +X2)]

This proves that this is indeed a representation.
This representation of b corresponds to a 1-dimensional U(b)-module Cµ.

ker(U(b)→ End(Cµ) = C) ⊃ n+, H − ⟨µ,H⟩1

This implies that this kernel contains Jµ
Cµ ̸= {0} =⇒ ker ̸= U(b) =⇒ 1 /∈ ker =⇒ 1 /∈ Jµ

Now,
Fix a vector space basis {Y1, · · · , Yk} of n−.
For example, take Yj ∈ gαj , Yj ̸=, αj ∈ R−.

Theorem 25. The elements πµ(Y1)
n1πµ(Y2)

n2 · · ·πµ(Yk)
nkv0 where each nj ≥ 0,

form a vector space basis for Wµ. In particlar, v0 = πµ(Y1)
0 · · ·πµ(Yk)

0v0 ̸= 0

Proof. g = n− ⊕ b as vector spaces.
Choose a vector space basis {Z1, · · · , Zl} of b.
Combine basis: {Y1, · · · , Yk, Z1, · · · , Zl} vactor space basis for g.
PBW implies: every element a of U(g) can be written uniquely as a (finite) linear
combination of elements of the form:

Y n1
1 Y n2

2 · · ·Y
nk

k Zm1
1 · · ·Zml

l

Thereofre, a can be expressed uniquely as :
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a =

∞∑
n1,··· ,nk=0

Y n1
1 Y n2

2 · · ·Y
nk

k an1···nk

each an1···nk
∈ U(b). There are only finitely many non-zero terms!

Now, a ∈ Iµ ⇐⇒ a is linear combination of terms of the form bX and b(H −
⟨µ,H⟩)1, b ∈ U(g).
Write each b in the unique form. Then a is a linear combination of terms of the form:

Y n1
1 Y n2

2 · · ·Y
nk

k bn1···nk
Xn1···nk

Y n1
1 Y n2

2 · · ·Y
nk

k bn1···nk
(Hn1···nk

− ⟨µ,Hn1···nk
⟩1)

Where Xn1,···nk
∈ n+, bn1···nk

∈ U(b), Hn1···nk
∈ h

So, they both belong to Jµ
Conclode: a ∈ Iµ each an1···nk

in the unique expression belongs to Jµ.
If a = 1 the uniqueness of expression implies the expression has only 1 term.
Thus, n1 = · · · = nk = 0, a0···0 = 1.
We conclude that v0 ̸= 0 in Wµ = U(g)/Iµ

We still need to prove linear independence of πµ(Y1)
n1 · · ·πµ(Yk)

nkv0 inWµ = U(g)/Iµ.
Suppose not.

0 =
∑

cn1···nk
πµ(Y1)

n1 · · ·π(Yk)
nkv0

If and only if:

a =
∑
· · · ∈ Iµ

If and only if:

cn1···nk
∈ Jµ

If and only if:
each cn1,··· ,nk

= 0
So we have linear independence.
Note that PBW was crucial for this: the unique expression is a consequence of PBW!

Irreducible Quotient Module (9.6)

Goal: Show each Verma module Wµ has a proper invariant subspace Uµ such that
the quotient Wµ/Uµ is irreducible with highest weight µ. (All µ ∈ h )
Next section: if µ is dominant integral then this quotient Wµ/Uµ is finite dimensional.

Theorem 26. Elements of the form:

πµ(Y1)
n1πµ(Y2)

n2 · · ·πµ(Yk)
nkv0

v0 = image of 1 ∈ U(g) in Wµ = U(g)/Iµ
{Y1, · · · , Yk} basis for n−
n1, · · ·nk non-negative integers
Form a basis for Wµ.
Each of these elements is a weight vector of Wµ

Conclude: Wµ is an (infinite) direct sum of weight spaces and the weight space
corresponding to µ is spanned by v0 (has multiplicity 1).

Every vector v ∈Wµ can be expressed uniquely as a finite sum of weight vectors and
it makes sense to talk about the component of v of weight µ. The ‘v0- component’,
since v0 is the only vector in this.
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Definition 37. Let Uµ be the subspace of Wµ consisting of all vectors v ∈ Wµ such
that the v0 component of the vector is 0 and also such that each πµ(X1) · · ·πµ(XN )v
also has zero v0-component for all X1, · · · , XN ∈ n+.

Proposition 48. Uµ is g-invariant subspace of Wµ

Proposition 49. Vµ = Wµ/Uµ is an irreducible representation of g.

Class 20: 03/21
Irreducible Quotient modules
Last time: constructed Verma module Wµ = U(g)/Iµ with highest weight µ. Let v0
be the image of 1 ∈ U(g) in this quotient.
We saw that Wµ is an (infinite) direct sum of weight spaces and multiplicity of weight
space corresponding to µ is 1, spanned by v0. For v ∈Wµ, can tlk about v0-compound.

Definition 38. Let Uµ be the subspace of Wµ consisting of all vectors v ∈ Wµ such
that the v0-component of v is 0 and such that each πµ(X1) · · ·πµ(XN )v also has zero
v0-component for all X1, · · · , Xn ∈ n+

Proposition 50. Uµ is a g-invariant subspace of Wµ.

Proof. Choose a vector space basis for g.
Let {X1, · · · , Xk}-basis for n+.
Let {Y1, · · · , Yk}-basis for n−, each Yj being a root vector.
Let {H1, · · · , Hr}-basis for h
Need to show: if v ∈ Uµ then so does πµ(Z)v for all Z ∈ g for all X1, · · · , Xn ∈ n+

We to check that the v0-component of
πµ(Xj1) · · ·πµ(XjN )πµ(Z)v = linear combination of
πµ(Y1)

? · · ·πµ(Yn)
? πµ(H1)

? · · ·πµ(Hr)
? πµ(X1)

? · · ·πµ(Xk)
?v︸ ︷︷ ︸

v0-component is 0︸ ︷︷ ︸
v0-component is 0

And the final part also has v0 component equal 0

Proposition 51. Vµ = Wµ/Uµ is an irreducible representation of g.

Proof. Bijection between:
Invariant subspaces of Wµ/Uµ

Invariant subspaces of Wµ containing Uµ

Suppose Ũ < Wµ is a g-invariant subspace, Uµ ⊊ Ũ .

Then Ũ contains a vector v such that:
u = πµ(X1) · · ·πµ(Xn)v has a non-zero v0-component.

Then, u ∈ Ũ
Claim: v0 ∈ Ũ so Ũ = Wµ.
Proof: write u = vµ + vλ1

+ · · ·+ vλl
.

vµ is proportional to v0
each vλj is a weight vector of weight λj ̸= µ
We want to reduce the number of weights one by one. Since the last weight is different
from µ we can find an element of the cartan algebra such that ⟨µ,H⟩ ̸= ⟨λl, H⟩. Then
look at the expression πµ(H) − ⟨λl, H⟩µ = ⟨µ− λl, H⟩︸ ︷︷ ︸

̸=0

vµ + ⟨λ1 − λl, H⟩vλ1
+ · · · +

⟨λl − λl, H⟩︸ ︷︷ ︸
=0

vλl

Since the last oe if 0 we have fewer weights. We reduce the weight one by one until
we end up with only µ. Induction on l.
v0 /∈ Uµ implies its image in quotient Vµ = Wµ/Uµ os not zero.
Thus, Vµ is a highest weight cyclic representation with highest weight µ, irreducible.
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Finally, we need finite dimensionality.
Let α ∈ ∆ and let sα = {Xα, Yα, Hα}- lie subalgebra of g isomorphic to sl(2,C).
Lemma: Suppose ⟨µ,Hα⟩ = m - non-negative integer. Then the vector π(Yα)

m+1v0 ∈
Uµ

Proof. Note each π(Yα)
jv0 is a weight vector for π(Hα) of weightm−2j π(Hα)π(Yα)

jv0 =
(m− 2j)π(Yα)

jv0.
We conclude that the v0-component of each π(Yα)

jv0, j > 0 is zero.
Argument from proof of theorem 4.32 shows that:
π(Xα)π(Yα)

jv0 = j(m− (j − 1))π(Yα)
j−1v0

When j = m+ 1: π(Xα)π(Yα)
m+1v0 = (m+ 1) (m−m)︸ ︷︷ ︸

=0

π(Yα)
mv0 = 0

On the other hand, if β ∈ R+ with β ̸= α then for Xβ ∈ gβ ,
π(Xβ)π(Yα)

m+1v0 is either zero or weight vector of weight µ− (m+ 1)α+ β.
There’s a problem, µ− (m+ 1)α+ β ̸⪯ µ
Thus, π(X)π(Yα)

m+1v0 = 0
for all ∈ n+, and in particular, has 0 v0-component.
=⇒ π(Yα)

m+1v0 ∈ Uµ.

