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Introduction

Let u = u(x, t) where x = (x1, x2, x3) ∈ R3 (or any Rn ) and t ∈ [0,∞)
Here, x denotes position, t denotes time.
u denotes a kind of density, which is amount of stuff

volume for some measure of stuff.
It is usually a good habit to keep track of the units.
Now, u(x, t) denotes density.
Let Ω be an arbitrary subset in the domain.
Then, the amount of stuff in Ω at time t is given by∫

Ω

u(x, t) dx

And the rate of change of stuff in Ω is given by

d

dt

∫
Ω

u(x, t) dx

=

∫
Ω

d

dt
u(x, t) dx =

∫
Ω

ut(x, t) dx

We can look at the rate of change in other ways as well. It mainly depends on two
things.
Firstly, it depends on the stuff that comes out of or goes in through the boundary of
Ω, namely ∂Ω. This is the flux accross ∂Ω.
Flux accros ∂Ω :
[Insert the flux diagram here]

F⃗ = (F (1)(x1, x2, x3, t), F
(2), F (3))

F⃗ : R3 × [0,∞) → R3

This F⃗ denotes the amount of stuff that leaves.
Let N⃗ be the normal vector. F⃗ · N⃗ > 0 ⇐⇒ stuff leaves Ω.
F⃗ · N⃗ has the unit of Amount/Area

time
This contributes,

−
∫
∂Ω

F⃗ · N⃗ dS = −
∫
Ω

div F⃗ dx

Where we have used divergence theorem. Recall that, div F⃗ = ∇ · F⃗ =
∂F (1)

∂x1
+

∂F (2)

∂x2
+
∂F (3)

∂x3
Second contribution comes from sources and sinks inside Ω. We calculate that by

f = f(x, t). This has unit amount/volume
time . f(x, t) is scalar valued.

So, this contributes ∫
Ω

f(x, t) dx

This tells us,
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∫
Ω

ut(x, t) dx = −
∫
Ω

div F⃗ dx+

∫
Ω

f(x, t) dx

=⇒
∫
Ω

(ut + div F⃗ − f) dx = 0

Since this is true for arbitrary Ω, we have,

ut + div F⃗ = f

Which is a differential equation. This is a very fundamental differential equation,
since our ‘stuff’ can be anything.
We see some examples:

• Transport (Convection). Given velocity v⃗(x, t), u is transported (or “con-

vected”) by v⃗. Then we have F⃗ (x, t) = u(x, t)v⃗(x, t). This gives us the dif-
ferential equation ut + div(uv⃗) = f where v⃗, f are given. This is a first order
PDE.

• Diffusion Process: Stuff moves from high concentration area to low concentra-
tion area. This gives us, F⃗ = −k∇u = −kDu where k > 0 is the diffusion
coefficient, a constant. Recall that ∇u = (ux1 , ux2 , ux3). So we have the PDE
ut + div(−k∇u) = f . We can write this using the laplacian: ut = k∆u + f or
ut = k∇2u. This is the heat equation or the diffusion equation. If u is inde-
pendent of time, in other words u is at equilibrium, then ut = 0 and so we have
the equation −k∆u = f . This is called Poisson’s equation. If f ≡ 0 this implies
∆u = 0 which is called Laplace’s equation. Solutions of Laplace’s equations are
called harmonic.

• When F⃗ depends only on u, or in other words F⃗ = F⃗ (u) then we have the PDE

ut + div F⃗ (u) = f . This is a conservation law.

Note the use of the word order.

Definition 1. Order of a PDE is the highest derivative in the PDE.

Definition 2. Laplacian: The laplacian of u is ∆u or ∇2u and it equals ux1x1
+

ux2x2 + ux3x3 .

Recall that gradiant of u is given by ∇u =
(

∂u
∂x1

, ∂u
∂x2

, ∂u
∂x3

)
and so divergence of

gradiant gives us the laplacian.

Class 2: 01/10

Multi-Index Notation

Definition 3. Multi Index: α is an n multi-index if α is an n-tuple of non-negative
integers. So α = (α1, . . . , αn).

Now, given u : Rn → R, given α, we define |α| =
n∑

j=1

αj

We finally define Dαu.

Dαu =
∂|α|u

∂α1x1 . . . ∂αnxn

Example: Suppose n = 3 and α = (2, 0, 3).

Then |α| = 5 and Dαu =
∂5u

∂2x1∂3x3
= ux1x1x3x3x3
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Linear/Nonlinear PDE

Definition 4. A PDE is N th order linear if it can be written in the form:∑
|α|≤N

aα(x)Dαu = f(x)

if f ≡ 0 the PDE is homogeneous.
Examples: ∆u = 0,∆u = f, ut = k∆u, utt − c2∆u = f [wave equation].

Otherwise, the PDE is non-linear. But there are “degrees” of nonlinearity.

Definition 5. A PDE is N th order semilinear if it can be written in the form∑
|α|=N

aα(x)Dαu+ a0(x, u,Du⃗ . . . ,DN−1u) = 0

Examples: ∆u = u3, ut = ∆u+ |∇u|2

Definition 6. A PDE is N th order quasi-linear if it can be written in the form∑
|α|=N

aα(x, u,Du, . . . ,DN−1u)Dαu+ a0(x, u,Du, · · · ,DN−1u) = 0

Example: The minimal surface equation.

∇ ·

(
∇u√

1 + |∇u|2

)
= 0

n∑
i,j=1

(
(1 + |∇u|2)δij − uxi

uxj

(1 + |∇u|2) 3
2

)
uxixj

= 0

Definition 7. Otherwise the PDE is fully nonlinear. The order is the highest order
derivative that appears.

Examples: |∇u| = h(x) [Eikonal equation], det(D2u) = h(x) where D2u is the Hessian
Matrix [Monge-Ampere equation]

In 2d, this is det

(
ux1x1

ux1x2

ux1x2
ux2x2

)
= h

Scalar PDE vs Systems

Suppose u : Rn → Rk and we have the PDE ∆u = ∇uV (u) where V : Rk → R
Here, ∆u = (∆u1, . . . ,∆uk)
Example: Navier-Stokes PDE

ut + (u · ∇)u−∆u = ∇p

div(u) = 0

Here, u : R3 × [0, T ) → R3 and (u · ∇)u = (u · ∇u1, u · ∇u2, u · ∇u3)

Solving the Transport Equation

Recall the transport equation

ut +∇ · (uv⃗) = 0

Where v⃗ is the given velocity. We consider the special case where v⃗ is constant.
Note that ∇ · (uv⃗) = ∇u · v⃗ + u∇ · v⃗ . If v⃗ = v⃗0 we have ∇ · (uv⃗) = ∇u · v⃗0
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This gives us the equation of “simple transport”, which is first order linear. We
specify u(x, 0) = g(x), so g : Rn → R.
Idea: Rephrase PDE as a directional derivative, aka an ODE
Remember that u = u(x, t)

So our equation is essentially (ux1 , ux2 , . . . , uxn , ut) · (v
(1)
0 , . . . , v

(n)
0 , 1) = 0

So, rate of change along the diretion (v⃗0, 1) is 0.
Therefore, u is constant along lines in Rn+1 with tangent (v⃗0, 1).
[Insert Picture if line here]
Parametric description of these lines:
For any x0 ∈ Rn we have, (x, t) = γx0(t) = (x⃗0, 0) + t(v⃗0, 1)
From the rate of change argument, for (x, t) in this line, u(x, t) = u(x0, 0) = g(x0).
x = x0+ tv0 which implies x0 = x− tv0. Therefore, the solution is u(x, t) = g(x− tv0)
We can check the solution using the chain rule.

ut =

n∑
j=1

gxj (x⃗− tv⃗0)(−v(j)0 ) = −v⃗0 · ∇g(x⃗− tv⃗0 = −v⃗0 · ∇u(x, t))

=⇒ ut + v⃗0 · ∇u = 0

This is the simplest of Method of Characteristics, which is convering a PDE into a
system of ODEs.

Class 3: 01/12

Laplace’s Equation and Poisson’s Equation

∆u = ux1x1 + · · ·+ uxnxn = 0
∆u = f
There are lots of harmonic functions.

• Any linear function
∑n

i=1 cixi

• When n = 2, the Real and Imaginary parts of analytic functions. If f(z) is
analytic, we can set f(z) = ℜf(z) + iℑf(z) = u(x, y) + iv(x, y). Cauchy-
Riemann equations give us ux = vy, uy = −vx so by differentiating them we
get uxx = vxy, uyy = −vxy. Therefore ∆v = 0. Example: ez = ex+iy =
ex cos y + iex sin y

• We can use seperation of variables to find harmonic: u(x, y) = f(x)g(y), ∆u =

0 ⇐⇒ f ′′(x)g(y) + f(x)g′′(y) = 0 thus we have f ′′(x)
f(x) = − g′′(y)

g(y) . Since this is a

function of x and y seperately it must be constant, so we have f ′′(x)
f(x) = − g′′(y)

g(y) =

λ. If we have λ > 0 we see f(x) = e±
√
λx and g(y) = cos(

√
−λy) or sin(

√
−λy)

• Ansatz (what even is this): we can look for radial solutions to Laplace’s equa-
tion. Let x = (x1, . . . , xn), we look for u(x) = v(|x|) where r = |x| =√
x21 + · · ·+ x2n where v : R+ → R. We use chain rule. For fixed i ∈ [n] we have,

uxi
= v′(r)rxi

=⇒ uxixi
= v′′(r)(rxi

)2+v′(r)rxixi
. Note that rxi

= 1
2|x| ·2xi =

xi

|x| and rxixi
= 1

|x| + xi
∂

∂xi

(
1
|x|

)
= 1

|x| + xi

(
− 1

|x|2

)
xi

|x| =
1
|x| −

x2
i

|x|3 . Therefore,

∆u =
∑N

i=1

(
v′′(r)

x2
1

|x|2 + v′(r)
(

1
|x| −

x2
i

|x|3

))
= v′′(r) + v′(r)

(
n
|x| −

1
|x|

)
. There-

fore, ∆u = v′′(r) + n−1
r v′(r). If we try to solve v′′ + n−1

r v′ = 0, we can take
w = v′ to get w′+ n−1

r w = 0 which is a first order linear ODE. We can seperate

and get
∫

w′

w =
∫

1−n
r =⇒ lnw = (1 − n) ln r + C =⇒ w = Cr1−n so

v′ = Cr1−n =⇒ v = Cr2−n when n ≥ 3, when n = 2 we have v = C ln r.
Note that while these are solutions, we have a singularity at r = 0. So, they are
harmonic everywhere except the origin where they are undefined.

Note that solutions to Laplace’s equation can give us more solutions to Poisson’s
equation, since if ∆u1 = f,∆u2 = 0 =⇒ ∆(u1 + u2) = f as well.
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Well-Posed Problem

A list of requirement, first phrased by Hadamard. There are lots of ‘bad’ problems
that are good.

• There exists a solution [Existence]

• There cannot be 2 solutions [Uniqueness]

• Continuous dependence on data [we need some other condition to not have
infinitely many solutions. Continuous dependence means when we shift some
data then the result also shifts, and it happens continuously]

For ∆u = 0 or ∆ = f , we can fix a domain Ω ⊂ Rn where Ω is bounded, open,
connected (if disconnected we can look at as different problems)
[Insert Picture of Ω, a blob ]
Consider boundary conditions, certain conditions on the boundary.

• u = g on ∂Ω for some given g : ∂Ω → R. These are called [Dirichlet boundary
conditions]

• ∆u ·v = g, g : ∂Ω → R. So some directional derivative is given. These are called
[Neumann boundary conditions]. We’re basically fixing the flux or something
similar.

We can have many others.

Theorem 1. Assume u ∈ C2(Ω) ∩ C1(Ω)

. Then there exists at most one solution to ∆u = f in Ω and u = g on ∂Ω

Proof. Suppose u1, u2 are solutions to the problem. Let v := u1 − u2. We want to
show that v ≡ 0.
Note that, ∆v = ∆u1 −∆u2 = f − f = 0 in Ω
On ∂Ω : v = g − g = 0.
So we have, ∫

Ω

div(v∇v) dx

∫
Ω

∇v · ∇v dx+

∫
Ω

v∆v dx

So, by divergence theorem.∫
Ω

∇v · ∇v + v∆vdx dx =

∫
∂Ω

v∇v · v dS

Thus, ∫ ∞

Ω

|∇v|2 dx = 0

Which gives us v ≡ 0

Class 04: 01/17
Focus on the thirteen for HW problem 1*

Theorem 2. Uniqueness for Neumann Boundary Condition (B.C.)
∆u = f in Ω ⊂ Rn

∇u · υ = g on ∂Ω
Ω bounded ∂Ω smooth
f : Ω → R, g : ∂Ω → R given.
Given any 2 solutions u1 and u2 in C2(Ω) ∩ C1(Ω) then u1 − u2 is a constant.
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Proof. Same as for Dirichlet condition. Let v = U2 − u1. Then ∆v = 0 in Ω and
∇v · υ = 0
Then, again,∫

Ω

v∆v = 0 = −
∫
Ω

|∇v|2 +
∫
Ω

div(v∇v) = −
∫
Ω

|∇v|2 +
∫
∂Ω

v∇v · υdS

Which gives us ∇v = 0

This method of proof is called the energy method.

Volume, Surface Measure

B(0, 1) = {x ∈ Rn : |x| < 1}
Sn−1 = (x ∈ Rn : |x| = 1)
Suppose we want to calculate the volume of B(0, R)

This is

∫
{x:|x|<R}

1 dx

Set y = x
R

So the integral is

Rn

∫
{y:|y|<1}

1 dy = Rn|B(0, 1)|

Since Rndy = dx
We define:
α(n) := |B(0, 1)| volume of unit ball.
ω(n) := |Sn−1|
|∂B(0, R)| = Rn−1∂B(0, 1) = ω(n)Rn−1

We have,

α(n) =

∫
B(0,1)

1 dx =

∫ 1

0

∫
{x:|x|=r}

dS dr

=

∫ 1

0

ω(n)rn−1 dr

So, α(n) = ω(n)
rn

n

∣∣∣∣1
0

So, nα(n) = ω(n)
Recall: “Radial Laplacian”
For u = u(r), r = |x|
∆u = u′′(r) + n−1

r u′(r)
We found:
in 2d, u = C ln r
In nd, u = C

rn−2

There is something wrong in the sense that, they are harmonic, which means they
solve Laplace Equation ∆u = 0 but they have a singularity at 0

Definition 8. Fundamental Solution to Laplace’s Equation: (One of the goals this
week is to convince this theorem earns it’s name, it’s really fundamental)

Φ(x) =


− 1

2π
ln |x|, if n = 2;

1

n(n− 2)α(n)

1

|x|n−2
, if n ≥ 3;
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We look at 3 limits. We integrate these solutions around singularity, and shrink them.
Given g is smooth, and assuming n ≥ 3

lim
ϵ→0

∣∣∣∣∣
∫
B(x0,ϵ)

Φ(y − x0)g(y) dy

∣∣∣∣∣
= lim

ϵ→0

∣∣∣∣∣
∫
B(x0,ϵ)

1

ω(n)(n− 2)

1

|y − x0|
dy

∣∣∣∣∣
= lim

ϵ→0

∣∣∣∣∣ 1

ω(n)(n− 2)

∫ ϵ

0

∫
∂B(x0,r)

1

|y − x0|n−2
g(y) dSy dr

∣∣∣∣∣
≤ max |g|
ω(n)(n− 2)

lim
ϵ→0

∫ ϵ

0

1

ϵn−2
ωnr

n−1 dr

≤ C lim
ϵ→0

∫ ϵ

0

r dr = 0

Second limit:

lim
ϵ→0

∣∣∣∣∣
∫
∂B(x0,η)

Φ(y − x0)g(y) dy

∣∣∣∣∣
lim
ϵ→0

max |g|
∫
∂B(x0,ϵ)

1

ω(n)(n− 2)

1

rn−2
dS

≤ lim
ϵ→0

C
1

ϵn−2
ωnϵ

n−1

Third limit:

lim
ϵ→0

∫
∂B(x0,ϵ)

g(y)∇Φ(y − x0) · υ dS

We have, Φ(y − x0) =
1

ω(n)(n−2)
1

|y−x0|n−2

So, ∇Φ(y − x0) · υ = ∂
∂r

(
1

ω(n)(n−2)r
2−n
)
where r = |y − x0|

= − 1
ω(n)r

1−n

So, the initial limit is equal to

lim
ϵ→0

∫
∂B(x0,ϵ)

g(y)ϵ1−n dS = − lim
ϵ→0

1

ω(n)ϵn−1

∫
∂B(x0,ϵ)

g(y) dSy

= −g(x0)
The reason we get −g(x0) (Just a neat negative sign, nothing weird!) was because of
our choice of constants.

Class 05: 01/19
Fundamental solutions to Poisson:

Φ(x) =


− 1

2π
ln |x|, if n = 2;

1

ωn(n− 2)

1

|x|n−2
, if n ≥ 3;

Today we introduce Green’s Identity which is the equivalent of Integration By Parts.

Theorem 3. Divergence Theorem:∫
Ω

∇ · F⃗ dx dx =

∫
∂Ω

F⃗ · υ dS

Where F⃗ : Ω ⊂ Rn → Rn
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Now, take u, v : Ω → R
Then, ∫

Ω

div(u∇v) dx =

∫
Ω

[u∆v +∇u · ∇v] dx =

∫
Ω

u∇v · υ dS

∫
Ω

div(v∇u) dx =

∫
Ω

[v∆u+∇u · ∇v] dx =

∫
Ω

v∇u · υ dS

Subtracting, ∫
Ω

(u∆v − v∆u) dx =

∫
Ω

(u∇v · υ − v∇u · υ) dS

Newtonian Potential

Given f : Rn → R consider for x, y ∈ Rn, Φ(x− y)f(y).
For y fixed, when x ̸= y this is a function of f and it is harmonic.
Question: What if we integrate over all y? This is kind of like taking the sum of a
lot of harmonic functions.