Finite Dimensionality of Vµ = Wµ/Uµ [9.7]

Observe: Each weight occurs in Verma module Wµ with finite multiplicity (hwk).
Therefore, each weight of Vµ occurs with finite multiplicity.
Thus, to prove that dimVµ < ∞ it is sufficient to show that Vµ has finitely many
different weights.
To prove this, it is sufficient to show that weights of Vµ are W -invariant (W is the
Weyl Group).
Each W -orbit {w · λj , w ∈ W} (λ-weiht of Vν) is a finite set and has one dominant
representative λ′ (proposition 8.29).
Thus X is integral dominant and 0 ⪯ λ′ ⪯ µ
The set of {η ∈ h; η integral dominant and 0 ⪯ η ⪯ µ is finite}
Need exp(operator)- problematic in ∞-dim.
Workaround: locally nilpotent operators.

Definition 39. A linear operator A on a vector space is locally nilpotent if for each

v ∈ V there exists k(v) ∈ Z+ such that Ak(v)v = 0
V finite dimensional implies A is nilpotent.

In any cases, A-locally nilpotent means eA can be defined as eAv =
∑∞

k=0
Ak

k! v =∑k(v)
k=0

Ak

k! v - finite sum!

Proposition 52. For each α ∈ ∆, let sα = {Xα, Yα, Hα} be as in theorem 7.19
(Xα ∈ gα, Yα ∈ g−α, Hα is coroot of α satisfying the [, ] relations of sl(2,C)). If µ is
dominant integral, then Xα, Yα act on Vα = Wα/Uα in a locally nilpotent fashion.

Proof. µ-integral dominant implies ⟨µ,Hα⟩ −m, where m is a non-negative integer.
span {πµ(Yα)

kv0, k = 0, 1, 2, · · · } ⊂ Vµ = Wµ/Uµ.
sα-invariant subspace of Vµ

previous lemma implies πµ(Yα)
m+1v0 = 0

so this space is finite dimensional sα-invariant subspace of Vµ.
Thus, v0 is sα-finite
Call a vector v ∈ Vµ sα-finite if it lies in a finite-dimensional sα-invariant subspace of
Vµ.
Let Fα = {all sα-finite vectors in Vµ}
v0 ∈ Fα =⇒ Fα ̸= {0}
We claim that Fα is g-invariant. By irreducibility, Fα = Vµ

Proof of claim: pick any v ∈ Fα. Then v lies in a finite-dimensional sα-invariant
subspace S of Vµ.
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Let S′ = C-span of {πµ(X)s;X ∈ g, s ∈ S} ⊂ Vµ

dim(S′) ≤ (dim g)(dimS) <∞ and S′ is sα-invariant.
If πµ(x)s ∈ S′, Z ∈ sα then
[we’ll finish the rest later].

Class 21: 03/26
Finite-dimensionality of Vµ = Wµ/Uµ

It is sufficient to show that the weight of Vµ are W -invariant.

Definition 40. A linear operator A on a vector space V is locally finite if for each

v ∈ V there exists k(v) ∈ Z>0 such that Ak(v)v = 0

Purpose: then eA makes sense

eAv =
∑∞

k=0
Ak

k! v =
∑k(v)

k=0
Ak

k! v

Proposition 53. For each α ∈ ∆ let sα = span(Xα, Yα, Hα) be as in theorem 7.19.
If µ is dominant integral, then, Xα and Yα act on Vµ = Wµ/Uµ in a locally nilpotent
fashion.

Proof. Since µ is integral dominant, ⟨µ,Hα⟩ = m ∈ Z≥0. Call a vector v ∈ Vµ sα-finite
if it lies in a finite-dimensional sα-finite if it lies in a finite dimensional sα-invariant
subspae of Vµ.
Let v0 ∈ Vµ be a vector of weight µ.
CLaim: v0 is sα-finite.
proof: span{πµ(Yα)

kv0} ⊂ Vµ is sα-invariant. Lemma from last tome: πµ(Yα)
m+1v0 =

0, so this space is finite. We’re done.
Let Fα = {all sα-finite vectors in Vµ} ̸= {0}.
Claim: Fα is g-invariant.
And since Vµ is irreducible, Fα = Vµ

Proof: Pick any v ∈ Fα. Then v lies in a finite-dimensional sα-invariant subspace S
of Vµ.
S′ = span{πµ(X)s;X ∈ g, s ∈ S}
dimS′ ≤ dim g · dimS <∞
S1 is sα-invariant if πµ(X)s ∈ S1, Z ∈ sα

πµ(Z)πµ(X)s = πµ(X)πµ(Z)s︸ ︷︷ ︸
∈S︸ ︷︷ ︸

∈S′

+πµ([Z,X]︸ ︷︷ ︸
∈g

)s

︸ ︷︷ ︸
∈S′

Thus, πµ(Z)πµ(X)s ∈ S′

Thus, πµ(X)v ∈ Fα for all X ∈ g
Let v ∈ Vµ be any vector, then v is sα-finite and

πµ(Xα)
k(v)v = πµ(Yα)

k(v)v = 0

Which is what we needed to show.
Thus, the following terms make sense:

eπµ(Xα), eπµ(Yα)

on Vµ

Proposition 54. If µ is dominant integral, the weights of Vµ are W -invariant [Weyl
Group]

Sketch: W is generated by reflections sα, α ∈ ∆.
In the finite dimension case, use operator Sα = eπµ(Xα)e−πµ(Yα)eπµ(Xα) acting on Vµ.
So, Sα makes sense.
Corollary: Vµ is finite dimensional. All weights of Vµ are integral.
Let λ be a weight of Vµ

W · λ, the orbit under weyl group
λ has unique dominant representation λ′

{λ - integral dominant 0 ⪯ λ′ ⪯ µ} is a finite set.
So, Vµ is irreducible finite dimensional representation of g with highest weight µ.

45



Weights of Irreducible Finite-Dimensional Represen-
tations (10.1)

Let µ-dominant integral element of h
(πµ, Vµ) irreducible finite dimensional representation of g with highest weight µ
W · µ = orbit of µ under the action of the Weyl group.
Conv(W · µ) be the convex hull of this orbit.

Theorem 27. An integral element λ is a weight of Vµ if and only if two conditions
are satisfied:
i: λ ∈ Conv(W · µ)
ii: µ− λ = integer linear combination of roots.

Konstant multiplicity formula gives the multiplicity of λ. Example: g = sl(2,C),m-
non-negative integer = irreducible representation of sl(2,C) of dim m+ 1

SL(2,C)-acts on C2 by multiplication by g =

(
a b
c d

)
∈ SL(2,C),

(
z1
z2

)
∈ C2

g
(
z1
z2

)
=

(
az1+bz2
cz1+dz2

)
V = {all polynomial functionsf : C2 → C}
SL(2,C) acts on V by [π(g)f ] = f(g−1z)
Vm is homogenous polynomials on V of degree m
so, dimVm = m+ 1
Different produces representation (πm, Vm) of sl(2,C)
Weights of πM , VM of sl(2,C)
m−1,m−3, · · · ,−m+3,−m+1 ∈ Conve hull of {m,−m}, integral, but not weights
of Vm

So ii was not satisfied.
Lemma: Suppose (π, V ) is a finite dimensional representation of g and λ is a weight
of V and α root of g such that ⟨λ, α⟩ > 0

Let k = ⟨λ,Hα⟩ = 2 ⟨λ,α⟩
⟨α,α⟩

Then each λ− jα is a weiht of V for each integers, j, 0 ≤ j ≤ k
In part, λ− α os a weight of V

Proof. sα = {Xα, Yα, Hα} ∼= sl(2,C).
Let U = the subspae of V spanned by weight spaces with weights of the form λ− jα.
Xα, Yα shifts weights by ±α =⇒ U is sα-invariant.
Since ⟨α,Hα⟩ = 2, ⟨λ− jα,Hα⟩ = k − 2j
The weight space of V corresponding to λ − jα = eigenspace for π(Hα) inside U
corresponding to k − 2j
From the theory of finite dimensional representations of sl(2,C), when 0 ≤ j ≤ k
these π(Hα) eigenspaces are ̸= 0
Conclude: each λ− jα is a weight of V .

Proposition 55. Let µ be dominant integral. Suppose λ is dominant, λ ⪯ µ, and
µ − λ can be expressed as an integer combination of roots. Then λ is a weight of
(πµ, Vµ) - the irreducible representation of highest weight µ.

Proof. µ = λ+
∑r

j=1 kjαj ,∆ = {α1, · · · , αr}
Since λ ⪯ µ we deduce kj ≥ 0
Let P = {η = λ+

∑r
j=1 ljαj ; lj ∈ Z, 0 ≤ lj ≤ kj}

‘discrete parallelopiped’
Caution: P need not lie inside Conv(W · µ) so not every element of P must be a
weight of Vµ [book fig 10.3]
Notation: L(η) =

∑
j lj

Think of it as the taxicub distance from η to λ
Clearly L(η) ∈ Z≥0

Starting with η ∈ µ we can show that ∃η′ ∈ P such that η′ is also a weight of Vµ and
L(η′) < L(η) .
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η = λ+
∑

j ljαj

0 < ⟨
∑

j ljαj ,
∑

k lkαk⟩ =
∑

k lk⟨
∑

j ljαj , αk⟩
So there must be at least one strictly positive term.
So, there exists simple root αk such that lk > 0, ⟨

∑
j ljαj , αk⟩ > 0

Then ⟨η, αk⟩ = ⟨λ, αk⟩︸ ︷︷ ︸
≥0

+ ⟨
∑
j

ljαj , αk⟩︸ ︷︷ ︸
>0

> 0

Previous lemma; η′ = η − αk-weight of (πµ, Vµ)
We basically have l′j = lj , l

′
k = lk − 1

So distance drops by 1 and we still have a weight. Keep dropping and we see that λ
is actually a weight of πµ, Vµ

Class 22: 03/28
(πµ, Vµ)-irreducible finite-dimensional representation of g of highest weight µ.

Theorem 28. An integral element λ is a weight of Vµ if and only if these conditions
are satisfied:
i: λ ∈ Conv(W · µ)
ii: µ− λ = integer linear combination of roots

Proposition 56. Let µ be a dominant integral element. Suppose that the elemeent
λ is dominant, λ ⪯ µ and µ− λ can be expressed as an integer combination of roots.
Then λ is a weight of (πµ, Vµ)

Proof. (of the theorem)
Let V ′ ⊂ Vµ be spanned by all weigt vectors different from µ by an integer linear
combination of roots.
V ′ contains v0 [the highest weight vector], g-invariant.
Vµ irreducible =⇒ V ′ = Vµ

=⇒ every weight of Vµ satisfies ii.
If λ is a weight of Vµ so is each w · λ,w ∈W and eac w · λ ⪯ µ.
Proposition 8.44 implies:
λ ∈ Conv(W · µ)
This is the easy part. Hard part: showing λ satisfying the conditions is a weight
vector.
Conversely, suppose λ satisfies conditions i and ii.
Choose w ∈W so that λ′ = w · λ is dominant. Then λ′ ∈ Conv(W · µ)
We need to show that λ′ is integral and λ − λ′ is an integer linear combination of
roots.
W is generated by reflections sαs.
Write w as composition of reflections
Work with one reflection at a time.
λ− sα · λ = ⟨Hα, λ⟩︸ ︷︷ ︸

∈Z

α

Since λ is integral.
So, sα · λ is integral and λ− sα · λ is an integer linear combination of roots.
By inducting on the number of reflections, λ′ is integral and λ−λ′ is an integer linear
combination of roots.
So, µ− λ′ = (µ− λ) + (λ− λ′) equals integer linear combination of roots.
=⇒ λ′ satisfies condition ii and condition of the proposition.
=⇒ λ′ is a weight =⇒ λ = w−1 · λ′ is a weight.
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Casimir Element (10.2)

Let g = kC semisimple lie algebra
k lie algebra of compact group K
⟨, ⟩, which is AdK-invariant
Let {X1, · · · , Xn} be an orthonormal basis for k. The Casimir element C ∈ U(g) is:

C = −
∑
j

X2
j

Proposition 57. i: C is indpendent of the coice of the orthonormal basis for k
ii: C belongs to center of U(g).

Proof. i: Let {Y1, · · · , Yn} be another orthonormal basis for k. Tere exists orthogonal
matrix R such that Yj =

∑
k RkjXk∑

j

Y 2
j =

∑
j,k,l

RkjXkRljXl

=
∑
k,l

Rkj(R
tr
jl )XkXl

=
∑
k,l

δk,lXkXl =
∑
k

X2
k

ii: U(g) is generated by g. So it is sufficient to show that C commutes with each basis
element Xk. We use structure constant of the lie algebra:
[Xj , Xk] =

∑
l c

l
jkXl

The matrix of adXj
has lk entry cljk. So it is a skew-symmetric matrix, since ⟨, ⟩ is

AdK invariant.
Now, −[Xj , C] =

∑
k[Xj , X

2
k ] =

∑
k([Xj , Xk]Xk + Xk[Xj , Xk]) =

∑
k,l c

l
jkXlXk +∑

k,l c
l
jkXkXl =

∑
k,l c

l
jkXlXk −

∑
k,l c

l
jkXlXk = 0

Comments:
Possible to define C without reference to any basis of g, since it is basis independent.
Another practical way of defining C is:
Let {X1, · · · , Xn} be any basis for g [not of k, not necessarily orthonormal] and let
{X1, · · · , Xn} to be the dual basis [defined relative to the Killing Form, K(Xi, X

j) =
δij ].
Recall: K(X,Y ) = Tr(adX adY )
Then C =

∑
j XjX

j

Example: g = sl(2,C){
H =

(
1 0
0 −1

)
, X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)}
Orthogonal relations:

K(H,H) = tr

0 0 0
0 22 0
0 0 (−2)2

 = 8

K(X,Y ) = K(Y,X) = tr

2 ? ?
? 2 ?
? ? 0

 = 4

So, dual basis is 1
8H, 1

4Y,
1
4X

So, casimir is 1
8H

2 + 1
4XY + 1

4Y X
This is 1

4 the previous casimir.
all other pairings are zero.
Recall: X 7→ X∗ : g = kC, (X1 + iX2)

∗ = −X1 + iX2

x1, x2 ∈ k

Proposition 58 (7.18). If X ∈ gα then X∗ ∈ g−α
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Lemma: Let X ∈ gα be a unit vector. THen [X,X∗] = α

Proof. Lemma 7.22 means ⟨[X,X∗], Hα⟩ = ⟨α,Hα⟩⟨X∗, X∗⟩ = ⟨α,Hα⟩ = 2
theorem 7.19 implies [gα, g−α] = CHα

So [X,X∗] is a multiple of Hα

Looking at the previous equation, we deduce that [X,X∗] = α

Proposition 59. Let (π, V ) be a finite-dimensional irreducible representation of g of
highest weight µ. Extend it to U(g). Then π(C) = −

∑
j π(Xj)

2 = cµI
Where cµ = ⟨µ+ δ, µ+ δ⟩ − ⟨δ, δ⟩ [real constant].
Furthermore, cµ ≥ 0 and cµ = 0 only if µ = 0

Proof. Since C is in the center of U(g), π(C) : V → V is an intertwining map. Since
V is irreducible, by Schur’s lemma, this must be multiplication by a constant cµ
Hard part: finding the value of the scalar.
To find value of cµ we evaluate C on the highest weight vector vµ ∈ V
Firstly, π(C)vµ = cµvµ
Choose orthonormal basis for k as follows: {H1. · · · , Hr}-orthonormal basis for t
For each α ∈ R+ choose unit vector Xα ∈ gα
Then X∗