Proposition 1. Assume f ∈ C2
C(Rn) [twice continuously differentiable and com-

pactly supported].
Define w : Rn → R via

w(x) :=

∫
Rn

Φ(x− y)f(y) dy

We call w the “Newtonian Potential of f”
Then, −∆w(x) = f(x)

This is a way of building, lets say, building a solution of the heat equation.
Note that, w+ any harmonic function solves −∆w = f

Proof. First of all, we need to take derivatives of w. So, since we are feeling reckless
today,

∆w =

∫
Rn

∆xΦ(x− y)f(y) dy =

∫
Rn

0 · f(y) dy = 0

This is nonsense. Problem is, we have a singularity of Φ at 0 which makes it so that
we can’t take the derivative inside the integral.
Note that, the given integral is a convolution.∫

Rn

Φ(x− y)f(y) dy = Φ ∗ f = f ∗ Φ

Then we rewrite w as:

w(x) =

∫
Rn

Φ(y)f(x− y) dy

Claim: It’s legal to differentiate (twice) under the integral.
Fix i ∈ {1, · · · , n} and let e⃗i be standard basis vector. Then,

w(x+ h⃗ei)− w(x)

h
=

∫
Rn

Φ(y)

[
f(x+ h⃗ei − y)− f(x− y)

h

]
dy

We want to take the limit h → 0. Look at the stuff inside [] seperately. Applying
Mean Value Theorem:

f(x+ h⃗ei − y)− f(x− y)

h
= fxi(x+ h̃e⃗i − y) for some h̃ ∈ (0, h)

8



Since f and the first derivative are compactly supported, fxi is continuous on a
compact set and hence uniformly continuous. Which means, ∀ϵ > 0,∃δ so that
∀z1, z2 ∈ compact set, then |fxi

(z1)− fxi
(z2)| < ϵ provided |z1 − z2| < δ

Then, |fxi
(x+ h̃e⃗i − y)− fxi

(x− y)| < ϵ
Then, ∣∣∣∣∣w(x+ h⃗ei)− w(x)

h
−
∫
Rn

Φ(y)fxi(x− y) dy

∣∣∣∣∣
≤
∫
Rn

|Φ(y)||fxi(x+ h̃e⃗i − y)− fxi(x− y)| dy

≤ ϵ

∫
B(0,Rx)

|Φ(y)| dy Provided |h| < δ for some radius Rx > 0

Note that, ∫
B(0,Rx)

|Φ(y)|dy = C

∫ Rx

0

∫
∂B(0,Rx)

1

rn−2
ωnr

n−1 dS dr

≃ CR2
x < C1

From the fact that f is compactly supported.
So, original integral is ≤ C1ϵ
So we can swap integral and derivative.
Same argument works for second derivatives.
So,

wxixi
(x) =

∫
Rn

Φ(y)fxixi
(x− y) dy

N∑
i=1

wxixi
= ∆w =

∫
Rn

Φ(y)∆f(x− y) dy

=

∫
B(0,ϵ)

Φ(y)∆f(x− y) dx+

∫
Rn\B(0,η)

Φ(y)∆f(x− y) dx

= Iϵ1 + Iϵ2

We have, Iϵ1 → 0 as ϵ→ 0 from wednesday lecture.
For I2 we use Green’s Identity.

Iϵ2 =

∫ ∞

Ωx{y:x−y∈support of f}\B(0,ϵ)

Φ(y)∆f(x− y) dy

=

∫
Ωx\B(0,η)

f(x− y)∆Φ(y) dy −
∫
∂Ωx

[f(x− y)∇Φ · υ − Φ∇f(x− y) · υ] dS

−
∫
∂B(0,ϵ)

[f(x− y)∇Φ · υ − Φ(y)∇f(x− y) · υ] dS

First one cancels because Φ is harmonic.
In the second integral, the terms cancel.
In the third integral, note that as ϵ → 0 the first term goes to −f(x). To see this,
note that the inner normal becomes negative the outer normal.
And the second term approaches 0 as ϵ→ 0
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Class 06: 01/22
Last time:
If f ∈ C2

c (Rn) [twice continuously differentiable and compactly supported] then
w(x) =

∫
Rn Φ(x − y)f(y) dy solves −∆w = f in Rn where Φ is one of the funda-

mental solution to Laplace’s equation.
In fact, though it’s hard to prove, we only need f to be Hölder Continuous.

Definition 9. f is Hölder continuous on a domain Ω ⊂ Rn with exponent α ∈ (0, 1)
if f is continuous and

sup
x,y∈Ω,x̸=y

|f(x)− f(y)|
|x− y|α

<∞

This means f ∈ C0,α

Example: f : R → R , f(x) =
√
|x|

This is not differentiable, not even Lipschitz continuous, but is holder continuous with
α = 1

2
We say f ∈ Ck,α if f ∈ Ck and Dβf ∈ C0,α for all multi index β so that |β| = k
We can also have α = 1 but we just say f is Lipschitz then.

Theorem 4. If f ∈ C0,α(Ω) then ∀Ω′ ⊂⊂ Ω [This means Ω′ ⊂ Ω ] we have w ∈
C2,α(Ω′) and −∆w = f in Ω.

We are not going to prove this. But, f continuous doesn’t work. This theorem requires
several pages of analysis.
Read Gilberg-Trudinger for more.
Note that this is a solution with no boundary conditions specified, but we can add
any harmonic function to fit boundary conditions.

Properties of Harmonic Functions

Harmonic functions are very special functions.

Theorem 5. Let’s take an open set Ω ⊂ Rn. Then a function u ∈ C2(Ω) is harmonic
if and only if ∀x ∈ Ω, r > 0 such that B(x, r) ⊂ Ω then u(x) = −

∫
∂B(x,r)

u(y) dy

This is called the mean value property (MVP).
Note that −

∫
∂B(x,r)

= 1
ωnrn−1

∫
∂B(x,r)

And −
∫
B(x,r)

= 1
α(n)rn

∫
B(x,r)

We also have nα(n) = ω(n)

Proof. Fix x ∈ Ω. Then, ∀r > 0 so that B(x, r) ⊂ Ω we define

ϕ(r) :=
1

ω(n)rn−1

∫
∂B(x,r)

u(y) dSy

Sy means we’re integrating on the surface of the sphere w.r.t. y. Sy is the infinitesimal
surface area.
Note, we want to prove that ϕ is constant.
So, we want ϕ′ = 0
So we change limits to get r out of there.
Define y = x+ rz where r ∈ ∂B(0, 1)
Then dSy = rn−1dSz

ϕ(r) =
1

ω(n)

∫
∂B(0,1)

u(x+ rz) dSz

ϕ′(r) =
1

ω(n)

∫
∂B(0,1)

∇yu(x+ rz) · z dSz

Back to y:

10



ϕ′(r) =
1

ω(n)rn−1

∫
∂B(x,r)

∇yu(y) ·
y − x

r
dSy

Note that n = y−x
r is the unit normal.

So we can apply divergence theorem.

ϕ′(r) =
1

ω(n)rn−1

∫
B(x,r)

∇ · ∇yu(y) dy

1

ω(n)rn−1

∫
B(x,r)

∆u(y) dy

Now, if ∆u ≡ 0 then ϕ′ ≡ 0 and let r → 0 to see that u(x) = the average.
For the other direction, if u is not harmonic at x ̸= 0 then ∆u(y) > 0 or the other
sign for some ball centered at x and thus ϕ is not constant in that ball. Thus MVP
fails.

Maximum/Minimum Principle

In assignment we proved maximum principle. Let u ∈ C2(Ω) ∩ C0(
overlineΩ) be harmonic in Ω for some Ω ⊂ Rn , bounded and connected.
Then, maxΩ u(x) = max∂Ω u(x) and the same from minimum as well [from homework]
Further, if ∃x0 ∈ Ω so that u(x0) = maxΩ u(x) [or minimum] then u(x) is constant.
This is the STRONG maximum/minimum principle.

Proof. Let M be the max. Let Ω1 := {x ∈ Ω : u(x) =M}
Either Ω1 is empty or it is Ω
Topology we want to prove Ω1 is both open and closed relative to Ω
1: Ω1 is relatively closed in Ω : if {xj} ∈ Ω and xj → x ∈ Ω then x ∈ Ω1

Why? limj→∞ u(xj) =M =⇒ u(x) =M
2: Ω1 is open: Let x ∈ Ω1. We claim that there is a ball B(x, r) around x which is in
Ω1

Proof: Suppose not. Then for every x ∈ B(x, r)
we have u(x) ≤ u(x)
Now, using MVP,

0 =

∫
∂B(x,r)

(u(x)− u(x))

Which we can’t do unles u(x) ≡ u(x)

Class 07: 01/24
Last time we talked about the maximum principle for harmonic function and also
talked about mean value property.
Strong maximum principle implies either function is constant or the max happens in
the boundary. Note that we work on each connected component, if f is 1 on A and
2 on B that isn’t constant but harmonic and this is stupid
(Another) Uniqueness for Dirichlet Boundary Condition:
Assume ∆u = f in Ω
Also u = g in ∂Ω
Where Ω ⊂ Rn, bounded, open.
Then there is at most one solution u ∈ C2(Ω) ∩ C(Ω)
We have aleady seen one solution using the Energy Method: Hey there’s two solutions,
consider their difference.
If u1, u2 are both solutions, let v := u1 − u2 then ∆v = 0 and v = 0 on ∂Ω. Note we
can now just use maximum and minimum principle to deduce that v ≡ 0
maxΩ v = max∂Ω v = 0

11



Same for min so v is identically 0
Also remember about ‘Well Posed Problem’ in PDE. One condition is ‘a solution
exists’ which we didn’t establish, another ‘it is unique’ which we established, and
finally ‘continuous dependence’. The last can be established using maximum principle.

Proposition 2. Suppose for j = 1, 2 we have ∆uj = 0 in Ω and uj = gj on ∂Ω where
g1, g2 are given functions. Then,

max
Ω

|u1 − u2| = max
∂Ω

|g1 − g2|

This gives us continuous dependence.

Proof. Again let v = u1 − u2
Then maxΩ v = max∂Ω(g1 − g2), same for min.
This gives us the answer.

Detour: Let Aij(x) be a matrix depdending on x that is positive definite. Then∑
1≤i,j≤n

aij(x)uxixj
is called ‘elliptic’. We have maximum/minimum principle for this

too.
Last time we saw: for u ∈ C2, we had
u harmonic ⇐⇒ u satisfies the MVP [Mean Value Property]
Today we are going to erase the C2. Assume u is continuous in some domain Ω
[u ∈ C(Ω) ] and Ω satisfies MVP for every B(x, r) ⊂ Ω. Then,
i: u is harmonic
ii: u is infinitely differentiable [u ∈ C∞(Ω) ]

Proof. We will make use of mollifiers.
Mollifiers are used for analysis in general when you have lousy function and you want
to approximate it by something nicer.
Use a mollification of u. We use the symmetric mollifier:
Let η : [0,∞) → [0,∞) such that: η ∈ C2(∞) and η(r) ≡ 0 for any r > 1. Further-
more, we have

∫
Rn η(|x|) dx = 1.

Let for any ϵ > 0 :

ηϵ(x) = ϵ−nη
(

|x|
ϵ

)
Note that:∫
Rn ηϵ(x) dx = ϵ−n

∫
Rn η

(
|x|
ϵ

)
dx

Let y = x
ϵ to see this integral become

∫
Rn η(|y|) dy = 1

For the proof: Define:

uϵ(x) =

∫
Ω

ηϵ(x− y)u(y) dy

For x ∈ Ωϵ = {x : dist(x, ∂Ω) > ϵ}
Note that, uϵ ∈ C∞(Ωϵ)
Prove this similar to yesterday.
See similar facts in Appendix C. Today we just use the previous thing.
We assume the MVP.
Fix ϵ and x ∈ Ωϵ

uϵ(x) =

∫
Ω

ηϵ(x− y)u(y) dy

= ϵ−n

∫
Ω

η

(
|x− y|
ϵ

)
u(y) dy

= ϵ−n

∫
B(x,ϵ)

η

(
|x− y|
ϵ

)
u(y) dy

= ϵ−n

∫ ϵ

0

∫
∂B(x,r)

η
(r
ϵ

)
u(y) dSy dr

= ϵ−n

∫ ϵ

0

η
(r
ϵ

)∫
y∈∂B(x,r)

u(y) dSy dr

12



We can use Mean Value Property

= ϵ−n

∫ ϵ

0

η
(r
ϵ

)
u(x)ω(n)rn−1 dr

Set s = r
ϵ

that gives us

= u(x)

∫
B(0,1)

η(|x|) dx

= u(x)
Note that, uϵ(x) = u(x) when ϵ is small enough that gives us the regularity class.

Proposition 3. Derivative Estimates for Harmonic Functions:
Let u be harmonic on an open set Ω ⊂ Rn then for every n and every non-negative
integer k there exists Cn,k such that if B(x, r) ⊂ Ω then

|Dαu(x)| ≤ Cn,k

rn+k

∫
B(x,r)

|u(y)|dy for every mutli-index α such that |α| = k

To be proven on friday.
One can use these estimates to show that u harmonic implies u is analytic, meaning
for every x0, in some neighborhood the multivariable taylor series converges.

u(x) =
∑ Dαu(x0)(x− x0)

α

α!

for |x− x0| small.
Another application to be shown on friday.
One can also use this to prove Liouville’s Theorem: if u : Rn → R is harmonic and
bounded then it must be constant.

Class 08: 01/26

Theorem 6. Suppose u is harmonic in Ω ⊂ Rn, open. Then there exists constants
Ck,n such that ∀B(x0, r) ⊂ Ω we have:

|Dαu(x0)| ≤
Ck,n

rn+k
||u||L1(B(x0,r))

For all multi-index α such that |α| = k

Notation: for p <∞ we have ||u||Lp(S) = (
∫
S
|u|p)

1
p

And ||u||L∞(S) = supx∈S |u(x)|

This theorem is powerful because it gives us information about any order deriva-
tive just from u. This allows us to prove that harmonic functions are analytic by
majorizing it with a converging infinite series.

Proof. We use induction.
Let’s start with k = 0, aka we don’t take any derivative.
Take a ball centered at x0 with radius r inside Ω and use MVP.

u(x0) =
1

α(n)rn

∫
B(x0,r)

u(x) dx

Note that instead of taking MVP over surface we take it over whole ball.
Thus,

|u(x0)| ≤
1

α(n)rn
||u||L1(B(x0,r))

Now suppose k = 1.
This is a common technique. If a function is regular enough, we can take the derivative
of the whole PDE!
Recall that u ∈ C∞. This is because if we mollify it we’re supposed to get something
better but we just get the function itself.
Differentiate Laplace’s Equation w.r.t. xi, i ∈ {1, 2, · · · , n}

13



That gives us: ∆(uxi) = 0
Thus, derivative of harmonic function is harmonic. We can take the MVP to uxi

on
B(x0,

r
2 )

uxi
(x0) =

1

α(n)( r2 )
n

∫
B(x0,

r
2 )

uxi
(x) dx =

2n

α(n)rn

∫
B(x0,

r
2 )

uxi
(x) dx

Unwritten rule of PDE: we always integrate by parts at least once. We use Divergence
theorem.

=
2n

α(n)rn

∫
B(x0,

r
2 )

div(0, · · · , u, · · · , 0) dx

=
2n

α(n)rn

∫
∂B(x0,

r
2 )

uυ(i) dS

=⇒ |uxi
(x0)| ≤

2n

α(n)rn
||u||L∞(∂B(x0,

r
2 ))

· nα(n)(r
2
)n−1

=
2n

r
||u||L∞(∂B(x0,

r
2 ))

Draw ball of r/2 in ball of r picture here for better understanding.

≤ 2n

r

1

α(n)( r2 )
n
||u||L1(B(·, r2 ))

≤ 2n+1

rn+1

n

α(n)
||u||L1(B(x0,r))

we can continue by induction.

Note that, in this way, we can get:

Ck,n =
(nk2n+1)k

α(n)

Theorem 7. Liouville’s Theorem:
Let u be harmonic on Rn [Entire solution of Laplace’s Equation] and suppose u is
bounded. Then u is constant.

Proof. Take x0 ∈ Rn and let r > 0 be any positive number.

|uxi(x0)| ≤
C1,n

rn+1

∫
B(x0,r)

|u(x)| dx ≤ C1,n

rn+1
Mα(n)rn =

D

r

Since the solution is entire, it is true for every r so any partial derivative is 0 at any
point.

Proposition 4. Suppose u is a bounded solution to −∆u = f in Rn for f ∈ C2
c (Rn)

and n ≥ 3. Then,

u(x) =

∫
Rn

Φ(x− y)f(y) dy + C

Notation: u ∈ C2 means u, uxi
, uxixj

are continuous.u ∈ C2
c means u is C2 and

compactly supported.
Note the ‘bounded’, so C comes from Liouvlille’s theorem.
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Proof. Let ũ :=
∫
Rn Φ(x− y)f(y) dy

Then u− ũ is harmonic.
u is bounded.
Recall: |Φ(x)| ≤ C

|x|n−2 for n ≥ 3

ũ(x) =

∫
y∈B(x,1)

Φ(x− y)f(y) dy +

∫
y/∈B(x,1)

Φ(x− y)f(y) dy = I1 + I2

Now, I2 ≤ C
∫
y∈B(x,1)

f(y) dy <∞ since f has compact support.

Also, |I1| ≤ |f |L∞
∫
B(x,1)

Φ(x− y) dy = |f |L∞
∫ 1

0

∫
∂B(x,r)

C
rn−2 dS dr

= C|f |L∞
∫ 1

0
ω(n)rn−1

rn−2 dr <∞
So ũ is bounded as well. So we can use Liouville to deduce that u − ũ is harmonic
and entire and thus constant.

Theorem 8. Harnack Inequality: [These exist for all sorts of elliptic PDEs] Take
an open connected set Ω ⊂ Rn and take u : Ω → Rn be harmonic and non-negative.
Then, for every subdomain Ω′ ⊂⊂ Ω [sits compactly within Ω] there exists a constant
C(n,Ω,Ω′) such that:

sup
Ω′

u ≤ C inf
Ω′
u

Crucially, it doesn’t depend on u. This is useful for proving reguarity etc. It’s useful
for homework!