α is a unit vector in g−α

Consider: Yα = 1
i
√
2
(Xα +X∗

α)

Zα = 1√
2
(Xα −X∗

α)

Satisfies Y ∗
α = −Yα, Z

∗
α = −Zα

So they belong to k
Root spaces corresponding to different roots are orthogonal, aka gα⊥gβ if α ̸= β so
these vectors are orthonormal.
So, {H1, · · · , Hr, Yα, Zα} is orthonormal basis.
We use this to compute cµ
Y 2
α = − 1

2 (X
2
α +XαX

∗
α +X∗

αX +X∗2
α )

Z2
α = 1

2 (X
2
α −XαX

∗
α −X∗

αXα +X∗2
α )

So, −Y 2
α − Z2

α = XαX
∗
α +X∗

αXα = 2X∗
αXα + [Xα, X

∗
α] = 2X∗

αXα + α
So, C =

∑
α∈R+(2X∗

αXα + α)−
∑r

j=1 H
2
j

Note that Xα annihilates the highest weight vector.
So π(C)vµ =

∑
α∈R+ π(α)vµ −

∑r
j=1 π(Hj)

2vµ
=

∑
α∈R+⟨µ, α⟩vµ −

∑
j⟨µ,Hj⟩2vµ

proposition 7.14 tells us: each α ∈ it are pure imaginary. So µ ∈ it
=⇒

∑
j⟨µ,Hj⟩ = −⟨µ, µ⟩

Finish the rest later

Class 23: 04/02
{X1, · · · , Xn} orthonormal basis for k and g = kC
Then C = −

∑
j X

2
j ∈ U(g) is the casimir element.

This definition is not satisfactory since C is independent of basis.
Note, Casimir is important because it is in the center, it commutes with everything.

Proposition 60. Let (π, V ) be finite dimensional irreducible representation of g of
highest weight µ. Then π(C) = −

∑
j π(Xj)

2 = cµI
Where cµ = ⟨µ+ δ, µ+ δ⟩ − ⟨δ, δ⟩ real constant
δ = 1

2

∑
α∈R+ α .

Furtermore, cµ ≥ 0 with cµ = 0 if and nly if µ = 0

Proof. We go back to what we did later.
π(C) is some scalar cµI.
We want to compute cµ. Apply π(C)vµ = cµvµ where vµ is the highest weight vector
of V .
Choose an orthonormal basis for t ⊂ k [CSA h = tC ]
Let the basis be {H1, · · · , Hr}
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π(C)vµ =
∑

α∈R+

⟨µ, α⟩︸ ︷︷ ︸
2⟨µ,δ⟩

vµ−
r∑

j=1

⟨µ,Hj⟩2︸ ︷︷ ︸
⟨µ,µ⟩

vµ

proposition 7.14 implies for α ∈ it ⊂ h => µ ∈ it =⇒ ⟨µ,Hj⟩ ∈ iR
{H1, · · · , Hr} -orthonormal basis for t =⇒

∑
j⟨µ,Hj⟩2 = −⟨µ, µ⟩

⟨µ, µ⟩+ 2⟨µ, δ⟩ = ⟨µ+ δ, µ+ δ⟩ − ⟨δ, δ⟩
So we’re done.
Also, 2⟨µ, δ⟩ ≥ 0 and ⟨µ, µ⟩ ≥ 0 with 0 equality iff µ = 0

Infinitesimal Characters
Z(U(g)) is the center of U(g)
Lemma: Let (π, V ) be an irreducible finite dimensional representation of g. Then each
z ∈ Z(U(g)) acts on V by a scalar multiple of identity π(z) = χ(z) · Idv, χ(z) ∈ C by
schur’s lemma.
χ : Z(U(g))→ C is an algebra homomorphism.
χ(1) = 1, χ(z1 + z2) = χ(z1) + χ(z2), χ(z1z2) = χ(z1)χ(z2).

Definition 41. If (π, V ) is a reprsentation of g (not necessarily finite-dimensional or
irreducible) and χ is an algebraic homomorphism Z(U(g)) → C such that π(z)v =
χ(z)v for all z ∈ Z(U(g)) for all v ∈ V , then χ is called the infinitesimal character of
(π, V )

Complete Reducibility

Theorem 29. Every finite dimensional representation (π, V ) of a complex semisimple
lie algebra g is completely reducible (direct sum of irreducible subrepresentations)

Traditional Proof: g = kC. The group K can be chosen to be connected, simply
connected.
Then (π, V ) ‘lifts’ to a representation of K and can be given unitary structure.
Then (π, V ) is completely reducible as a representation of K (if U ⊂ V is K-invariant
subspace, then so is U⊥, V = U ⊕ U⊥ )
(π, V ) ompletely reducibleas a representation of g.
Hard part: connected simply connected compact K exists. This is very technical,
and we need analytic methods. This poses a problem when we don’t have access to
analysis eg when we are working in finite fields etc.
In the textbook there is a pure lie algebraic proof using casimir elements.
Lemma: If (π, V ) is 1-dim representation of g then π(X) = for all X ∈ g

Proof. Theorem 7.8 implies g is direct sum of simple algebras gi with dimension at
least 2. Restriction of π|gi

: gi → End(V ) ∼= C, 1-dim. kerπ|gi
̸= {0}

gi simplemeans kerπ|gi
= gi

So, π|gi
= 0

So, π = 0 on g

Lemma: Suppose (π, V ) is a finite dimensional representation of g and that W ⊂ V
is an invariant subspace of codimension 1. Then V decomposes as W ⊕ U for some
invariant subspace U of V .

Proof. Case 1: W is irreducible. If dimW = 1 then by lemma, π|W = 0,dimV = 2.
dim{A ∈ End(V );A|W = 0} = 2
It follows that π = 0 on V .
g = ⊕ simple algebras gi
dim gi ≥ 3 since each gi contains a copy of sl(2,C) which has dimension 3
So, π|gi has domain gi of dimension ≥ 3 and range 2.
So it has non-trivial kernel.
gi simple implies π|gi

= 0
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So π = 0 on g
Let U be any vector space complement of W . V︸︷︷︸

2−dim

= W︸︷︷︸
1−dim

⊕ U︸︷︷︸
1−dim

Second subcase: assume dimW > 1,W irreducible. Consider casimir element C ∈
U(g). Get π(C) acting on V .
π(C)|W is multiplication by a scalar c.
Since dimW ̸= 1 we have c ̸= 0
On the other hand, V/W is a trivial one dimensional representation.
Then {w1, · · · , wm, u}-basis for V
π(C) in this basis has matrix: 

c 0 · · · 0 ∗
0 c · · · 0 ∗
...

...
. . .

...
...

0 0 · · · c ∗
0 0 · · · 0 0


det 0 so π(C) has non-trivial kernel.
Let U = kerπ(C).
U is g-invariant. W ∩ U = {0}
So, V = W ⊕ U
Case 2: W not irreducible.
W has a non-trivial subspace W ′. Use induction on dimV .
W/W ′ is a codimension 1 invariant subspace of V/W ′

By induction, ∃ invariant complement Y/W ′ where Y is an invariant subspace of
V . W ′ is a codimension 1 invariant subspcae of Y . dimY < dimV , by induction,
Y = W ⊕ U . U -invariant 1-dimensional subpsace of Y .
Y ∩W = W ′ =⇒ U ∩W = {0} and V = W ⊕ U

Proof of Complete Reducibility
Sufficient to prove that each invariant subspace W ⊂ V has an invariant complement
U ⊂ V such that V = W ⊕ U by recursion.
Let W ⊂ V be an invariant subspace. Suppose we can find an intertwining operation
A : V →W such that A|W = non-zero multiple of identity on W .
U = kerA is invariant, U ∩W = {0}, dimU = dimV − dimW
The remainder of the proof is just construction of the operator.

Class 24, 25: 04/04, 04/09 skipped

Class 26: 04/11

Maximal Tori

Definition 42. A subgroup T of K is a torus if T is isomorphic to (S1)k for some k.
A subgroup T of K is a maximal torus if it is a torus and it is not properly contained
in any other torus of K.