Class 09: 01/29
Review:

Φ(x) =


− 1

2π
ln |x|, if n = 2;

1

n(n− 2)α(n)

1

|x|n−2
, if n ≥ 3;

Suppose h is continuous. We have three limits:

1. lim
ϵ→0

∫
B(x,ϵ)

Φ(x− y)h(y) dy = 0

2. lim
ϵ→0

∫
∂B(x,ϵ)

Φ(x− y)h(y) dy = 0

3. lim
ϵ→0

∫
∂B(x,ϵ)

h(y)∇yΦ(x− y) · υy dS = −h(x)

Theorem 9. Harnack Inequality: [These exist for all sorts of elliptic PDEs] Take
an open connected set Ω ⊂ Rn and take u : Ω → Rn be harmonic and non-negative.
Then, for every subdomain Ω′ ⊂⊂ Ω [sits compactly within Ω] there exists a constant
C(n,Ω,Ω′) such that:

sup
Ω′

u ≤ C inf
Ω′
u

Crucially, it doesn’t depend on u. This is useful for proving reguarity etc. It’s useful
for homework!

Proof. Note that, this is equivalent to: for any y1, y2 ∈ Ω′ , we can find C so that
u(y1) ≤ Cu(y2)
Case 1: Let’s suppose for some x0 ∈ Ω and some r > 0 so that B(x0, 4r) ⊂ Ω and let
y1, y2 ∈ B(x0, r)
Using the fact that u is harmonic: by Mean Value Property:
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u(y1) =
1

α(n)rn

∫
B(y1,r)

u(y) dy

Use the non-negativity of u

u(y1) ≤
1

α(n)rn

∫
B(x0,2r)

u(y) dy

The ball of radius 2r from y1 contains the ball of radius r from y2 and in tern the
ball of radius 3r from y2 contains everything.

u(y1) ≤
3n

α(n)(3r)n

∫
B(y2,3r)

u(y) dy = 3nu(y2)

The last equality is due to the MVP.
Therefore, for any y1, y2 ∈ B(x0, r) = Ω′ so that B(x0, 4r) ∈ Ω, we have

u(y1) ≤ 3nu(y2)

We thus have Harnack’s inequality.
Case 2: Consider general Ω′ ⊂⊂ Ω and pick r such that dist(Ω′, ∂Ω) > 4r. Consider
y1, y2 ∈ Ω′.
[insert picture]
Connect y1, y2 with a path in Ω′, we can cover this path with at most m balls of
radius r depending on n,Ω,Ω′

In the path from y1 to y2 take z1, z2, · · · zm−1 so that they are in the intersections of
the balls.
Then we get u(y1) ≤ 3nu(z1) ≤ 32nu(z2) ≤ · · · ≤ 3nmu(y2) by case 1.
So u(y1) ≤ Cu(y2) where C depends only on n,Ω,Ω′

Harnack is used on 1 or 2 homework problems.

Green’s Functions for Laplace’s Equation

Recall: If u and v are smooth [all you need is C2 on some nice bounded domain Ω
and C1 on the boundary C2(Ω) ∩ C1(Ω) ] on some Ω ⊂ Rn :∫

Ω

(u∆v − v∆u) dy =

∫
∂Ω

(u∇v · υ − v∇u · υ) dS

Let Ωη := Ω\B(x, ϵ) for some x ∈ Ω [a punctured domain] and we take v(y) = Φ(x−y).
Then, ∫

Ωϵ

(u∆yΦ(x− y)− Φ(x− y)∆u(y)) dy

=

∫
∂Ω

(u∇yΦ(x− y) · υy − Φ(x− y)∇yu · υy) dS

+

∫
∂B(x,ϵ)

(u∇yΦ(x− y) · υy − Φ(x− y)∇yu · υy) dS

In the first integral, ∆yΦ(x− y) = 0 since it is harmonic.
If we let ϵ→ 0 we have:

−
∫
Ω

Φ(x− y)∆u(y) dy =

∫
∂Ω

u∇yΦ · υy − Φ∇uy · υy dS + u(x)

We can rewrite everything and get:

u(x) = −
∫
Ω

Φ(x− y)∆u(y) dy
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+

∫
∂Ω

(Φ(x− y)∇uy · υ − u(y)∇yΦ(x− y) · υy) dS

Suppose we seek a solution to:

−∆u = f in Ω

u = g in ∂Ω

Then, if we have the solution, the following must be true:

u(x) =

∫
Ω

Φ(x− y)f(y) dy

+

∫
∂Ω

(Φ(x− y)∇u(y) · υ − g(y)∇yΦ(x− y) · υy) dS

This is a solution, but we don’t know ∇u · υ on ∂Ω
Strategy to fix this problem: Add to Φ(x − y) a function v(x, y). The function v is
called the ‘corrector’.
We want:

• For each x ∈ Ω,∆yv(x, y) = 0

• For each x ∈ Ω and y ∈ ∂Ω , Φ(x− y) + v(x, y) = 0

Repeat the previous calculation with Φ(x−y) replaced by G(x, y) given by G(x−y) =
Φ(x− y) + v(x, y)
This gives us:

u(x) =

∫
Ω

G(x, y)f(y) dy −
∫
∂Ω

g(y)∇yG(x, y) · υy dS

G is called the Green’s Function.
Note that finding v is just solving the Laplace’s Equation with a boundary condition.
Thus, to solve Poisson with a Boundary condition we need to solve Laplace with a
boundary Condition

Class 10: 01/31
Review:
1. We had Green’s Identity:∫

Ω

u1∆u2 − u2∆u1 dy =

∫
∂Ω

u1∇u2 · υ − u2∇u1 · υ dSy

2. Also: suppose −∆u = f in Ω
u = g on ∂Ω
Take u1 = u, u2 = Φ(x− y)
Work with limϵ→0

∫
Ω\B(x,ϵ)

=⇒ u(x) =

∫
Ω

Φ(x− y)f(y) dy +

∫
∂Ω

Φ(x− y)∇u(y) · υ − g(y)∇yΦ(x− y) · υ dSy

3. Replace Φ(x− y) by G(x, y) = Φ(x− y) + v(x, y)
Where v is smooth for all x, y ∈ Ω
∇yv = 0
Φ(x− y) + v(x, y) = 0 when x ∈ Ω, y ∈ ∂Ω

=⇒ u(x) =

∫
Ω

G(x, y)f(y) dy −
∫
∂Ω

g(y)∇yG(x, y) · υy dS

Proposition 5. If we can find a Green’s Function G then we have G(x, y) = G(y, x)
for all x, y ∈ Ω [see Evans.]
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Green’s Function for the Upper Half Space, Rn
+

Consider y ∈ ∂Rn
+ and fix x ∈ R+

n . How do we find v?
Consider the line x−y. Take a version of the fundamental solution that has singularity
in the reflection of x through the boundry, xr. Then we have |x− y| = |xr − y|
Take v(x, y) = −Φ(xr − y)
And thus G(x, y) = Φ(x− y)− Φ(xr − y)
To calculate the solution, we need −∇yG(x, y) · υy
Note, in Rn

+ the outer normal derivative is − ∂
∂yn

and so negative that is just ∂
∂yn

and
so we have:

∂G(x, y)

∂yn

∣∣∣∣
yn=0

Let n ≥ 3 then we have: G(x, y) =

1

n(n− 2)α(n)

{
1

[(x1 − y1)2 + · · ·+ (xn − yn)2]
n−2
2

− 1

[(x1 − y1)2 + · · ·+ (xn + yn)2]
n−2
2

}
Taking partial derivative with respect to yn and setting yn = 0 we get:

1

n(n− 2)α(n)

2− n

2

{
−2(xn − yn)

[. . . ]
n
2

− 2(xn + yn)

[. . . ]
n
2

}
=

2

nα(n)

xn
|x− y|n

= K(x, y)

It’s called the Poisson Kernel for Rn
+. Also true for n = 2.

Theorem 10. Assume g is continuous and bounded on ∂Rn
+.

Let u(x) =
∫
∂Rn

+
K(x, y)g(y) dy′ where dy′ = dy1 . . . dyn−1

For x ∈ Rn
+. Then,

1. C ∈ C∞(Rn
+) ∩ L∞(Rn

+)

2. ∆u = 0 in Rn
+

3. limx→x0,x∈Rn
+
= g(x0) for all x0 ∈ ∂Rn

+

Proof is pretty simple but it hinges on some key properties of K.

1. ∀y ∈ ∂Rn
+, ∀x ∈ Rn K is C∞. However K is not smooth for x, y ∈ Rn

+

2.
∫
∂Rn

+
K(x, y) dy′ = 1 for all x ∈ Rn

+

3. ∀y ∈ ∂Rn
+, ∀x ∈ Rn

+,∆xK(x, y) = 0

Suppose n = 2 then,

K[x, y] =
1

π

∫ ∞

−∞

x2
[(x1 − y1)2 + x22]

dy1

=
1

π

1

x2

∫ ∞

−∞

1

(x1−y1

x2
)2 + 1

dy1

Let z = x1−y1

x2
then dz == 1

x2
dy1

So the integral is:

1

π

∫ ∞

−∞

1

z2 + 1
dx = 1

For property 3: we show that ∆xK(x, y) = 0. We can either compute directly or use
the fact that G(x, y) = G(y, x)
For all x we have y 7→ G(x, y) is harmonic for x ̸= y which means x 7→ G(x, y) is
harmonic for x ̸= y which means x 7→ ∂

∂yn
G(x, y) is harmonic for x ̸= y and thus K

is harmonic since it is derivative at yn = 0

Class 11: 02/02
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Theorem 11. Assume g : ∂Rn
+ → R is continuous and bounded. Let u(x) :=∫

∂Rn
+
K(x, y)g(y) dy′ where dy′ = dy1 . . . dyn−1 and K(x, y) = 2

nα(n)
xn

|x−y|n . Then,

1. u ∈ C∞(Rn
+) ∩ L∞(Rn

+)

2. ∆u = 0 in Rn
+

3. limx→x0,x∈Rn
+
u(x) = g(x0) for all x0 ∈ ∂Rn

+

Properties of the Poisson Kernel K :
∀y ∈ ∂Rn

+, ∀x ∈ Rn
+ we have K is C∞

∀x ∈ Rn
+,
∫
∂Rn

+
K(x, y) dy′ = 1

∀y ∈ ∂Rn
+, ∀x ∈ Rn

+ we have ∆xK(x, y) = 0
[insert picture of graph of K for fixed x]
For fixed x as y gets bigger K decays. Peak is when x is close to y.

Proof. Part 1: we need infinitely differentiable and bounded.
For bounded:
|u(x)| ≤

∫
∂Rn

+
K(x, y)|g(y)|dy

≤ |g|L∞
∫
∂Rn

+
K(x, y) dy

= |g|L∞

This is kind of a maximal prinicple.
Then we need differentiable. This good because K decays when x is far from y
Fix x
|K(x, y)| ≤ C

1+|y|n for large y.

Now,
∫
Rn−1

1
1+|y|n dy =

∫∞
0

∫
∂B(0,r)

1
1+rn dS dr

Note that the balls are in Rn−1

=
∫∞
0

1
1+rnω(n)r

n−2 dr

Outside of a set this is like integrating 1
r2 from 1 to ∞

Basically, the integral is nicely convergent.
Thus, it is legal to differentiate u under the integral sign.
For 2: Valid using the fact that ∆xK(x, y) = 0
So, ∆u =

∫
∂Rn

+
∆xK(x, y)g(y) dy = 0

The hard part is 3.
This is where we use the continuity of g. Let ϵ > 0 so there’s some δ so that |g(y)−
g(x0)| < ϵ if |y − x0| < δ
For x in the north consider u(x)− g(x0). This equals:

u(x)− g(x0) =

∫
∂Rn

+

K(x, y)g(y) dy′ − g(x0)

u(x)− g(x0) =

∫
∂Rn

+

K(x, y)[g(y)− g(x0)] dy
′

|u(x)− g(x0)| ≤
∫
{y:|y−x0|<δ}

K(x, y)|g(y)− g(x0)| dy′

+

∫
{y:|y−x0|≥δ}

K(x, y)|g(y)− g(x0)| dy′ = I1 + I2

Now, I1 ≤ ϵ
∫
K ≤ ϵ

I2 ≤ 2|g|L∞
∫
{y:|y−x0|≥δ} K(x, y)dy′

For |x− y0| < δ/2,
[draw pic of ball of radius δ/2 around x0 and x lives somewhere in the ball. Draw a
δ ball around x0 then y lies outside that ball. So, |x− y| ≥ 1

2 |x0 − y| ]
|y − x0| ≤ |y − x|+ |x− x0| ≤ |y − x|+ δ/2 ≤ |y − x|+ 1

2 |y − x0|
So,

I2 ≤ 2|g|L∞
2

nα(n)
xn

∫
{y:|y−x0|≥δ}

1

|x− y|n
dy′
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≤ 2|g|L∞

nα(n)
· 2nxn

∫
{|y−x0|≥d}

1

|y − x0|n
dy′

≤ Cxn

∫ ∞

δ

∫
∂B(x0,r)

1

rn
dS dr

= C̃xn · 1
δ

Given ϵ the δ is fixed. So, we can send xn to 0 and see that I2 goes to 0.

That solves Poisson over upper half space.
Now we talk about Green’s Function for a ball in Rn

We have Green’s Identity:

u(x) = −
∫
B(0,R)

Φ(x−y)∆u(y) dy+
∫
∂B(0,R)

Φ(x−y)∇u(y) ·υ−u(y)∇Φ(x−y) ·υ dS

Suppose we want to solve:
−∆u = f or ∆u = 0 in B(0, R)
u = g on ∂B(0, R)
In Greens Identity,

u(x) =

∫
B(0,R)

Φ(x− y)f(y) dy +

∫
∂B(0,R)

Φ(x− y)∇u(y) · υ − g(y)∇Φ(x− y) · υ dS

We seek:

G(x, y) = Φ(x− y) + v(x, y)

v is smooth and harmonic ∀x, y ∈ B(0, R)
v(x, y) = −Φ(x− y) ∀x ∈ B(0, R),∀y ∈ ∂B(0, R)
How to find v ? “Reflect” a given x ∈ B(0, R)

x⋆ :=
R2

|x|2
x

Claim: |x⋆−y|
|x−y| is independent of y. This equals R

|X|

|x⋆ − y|2 =

∣∣∣∣ R2

|x|2
x− y

∣∣∣∣2 =
R2

|x|2

∣∣∣∣ R|x|x− |x|
R
y

∣∣∣∣2 =
R2

|x|2

∣∣∣∣ |y||x|
x− |x|

|y|
y

∣∣∣∣2
=

R2

|X|2
|x− y|2

Class 12: 02/05
Recap: if we want a solution to Poisson’s Equation with Boundary Condition [here
boundary is a ball]: we need:

u(x) =

∫
B(0,R)

Φ(x− y)f(y) dy

+

∫
∂B(0,R)

[Φ(x− y)∇u · ν − g(y)∇Φ · ν] dS

if −∆u = f in B(0, R) and u = g on ∂B(0, R)
This is not a solution, since we can’t find ∇u.
For solving, we replace Φ(x− y) by G(x, y) = Φ(x− y) + v(, y)
So we want v so that for all x ∈ B(0, R) and for all y ∈ ∂B(0, R) we have ∆xv(x, y) = 0
and v(x, y) = −Φ(x− y).
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For all x ∈ B(0, R) find it’s ‘reflection’ [actually inversion] x̃ = R2

|x|2x

Then we have |x̃− y| = R
|x| |x− y| for all x ∈ B(0, R) \ {0} and y ∈ ∂B(0, R).

Φ(x̃− y) =
1

n(n− 2)α(n)

1

|x̃− y|n−2
=

1

n(n− 2)α(n)

(
|x|
R

)n−2
1

|x− y|n−2

Then, we define v(x, y) as following:

v(x, y) = −
(
R

|x|

)n−2

Φ(x̃− y)

So, our Green’s Function is:

G(x, y) = Φ(x− y)−
(
R

|x|

)n−2

Φ(x̃− y)

We need to find ∇yG · ν on ∂B(0, R). Note that ν = y
R

Then, ∇yΦ(x− y) =
1

n(n− 2)α(n)

2− n

|x− y|n−1

−(x− y)

|x− y|
=

1

nα(n)

x− y

|x− y|n

Similarly, ∇y

((
R

|x|

)n−2

Φ(x̃− y)

)
=

(
R

|x|

)n−2
1

nα(n)

x̃− y

|x̃− y|n
Thus, ∇yG · ν their subtraction. After simplifying,

∇yG · ν =
1

nα(n)R

|x|2 −R2

|x− y|n

If u solves ∆u = 0 on B(0, R) with u = g on ∂B(0, R) , then,

u(x) =
1

nα(n)R

∫
∂B(0,R)

R2 − |x|2

|x− y|n
dSy

Let K(x, y) :=
1

nα(n)R

R2 − |x|2

|x− y|n
This is the Poisson Kernel for the ball.

Theorem 12. Let g be continuous on ∂B(0, R). Then the function u(x) given by

u(x) :=

∫
∂B(0,R)

K(x, y)g(y) dSy

Solves the following:

• ∆u = 0 in B(0, R)

• u ∈ C∞(B(0, R))

• limx→x0 u(x) = g(x0) for all x0 ∈ ∂B(0, R)

Properties of the Poisson Kernel K:
For every x ∈ B(0, R) and for every y ∈ ∂B(0, R),

1. K(x, y) is C∞ in x and is harmonic ∆xK(x, y) = 0

2.
∫
∂B(0,R)

K(x, y) dSy = 1 for all x ∈ B(0, R)

For 2, consider g ≡ 1.
The unique solution to ∆u = 0 in B(0, R) and u = 1 in ∂B(0, R) is u ≡ 1
Putting this in the theorem,
u(x) = 1 =

∫
∂B(0,R)

K(x, y) dSy

Which gives us property 2.
For proof of all other properties, they’re essentially identical to the upper half plane.
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Perron’s Method gives us the solution to ∆u = 0 in Ω, u = g on ∂Ω for g : ∂Ω → R
continuous and any “reasonable” bounded domain Ω
By “reasonable” we mean domains that follow the ‘exterior ball condition’, every point
on the exterior has a ball contained in the exterior. For counterexample, consider a
region with a cusp.