Example: if K = SU(n) then T = subgroup of diagonal elements of SU(n). Then T
is a torus of dimension n− 1.
It is maximal torus because {g ∈ SU(n); gt = tg∀t ∈ T} = T . So, the centralizer of
T is T .
HW P1 hint: Start with g = C.
Back to the lecture.
If g ∈ SU(n) has off diagonal entry aij then multiplying it with diagonal tk matrix,
we see that we need aijti = aijtj from gt = tg which is not always true so it is indeed
maximal abelian.
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Proposition 61. If T is a max torus, the lie algebra t of T is a maximal commutative
subalgebra of k.
Conversely, if t is a maximal commutative subalgebra of k then the connected lie
subgroup of K with lie algebra t is a maximal torus.

Restatement: we have a bijection: maximal tori of K and maximal commutative lie
subalgebra of k
There is no bijection between tori of K and commutative subalgebra of k. We need
maximal.
If we start with a torus, its lie algebra is commutative. But if we start with a commu-
tative subalgebra we might not end up with a torus. For example, any one dimensional
subalgebra is automatically commutative. But the one-parameter subgroup generated
by that need not be compact.
key ingredient of the proof:

Proposition 62 (5.24). Suppose G ⊂ GL(n,C) is a matrix group with lie algebra g
and h is a maximal commutative subalgebra of g.
Then, the connected lie subgroup H of G with lie algebra h is closed.

Proof. If T is a maximal torus, T is commutative so t is commutative. If t is not
maximal commutative, then t ⊊ S1 where S′ is commutative.
S′ ⊆ S where S is maximal commutative.
So, t ⊂ S and thus lie subgroup with lie algebra s where S ⊃ T .
S-commutative, closed, compact.
Theorem 11.2 implies S is a torus.
So, S = T and thus s = s′ = t, t is max commutative.
This is one direction. Other direction is easy.
Conversely, if t is a maximal commutative algebra, let T ⊂ K be the connected Lie
subgroup with lie algebra t.
T is commutative, closed, compact.
Theorem 11.2 implies T is a torus. We want to show that it is a maximal torus.
If T is contained in a bigger torus S then t ⊂ s. Since t is maximal commutative, we
have t = s. Since both T and S are connected, T = S. So, T is maximal.

Theorem 30. (Torus Theorem) If K is a connected compact (matrix) lie group,
then:
i: If S and T are max tori in K, ∃x ∈ K such that T = xSx−1

ii: Every element of K is contained in some max torus.

There is often a part iii: every torus is contained in some max torus. Proof is easy:
look at lie algebra, it’s contained in some other max comm lie algebra and going back
to lie group gives us the result.
We accept the torus theorem for now. Proof needs diffgeo.
Corollary: If K is a compact connected (matrix) lie group, the exponential map
exp : k→ K is onto.

Proof. Pick x ∈ K. Choose a max torus Tx containing x.
exp : tx → Tx is onto.
So, x = exp(X), X ∈ tx ⊂ k
So, onto.

We move onto Weyl group.

Weyl Group (11.2, 11.7)

Let T ⊂ K be a max torus with lie algebra t.
The normalizer of T is:

N(T ) = {x ∈ K;xTx−1 ⊂ T}
Then T is a normal subgroup of N(T )
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Definition 43. The quotient group W = N(T )/T is called the Weyl Group of K

This is ‘same’ as the group generated by reflections sα, α ∈ R.
If x ∈ N(T ) acts on T by x · t = xtx−1 where t ∈ T
We get a map N(T )→ Aut(T ).
Also, T ⊂ ker of this map, since commutative.
So, W = N(T )/T acts on T “by conjugation”
This induces action of W on t by orthogonal linear transformation.
w ·H = Adx(H) where H ∈ t and x ∈ N(T ) is any representative of w ∈W .
W = N(T )/T → O(t)
At this point we do not know yet that this map is 1-1.

Definition 44. An element α ∈ t is a real root of g = (k)C with respect to t if α ∈ 0
and ∃X ∈ g, X ̸= 0 such that [H,X] = i⟨α,H⟩X for all H ∈ t.
For each real root α define associative real coroot: Hα = 2 α

⟨α,α⟩ ∈ t

If K is simply connected, g = kC is semisimple (proposition 7.7).
In general, k = z⊕ kss where z is the center of k and (kss)C is semisimple.

The results of chapter 7 apply to real roots except one exception.
Real roots α do not span t when z ̸= {0}.
Instead, t = z⊕ R-span of roots.

Proposition 63. For each real root α ∈ R there is an x ∈ N(T ) such that Adx(Hα) =
−Hα and Adx(H) = H for all H ∈ t such that ⟨α,H⟩ = 0.
Thus, the adjoint action of x on t is the reflection sα.

Motivation for the Proof
Suppose K = SU(2)

t =

(
it 0
0 −it

)
x =

(
0 1
−1 0

)
∈ SU(2)

x

(
it 0
0 −it

)
x−1 =

(
−it 0
0 it

)
exp

(
0 s
−s 0

)
=

(
cos s sin s
− sin s cos s

)
(

0 s
−s 0

)
∈ su(2),

(
0 s
−s 0

)2

=

(
−s2 0
0 −s2

)
s = π

2 : exp

(
0 π

2
−π

2 0

)
= x

−x works too.

exp

(
0 π

2
−π

2 0

)
also works

For K = SU(2)/{±I}
Now, for the proof.

Proof. Choose Xα, Yα as in theorem 7.19 with Yα = X∗
α (So that Xα, Yα, [Xα, Yα] =

−iHα) is a lie algebra isomorphic to sl(2,C).
Then (Xα − Yα)

∗ = −(Xα − Yα) =⇒ Xα − Yα ∈ k
Define x ∈ K by x = exp(π2 (Xα − Yα))
Then Adx(H) = exp(π2 (adXα

− adYα
))(H) for all H ∈ t.

If ⟨α,H⟩ = 0 then (adXα
− adYα

)(H) = 0 and Adx(H) = H
adXα − adYα has eigenvectors Xα − Yα, Xα + Yα −Hα, Xα + Yα +Hα

with eigenvalues 0, 2i,−2i.
Textbook is wrong here. Source of problem is using the same notation for real coroot.
Adx(Hα) = exp(π2 (adXα

− adYα
))( 12 (Xα + Yα +Hα)− 1

2 (Xα + Yα −Hα))
= 1

2e
−πi(Xα + Yα +Hα)− 1

2e
−πi(Xα + Yα −Hα) = −1

2 (· · · ) +
1
2 (· · · ) = −Hα

Centralizer of T :
Z(T ) = {x ∈ K : xt = tx for all t ∈ T}
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Theorem 31. If T is a max torus in K and K is connected then Z(T ) = T

N(T )/T → O(t)
this theorem tells us that this map is 1-1.

Class 27: 04/16
Recap:

Theorem 32 (Torus Theorem). If K is connected compact (matrix) lie group,

1. If S and T are maximal tori in K there exists x ∈ K such that T = xSx−1

2. Every element of K is contained in some maximal torus.

Weyl Group

N(T ) = {x ∈ K;xTx−1 ⊂ T}
normalizer of T in K
T -normal subgroup of N(T )
W = N(T )/T acts on T by conjugation
Acts on t by Ad
Centralizer of T :
Z(T ) = {x ∈ K;xt = tx∀t ∈ T}

Theorem 33. If K is compact, connected, T -max torus in K then Z(T ) = T

This theorem follows from lemma with S = T :
Lemma: Suppose S is a connected commutative subgroup of K. If x ∈ Z(S), then
there exists max torus S′ containing S and x
HW Review:
1: g-reductive, not semisimple.
Want a representation g that is not completely reducible.
Consider first g = C = (Lie(S1))C
representation of C: V , choice linear transformation A : V → V
z0 ∈ C, z0 ̸= 0 acts on V by A
Then each zz0 ∈ C acts on V by zA

Take V = C2 and A by matrix with nontrivial Jordan block, A =

(
1 1
0 1

)
.

z ∈ C acts on C2 by multiplication by

(
z z
0 z

)
Since this is not diagonalizeable this representation is not completely reducible.
The only invariant 1-dim subspace is {

(∗
0

)
}

This takes care of the case of one dimensional.
For general case, g is not semisimple so it must have non-trivial center.
So, g = z⊕ gss = C⊕ g′

Note, z might have dimension > 1. But z must be non-trivial, so we can take a one
dimensional subspace out of z
Now set g′ acts on C2 by 0
10: Let (π, V ) be finite dimensional representation. Let (π∗, V ∗) be the dual.
Let {v1, · · · , vk}-basis of V consisting of weight vectors.
Let {v∗1 , · · · , v∗n} dual basis of V ∗

So v∗i (vj) = δij
If vi has weight λi then v∗i has weight −λi

(π∗(X)v∗)(v)
def
= −v∗(π(X)v)

Last part: V ∗ ≃ V under certain conditions.
V =

⊕
Vi, V :-irreducible

V ∗ =
⊕

V ∗
i =

⊕
Vi

Inner products do not work well!
Inner product gives us V ≃ V ∗ by v 7→ ⟨v,−⟩
But this is not complex-linear, it is conjugate-linear!
Sometimes we can get away with conjugate linear maps. If we combine two conjugate
linear maps then we get a general linear map.
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Back to class:
N(T ) is the normalizer of the maximal torus.
Since T is normal subgroup of N(T ) we can construct W = N(T )/T . We call this
the weyl group.
We prove that this is the same as the Weyl group generated by reflection.
Note that W acts on T by conjugation and thus acts on t by Ad
Note that N(T )/T → O(t)
We claim that the elements that cause the trivial transformations of t come from
Z(T ).
Once we establish Z(T ) = T we know that N(T )/T → O(t) is one to one.
That would allow us to embed N(T )/T to O(t)
Torus theorem is key here.
For that reason, all results today requires us to have K connected compact.
We can construct counterexamples by product of connected compact and finite groups.
Recall:
Lemma: Suppose S is a connected commutative subgroup of K. If x ∈ Z(S), then
there exists max torus S′ containing S and x

Proof. Let x ∈ Z(S), B ⊂ K be subgroup generated by S and x.
Let B ⊂ K be closure of B in K
Will show that there exists b ∈ B such that the subgroup generated by b is dense in
B.
Then torus theorem =⇒ b ∈ S1-max torus. Then
S′ ⊃ B ⊃ S, x. This requires K to be connected.
Now we prove that b exists.
Let B0 be the identity component of B
B,B0 are both compact and commutative.
Theorem 11.2 implies B0 is a torus.
B has finitely many connected components
Thus the quotient group B/B0 is finite
Each y ∈ B is limit of some sequence ofform xnksk where sk ∈ S, nk ∈ Z
For k large enough xnksk will be in the same connected component of B as y
S connected means xnk is in the same connected component
Conclude: coset [y] = [xnk ] in B/B0 are the same
Thus, [x] generates B/B0

Which means B/B0 is finite cyclic and thus ≈ Z/mZ
Then xm ∈ B0

Choose element t ∈ B0 such that the subgroup generated by t is dense in B0

Such an element exists by proposition 11.4.
Choose g ∈ B0 so that gm = x−mt
We can choose since exp map on B0 isonto.
So, x−mt = exp(?)
Take g = exp(?/m)
Set b = gx so that b is in the same component of B as x
Since B is commutative,
bm = gmxm = t
elements of the form bnm = tn are dense in B0

B/B0 ae cyclic with generator [x]
Thus each component of B can be realized as xkB0 for some power k
Thus, elements of the form bnm+k = xkgktn are in xkB0

Conclude: subgroup generated by b is dense in B

Lemma Suppose C = fundamental Weyl Chamber relative to ∆
Then C = {H ∈ R-span of R; ⟨α,H⟩ > 0∀α ∈ ∆}
And suppose x ∈ N(T ) such that Adx(C) ⊂ C. Then x ∈ T
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Proof. The action of Adx on t is trivial on the center of k and permutes the roots.
Thus, Adx as a linear transformation is uniquely determined by its effect on R.
Thus, the group of transformation generated by Adx is finite.
Pick any H0 ∈ C
H = 1

order of Adx

∑order of Adx

k=1 (Adx)
k(H0)

Then H is Adx invariant
Also, H ∈ C because it is convex.
Then x commutes with every member of S = {exp(tH); t ∈ R}
Lemma 11.37 implies ∃ max torus S′ containing x and S
if x /∈ T, S′ ̸= T
So, ∃X ∈ k such that X ∈ s′, lie algebra of S′

and X /∈ t
We pause here. Continue Next lecture.

Lemma Suppose C is the fundamental Weyl chamber with respect to ∆

C = {H ∈ R-span of R; ⟨α,H⟩ > 0∀α ∈ ∆}

And suppose x ∈ N(T ) is such that Adx(C) ⊂ C
Then x ∈ T

Proof. Last time: Found and Adx invariant element H ∈ C
Then x commute with every member of
S = {exp(tH); t ∈ R}
By lemma 11.37, there exists max torus S′ containing x and S
If x /∈ T, S′ ̸= T, ∃X ∈ k such that X ∈ s′ - lie algebra of S′ and X /∈ t
Then X commutes with every element of S
Thus X commutes with H
g = h⊕

⊕
root spaces.

Decompose X ∈ k ⊂ g accordingly.
We have [H,X] = 0
⟨α,H⟩ ̸= 0∀α ∈ R
because H ∈ C
Thus, X ∈ k ∩ h = t
Contradicts X /∈ t

Theorem 34. K -connected, the quotient group N(T )/ acts on t effectively and this
action is generated by the reflections sα, α ∈ R
Thus the two descroptions of the Weyl group W lead to isomorphic groups.

Proof. Z(T ) = T implies:
Ad : N(T )/T → O(t) is 1-1.
Then, we can think of N(T )/T as a subgroup of O(t)
Let W ′ ⊂ N(T )/T be the subgroup generated by reflections sα, α ∈ R
Let w ∈ N(T )/T,C-fundamental Weyl chamber
w(C)- another weyl chamber
by proposition 8.23 ∃w′ ∈W ′ such that w′w(c) = C
by lemma w′w = 1
so w = (w′)−1 = W ′

So W = W ′

Theorem 35. If s, t ∈ T, x ∈ K such that t = xsx−1 then ∃y ∈ N(T ) such that
t = ysy−1
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Corollary if f is a cont Weyl-invariant function on T then f extends uniquely to a
continuous class function on K
K-connected
So,
{continuous W -invariant functions on T} = {continuous class fuctions on K }
for ← restriction to T
Gap in the book proof:
{xn} → x

limn→∞ F (xn)
?
= F (x) Does this limit exist???

book: each sequence {xn} has a subsequence xnk
such that limk→∞ F (xnk

)→ F (x)
limn→∞ F (xn) exists ⇐⇒ limn→∞F (xn) = limn→∞F (xn)

Bits of ch12, ch13

K-compact lie group
T -max torus

Definition 45. Let Γ be the subset of t given by Γ = {H ∈ t; e2πH = I}
the kernel of the exponential map for t

Recall real roots.
An element α ∈ t is a real root of kC with respect to t if α ̸= 0 and ∃X ∈ kC, X ̸= 0
such that [H,X] = i⟨α,H⟩X∀H ∈ t
Real coroot: Hα = 2 α

⟨α,α⟩ ∈ t

Definition 46. The coroot lattice denoted I is the set of all Z-linear combination of
real coroots Hα,∈ R

Γ is a lattice, and I is a sublattice.
Corollary 13.18 The fundamental group of K is isomorphic to the quotient group Γ/I
In particular, the fundamental group of K is always abelian.

Definition 47. Let (Π, V ) be a finite dim representation ofK and π be the associated
representation of kC. Element λ ∈ t is called a real weight of V if ∃v ∈ V, v ̸= 0 such
that π(H)v = i⟨λ,H⟩v∀H ∈ t (∗)
The weight space with weight λ is the set of all v ∈ V satisfying (∗)
and the multiplicity of λ is the dim of corresponding weight space.

Proposition 64. If (Π, V ) is a finite-dim representation of K and V =
⊕

weight
spaces with real weights λ
The real weights for Π and their multiplicites are invariant under the action of the
Weyl group.