The Heat Equation

This will be different from Heat Equation.
We will use Fourier Transform!
(see Evans 4.something for fourier transform)

Definition 10 (Fourier Transform). Given a function f : Rn → R we define the
fourier transform of f

f̂(y) :=
1

(2π)
n
2

∫
Rn

e−ix·yf(x) dx

So, f̂ : Rn → C. If f is even, f̂ : Rn → R

Definition 11 (Inverse Fourier Transform). We define the inverse fourier transform
of f as

f̌(x) :=
1

(2π)
n
2

∫
Rn

eix·yf(y) dy

Definition 12 (Schwartz Class).

S := {f ∈ C∞(Rn) : sup
x∈Rn

∣∣xβDαf(x)
∣∣ <∞ for all multi-indices α and β }

In words, any derivative of f decays faster than any polynomial.
Example: C∞

0 (Rn), e−|x|2

Class 13: 02/07
Review of Fourier Transforms:

û(y) =
1

(2π)
n
2

∫
Rn

e−ix·yu(x) dx

Inverse transform:

ǔ(x) =
1

(2π)
n
2

∫
Rn

eix·yu(y) dy

Next week: ˇ̂u = u
S = Schwartz class.

Definition 13 (Schwartz Class).

S := {f ∈ C∞(Rn) : sup
x∈Rn

∣∣xβDαf(x)
∣∣ <∞ for all multi-indices α and β }

In words, any derivative of f decays faster than any polynomial.
Example: C∞

c (Rn), e−|x|2

Note: Fourier Transform maps S to S
u ∈ S =⇒ û ∈ C∞

yβDαû(y)

=
1

(2π)
n
2

∫
Rn

yβDα
y (e

−ix·yu(x)) dx
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=
1

2π
n
2

∫
Rn

yβ(−ix)αe−ix·yu(x) dx

=
1

(2π)
n
2

∫
Rn

(−i)β(−ix)αDβ
x(e

ix·y)u(x) dx

Use IBP several times to get u(x) inside the integral

≤ C

∫
Rn

∣∣eix·yDβ(xαu(x))
∣∣ dx <∞

Note:
If u ∈ L1(Rn) then

∫
Rn |u| dx <∞

Then |û(y)| ≤ 1

(2π)
n
2

∫
|u| dx

In other words û ∈ L∞

Proposition 6 (Plancherel). If f ∈ L2(Rn) then,∫
Rn

|f |2 dx =

∫
Rn

|f̂ |2 dy

How to make rigorous sense of f̂ if f ∈ L2?
Answer: approximate with Schwartz class functions!
Take {fj} ∈ S so that fj → f in L2∫
|fj − fk|2 → 0 =⇒

∫
|f̂j − f̂k|2 → 0

Define f̂ as the limit of this cauchy sequence.
Now we develop some properties of fourier transforms that are useful for PDEs.

Fourier Transform and Convolutions

Definition 14. Assume f and g are in L2(Rn) and define:

(f ∗ g)(x) =
∫
Rn

f(x− z)g(z) dz

Note: By Hölder’s inequality, (f ∗ g)(x) ≤ (
∫
f(x− z)2)

1
2 (
∫
g(z)2)

1
2

Recall: Hölder’s inequality: for 1 < p <∞ given 1
p + 1

q = 1∫
fg dx ≤

(∫
fp
) 1

p
(∫

gq
) 1

q

Take f, g ∈ L1(Rn) ∩ L2(Rn). Then,

f̂ ∗ g(y) = 1

(2π)
n
2

∫
Rn

e−ix·y
∫
Rn

f(x− z)g(z) dz dx

Use Fubini:

=
1

(2π)
n
2

∫
Rn

e−i(x−z)·y
∫
Rn

e−iy·zf(x− z)g(z) dx dz

Change variables. Let s = x− z, ds = dx

=
1

(2π)
n
2

∫
Rn

e−is·y
∫
Rn

e−iy·zf(s)g(z) ds dz

Therefore,

f̂ ∗ g(y) = (2π)
n
2 f̂(y)ĝ(y)

When looking at the heat equation on friday, we’ll use fourier transform on PDE.
What does PDE have to do wit Fourier?
We look at fourier transform of a derivative.
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Proposition 7. Let u ∈ S. For any multi-index α,

D̂αu(y) = (iy)αû(y)

Proof.

D̂αu(y) =
1

(2π)
n
2

∫
Rn

e−ix·yDαu(x) dx

Integrate by Parts |α| times,

=
1

(2π)
n
2

∫
Rn

e−ix·y(iy)αu(x) dx

= (iy)αû(y)

Today we finish with a key example.

Proposition 8. Let a > 0 constant and let u(x) := e−a|x|2 , x ∈ Rn. Note that this
is in S
Then,

û(y) =
1

(2a)
n
2
e−

|y|2
4a

So fourier transform of a Gaussian is a Gaussian.
We prove this using ODEs.

Proof. Case 1: n = 1
Then u′(x) = −2axe−ax2

Thus û′(y) = iyû(y) [from the formula we proved before].
Using the definition of Fourier Transform,

û′ =
1√
2π

∫
R
e−ixy(−2axe−ax2

) dx

= −
√

2

π
a

∫
R
e−ixyxe−ax2

dx

Set this aside and consider d
dy û(y)

d

dy
û(y) =

1√
2π

d

dy

∫
R
e−ixyeax

2

dx

=
1√
2π

∫
R
−ixe−ixy−ax2

dx

= −i · 1√
2π

∫
R
e−ixyxe−ax2

dx

Note that the stuff inside the integrand is the same. Therefore,

d

dy
û(y) = − y

2a
û(y)

Thus, û(y) is the solution of a first order linear ODE.
Thus,

û(y) = Ce−
y2

4a

To get C consider

C = û(0) =
1√
2π

∫
R
e−ax2

dx

Thus, C = 1√
2a
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Class 14: 02/09

Proposition 9. For u(x) = e−a|x|2 ,

û(y) =
1

(2a)
n
2
e−|y|2/4a

Last time:
Case 1: n = 1
Recall: we created an ODE and solved it.
General case, n ≥ 1?
We don’t have to do any extra work!

Proof. If we look at the n-dimensional fourier transform,

û(y) =
1

(2π)
n
2

∫
Rn

e−ix·ye−a|x|2 dx

=
1√
2π

· · · 1√
2π

∫
R
· · ·
∫
R
e−ix1y1 · · · e−ixnyne−ax2

1 · · · e−ax2
n dx1 · · · dxn

=

(∫
R
e−ix1y1e−ax2

1 dx1

)
· · ·
(∫

R
e−ixnyne−ax2

n dxn

)
=

1√
2a

· · · 1√
2a
e−y2

1/4a · · · e−y2
n/4a

Proposition 10. If f, g are L1 ∩ L2 then,

f̂ ∗ g(y) = (2π)n/2f̂(y)ĝ(y)

Proposition 11. If f ∈ S [Schwartz Class], for all multi-index α we have

D̂αf(y) = (iy)αf̂(y)

Heat (Diffusion) Equation

Recall beginning of the course.
Let κ > 0. Heat dissipates. So, without any sources or sinks, the homogeneous version
of the heat equation is:

ut = κ∆u

Note that this is a time dependent problem, u is a function of x ∈ Rn [spatial variable]
and t ≥ 0 [time variable].
We’re looking at the ‘cauchy problem’, which means we’re looking at the whole space
Rn, [not some bounded domain Ω]
At time 0 we’re going to specify u(x, 0) = f(x), where f : Rn → R. How nice does f
have to be? We’re just going to use fourier transformation without caring, then we’ll
come back and see what we did makes sense under which context.
Basically, we’re formally computing the fourier transform of the PDE.

ut = κ∆u

1

(2π)
n
2

∫
Rn

e−ix·yut(x, t) dx = κ
1

(2π)
n
2

∫
Rn

e−ix·y(ux1x1
+ · · ·+ uxnxn

) dx

Note the derivative on the left w.r.t. t so we’re not supposed to use the derivative
formula yet. We just take d

dt outside.
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∂

∂t

1

(2π)
n
2

∫
Rn

e−ix·yu(x, t) dx = κ
[
(iy1)

2 + · · ·+ (iyn)
2
]
û(y, t)

∂

∂t
û(y, t) = −κ|y|û(y, t)

We could also fourier transform the initial condition.

u(x, 0) = f(x) =⇒ û(y, 0) = f̂(t)

Note that y is a parameter, and our fouriered ODE is a differential equation on t, we
can treat y as a constant.
So our solution is:

û(y, t) = C(y)e−κ|y|2t

û(y, 0) = f̂(y) = C(y)

û(y, t) = f̂(y)eκ|y|
2t

We could fourier invert it, but that’s not very enlightening. However, eκ|y|
2t is a

Gaussian on y so we can recognize this as product of fourier transforms and original
differential equation has a convolution as a solution.
We want to identify g(x, t) such that Φ̂(y, t) = e−κ|y|2t.
Equating coefficients,

g(x, t) = e−|x|2/4κt =⇒ ĝ(y, t) = (2κt)
n
2 e−κ|y|2t

Thus, û = 1

(2κt)
n
2
f̂ ĝ = 1

(4κπt)
n
2
f̂ ∗ g

Therefore, u = 1

(4κπt)
n
2
f ∗ g

Thus, u(x, t) = 1

(4πκt)
n
2

∫
Rn e

−|x−y|2/4κtf(y) dy

Denote Φ(x, t) := e−|x|2/4κt

(4πκt)n/2

We call this the heat kernel.

Theorem 13. Let f be bounded on Rn

u(x, t) :=

{
Φ ∗ f, if t > 0;

f(x), if t = 0;

Then for t > 0 and ∀x ∈ Rn,

u ∈ C∞, ut = κ∆u

Furthermore if f is continuous, then,

lim
x→x0,t→0+

u(x, t) = f(x0)

Proof. Properties of Φ :

1. Φ ∈ C∞ for t > 0 for all x ∈ Rn

2. Φt = κ∆Φ for t > 0. The heat kernel decays exponentially so it is Schwartz
Class.

Then Φ̂t = −κ|y|2Φ
Inverting the fourier transform,

Φt = κ∆Φ
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3.
∫
Rn Φ(x, t) dx = 1. ∀t > 0, consider 1

(4πκt)
n
2

∫
Rn e

−|x|2/4κt dx =

1
(π)n/2

∫
Rn e

−|z|2 dz = 1

(π)
n
2
π

n
2 = 1

To begin the argument,

u(x, t)− f(x0) =

∫
Rn

Φ(x− y)f(y) dy − f(x0)

=

∫
Rn

Φ(x− y) [f(y)− f(x0)] dy

=

∫
y:|y−x0|<δ

Φ(x− y)[f(y)− f(x0)] dy +

∫
y:|y−x0|≥δ

Φ(x− y)[f(y)− f(x0)] dy

For first integral argue continuity, for second integral argue going to 0. [This is an
important problem solving technique.]

Properties of the solution:

1. For t > 0 we have u ∈ C∞ in x and t. We basically have infinite smoothing.

2. We have somewhat of a maximal principle.

|u(x, t)| ≤
∫
Rn

Φ(x− y, t)|f(y)| dy ≤ sup |f(x)|
∫
Rn

Φ(x− y, t) dy = sup
Rn

|f |

Class 15: 02/12

Heat Kernel

Heat Kernel is:

Φ(x, t) =
1

(4πκt)
n
2
e−

|x|2
4κt

Solution to ut = κ∆u, x ∈ Rn, t > 0, u(x, 0) = f(x) for x ∈ Rn is given by:

u(x, t) =


∫
Rn

Φ(x− y, t)f(y) dy if t > 0;

f(x) if t = 0;

This is the solution to the Cauchy Problem [solving over Rn instead of some Ω]
Last class we proved the fact that this is indeed continuous, when we do t → 0 the
solution does converge to f(x)
We also have infinite differentiability for t > 0
We have ‘infinite propagation speed’: Suppose f is compactly supported [0 outside
some compact set] and non-negative. Then, for t > 0, u is non-zero everywhere.
Visualization: consider an infinite bar. Suppose f ≡ 0 outside (0, 1), n = 1 . For
t > 0 we have u(x, t) =

∫
R Φ(x − y, t)f(y)dy > 0 for all x ∈ R. This is disturbing in

terms of physics, because heat is travelling with infinite speed.
Another observation: If

∫
Rn f(x)dx <∞ then for any t > 0,

∫
Rn

u(x, t) dx =

∫
Rn

∫
Rn

Φ(x− y, t)f(y) dy dx =

∫
Rn

∫
Rn

Φ(x− y, t)f(y) dx dy

Since integral of Φ is 1, this is just
∫
Rn f(y) dy. So, the total heat stays the same. So,

there’s an energy conservation.
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Note: Mathematicians can mean any integral of the solution as energy. Here we’re
talking about the physical energy.
Most annoyingly, the solution to the heat equation is not unique! It is the only one
satisfying |u(x, t)| ≤ Aeα|x|

2

for x ∈ Rn, 0 ≤ t ≤ T . However, there exists a solution
to ũt = κ∆ũ with initial condition ũ(x, 0) = 0 such that ũ violates such a bound.

Inhomogeneous Heat Equation

The equation is ut = ∆u + F (x, t) for x ∈ Rn, t > 0 with u(x, 0) = 0 [so we have a
heat source].
[If initial condition is u(x, 0) = f , simply add the solution to the homogeneous heat
equation.]
Duhenel’s Principle: This is essentially a recipe where we build the solution to an
inhomogeneous solution out of homogeneous solutions.
∀s > 0, define U(x, t, s) solve Ut = ∆U for t > s and U(x, s, s) = F (x, s). Then, by
the solution to the homogeneous heat equation,

U(x, t, s) =

∫
Rn

Φ(x− y, t− s)F (y, s) dy

Claim: Define u(x, t) =

∫ t

0

U(x, t, s) ds then u solves the inhomogeneous heat prob-

lem.
Assume F is C2 in x and C1 in t, and also assume F is compactly supported [in both
x and t].
First we’re going to change variable. Let z := x− y and τ = t− s. Then,

u(t) =

∫ t

0

∫
Rn

Φ(z, t)F (x− z, t− τ) dz dτ

Now we compute derivatives.

ut =

∫ t

0

∫
Rn

Φ(z, t)Ft(x− z, t− τ) dz dτ +

∫
Rn

Φ(z, t)F (x− z, 0) dz

∆u =

∫ t

0

∫
Rn

Φ(z, τ)∆xF (x− z, t− τ) dz dτ

Fix ϵ > 0.

ut −∆u =

∫ ϵ

0

∫
Rn

Φ(z, t) {Ft(x− z, t− τ)−∆xF (x− z, t− τ)} dz dτ

+

∫ t

ϵ

∫
Rn

Φ(z, t) {Ft(x− z, t− τ)−∆xF (x− z, t− τ)} dz dx

+

∫
Rn

Φ(z, t)F (x− z, 0) dz = Iϵ + Jϵ +

∫
Rn

Φ(z, t)F (x− z, 0) dz

Note that Iϵ is bounded. |Iϵ| ≤ max(|Ft|+ |∆F |)
∫ ϵ

0

∫
Rn Φ(z, τ) dz dτ .

Since the Poisson kernel integrates to 1 this is less than max ·ϵ so Iϵ → 0.
For Jϵ, switch

∂
∂τ for ∂

∂τ and switch ∂
∂z for − ∂

∂x . Rewrite Jϵ :

Jϵ =

∫ t

ϵ

∫
Rn

Φ(z, τ) {−Fτ (x− z, t− τ)−∆zF (x− z, t− τ)} dz dτ

We can do integration by parts with τ . We also simplify the integral using
∫
Ω
v∆w−

w∆v =
∫
∂Ω
v∇w · ν − w∇v · ν.

This lets us write the integral as:

= −
∫
Rn

Φ(z, t)F (x− z, t− τ) dz

∣∣∣∣τ=t

τ=ϵ

+

∫ t

ϵ

∫
Rn

Φτ (z, τ)F (x− z, t− τ) dz dτ
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−
∫ t

ϵ

∫
Rn

∆zΦ(z, τ)F (x− z, t− τ) dz dτ

The latter two integrals cancel each othersince Φ is the solution of the heat equation.
Thus, we have:

Jϵ = −
∫
Rn

Φ(z, t)F (x− z, 0) dz +

∫
Rn

Φ(z, ϵ)F (x− z, t− ϵ) dz

The first integral is 0 and as we let ϵ→ 0 we see that the second integral → F (x, t).

Class 16: 02/14
Last time: Duhenel’s Principle. We used this to come up with the solution to the
inhomogeneous differential equation ut = κ∆u+F (x, t), u(x, 0) = 0 for x ∈ Rn, t > 0.
Our solution was:

u(x, t) =

∫ t

0

∫
Rn

Φ(x− y, t− τ)F (y, τ) dy dτ

u(x, t) =

∫ t

0

∫
Rn

1

[4πκ(t− τ)]n/2
e−

|x−y|2
4κ(t−τ)F (y, τ) dy dτ

If we want to solve ut = κ∆u+ F (x, t) with initial condition u(x, 0) = f(x),
Add a homogeneous solution:

u(x, t) =

∫
Rn

Φ(x− y, t)f(y) dy + u(x, t) +

∫ t

0

∫
Rn

Φ(x− y, t− τ)F (y, τ) dy dτ

One can use this solution as a starting point for solving non-linear heat equation.
What is a nonlinear heat equation?

ut = ∆u+ h(u)

Where h(u) is non-linear, with initial condition u(x, 0) = f(x)
Example h : it can be a power function.
How to solve it?
Start with some initial ‘guess’ u1.
Solve ut = ∆u+ h(u1) where u(x, 0) = f(x).
Taking h(u1) to be F (x, t), we find a solution to u2.
Plug and solve: gives us u3.
Thus we generate a sequence of linear solutions {uk}.
We need this sequence to converge, or at least a subsequence to converge. If ukj → u⋆

then u⋆ is our solution.
This converts solving our nonlinear PDE to solving a linear PDE and finding a fixed
point.