Recall: we hae two lattices.
I = {Z-comb of Hα}
and I ⊂ Γ = kernel of exp.
Introduce dual lattices:
Γ∨ ⊂ I∨

Definition 48. An element λ ∈ t is analytically integral element if ⟨λ,H⟩ ∈ Z∀H ∈ Γ
(dual to Γ )

AN element λ ∈ t is algebraically integral element if ⟨λ,H⟩ = 2 ⟨λ,α⟩
⟨α,α⟩ ∈ Z for all real

roots α (dual to I )
An element λ ∈ t is dominant if ⟨λ, α⟩ ≥ 0∀α ∈ ∆.
Write ∆ = {α1, · · · , αr} and let λ, µ ∈ t. We say that µ is higher than λ if µ − λ =
c1α1 + · · ·+ crαr and each cj ≥ 0
We write µ ⪰ λ and λ ⪯ µ

Proposition 65 (12.5). Let (Σ, V ) be a representation of K and let σ be the rep-
resentation of k. If λ ∈ t is a real weight of σ then λ is an analytically integral
element.
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Proof. If v is a weight vector with weight λ and H ∈ Γ,Σ(e2πH)v = Σ(I)v = v
Σ(e2πH) = e2πσ(H)v = e2πi⟨λ,H⟩v
So e2πi⟨λ,H⟩ = 1 and ⟨λ,H⟩ ∈ Z

Proposition 66 (12.7). i: The lattice of analytically integral elements is invariant
under the action of the Weyl group.
ii: Every analytically integral element is algebraic integral.
iii: Every real root is analytically integral

Theorem 36. (12.6) (Theorem of highest weight)
If K is connected compact (matrix) lie group and T is a max torus in K then:
i: Every irreducible representation of K has a highest weight.
ii: Two irreducible representation of K with the same highest weight are isomorphic
iii: The highest weight of each irreducible representation of K is dominant and analti-
cally integral.
iv: Of µ is dominant analytic integral element there exists an irreducible representa-
tion of K with highest weight µ

Corollary IfK-connected comp Lie group such that k is trivial (so g = kC is semisimple)
T -max torus, then a finite dim representation (π, V ) of kC lift to a rep of K if and
only if all weights of V are analytically integral.
K is simply connected if and only if Γ = I if and only if Γ∨ = I∨

If and only if each algebriacally integral element is analytically integral.

Class 29: 04/23
Classifying all irreducible representation of sl(2,C)
Let g = sl(2,C)

H =

(
1 0
0 −1

)
, E =

(
0 1
0 0

)
, F =

(
0 0
1 0

)
[H,E] = 2E, [H,F ] = −2F, [E,F ] = H
Goal: classify all irreducible representation (π, V ) of sl(2,C) [including ∞-dim] sub-
ject to the following assumption:
There exists λ ∈ C such that the λ-eigenspace for H in V has dim 1
π(H)v0 = λv0 for some v0 ∈ V, v0 ̸= 0, λ ∈ C
and ∀v ∈ V, π(H)v = λv means v is a scalar multiple of v0
Lemma: Let v ∈ V be an eigenvector for H with eigenvalue λ.
Then, π(E)v =∈ V is 0 or egv with egv λ+ 2
π(F )v ∈ V is 0 or egv with egv λ− 2
v0 egv with egv λ
Define vk = (π(E))kv0, k = 1, 2, 3, · · ·
v−k = (π(F ))kv0
Corollary: Each vk ∈ V is either 0 or eigenvector with eigenvalue λ+ 2k
Let Ω be the casimir element.
Ω = H2 + 2EF + 2FE ∈ Z(U(sl(2,C))) - center of univ. enveloping algeba.
Lemma: Let v0 ∈ V be an eigenvector forH with eigenvalue λ such that dimker(π(H)−
λ) = 1.
Then π(Ω)v0 = µv0 for some µ ∈ C

Proof. π(Ω)v0 = π(H)2v0 + 2π(E)π(F )v0 + 2π(F )π(E)v0
Note that E shifts up by 2 and F shifts down by 2
So, the two second terms have eigenvalue λ or are 0
π(H)2v0 = λ2v0
All must be proportional to v0
So, it is indeed µv0

Corollary: Under the assumption of the lemma, π(Ω)vk = µvk∀k ∈ Z

58



Proof. π(Ω)vk = π(Ω)π(E)kv0 if k ≥ 0
= π(E)kπ(Ω)v0
= µπ(E)kv0 = µvk
Same for k ≤ 0

Wants to show: V =
⊕

k∈Z Cvk
Since V is irreducible it is sufficient to show:

V0
def
=

⊕
k∈Z Cvk is sl(2,C) invariant

Obvious: V0 is π(H)-invariant.
Lemma: Let v0 be an eigenvector for H with eigenvalue λ.
Define V0 =

⊕
k∈Z Cvk, suppπ(Ω)v0 = µv0 for some µ ∈ C

Then the set of non-zero vk’s form a basis for V0 with the following relations:
π(H)vk = (λ+ 2k)vk, k ∈ Z
π(E)vk = vk+1 if k ≥ 0
π(F )vk = vk−1 if k ≤ 0
π(E)vk = 1

4

(
µ− (λ+ 2k + 2)2 + 2(λ+ 2k + 2)

)
vk+1, k < 0

π(F )vk = 1
4

(
µ− (λ+ 2k − 2)2 − 2(λ+ 2k − 2)

)
vk−1 if k > 0

In part, V0 is sl(2,C)-invariant and all non-trivial H-eigenspaces of V0 are 1-dim

Proof. π(Ω)v = µv ∀v ∈ V0

Ω = H2 + 2EF + 2FE = H2 + 2H + 4FE = H2 − 2H + 4EF
Suppose uν ∈ V0 is such that π(H)uν = νuν

π(E)π(F )uν = 1
4 (π(Ω)− π(H)2 + 2π(H))uν = 1

4 (µ− ν2 + 2ν)ν
π(F )π(E)uν = 1

4 (π(Ω)− π(H)2 − 2π(H))uν = 1
4 (µ− ν2 − 2ν)uν

If k < 0 take uν = vk+1, ν = λ+ 2k + 2
If k > 0 take uν = vk−1, ν = λ+ 2k − 2

Corollary: Let V be an irreducible sl(2,C)-mod. Then TFAE:
i: ∃λ ∈ C such that dimker(π(H)− λ) = 1
ii: ∃v0 ∈ V, v0 ̸= 0 such that π(H)v0 = λv0, π(Ω)v0 = µv0 for some λ, µ ∈ C

Proposition 67. Let V be an irreducible sl(2,C)-mod such that one of the two
equivalent condition of the above corollary is satisfied. Then V =

⊕
weight spaces.

All weight spaces of V are 1-dim. The weights of V are of the form λ + 2k with k
ranging over ‘an interval of integers’
Z ∩ [a, b],Z ∩ [a,∞),Z ∩ (−∞, b],Z
Moreover, ∃µ ∈ C such that π(Ω)v = µv for all v ∈ V

Classification of sl(2,C)-modules
Start with the Z ∩ [a, b] case.

Proposition 68. Let V be an irreducible sl(2,C)-mod of dimension d+ 1.
Then V has basis {v0, · · · , vd} such that π(H)vk = (−d+ 2k)vk, 0 ≤ k ≤ d
π(E)vk = vk+1, 0 ≤ k < d, π(E)vd = 0
π(F )vk = k(d+ 1− k)vk−1, 0 < k ≤ d, π(F )v0 = 0
π(Ω)v = d(d+ 2)︸ ︷︷ ︸

=µ

v, ∀v ∈ V

And V is determined upto isom by its dimension.

Proof. π(Ω) commutes with all π(X), X ∈ sl(2,C)
Schur’s lemma implies π(Ω) acts by multiplication by a scalar µ ∈ C
Note here we use finite dimensionality, otherwise Schur’s lemma doesn’t apply.
In infinite dimension, we instead might use Dixmier’s lemma.
π(H) has at least one eigenvalue (because V is finite-dimensional).
Let λ ∈ C be an eigenvalue for π(H) with the least real part. Let v0 be an eigenvector.
v0 ̸= 0, π(H)v0 = λv0, π(F )v0 = 0.
Let vk = (π(E))kv0, k = 1, 2, 3, · · · form a basis for V
dimV = d+1, so {v0, v1, · · · , vd} is a basis for V such that π(E)vk = vk+1, 0 ≤ k < d
and π(E)vd = 0
π(H)vk = (λ+ 2k)vk, 0 ≤ k ≤ d
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π(F )v0 = 0
µv0 = π(Ω)v0 = (π(H)2 − 2π(H) + 4π(E)π(F )v0) = (λ2 − 2λ)v0 = λ(λ− 2)v0
=⇒ µ = λ(λ− 2)
π(E)v0 = 0 =⇒
µvd = π(Ω)vd = (π(H)2 + 2π(H) + 4π(F )π(E))vd = ((λ + 2d)2 + 2(λ + 2d))vd =
(λ+ 2d)(λ+ 2d+ 2)vd
µ = λ(λ− 2) = (λ+ 2d)(λ+ 2d+ 2)
=⇒ λ = −d, µ = d(d+ 2)
π(F )vk = k(d+ 1− k)vk−1, 0 < k ≤ d
follows from previous lemma.
1
4 (µ− (λ+ 2k − 2)2 − 2(λ+ 2k − 2))
indecomposable means not writable as ⊕ two subrepresentations.
Every finite-dim indecomposible representation of sl(2,C) is irreducible.

Class 30: 04/25
Last time:
An irreducible representation (π, V ) of sl(2,C) has weights λ+ 2k;
k ∈ Z ∩ [a, b] [finite dim V]

k ∈ Z ∩ [a,∞), lowest weight mods

k ∈ Z ∩ (−∞, b], highest weight mods

}
Verma mods

k ∈ Z irreducible principal series modules

Proposition 69. Let V be an irreducible ∞-dim lowest weight sl(2,C) - mod.
Then V has a basis ofH-eigenvectors {v0, v1, v2, · · · } and a λ ∈ C, λ ̸= 0,−1,−2,−3, · · ·
such that:
π(H)vk = (λ+ 2k)vk k ≥ 0
π(E)vk = vk+1 k ≥ 0
π(F )vk = −k(λ+ k − 1)vk−1 k > 0
π(F )v0 = 0
Moreover, π(Ω) = λ(λ − 2)v∀v ∈ V and V is determined upto isomorphism by its
lowest weight λ

Proof. Let λ ∈ C be an eigenvalue for π(H) with the least real part, v0 ∈ V, v0 ̸= 0
corresponding eigenvector.
Then π(F )v0
Define vk = (π(E))kv0 for k = 1, 2, 3, · · ·
{v0, v1, v2, · · · } - span invariant subspace of V
Since V is irreducible, they span V
different eigenvalues implies they are linearly independent.
So, {v0, v1, v2, · · · } is a basis.
π(Ω)v0 = (π(H)2 − 2π(H) + 4π(E)π(F ))v0 = (λ2 − 2λ)v0 = λ(λ− 2)︸ ︷︷ ︸

=µ

v0

π(F )vk = 1
4 (µ− (λ+ 2l − 2)2 − 2(λ+ 2k − 2)) = · · · = −k(λ+ k − 1)

Remains to show: λ ̸= 0,−1,−2, · · ·
If λ ∈ Z, λ ≤ 0 then λ(F )vk = 0 for k = −λ+ 1
Since if we write v0, v1, · · · in a line, E jumps from vj to vj+1 and F jumps from vj
to vj−1 but jumps to 0 for j = k
Then vk, vk+1, vk+1, · · · span sl(2,C) invariant subspace which gives us a contradiction.
Note that π(H)-invariant subspace is a span of some vk’s.

Proposition 70. Let V be an irreducible ∞-dim highest weight sl(2,C)-module.
Then V has a basis of H-eigenvectors:
{v0, v1, v2, · · · } and a λ ∈ C, λ ̸= 0, 1, 2, 3, · · · such that:
π(H)vk = (λ− 2k)vk for k ≥ 0
π(F )vk = vk+1 for k ≥ 0
π(E)vk = k(λ− k + 1)vk−1 for k > 0 and π(E)v0 = 0
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Proof. Essentially Vk = V−k so argument is the same.
π(Ω)v = λ(λ+ 2)v,∀v ∈ V
V is determined upto isomorphism by its highest weight λ

Proposition 71. Let V be an irreducible∞-dim rep of sl(2,C) that is neither highest
nor lowest weight module. Let v0 ∈ V be an eigenvector for π(H) with eigenvalue
λ, then ∃µ ∈ C such that π(Ω)v = µv∀v ∈ V and V as a basis of H-eigenvctors
{· · · , v−2, v−1, v0, v1, v2, · · · } such that:
π(H)vk = (λ+ 2k)vk
π(E)vk = vk if k ≥ 0
π(F )vk = vk−1 if k ≤ 0
π(E)vk = 1

4 (µ− (λ+ 2k + 1)2 + 1)vk+1 if k < 0
π(F )vk = 1

4 (µ− (λ+ 2k − 1)2 + 1)vk−1 if k > 0
The constants λ, µ ∈ C are subject to the constraint:
λ±
√
µ+ 1 ̸= odd integer

The constraint comes from the fact that we don’t want the weird coefficients to be 0
Denote such sl(2,C)-mod P (λ, µ). Then,
P (λ, µ) ≃ P (λ′, µ′) if and only if:
µ = µ′ and λ′ = λ+ 2k for some k ∈ Z

Proof. Note: V -irreducible if and only if:
µ− (λ+ 2k − 1)2 + 1 ̸= 0 and µ− (λ+ 2k + 1)2 + 1 ̸= 0
Which gives us the constraint.
If one of them are zero, then we get invariant subspace which contradicts irreducibility.

And check everything else as well, like [π(E), π(F )]
?
= π(H)

So we finally have all irreducible reps of sl(2,C)

Dixmier’s Lemma

Schur’s Lemma is heavily used in representation theory, but it relies on the vector
space being finite dimensional, since we need eigenvalues and eigenvectors.
When we deal with infinite dimensional space and want to use Schur’s Lemma, we
have an alternative called Dixmier’s Lemma.
Drawback is: Vector space needs to have countable dimension.
Lecture note Page 100:
Lemma: Let V be a countable-dimensional vector space /C. If T ∈ End(V ) then
∃c ∈ C such that T − c IdV is not invertible on V .

Proof. Suppose such a c doesn’t exist.
Then T − cI is invertible for all c ∈ C.
Then polynomial P (T )-invertible for all polynomials P ∈ C[x], P ̸= 0 by FTA.
If R = P/Q rational function with P,Q ∈ C[x] we can define R(T ) = P (T ) · (Q(T ))−1

This rule defines a map C(x)→ End(V )
If v ∈ V, v ̸= 0 and R ∈ C(x), R ̸= 0 then R(T )v ̸= 0
Thus, the map C(x)︸ ︷︷ ︸

Uncountable dim

→ V︸︷︷︸
Countable dim

given by R 7→ R(T )v is 1-1.

Which is a contradiction.

Example:
Let V =

⊕
Cen

Where {en}n∈Z is basis. Direct sum of one dimensional subspace.
We are allowed to have only finitely many nonzero elements.
Define T : V → V to be the shift operator: T (ej) = ej+1

Then T − cI is not invertible for all c ̸= 0 in C.
Note that ker(T − cI) = 0 so there are no eigenvectors.
Im(T − cI) ⊊ V for all c ∈ C×

For example, for c = 1 we have:
Im(T − I) = {v =

∑
n anvn;

∑
n an = 0}
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Definition 49. Let V be a vector space over C and S ⊂ End(V ) a subset.
Then S acts irreducibly on V if whenever W ⊂ V is a subspace such that SW ⊂ W
then W = V or W = {0}

Dixmier’s Lemma: Suppose V is a vector space over C of countable dimensions and
that S ⊂ End(V ) acts irreducibly. If T ⊂ End(V ) commutes with every element of
S, then T is a scalar multiple of the identity operator.

Proof. ∃c ∈ C such that T − cI is not invertible.
Observe that ker(T − cI) and Im(T − cI) are S-invariant.
Thus, each of these are {0} or {V } by irreducibility.
If ker = 0 and Im is V then T − cI is invertible. But this is impossible.
Therefore, we must have ker = V . So, T − cI is identically 0
Therefore, T = c Idv
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