Theorem 14. Assume u solves ut = ∆u for x ∈ Rn for 0 < t ≤ T , and we have the
initial condition u(x, 0) = g(x), where g is continuous and bounded on Rn

If |u(x, t)| ≤Mea|x|
2

for some M,a for all x ∈ Rn, t ∈ [0, T ], Then,

sup
x∈Rn,t∈[0,T )

u(x, t) = sup
x∈Rn

g(x)

In particular, if g ≡ 0 we have u ≡ 0

To prove this, we will use the maximum principle for the heat equation on a bounded
domain.
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Theorem 15. Weak Maximum Principle for the Heat Equation on a Bounded Domain:

We let Ω ⊂ Rn be a bounded, open, connected set. Assume u is C2 in x, C1 in t on
ΩT := Ω× (0, T ] and continuous in the closure ΩT .
Assume ut −∆u ≤ 0 in ΩT . Then,

max
ΩT

u(x) = max
(Γ×{0})∪(∂Ω×[0,T ])

u(x)

Furthermore, if ut −∆u ≥ 0 in ΩT then

minΩTu(x) = min
(Γ×{0})∪(∂Ω×[0,T ])

u(x)

Notation: We write ∂PΩT := (Ω×{0})∪ (∂Ω× [0, T ]). This is the parabolic boundary
of ΩT .

Proof. Case 1: ut −∆u < 0
Claim: maxΩT

u(x, t) cannot occur on ΩT \ ∂PΩT

We use contradiction. Suppose ∃x0 ∈ Ω, t0 ∈ (0, T ] such that maxu(x, t) = u(x0, t0).
Thus, at x0, we have uxixi

(x0, t0) ≤ 0 for every i ∈ [n]
Adding them, ∆u(x0, t0) ≤ 0.
Also, ut(x0, t0) if t0 < T .

If t0 = T , then ut(x0, t0) = limh→0
u(x0,T )−u(x0,T−h)

h [one sided derivative]
Then ut(x0, y0) ≥ 0.
So, we have (≥ 0)− (< 0) = (< 0). So this is a contradiction.
Case 2: ut −∆u ≤ 0
Define uδ(x, t) = u(x, t)− δt for t > 0.
Then uδt −∆uδ = ut −∆u− δ < 0
Apply Case 1 to see:
maxu(x, t) = maxuδ(x, t) + δt ≤ maxx,t∈∂P∆T

uδ + δT ≤ max∂p∆T
u+ δT .

Let δ → 0 to reach the conclusion.
Same for the other sign.

Now we begin proof on Rn

Proof. Assume |u(x, t)| ≤Mea|x|
2

for some M,a for x ∈ Rn, t ∈ [0, T ].
Case 1: assume 4aT < 1
Thus, ∃ϵ > 0, small enough such that 4a(T + ϵ) < 1, . Fix y ∈ Rn and let µ > 0 be a
positive parameter. Define:

vµ(x, t) := u(x, t)− µ

(τ + ϵ− t)n/2
e

|x−y|2
4(T+ϵ−t)

Note that vµ still solves the heat equation. To see this, write:

vµ = u− µ
1

(−1)n/2
1

(1−)
n
2 (t− (τ + ϵ)n/2)

e−
|x−y|2

4(t−(τ+ϵ))

So this is basically an ugly looking version of the heat kernel. Thus it indeed solves
the heat equation.
Strategy (will finish on friday): Apply the weak maximal principle to vµ on some
cylinder {x ∈ Rn : |x− y| ≤, t ∈ [0, 1]}
We’re going to take r to be huge, so that u(x, t) is increasing faster than Mea|x|

2

Class 17: 02/16
Weak Maximum Principle:
Let ut = κ∆u in Ω× (0, T ]
=⇒ maxΩT

= max(Ω×{0})∪(∂Ω×[0,T ])
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Theorem 16. Assume u ∈ C2
1 (Rn× (0, T ])∩C(Rn× [0, T ]) solves ut = ∆u, u(x, 0) =

g(x) for g : Rn → R continuous and bounded. Assume the expontential bound:

|u(x, t)| ≤Mea|x|
2

. Then:

sup
Rn×[0,T ]

u(x, t) = sup
Rn

g(x)

We started the proof yesterday.

Proof. Case 1: 4aT < 1
=⇒ ∃ϵ > 0 such that 4a(T + ϵ) < 1
Fix y ∈ Rn, µ > 0
Define vµ(x, t) to be:

u(x, t)− µ

(T + ϵ− t)
n
2
e

|x−y|2
4(T+ϵ−t)

Then, vµt = ∆vµ so this is indeed a solution to the heat equation.
We want to apply the maximum principle here. But we need a bounded domain.
Take the domain to be a ‘cylinder’: B(y, r) × [0, T ]. For fixed r we can apply the
weak maximum principle. Thus,

vµ(x, t) ≤ max
B(y,r)×{0}∪∂B(y,r)×[0,T ]

Claim: This max occurs on the ‘bottom’ of the cylinder, not the sides. So it occurs
on B(y, r)× {0}
Here is where the exponential bound comes to play.
Take a look at the sides: for x such that |x− y| = r,

Then vµ(x, t) ≤Mea|x|
2 − µ

(T+ϵ−t)
n
2
e

r2

4(T+ϵ−t)

Note that |x| ≤ |y|+ r. Also note that 1
4(T+ϵ) > a =? 1

4(T+ϵ) = a+ γ for some γ > 0.

Also, if we plug in t = 0 we get smallest denominators and hence highest value.

vµ(x, t) ≤Mea(|y|+r)2 − µ

(T + ϵ)n/2
e

r2

4(T+ϵ)

vµ(x, t) ≤Mea(|y|+r)2 − µ

(T + ϵ)
n
2
e(a+γ)r2

∼ ear
2

− µe(a+γ)r2

So, for r big enough, we can make vµ < supRn g(x) on ∂B(y, r)× [0, T ]
Thus, from the weak maximum principle, vµ(x, t) ≤ supRn vµ(x, 0) ≤ supRn g(x)
For all x ∈ Rn, t ∈ [0, T ]

This also gives us a solution with condition u(x, 0) ≡ 0: since u,−u are all solution,
the only possible solution that satisfies the exponential bound is the one identically
0.

2 Theorems on Fourier Transformation

Theorem 17. Fourier Inversion Formula:

ˇ̂u = u

Where:

û(y) =
1

(2π)
n
2

∫
Rn

e−ix·yu(x) dx

ǔ(x) =
1

(2π)
n
2

∫
Rn

eix·yu(y) dy
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Theorem 18 (Plancherel). For u ∈ L2(Rn)

∥u∥L2(Rn) = ∥û∥L2(Rn)

[Fourier transform can be defined as limit of fourier transforms of Schwartz Class]

Fourier Inversion. Let u ∈ S
Recall: For f(x) = e−a|x|2 ,

f̂() = 1

(2a)
n
2
e−

1
4a |y|2

Note that, ∀u, v ∈ L2 ∫
Rn

u(y)v̂(y) dy =

∫
Rn

û(y)v(y) dy

Call this (1)
We can prove this by putting the formula for fourier tranform and doing fubini integral
swap.
Fix any z ∈ Rn. Fix ϵ > 0
Define vϵ(x) := eix·z−ϵ|x|2

v̂ϵ(y) =
1

(2π)
n
2

∫
Rn

e−ix·yeix·ze−ϵ|x|2 dx

=
1

(2π)
n
2

∫
Rn

e−ix·(y−z)e−ϵ|x|2 dx

This is the fourier transform of e−ϵ|x|2 evaluated at y− z! So we can use the formula:

=
1

(2ϵ)
n
2
e−

1
4ϵ |y−z|2

Now we use equation (1) with u and vϵ

1

(2ϵ)
n
2

∫
Rn

u(y)e−
1
4ϵ |y−z|2 dy =

∫
Rn

û(y)eiy·z−ϵ|y|2 dy

1

(2π)
n
2

1

(2ϵ)
n
2

∫
Rn

u(y)e−
1
4ϵ |y−z|2 dy =

1

(2π)
n
2

∫
Rn

û(y)eiy·z−ϵ|y|2 dy

Now let ϵ→ 0. Since u is in Schwartz,
RHS → 1

(2π)
n
2

∫
Rn e

iy·zû(y) dy = ˇ̂u(z)

We want to show that LHS → u(z)

Let K(y) = 1

π
n
2
e−|y|2 . Then

∫
Rn K(y) dy = 1. Then,

Kϵ(y) :=
1

(2
√
ϵ)n

K(
y

2
√
ϵ
)

So
∫
Rn Kϵ(y) dy = 1

lim
ϵ→0

LHS = lim
ϵ→0

∫
Rn

Kϵ(y − z)u(y) dy = u(z)

This proves the Fourier Inversion Formula.
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When Convolution Fails

Laplace’s Equation on an infinite strip:
Let S be an infinite horizontal strip [0 to L]
∆u = 0 in S
u(x1, 0) = f(x1),−∞ < x1 <∞
ux2

(x1, L) = 0,−∞ < x1 <∞
Fourier transform in x1
ux1x1 + ux2x2 = 0

=⇒ (iy1)
2û(y1, x2) + ûx2x2

(y1, x2) = 0

=⇒ ûx2x2 − y21 û(y1, x2) = 0

This is a ODE in x2.

û(y1, x2) = A1(y1) cosh(y1x2) +A2(y1x2)

More conveniently,

û(y1, x2) = B1(y1) cosh(y1(x2 − L)) +B2(y1) sinh(y1(x2 − L))

ux2
(x1, L) = 0 tells us B2 ≡ 0.

û(y1, x2) = B1(y1) cosh(y1(x2 − L))

û(y1, 0) = B1(y1) cosh(−y1L) = f̂(y1)

Thus, B1(y1) =
f̂(y1)

cosh(y,L)

So, û(y1, x2) = f̂(y1)(
cosh y1(x2−L)

cosh(y1L) )

Class 18: 02/19
Laplace’s Equation in a Strip
We have ∆u = 0 when −∞ < x1 <∞ and 0 < x2 < L
Boundary conditions: u(x1, 0) = f(x1), ux2(x1, L) = 0 when −∞ < x1 <∞.
We took Fourier Transform, and got ûx2x2(y1, x2) − y21û(y1, x2) = 0 which gave us

û(y1, x2) = f̂(y1)
cosh(y1(x2−L))

cosh(y1L)

We don’t get a convolution so we need to use inverse fourier [also use cosh is even]:

u(x1, x2) =

∫ ∞

−∞
eix1y1 f̂(y1)

cosh(y1(L− x2))

cosh(y1L)
dy1

The boxed part is often called fourier multiplier.

Recall that cosh t = et+e−t

2
So, for y1 ≫ 1 we have:

cosh(y1(L− x2))

cosh(y1L)
∼ ey1(L−x2)

ey1L
∼ e−y1x2

So we can actually get a nice approximate solution.

Eigenvalues and Eigenfunctions of the Laplacian

Consider the following variational problem:

inf
u∈A

∫
Ω
|∇u|2∫
Ω
u2

Where Ω ⊂ Rn is a bounded domain
A = {u ∈ L2(Ω),∇u ∈ L2(Ω), u = 0 on ∂Ω, u ̸≡ 0}
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Question: is the infimum ever achieved? Yes! But we just assume it, not prove.
Assume: this infimum is achieved by some smooth function u1 ∈ A. Let λ1 be the
infimum.

λ1 :=

∫
Ω
|∇|2∫

Ω
u2

Also, give the fraction a name, E(u)
Claim: u1 solves a PDE.
We use calculus.
Define: f(t) = E(u1 + tv) where v is any fixed element of A.
Note that u1 + tv ∈ A for all t ∈ R.
Then f(0) ≤ f(t) for all t. Thus f ′(0) = 0
We compute f ′(t).

d

dt

∫
|′∇u1 + t∇v|2 dx∫

(u+ tv)2 dx

=
(
∫
(u1 + tv)2)(

∫
2∇u1 · ∇v + 2t|∇v|2)− (

∫
|∇u1 + t∇v|2)(

∫
2u1v + 2tv2)(∫

(u1 + tv)2 dx
)

When we plug in 0 we should get 0

(
∫
u21)(

∫
∇u1 · ∇v)− (

∫
|∇u1|2)(

∫
u1v)

(
∫
u21)

2
= 0

=⇒
∫

∇u1 · ∇v −
∫
|∇u1|2∫
u21

(

∫
u1v)

The thing inside the box is just λ1∫
Ω

(∇u1 · ∇v − λ1u1v) dx = 0

By applying integration by parts, we see that:∫
Ω

(−∆u1 − λ1u1)v dx = 0

Since v is arbitrary, the only way this is possible is:

−∆u1 = λ1u1

Note that the function E(u) :=
∫
|∇u|2∫
u2 is called the Rayleigh quotient.

u1 is the first eigenfunction of laplacian with Dirichlet boundary condition. λ1 is the
first eigenvalue.
One can characterize the k-th eigenvalue for k = 1, 2, · · · by:
inf E(u) over all u such that u = 0 on ∂Ω and

∫
uujdx = 0 [u is perpendicular to all

previous eigenfunctions] for all j < k.
We have a sequence λk so that λk → ∞ and {uk} are dense in L2(Ω) meaning there

exists constants {ck}∞k=1 such that: |f(x) =
∑N

k=1 ckuj(x)| goes to 0 in L2 meaning
integral of square goes to 0.
One implication is, for any smooth enough function v such that v = 0 on ∂Ω we have
the inequality: ∫

Ω
|∆v|2∫
Ω
v2

≥ λ1

Rewriting we get Poincaré inequality.∫
Ω

v2 ≤ 1

λ1

∫
Ω

|∆v|2
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Heat Equation on a Bounded Domain

Suppose ut = ∆u for x ∈ Ω, t > 0
And consider the Dirichlet Boundary condition: u = 0 for x ∈ ∂Ω and t > 0. Suppose
u(x, 0) = f(x) for x ∈ Ω
In Rn we used convolution. That will not work here.
One approach is ‘seperation of variables’.
Seek a solution:
u(x, t) = G(x)T (t) .

Plugging it in,

G(x)T ′(t) = T (t)∆G(x) =⇒ T ′(t)

T (t)
=

∆G(x)

G(x)

Thus, if such a solution exists, we must have a constant −λ that is equal to the
quotient.

T ′(t) = −λT (t),−∆G = λG

Boundary condition is given by G = 0 on ∂Ω.
For each positive integer k, we get a solution to the heat equation and the boundary
condition in the form:

uk(x, t) = e−λktuk(x) where uk is the k-th eigenfunction.

Note that since this is a linear homogeneous differential equation, we can use the
superposition principle to get:

u(x, t) =

∞∑
k=1

cke
−λktuk(x)

Are also solutions to the heat equation, if we suppose this converges and we can take
derivative.
For the boundary condition, we choose ck so that they converge to f in L2.

Class 19: 02/21
Recall: we have,
−∆uj = λjuj in Ω
uj = 0 on ∂Ω
0 < λ1 < λ2 < · · · → ∞
We are skipping a lot about heat equation, namely interesting stuff about mean value
theorem, uniqueness, regularity etc.

Approach to Equilibrium

If we start with the heat equation: [homogeneous]
ut = ∆u in x ∈ Ω, t > 0
u = g(x) for x ∈ ∂Ω, t > 0
u(x, 0) = f(x) for x ∈ Ω
So that Ω ⊂ Rn, open, bounded.
One approach to the question of existence is by the eigenfunction expansion that we
get from seperation of variabls. This only applies when the boundary condition is 0
though. Something similar can be done though.

u(x, t) =
∑
j

cje
−λjtuj(x)

We can use the maximum principle to show that there is a unique solution. There
are other way to do this.
This belongs to a class of differential equations that we call parabolic. They often
approach an equilibrium.

35



Consider lim
t→∞

u(x, t). We consider the limit in a L2 sense.

Claim: As t → ∞, u approaches an equilibrium solution. The equilibrium ue(x) is a
function of x, it doesn’t depend on time.
Note that, if the claim is true, we should get a harmonic function.
ue solves ∆Ue = 0 in Ω and ue = g(x) on ∂Ω.
The equilbrium doesn’t care about the t = 0 condition.
We can always solve this using Perron’s Method.

Proposition 12.

lim
t→∞

∫
Ω

|u(x, t)− ue(x)|2 dx = 0

Proof. Define v(x, t) := u(x, t)− ue(x).
Then vt −∆v = ut −∆u−∆ue = 0
Boundary Condition:
v(x, t) = g(x)− g(x) = 0 for x ∈ Ω, t > 0.
Initial Condition:
v(x, 0) = u(x, 0)− ue(x) = f(x)− ue(x)
We use energy method.

e(t) :=

∫
Ω

v(x, t)2 dx

Then e′(t) = 2
∫
Ω
vvt dx = 2

∫
Ω
v∆v dx

Use IBP: = −2
∫
Ω
|∆v|2 dx+ 2

∫
∂Ω
v∆v · ν dS

The second inequality goes to 0 as t→ ∞
Recall the Poincaré Inequality: If v is any function vanishing on the boundary of a
domain, then

∫
Ω
v2 dx ≤ 1

λ1

∫
Ω
|∆v|2 dx

e′(t) ≤ −2λ1e(t)

e′ + 2λ1e ≤ 0 =⇒ (e(t)e2λ1t)′ ≤ 0 =⇒ e(t)e2λ1t is decreasing. So,

e(t)e2λ1t ≤ e(0) =

(∫
Ω

|f(x)− ue(x)|2 dx
)
e−2λ1t

=⇒
∫
Ω

|u(x, t)− ue(x)|2 dx→ 0

And it converges exponentially with rate 2λ1

Wave Equation

We derive the 1d wave equation.
Physically: consider a vibrating string. We don’t care about the endpoints. Assume
the length is infinite.
Let u(x, t) be the vertical displacement of the string at co-ordinate x and time t. We
ignore horizontal displacement.
We use Newton’s second law: (Mass)(Acceleration)=Force, or (rate of change of mo-
mentum) = Force.
Let ρ = ρ(x) be the density of the string at coordinate x.

Notation: use T for |T⃗ |
If we multiply density with velocity, and integrate it: we get momentum. The rate of
change of momentum is the LHS of Newton’s law.

d

dt

∫ x2

x1

ρ(x)ut(x, t) dx

RHS is the force. We have the plucking, but assume it already happened. Then the
only force remanining is the Tension. [There is also gravity, say it’s negligible].
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We take the vertical components of the tension force. Suppose angle is α1, α2 So, the
RHS is:

−T (x1, t) sinα1 + T (x2, t) sinα2

This is an alphabet soup. We have the assumptions:

1. We only consider vertical displacement

2. We only consider ‘small’ displacement, so α1, α2 are small angles. So |ux| isn’t
too big. So T sinα1 = T ux(x1,t)√

1+ux(x,t)2
≈ Tux(x1, t)

3. Also assume tension T in the string is constant.

4. Assume c :=
√

T
ρ is a constant.

Thus, our equation becomes:∫ x2

x1

ρ(x)utt(x, t) dx = −Tux(x1, t) + Tux(x2, t) = T

∫ x2

x1

uxx(x, t) dx

Therefore, we have: ∫ x2

x1

(ρutt − Tuxx) dx

Since the integral is arbitrary, we have:

utt −
T

ρ
uxx = 0

Setting c =
√

T
ρ , we get the One Dimensional Wave Equation:

utt − c2uxx

We rewrite the 1d wave equation in the following way using linear operators:

utt − c2uxx = (∂t + c∂x)(∂t − c∂x)u = 0

Thus, if ut − cux = 0 then u solves the 1d wave equation. Also, if ut + cux = 0 then
u also solves the 1d wave equation.
Note that ut−cux is siply the transport equation: if F is u at t = 0 then u = F (x−ct).
Similarly, the solution to ut+cux = 0 isG(x+ct). We can take F,G : R → R arbitrary.
One is wave moving to the right with speed c, the other is the wave moving to the
left with speed c.
Are we missing any solution? The answer is no!

Class 20: 02/23
Today we answer whether u(x, t) = F (x− ct) +G(x+ ct) gives us all the solutions.
Let ξ = x− ct, η = x+ ct
Change variables:
u(x, t) = U(ξ(x, t), η(x, t))
ut = Uξξt + Uηηt = −cUξ + cUη

utt = −cUξξξt − cUξηηt + cUηξξt + cUηηηt
utt = c2Uξξ − 2c2Uξη + c2Uηη

ux = Uξξx + Uηηx = Uξ + Uη

uxx = Uξξξx + Uξηηx + Uηξξx + Uηηηx
uxx = Uξξ + 2Uξη + Uηη

Thus, applying the operator ∂2t − c2∂2x, we get,
c2Uξξ − 2c2Uξη + c2Uηη − c2Uξξ − 2c2Uξη − c2Uηη = 0
=⇒ Uξη = 0

=⇒ Uξ = F̃ (ξ) =⇒ U(ξ, η) =
∫
F̃ (ξ) dξ +G(η) which was what we wanted.
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Now we solve the cauchy problem for the 1d wave equation.

utt − c2uxx = 0 for −∞ < x <∞, t > 0 and u(x, 0) = f(x)
This is not enough. We need some other condition. Physically, we can start with
any position, but we can start also with any ‘velocity’. Meaning we need to specify
ut(x, 0)
Another idea: consider Taylor’s theorem.
u(x, t) = u(0, 0) + ux(0, 0)x+ ut(0, 0)t+

1
2uxx(0, 0)x

2 + 1
2utt(0, 0)t

2 + uxt(0, 0)xt
We know u(0, ).
We know ux(0, 0) by f

′(0)
We do not know ut(0, 0).

That is why we want ut. Add initial condition ut(x, 0) = g(x)

Note that we can get all the Taylor coefficients from derivatives of f and g.
Recall the d’Alembert’s Formula:
u(x, t) = F (x− ct) +G(x+ ct)
We want to find F,G in terms of f, g.
u(x, 0) = F (x) +G(x) = f(x)
ut(x, 0) = −cF ′(x) + cG′(x) = g(x)
Two equations, two unkowns. Lets integrate the second equation:
F (x) +G(x) = f(x)
−cF (x) + cG(x) =

∫ x

0
g(s) ds+ k

Thus, 2cF (x) = cf(x)−
∫ x

0
g(s) ds− k

F (x) = 1
2f(x)−

1
2c

∫ x

0
g(s) ds− k

2c

2cG(x) = cf(x) +
∫ x

0
g(s) ds+ k

G(x) = 1
2f(x) +

1
2c

∫ x

0
g(s) ds+ k

2c
Adding, we get:
u(x, t) = F (x− ct) +G(x+ ct)

=
1

2
[f(x− ct) + f(x+ ct)]−

∫ x−ct

0

g(s) ds+

∫ x+ct

0

g(s) ds

Thus,

u(x, t) =
1

2
[f(x− ct) + f(x+ ct)] +

1

2c

∫ x+ct

x−ct

g(s) ds

Also note the special case: g ≡ 0.
Then,

u(x, t) =
1

2
[f(x− ct) + f(x+ ct)]

Think of it graphically. Suppose we have a wave. Then if we turn on the time, it is
the ‘average’ of the wave ct units left and ct units right.
If the wave tapers off at both sides, then we can think of it as f moving away from
the origin at half the amplitude on both sides. Both are moving away at ‘speed’ c.
c is often called the wave speed.
Now consider the the case where f, g are compactly supported.
Then, suppose f, g ≡ 0 for |x| ≥ r.
That is to say, the string is infinite but we ‘mess’ with it in some finite interval.
If x+ ct ≤ −r then x− ct ≤ −r.
So, plugging in, everything is outside support, so u(x, t) = 0.
If x− ct ≥ r then x+ ct ≥ r
So, plugging in, everything is outside support, so u(x, t) = 0
If we draw a picture in the (x, t) plane with the inequalities, we see that the support
grows as time passes, but at any given time the support is contained in a compact
region. That is, for all t > 0, the function x 7→ u(x, t) has compact support. It is 0
outside [−r − ct, r + ct]
Recall, in heat equation, we had infinite propagation speed. But in wave equation,
we have finite propagation speed.
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Wave equation is an example of hyperbolic PDEs.

Class 21: 02/26
Recap:
1d Wave Equation:

utt− c2uxx = 0, −∞ < x <∞, t > 0, u(x, 0) = f(x), ut(x, 0) = g(x) for −∞ < x <∞
gives us d’Alembert’s solution:

u(x, t) =
1

2
[f(x+ ct) + f(x− ct)] +

1

2c

∫ x+ct

x−ct

g(s) ds

Also, in heat equation we had infinite propagation speed. But in wave equation, the
information is travelling (on both sides) at ‘speed’ c.
Recall that the Cauchy problem for the heat equation ut = κuxx, u(x, 0) = f(x) had
solution:

u(x, t) =

∫ ∞

−∞
Φ(x− y, t)f(y) dy

Since Φ is a gaussian, u ∈ C∞ for t > 0.
By contrast, for the wave equation, we have no smoothing. We need f ∈ C2, g ∈ C1,

otherwise we can’t calculate utt and uxx. So we need these to obtain a C2 solution.

Domain of dependence / Domain of influence

Pick x0, t0. Then u(x0, t0) is defined. The domain of dependence is the set of x-values
on which u(x0, t0) depends in term of f and g. This is a portion of the x-axis.
We have an explicit formula:

u(x, t) =
1

2
[f(x+ ct) + f(x− ct)] +

1

2c

∫ x+ct

x−ct

g(s) ds

Thus, it depends on x0 − ct0 and x0 + ct0 in terms of f .
It depends on [x0 − ct0, x0 + ct0] in terms of g.
Thus, our answer is the interval [x0 − ct0, x0 + ct0].
[draw a picture]
We can draw lines x − ct = x0 − ct0 and x + ct = x0 + ct0, then our domain of
dependence is the interval where these lines intersect the x-axis.
Consider the reverse prolem: given some subset of the x-axis, for which points (x, t)
is the solution u(x, t) influenced by f and g on this subset?
Take S = [a, b] the interval. Take a point p ∈ [a, b].
Draw the lines x− ct = p, x+ ct = p. f(p) affects f when x− ct = p or x+ ct = p. So,
it influences the points on those lines. It influences the region inside these two lines
in terms of g.
As a result, the region bounded by x−ct = b, x+ct = a gives us the region of influence
of [a, b]. [insert picture].
Special case: suppose g ≡ 0. Then we have V ’s going up from every c ∈ [a, b]. As a
result, there opens up a gap from the rightmost V and the leftmost V .

Boundary Value Problem with 1
2-infinite string

Suppose utt−c2uxx = 0 for 0 < x <∞, t > 0 such that u(x, 0) = f(x), ut(x, 0) = g(x).
This is incomplete, we need some boundary condition for u(0, t)
We can have Dirichlet boundary conditon, u(0, t) = 0 for 0 < t <∞.
Think of it as holding a string, we’re not letting it vibrate at all.
There are two approaches.
First approach:
Any solution of the wave equation must be given by u(x, t) = F (x− ct) +G(x− ct)
for some F,G : R → R.
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Note that d’Alembert’s Solution still works as long as we are plugging in positive
numbers. So, if x+ct, x−ct > 0 the solution is still valid. Thus, if x > ct, d’Alembert’s
solution still works.
[insert picture of x=ct]
On the right of the x = ct line, we have x > ct. In this region, d’Alember’ts solution
works.
Also, the formula for G is still valid outside the region. That is,

G(x) =
1

2
f(x) +

1

2c

∫ x

0

g(s) ds+ k

We need a new F .
u(0, t) = 0 implies F (0− ct) +G(0 + ct) = 0 =⇒ F (−ct) = −G(ct).
Thus, for any y < 0, F (y) = −G(−y).
Thus, when 0 < x < ct,

u(x, t) = F (x− ct) +G(x+ ct)

= −G(−x+ ct) +G(x+ ct)

= −1

2
f(−x+ ct)− 1

2c

∫ −x+ct

0

g(s) ds− k +
1

2
f(x+ ct) +

1

2c

∫ x+ct

0

g(s) ds+ k

= −1

2
f(−x+ ct) +

1

2
f(x+ ct) +

1

2c

∫ x+ct

−x+ct

g(s) ds

Thus, the solution is given by:

u(x, t) =


1

2
[f(x− ct) + f(x+ ct)] +

1

2c

∫ x+ct

x−ct

g(s) ds, if x ≥ ct;

1

2
[f(x+ ct)− f(−x+ ct)] +

1

2c

∫ x+ct

−x+ct

g(s) ds, if x < ct;

If x = 0 then x < ct, and if we plug it in the formula we get 0.
When x = ct, the formula gives us, in both cases,

1

2
[f(0) + f(x+ ct)] +

1

2c

∫ x+ct

0

g(s) ds

1

2
[f(x)− f(0)] +

1

2c

∫ x+ct

0

g(s) ds

Thus, if we want u to be continuous, we need f(0) = −f(0) and thus we need f(0) = 0.
The condition f(0) = 0 is called a compatibility condition. The boundary condition
and the initial condition shares a point: u(0, 0) = 0 = f(0). This is a compatibility
condition between the initial and the boundary condition.
We also need to ask the question: does the first derivative have a compatibility
condition? By differentiating u(x, t), one can check that by the continuity of first
derivative we need g(0) = 0.
Claim: One can also check that for continuity of second derivative, one needs f ′′(0) =
0. This is called a higher order compatibility condition.
The second approach uses the odd reflection trick from the homework.

Class 22: 02/28
Today we wrap up the discussion on the 1d wave equation.
Second approach to 1d wave equation on the 1/2-infinite string:
Suppose utt− c2uxx = 0 for 0 < x <∞, t > 0 such that u(x, 0) = f(x), ut(x, 0)− g(x)
and u(0, t) = 0 for 0 < t <∞

40



Trick: extension. If we have a dirichlet boundary condition, we want odd extension
since odd functions go thorugh 0 at 0. If we have neumann boundary condition, we
want even extension since even functions have derivatives that go through 0 at 0.
We use odd extension here.

Define: f0(x) =

{
f(x), if 0 ≤ x <∞;

−f(−x), if −∞ < x < 0;

g0(0) =

{
g(x), if 0 ≤ x <∞;

−g(−x), if −∞ < x < 0;

Lets assume f(0) = 0 and g(0) = 0 because otherwise f0 and g0 are not continuous.
Strategy: Solve the wave equation.
Let □ be the differential operator.
□u0 = 0 for −∞ < x < ∞, t > 0 via d’Alembert with the initial conditions given by
f0 and g0.
Claim: u0(x, t) is odd. We can prove this via brute force with d’Alembert. More
elegant way: define v(x, t) = u0(x, t) + u0(−x, t), then if we prove that v ≡ 0 we’re
done.
u0(x, t) satisfies the wave equation, u0(−x, t) also satisfies the wave equation [two x
derivatives gives you two minuses which beomce a plus].
Thus, □v = 0.
Also, v(x, 0) = 0 and vt(x, 0) because the initial conditions are odd and hence become
0 for v.
Therefore, v ≡ 0
Thus u(0, t) = 0 for all t.
We have the solution:

u(x, t) =
1

2
[f0(x− ct) + f0(x+ ct)] +

1

2c

∫ x+ct

x−ct

g0(s) ds

Example:
Consider the half infinite case.
Suppose we have no initial velocity: g(x) ≡ 0.
f is zero except for in the interval [1, 2] where it becomes a ‘bump’.
We can think of it like this: for a while, u does not know that it is in a half infinite
string!
Take the equation:
utt − 4uxx = 0
0 < x <∞, t > 0
u(0, t) = 0
u(x, 0) = f(x)
ut(x, 0) = 0
Now, c2 = 4 =⇒ c = 2.
Thus, u(x, t) = 1

2 [f0(x+ 2t) + f0(x− 2t)]
Now, think of f0. It has a ‘negative bump’ on [−2,−1].
Turn on the time. The positive bump splits into half, and one goes to the right with
speed 2 and one goes to left with speed 2.
Same happens to the ‘ghost string’ on the left.
At t = 1

2 we will have:
— negative half bump — nothing — negative half bump — half bump — nothing
—half bump
At t = 1 we will have:
— negative half bump — nothing — positive half bump — negative half bump —
nothing — positive half bump
The negative ghost bump becomes real! The wave gets inverted as it reflects off the
boundary.
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n-dim wave equation

The equation is:
utt − c2∆u = 0
x ∈ Rn, t > 0
u(x, 0) = f(x)
ut(x, 0) = g(x)
If n = 2, this is a model of surface waves, eg on a pond.
If n = 3, this is a model of acoustic waves, eg pressure waves like sound. In certain
settings, maxwell’s equations lead to the wave equation as well.
We use the Method of Spherical Means.
Idea: average the function over a sphere to see what happens. It is based on the
invariance of the Laplacian under rotation.

Definition 15. For any smooth function h : Rn → R, define the spherical means of
h for a given radius r > 0 :

Mh(x, r) =
1

ω(n)rn−1

∫
{y:|y−x|=r}

h(y) dS

Recall that ω(n) = surface measure of Sn−1

We are going to derive a PDE satisfying Mh. We are going to show a relationship
between h derivatives and r derivatives.
We change variables to take derivatives with respect to x. Define y = x+ rξ where ξ
lies on the unit sphere, that is |ξ| = 1
Then dSy = rn−1dSξ

Thus, we have:

Mh(x, r) =
1

ω(n)

∫
{ξ:|ξ|=1}

h(x+ rξ) dSξ

We also extend Mh(x, r) to be defined for all r as an even function. At r = 0 we are
averaging over a point, so Mh(x, 0) = h(x). If r < 0 then Mh(x, r) =Mh(x,−r) since
we are essentially integrating over the same sphere.
Let’s start with r-derivatives. Let Ω be the unit sphere

∂

∂r
Mh(x, r) =

1

ω(n)

∫
ξ∈Sn−1

n∑
i=1

hxi
(x+ rξ) · ξi dSξ

Going back to y variables,

r
∂

∂xi
=

∂

∂ξi

∂

∂r
Mh(x, r) =

1

ω(n)r

∫
ξ∈Sn−1

n∑
i=1

hξi(x+ rξ) · ξi dSξ

∂

∂r
Mh(x, r) =

1

ω(n)r

∫
ξ∈Sn−1

∇ξh · ν dSξ

We can apply divergence theorem:

∂

∂r
Mh(x, r) =

1

ω(n)r

∫
{ξ:|ξ|<1}

∆ξh(x+ rξ) dξ

We get two powers of r from all the double derivatives. Moving to xi derivatives:

∂

∂r
Mh(x, r) =

r

ω(n)

∫
{ξ:|ξ|<1}

∆xh(x+ rξ) dξ

Taking out the laplacian operator,
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∂

∂r
Mh(x, r) =

r

ω(n)
∆x

∫
{ξ:|ξ|<1}

h(x+ rξ) dξ

Back to y , we have y = x+ rξ and thus dy = rndξ. Therefore,

∂

∂r
Mh(x, r) =

1

ω(n)rn−1
∆x

∫
{y:|y−x|<r}

h(y) dy

Class 23: 03/01
Recall n-dim wave equation:

utt − c2∆u = 0

For x ∈ Rn and t > 0
u(x, 0) = f(x)
ut(x, 0) = g(x)
We also defined spherical means:
For a function h, we have:

Mh(x, r) =
1

ωnrn−1

∫
{|y−x|=r}

h(y) dSy

Mh(x, r) =
1

ωn

∫
|ξ|=1

h(x+ rξ) dSξ

The latter allows us to take derivative through x easier and also define this properly
for r < 0
Last time we found: for any smooth enough h : Rn → R:

∂

∂r
Mh(x, r) =

1

ωnrn−1
∆x

∫
{y:|y−x|<r}

h(y) dy

RHS can be modified as follows:

=
1

ωnrn−1
∆x

∫ r

0

∫
|x−y|=ρ

h(y) dSy dρ

=
1

ωn−1
∆x

∫ r

0

ρn−1

ωnρn−1

∫
|y−x|=ρ

h(y) dSy dρ

1

ωn−1
∆x

∫ r

0

ρn−1Mh(x, ρ) dρ

Thus, we have:

rn−1 ∂

∂r
Mh(x, r) = ∆x

∫ r

0

ρn−1Mh(x, ρ) dρ

Therefore, by FTC,

∂

∂r

[
rn−1 ∂

∂r
Mh(x, r)

]
= ∆x

[
rn−1Mh(x, r)

]
Thus, by product rule,

rn−1 ∂
2

∂r2
Mh + (n− 1)rn−2 ∂

∂r
Mh = rn−1∆xMh

=⇒ ∂2

∂r2
Mh +

n− 1

r

∂

∂r
Mh = ∆xMh

This is called Darboux’s equation. Note that RHS is the radial laplacian!
Now, suppose h is u, the solution of the n-dimensional wave equation. Then,
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∂2

∂r2
Mu +

n− 1

r

∂

∂r
Mu =

1

ωnrn−1
∆x

∫
|y−x|=r

u(y, t) dSy

=
1

ωn
∆x

∫
|ξ|=

u(x+ rξ, t) dSξ

=
1

ωn

∫
|ξ|=

∆xu(x+ rξ, t) dSξ

=
1

ωn

∫
|ξ|=1

1

c2
utt(x+ rξ, t) dSξ

=
1

ωnrn−1

∫
|y−x|=r

1

c2
utt(y, t) dSy

=
1

c2
∂2

∂t2
Mu(x, r, t)

Thus, we have:

∂2

∂t2
Mu = c2

[
∂2

∂r2
Mu +

n− 1

r

∂

∂r
Mu

]
This is caled the Euler-Poisson-Darboux equation.
This allows us to solve te equation directly for odd dimension. Take n = 3 and
multiply by r :

∂2

∂t2
(rMu) = c2

∂2

∂r2
(rMu)

Thus rMu satisfies the 1d wave equation, and we can solve this using d’Alembert!
Initial conditions will be rMu(x, r, 0) = rMf
∂
∂t (rMu(x, r, 0)) = rMg

Therefore, rMu(x, c, t) =

1

2
[(r + ct)Mf (x, r + ct) + (r − ct)Mf (x, r − ct)] +

1

2c

∫ r+ct

r−ct

sMg(x, s) ds

Recover u(x, t) by taking limr→0Mu(x, r, t).
Thus, u(x, t) =

lim
r→0

1

r

(
1

2
[(r + ct)Mf (x, r + ct) + (r − ct)Mf (x, r − ct)] +

1

2c

∫ r+ct

r−ct

sMg(x, s) ds

)
We are going to use l’Hopital. When r → 0 the first part of the numerator cancels
out and the second part is integral of odd function over symmetric interval. So it is
indeed 0

0 . Differentiating the numerator, we have:

lim
r→0

1

2

[
Mf (x, ct) + ct

∂

∂r

∣∣∣∣
r=0

Mf (x, r + ct) +Mf (x,−ct)− ct
∂

∂r

∣∣∣∣
r=0

Mf (x, r − ct)

]

+
1

2c
ctMg(x, ct)−

1

2c
(−ct)Mg(x,−ct)

Note that,

∂

∂r
Mf (x, r + ct) =

1

c

∂

∂t
Mf (x, ct),

∂

∂r
Mf (x, r − ct) = −1

c

∂

∂t
Mf (x,−ct)

Therefore,

u(x, t) =Mf (x, ct) + t
∂

∂t
Mf (x, ct) + tMg(x, ct)

44



Note that:

∂

∂t
Mf (x, ct) =

∂

∂t

1

ωn

∫
|ξ|=1

f(x+ ctξ) dSξ

=
1

ωn

∫
|ξ|=1

∇f(x+ ctξ) · cξ dSξ

1

ωnc2t2

∫
|y−x|=ct

∇yf(y) ·
y − x

t
dSy

Therefore, u(x, t) is:

1

4πc2t2

∫
{y:|y−x|=ct}

[f(y) + tg(y) + ∆yf(y) · (y − x)] dSy
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Midterm involves:

1. Simple Transport: ut + v⃗0 · ∇u = 0

2. ∆u = 0

3. ∆u = f

4. Fourier Transform

5. ut = ∆u

6. ut = ∆u+ F

Class 24: 03/04
Midterm Review
Wednesday: 6:30 PM - 8:00 PM
Rawles Hall 368
Exam will not include the wave equation.

1. Classification:

linear vs nonlinear PDE. There are three subcategories of nonlinear - that is
not important for midterm.

But the distinction of linear vs non-linear is important.

2. Simple Transport:

ut + v0 ·∆u = 0, v0 ∈ Rn, u(x, 0) = f(x)

In homework we had ut + v0∆u+ c = 0. Stuff from homework is fair game.

3. Laplace/Poisson:

There is radial laplacian. Memorize that. Be comfortable with the chain rule:
there may be in exam: come up with the radial laplacian ODE.

urr +
n− 1

r
ur

Fundamental Solutions are related to this. If we solve the above eqn = 0 then
we get the fundamental solutions. These will be given if needed.

Newtonian potential: If −∆u = f on Rn the solution is Φ ∗ f
Properties of Harmonic Functions

• Mean Value Principle. Might be asked to prove this.

• Strong Maximum/Minimum Principle for Harmonic Function via the mean
value property.

• Derivative Estimates: we have estimates of any derivative of harmonic
function. Remember that it is in terms of powers of r. How can we bound
the first derivative of harmonic functions?

• Liouville’s Theorem. How to use the derivative estimate to deduce that
bounded solutions of PDEs are constant?

• Harnack’s Inequality: sup is bounded by the inf. No need to remember
the proof, but remember the statement and review the related homework
problems.

• Green’s Functions: If we have a fundamental solutions, we can construct
green’s function G to solve stuff with boundary conditions.

We take our fundamental solution Φ. We want to make replace Φ(|x −
y|) with G(x, y) = Φ(|x − y|) + v(x, y), adding a corrector that satisfies
some boundary condition but doesn’t violate Green’s Identity. We need v
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harmonic such thatG satisfies some homogeneous [=0] boundary condition.
We are primarily focussed on Dirichlet Boundary Conditions.

Example: Balls/Half Spaces. If needed, Poisson Kernels and Poisson Inte-
gal Formula for ball/half space will be given.

May be asked: given this solution, show that it is the solution. Show that
the limit approaches the boundary, the kernel has integral 1 etc.

• Fundamental solutions have a singularity in the origin. This is just the
right kind of singularity. Review the three limits involving Φ integrated
against any continuous function over a ball/sphere.

• The shell method for integrating over a ball

• Divergence theorem:
∫
Ω
div F⃗ dx =

∫
∂Ω
F⃗ · n⃗ dS

If F⃗ = u∇v then we get:∫
Ω

u∇v dx = −
∫
Ω

∇u · ∇v dx+

∫
∂Ω

u∇v · n⃗ dS

Swap u, v and subtracting gives us green’s equation∫
Ω

(u∇v − v∇u) dx =

∫
∂Ω

(u∇v · n⃗− v∇u · n⃗) dS

• We won’t be asked to derive the corrector. But we might be asked what
boundary condition v has to satisfy to get an answer. That comes from
the Green’s equation: If we choose u to be our solution and v to be the
green’s function in the green’s equation then we get the constraint.

4. Heat Equation and Fourier Transforms.

• Know the definition of fourier transform: f̂ , f̌

• Fourier inversion formula:
ˇ̂
f = f

• Properties of Fourier trnasform: in multi index notation,

D̂αf = (iy)αf̂

Proof: Integrate by parts. Know the derivation

• Remember the formula: f̂ ∗ g = (2π)
n
2 f̂ ĝ. Given if needed.

• Plancherel identity:
∫
|f |2 dx =

∫
|f̂ |2 dy

• ê−a|x|2 − 1

(2a)
n
2
e−

|y|2
4a . Given if needed.

• Solution to ut = κ∆u, x ∈ Rn, t > 0, u(x, 0) = f(x). If needed, heat kernel

will be given: Φ(x, t) = 1
(4πt)n/2 e

−|x|2/4κt. Question: what do we do with

this for the cauchy problem? Convolution. etc.

• Properties of the solution. eg Infinite smoothing, explain and proof. In-
finite propagation speed. Decay of heat equation [remember homework].
Duhenel’s formula will be given if needed for solution to the cauchy prob-
lem for inhomogeneous, ut = ∆u+F (x, t). Remember the homework: the
trick of subtracting boundary condition and odd/even reflections to obtain
u(0, t) = 0 or ux(0, t) = 0.

5. Uniqueness for laplace, poisson, heat equations via: energy method, weak max-
imum principle.
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Class 25: 03/06
3D Wave Equation (Cauchy Problem)

utt − c2∆u = 0

x ∈ Rn, t > 0
u(x, 0) = f(x), ut(x, 0) = g(x)
Solution via spherical means

u(x, t) =
1

4πc2t2

∫
{y:|y−x|=ct}

f(y) dSy +
1

4πc2t

∫
{y:|y−x|ct}

g(y) dSy

+t
∂

∂t

(
1

4πc2t2

∫
{y:|y−x|=ct}

f(y) dSy

)
Equivalently,

u(x, t) =
1

4πc2t2

∫
{y:|y−x|=ct}

[f(y) + tg(y) +∇f(y) · (y − x)] dSy

Note: “Loss of Regularity”
Need f to be C3 and g to be C2 to gurantee that u ∈ C2. This is in contrast with
previous solution, where even ‘bad’ functions could become infinitely differentiable.
Lets talk about the cauchy problem in 2d. We have a ‘miracle’ in odd dimension that
allows us to get d’Alembert, but in 2D that doesn’t work. But something else works.
2d Wave equation cauchy problem:

utt − c2∆u = 0, x ∈ R2, t > 0

u(x, 0) = f(x)

ut(x, 0) = g(x)

We use Hadamard’s Method of Descent. This is used to take a solution in n dimension
and try to make it to dimension n− 1.
So, we use the 3d solution but where f is a function of x1 and x2 [no x3] and g a
function of x1 and x2 [no x3] and note that the solution will be independent of x3.
Why is this true?
Argue that ∂u

∂x3
≡ 0

Take x3 derivative of utt − c2∆u
we get:

(ux3)tt −∆ux3 = 0

When t is 0,

ux3
(x1, x2, x3, 0) = fx3

≡ 0

∂

∂t
(ux3(x1, x2, x3, 0)) ≡ gx3 ≡ 0

So, with enough regularity ux3
is a solution to a wave equation with initial and

boundary condition 0.
So, ux3 ≡ 0.
Since the solution is independent of x3, make the convenient choice of making x3 to
be 0.
Domain of integreation is {y = (y1, y2, y3) : (x1 − y1)

2 + (x2 − y2)
3 + y23 = c2t2}

Since f, g only depend on y1 and y2, the three integrands are symmetric if we replace
y3 with −y3.
So, we can just integrate over the upper hemisphere and double the answer.
Define r = d((x1, x2), (y1, y2))
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u(x1, x2, 0, t) =
1

2πc2t2

∫
y:y3=

√
c2t2−r2

. . . dSy

We parametrize the upper hemisphere: T (y1, y2) = (y1, y2,
√
c2t2 − r2)

Recall:

dS =

∣∣∣∣ ∂T∂y1 × ∂T

∂y2

∣∣∣∣ dy1dy2
=

∣∣∣∣∣∣∣det
i j k
1 0 x1−y1√

c2t2−r2

0 1 x2−y2√
c2t2−r2


∣∣∣∣∣∣∣ dy1dy2

=

∣∣∣∣( y1 − x1√
c2t2 − r2

,
y2 − x2√
c2t2 − r2

, 1

)∣∣∣∣
=

√
(y1 − x1)2 + (y2 − x2)2

c2t2 − r2
+
c2t2 − r2

c2t2 − r2
=

ct√
c2t2 − r2

We drop x3 part since it doesn’t matter anymore.

u(x1, x2, t) =
1

2πc2t2

∫
{y:|y−x|<ct}

f(y1, y2) dSy +
1

2πc2t

∫
{y:|y−x|<ct}

g(y1, y2) dSy

+t
∂

∂t

(
1

2πc2t2

∫
{y:|y−x|<ct}

f(y1, y2) dSy

)
Consider 3d solution, and take support of f, g to be the ball {x ∈ R3 : |x| < ρ}
Then, after time t, support {x : ct− ρ < |x| < ρ+ ct}
This is “Sharp Hoygen’s Principle’. Support consists of an envelop of spheres.
In 2d we have weak hoygen’s principle.
2d is modelling ‘surface waves’, in a pond for example.
Again, choose support to be {x : |x| < ρ+ ct}
Then support becomes {x : |x| < ρ+ ct}
Recall in one dimension, we have:

u(x, t) =
1

2
[f(x+ ct) + f(x− ct)] +

1

2c

∫ x+ct

x−ct

g(s) ds

So it is weak unless g ≡ 0

Class 26: 03/18
Review:
1: 1d wave equation have solution:

u = F (x+ ct) +G(x− ct)

⇒ d’Alembert’s solution to 1d Cauchy Problem
2: 3d wave equation: we solved via spherical means.
We have strong Huygen’s principle.
3: 2d wave equation: we solved via descent, look at a 3d solution that doesn’t depend
on the third variable. We have weak Huygen’s principle.
Today: Inhomogeneous wave equation (Duhanel’s Principle).
Also: Uniqueness / Domain of Influence where we don’t explicitly use the formula.
This is more general. For example, we can have ‘variable wave speed’.
Inhomogeneous wave equation:

utt − c2∆u = F (x, t)

For x ∈ Rn, t > 0
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u(x, 0) = 0

ut(x, 0) = 0

for x ∈ Rn

Strategy: let U = U(x, t, s)

Solve Utt − c2∆U = 0 for x ∈ Rn, t > s
U(x, s, s) = 0 for x ∈ Rn

Ut(x, s, s) = F (x, s) for x ∈ Rn

To find U set V (x, t, s) as solution to Vtt−c2∆V = 0 for x ∈ Rn, t = 0 with V (x, 0, s) =
0 and Vt(x, 0, s) = F (x, s) and have U(x, t, s) = V (x, t − s, s). We can find V via
solution of homogeneous wave equation.
Assume F is C2 on Rn × [0,∞) [Recall that F is C1 for n = 1]

Now, let u(x, t) =
∫ t

0
U(x, t, s) ds.

Claim: It solves the original equation.

Proof. u(x, 0) = 0

ut = U(x, t, t) +
∫ t

0
Ut(x, t, s) ds

Note, first term is 0
utt = Ut(x, t, t) +

∫ t

0
Utt(x, t, s) ds

Note, first term is F (x, t)

∆u =
∫ t

0
∆U(x, t) ds

Thus, utt − c2∆u = F (x, t) +
∫ t

0
(Utt − c2∆U) ds = F (x, t)

Example: n = 1
We want to solve utt − c2uxx = F (x, t) with initial data u(x, 0) = 0, ut(x, 0) = 0
Using d’Alembert, U(x, t, s) = V (x, t− s, s) so:

u(x, t) =

∫ t

0

1

2c

∫ x+c(t−s)

x−c(t−s)

F (y, s) dy ds

Domain of Dependence/Influence:
The y values that matters are from x0 + c(t0 − s) and x − c(t0 − s) where s varies
from 0 to t0.
One extreme: x0 − ct0 to x0 + ct0
Other extreme: x0 to x0
We keep integrating between, so we get the whole ‘triangle’.
This is consistent with the fact that we have propagation speed c.

Class 27: 03/20
Today we will talk about:
Energy associated with the wave equation.
Lets go back and talk about domain of influence. In Rn×(0,∞) with the latter being
time,

utt − c2∆u = 0

u(x, 0) = f(x), ut(x, 0) = g(x)
At any time [we take a slice of time], which x’s are influenced by the value of f and
g at x0?
It’s the ‘light cone’, think about a cone centered at x0 and spreading out with ct.
Domain of influence is the set of points sitting inside the cone.
So, domain of influence of x0 is:

{(x, t) : |x− x0| = ct} [in 3d, so we don’t have interior]

In 2d, we need the interior

{(x, t) : |x− x0| ≤ ct}
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[draw pictures of cones]
Now lets talk about energy.
There’s a ‘physical’ energy associated to it. We can think about it as energy = kinetic
+ potential energy. It is given by:

E(u,Ω) :=

∫
Ω

[
1

2
u2t +

c2

2
|∇xu|2

]
dx

Asssume f and g are compactly supported.
For t > 0, our explicit formulas for u(x, t) imply that u(−, t) is also compactly sup-
ported for any fixed t.

Let’s compute dE(u,Rn)
dt

d

dt

∫
Rn

1

2
u2t +

c2

2
|∇u|2 dx

Note, E(u,Rn) <∞ for each t > 0 because compact support

=
d

dt

∫
BR

1

2
u2t +

c2

2
|∇u|2 dx

where R is big enough to contain the support of U(−, t)
Taking the derivative inside the integral sign,

=

∫
BR

ututt +
c2

2
2∇u · ∇(ut) dx

=

∫
BR

ututt dx− c2∆uut +

∫
∂BR

c2∇u · νut dS

We can drop the boundary term because compact support.
From the integral we can factor ut to get wave equation
= 0
Thus, energy is conserved.
Heat equation is a ‘dissipative’ PDE since energy dissipates. Wave equation is a
‘conservative’ PDE.

Proposition 13. Assume u solves utt − c2∆u = 0, x ∈ Rn, t > 0 and suppose
the initial displacement and initial velocity u(x, 0) = 0 and ut(x, 0) = 0 in a ball
B(x0, R) ⊂ Rn.
Then u(x, t) = 0 inside the cone C =

{
(x, t) : |x− x0| < c

(
R
c − t

)}
Proof. Consider:

E(u,B(x0, c(R/c− t))) = E(t) =

∫
B(x0,c(R/c−t))

1

2
u2t +

c2

2
|∇u|2 dx

Note that E(0) = 0
To compute it, we just use the shell method

dE

dt
=

d

dt

∫ c(R/c−t)

0

∫
∂B(x0,r)

1

2
u2t +

c2

2
|∇u|2 dS dr

= − c
2

∫
∂B(x0,c(R/c−t))

u2t + c2|∇u|2 dS +

∫
B(x0,c(R/c−t))

ututt + c2∇u · ∇(ut) dx

= − c
2

∫
∂B(x0,c(R/c−t))

u2t + c2|∇u|2 dS +

∫
B(x0,c(R/c−t))

ut(utt − c2∆u) dx

+

∫
∂B(x0,c(R/c−t))

c2∇u · νut dS

the second integral is just 0
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Also, note that c|(c∇u · ν)ut| ≤ c( c
2

2 (∇u · ν)2 + 1
2u

2
t ) ≤ c

2 (c
2|∇u|2 + 1

2u
2
t )

since ab ≤ 1
2a

2 + 1
2b

2

Thus dE
dt ≤ 0

Thus E(t) ≡ 0 which means u ≡ 0 in C.

To finish, we discuss Elliptic and Hyperbolic operators.
Elliptic: Laplace operator
Hyperbolic: wave operator
Recall: laplace operator is:
ux1x1

+ · · ·+ uxnxn

Replace ∂
∂xi

with λi
So, the principal symbol is:
λ21 + · · ·+ λ2n
For wave operator, the principal symbol is:
uxn+1xn+1

− c2(ux1x1
+ · · ·+ uxnxn

) to
λ2n+1 − (λ21 + · · ·+ λ2n)

If principle symbol (polynomial) only vanishes for λ⃗ = 0 then it is elliptic
If polynomial has non-zero solutios then it is hyperbolic.
We also have parabolic: if ut = elliptic operator then it is called parabolic (heat
equation).

Class 28: 03/22

First Order PDEs

1st Order Quasilinear PDE
Let X = (X1, · · · , Xn)
Then general quasilinear PDE looks like

a1(x, u)ux1 + a2(x, u)ux2 + · · ·+ an(x, u)uxn = c(x, u)

Specify ‘initial condition’ u = f(x) for x ∈ Γ [a hypersurface, so n− 1 dimension].
Here f : Γ → R
General Method:
Method of Characteristics;
[We are somewhat deviating from Evans here, in notation for example]
Key idea: View

∑
aj(x, u)uxj

= ∇u · a⃗ as a directional derivative along curves.
Examples:
1: Suppose n = 2. Instead of writing (x1, x2) write (x, y). We solve:

a1ux + a2uy = 0

where a1, a2 are constant.
Let Γ be the x-axis.
Then u(x, 0) = f(x)
PDE is equivalent to:

∇u · (a1, a2) = 0

So the directional derivative at (a1, a2) is 0. Informally, it doesn’t change in that
direction.
Let’s parametrize a curve along which PDE becomes an ODE by τ .
We also parametrize initial curve Γ by s
Let ∂x

∂τ = a1,
∂y
∂τ = a2

So the slope is given by vector a⃗.
Now parametrize Γ:
x(s, 0) = s, y(s, 0) = 0
Then,
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∂u

∂τ
=

(
∂u

∂x

∂x

∂τ
+
∂u

∂y

∂y

∂τ

)
= ∇u · a⃗ = 0

And u(s, 0) = f(s)
This is called the characteristic system.
It is a system of ODEs.
Solve to find x(s, τ), y(s, τ), u(s, τ).
This is not the final solution, we want it in terms of x, y.
∂x
∂τ = a1, x(s, 0) = s so for solving we can just integrate.
x(s, τ) = a1τ + c1(s)
x(s, 0) = s = c1(s)
So x(s, τ) = a1τ + s
Similarly calculating, y(s, τ) = a2τ
Thus, u(s, τ) = f(s)
Now we want to revert to the original variables.
x = a1τ + s, y = a2τ .
Solving, see that: s = s(x, y) = x− a1

a2
y and τ = τ(x, y) = y

a2

So, u(x, y) = f(s(x, y)) = f(x− a1

a2
)y

2: xux + 2uy = 1
u(x, 0) = f(x)
(n = 2, Γ = x-axis)
a1 − x, a2 = 2
∇u · (x, 2) = 1
So, system:

∂x

∂τ
= x

∂y

∂τ
= 2

∂u

∂τ
= 1

x(s, 0) = s, y(s, 0) = 0, u(s, 0) = f(s)
Now, solving the ODEs,
xτ = x =⇒ x(s, τ) = c(s)eτ , setting τ = 0, x(s, 0) = s = c(s) =⇒ x(s, τ) = seτ

yτ = 2 =⇒ y(s, τ) = 2τ + c(s) so y(s, τ) = 2τ
So, u(s, τ) = τ + f(s)
Now invert:
τ = y

2 and s = xe−τ = xe−y/2

So, u(x, y) = τ + f(s) = y
2 + f

(
xe−

y
2

)
Sketch the characteristic projections:
τ = (x(s, τ), y(s, τ))
s = xe−

y
2

x = se
y
2

So we can draw the graph x = se
y
2 for each s.

[insert picture]
3: xux + 2uy = u2

u(x, 0) = f(x)
We jump right intocharacteristic system
∂x
∂τ = x, x(s, 0) = s
∂y
∂τ = 2, y(s, 0) = 0
∂u
∂τ = u2, u(s, 0) = f(s)
As before,
x(s, τ) = seτ

y(s, τ) = 2τ
∂u
∂τ = u2 is seperable ODE so∫

1
u2 du =

∫
dτ
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− 1
u = τ + c(s)

So − 1
f(s) = c(s)

− 1
u = τ − 1

f(s)

1
u = 1−τf(s)

f(s)

So, u(s, τ) = f(s)
1−τf(s)

So, u(x, y) = f(xe−
y
2 )

1− y
2 f(xe

− y
2 )

Note, solution might blow up as (x, y) approaches the set of points where {(x, y) :
y
2f(xe

− y
2 ) = 1}

Class 29: 03/25
Example:

xux + (x2 + y)uy + (
y

x
− x)u = 1

u = 1 on the line x = 1
Again, we want to treat it as an ODE
∂x
∂τ = x
∂y
∂τ = x2 + y
∂u
∂τ +

(
y
x − x

)
u = 1

Initial condition: x(s, 0) = 1 and y(s, 0) = s and u(s, 0) = 0
Characteristic System
Equation for x decouples
=⇒
x(s, τ) = c1(s)e

τ

x(s, 0) = 1 = c1(s)
x(s, τ) = eτ

Substitute into ODE for y
∂y
∂τ = e2τ + y
∂y
∂τ − y = e2τ

(yeτ )′ = eτ

ye−τ = eτ + c2(s)
y(s, t) = e2τ + c2(s)e

τ

y(s, 0) = s =⇒ s = 1 + c2(s)
y(s, τ) = (s− 1)eτ + e2τ
∂y
∂τ = (s− 1)eτ + 2e2τ

Characteristic projection:
y = (s− 1)x+ x2

Parabola with vertex:
(

1−s
2 ,− (1−s)2

4

)
Note that the parabola always passes through (0, 0).
For different values of s we get a foliation of the plane.
Now solve ODE for u

y

x
− x =

(s− 1)eτ + e2τ

eτ
− eτ = (s− 1)

∂u

∂τ
+ (s− 1)u = 1

(ue(s−1)τ )τ = e(s−1)τ

Integrate

ue(s−1)τ =
e(s−1)τ

s− 1
+ c3(s)

u(s, 0) = 0 =⇒ 0 =
1

s− 1
+ c3(s)
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u(s, τ) =
1

s− 1
− 1

s− 1
e(1−s)τ

for s ̸= 1
When s = 1, ∂u∂τ = 1
So, u(s, τ) = τ
Revert to x and y

u(x, y) =
x

y − x2
− x

y − x2
e(x−y/x) ln x

When y ̸= x2. When y = x2,

u(x, y) = lnx

Only defined for x > 0

General Problem

First Order quasi-linear

a1(x, u)ux1
+ · · ·+ an(x, u)uxn

= c(x, u)

u(x) = f(x) when x ∈ Γ
Γ = hypersurface in Rn

x = (x1, · · · , xn)
Characteristic System:

∂x1
∂τ

= a1(x, u)

...

∂xn
∂τ

= an(x, u)

∂u

∂τ
= c(x, u)

plus initial conditions depending on s
Where s = (s1, · · · , sn−1) is used to parametrize Γ
We need theory for first order (nonlinear) systems of ODE’s depending on parameters

Theorem 19. Given a system

∂y

∂τ
= g(τ, y)

y(s, 0) = h(s)

where g : R× Rk → Rk

y = y(s, τ) maps Rl × R → Rk

h : Rl → Rk

assume g is C1 in τ and y
and h is C1

Then ∀s0 ∈ Rl, ∃τ0 > 0 and ∃s > 0 such that a unique C1 solution y = y(s, τ) exists
to this problem provided τ < τ0 and |s− s0| < s
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That is: g, h C1 implies ∃ unique local solution.
We can change C1 to C∞ and we still have only a local solution. The solution we
cook up can blow up after a little while.
local is the best we can hope for (as a general theorem). Classic example: y′ =
y2, y(0) = 1
So, − 1

y = τ + c,−1 = c so y = 1
1−τ so the solution blows up at τ = 1

Idea of existence
Suppose ∂y

∂τ = g(y)

Rewrite: y(τ) =
∫ τ

0
g(y(t)) dt+ y0 =M(y)

Then this becomes a problem of finding a fixed point of M .
We want a function y such that M(y) = y
Show this with contraction mapping

Let S =
{
y ∈ C([0, τ0];Rk) : sup0≤τ≤τ0 |y(τ)− y0|Rk ≤M

}
To use contraction mapping:
show: M : S → S
show M is a contraction: |M(y2)−M(y1)| ≤ λ|y2 − y1|
when λ < 1
provided τ sufficiently small.

Class 30: 03/27
1st order quasi-linear PDE
n variables [x = (x1, · · · , xn) ]

a1(x, u)ux1
+ a2(x, u)ux2

+ · · ·+ an(x, u)uxn
= c(x, u)

u(x) = f(x) for x ∈ Γ

Assumptions:

∀j ∈ {1, · · · , n}, aj(x, z) is C1 in a neighborhood of (x, z) : x ∈ Γ, z = f(x)
c(x, z) is C1 in this neighborhood as well.
f : Γ → R is C1

Γ is a (n− 1)-dimensional hypersurface admitting a regular parametrization; that is:
∀x0 ∈ Γ,∃R > 0 such that Γ ∩B(x0, R) can be described as

Γ ∩B(x0, R) = {h(s) : s ∈ D}

where D ⊂ Rn−1, open
s = (s1, · · · , sn−1), h : D → Rn

given by h(s) = (h1(s), · · · , hn(s)) ∈ C1

with ∂h
∂s1

, · · · , ∂h
∂sn−1

being linearly independent.

Note: our solution is a graph in (n+ 1)-dimensions.
∂h
∂s1

, · · · , ∂h
∂sn−1

form a basis for the tangent plane.

[We are going to need one more assumption for later].
Method of Characteristics
1. Solve the characteristic system of ODEs in new variables s ∈ Rn−1, τ ∈ R
2. Revert back to x1, · · · , xn
For each (x, f(x)) for x ∈ Γ we need to find a ‘curve’, weaving them together gives
us the solution in whole plane.
The whole idea is based on considering LHS as a directional derivative.
When we are considering x as a function, we will use X.
Then, we have the Characteristic System

∂X1

∂τ
= a1(X,U) X1(s, 0) = h1(s)

...

∂X2

∂τ
= an(X,U) Xn(s, 0) = hn(s)
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∂U

∂τ
= c(X,U) U(x, 0) = f(h(s))

Step 1: By existence and uniqueness for C1 ODE system, ∀s0 ∈ D, ∃R > 0, ∃δ > 0
such that there exists a unique solution X(s, τ), U(s, τ) [where X = (X1, · · · , Xn)]
for |s− s0| < R, |τ | < δ
Step 2: We want to invert the change of variables.
( s︸︷︷︸
∈Rn−1

, τ︸︷︷︸
∈R

) → X(s, τ) is a C1 map from Rn → Rn

This inversion is possible (locally) provided the Jacobian at s = s0, τ = 0 is non-zero.
Need:

det

 | | | |
∂X
∂s1

(s0, 0)
∂X
∂s2

(s0, 0) · · · ∂X
∂sn−1

(s0, 0)
∂X
∂τ (s0, 0)

| | | |

 ̸= 0

Equivalently,

det

 | | | |
∂h
∂s1

(s0)
∂h
∂s2

(s0) · · · ∂h
∂sn−1

(s0) aj(h(s), f(h(s)))

| | | |

 ̸= 0

So, we need the additional assumption:a1(h(s), f(h(s)))...
an(h(s), f(h(s)))

 does not lie on the tangent plane.

Note that, this is an overdetermined problem. We have initial data, and then the
PDE tells us how stuff moves from that initial data. But the two things need not
agree! Having the determinant non-zero, that is, not having this at the tangent space
lets us avoid the disagreement.
At s = s0, then we say Γ and f are non-characteristic at x0 = h(s0)
Note: if the PDE is linear or semi-linear, then the condition of being non-characteristic
depends only on Γ.

Theorem 20. Under all these assumptions, there exists a unique solution to the first
order quasi-linear PDE in a neighborhood of every point in Γ.

Class 31: 03/29
Today we talk about the proof of the theorem.

Theorem 21. ∀x0 ∈ Γ, ∃r0 > 0 such that the formula obtained via the method of
characteristics yields a C1 solution.

Proof. Recall: X1τ = a1(X,V ), · · · , Xnτ
= an(X,V )

Uτ = c(X,u), U(s, 0) = f(h(s))
X1(s, 0) = h1(s), · · · , Xn(s, 0) = hn(s)
∃X(s, τ) solving this system ∀|s− s0| < s, |τ | < τ0
Non-charactteristic condition:
∃C1 (local) inverse S(x), T (x)
Claim: u(x) := U(X−1(x)) = U(S(x), T (x))
solves the PDE and the initial condition.
2 approaches:
1. Brute force
Ex: n = 2
u(x1, x2) = U(s(x1, x2), τ(x1, x2))
uxj

= Ussxj
+ Uττxj

j = 1, 2
xi = Xi(s(x1, x2)τ(x1, x2))
taking ∂

∂xj
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δij = Xis sxj +Xiτ τxj

taking the boxed as unknown we have 4 equations 4 unknowns, solving and plugging
it into the PDE gives us the answer.
Good Geometric Approach:
Rewrite PDE:

(a1(x, u), · · · , an(x, u), c(x, u)) · (∇u,−1)

(∇u,−1) is a normal to the graph of u [(x, z) : u(x)− z = 0]
Geometrically, the PDE is solvable if the graph has this property.
Propososed solutionis is given in two ways.
non-parametrically via u(x) = U(X−1(x))
parametrically via (s, τ) 7→ (X(s, τ), U(s, τ))
Fixing any s in our parameter domain.
τ 7→ (X(s, τ), U(s, τ)) is a curve on the surface.
So, Xτ , Uτ is a tangent vector in a tangent plane.
Thus, (a1(x, u), · · · , an(x, u), c(x, u)) is a tangent vector.
So it is orthogonal to the normal.
So it solves the PDE.

Theorem 22. The solution is unique.

Proof. Let v be any solution. Fix any s̃ near s0.
Let w(τ) := U(s̃, τ)− v(X(s̃, τ))
w(0) = U(s̃, 0)− V (X(s̃, 0))
= f(h(s̃))− v(h(s̃))
If v is a solution it satisfies initial condition f
= f(h(s̃))− f(h(s̃)) = 0
So w(0) = 0
Now we show that wτ = 0
wτ = Uτ (s̃, τ)−∇v(X(s̃, τ)) ·Xτ

= c(X(s̃, τ), U(s̃, τ))−
∑n

j=1 aj(X(s̃, τ), U(s̃, τ)) · vxj (X)
Since v is the solution to the PDE this has to be 0
So wτ = 0
So w is 0
So the solution is unique.

Example: ux − 2uy = 0
u = 0 on Γ = (x, y) : y = 1− x2

Char System:
xτ = 1 and x(s, 0) = s
yτ = −2 and y(s, 0) = 1− s2

uτ = 0 and u(s, 0) = 0
Characteristic (projections) are lines with slope −2 since dy

dx = yτ

xτ
= −2

Note: at (1, 0) there’s trouble: tangent:

So det

(
1 1

−2s −2

)
= −2+2s so we fail the inverse function theorem when s = 1 aka

at (1, 0)
So, we are not guranteed an inverse.
We may luck out, we may have trouble.
Claim: no solution valid in the neighborhood of (1, 0)
Initial condition: u(x, 1− x2) = 0
take derivative w.r.t. x
ux(x, 1− x2) + uy(x, 1− x2)(−2x) = 0
when x = 1,
ux(1, 0)− 2uy(1, 0) = 0
Actually this is a situation where we are safe.
We were supposed to do ux − 2uy = x
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When we do luck out, we can lose uniqueness.
Now we continue with ux − 2uy = x
We have uτ = x
At x = 1 we actually don’t have a solution since we have a contradiction.
Solving the char system,
x = τ + s
y = −2τ + 1− s2

uτ = τ + s
u = 1

2τ
2 + sτ

So, 2x+ y = 1− s2 + 2s
So, s2 − 2s+ 1 = 2− 2x− y =⇒ s = 1±

√
2− 2x− y so we have a problem.

Class 32: 04/01

Conservation Laws

Review ofDerivation
u = u(x, t) where x ∈ R3 density
Rate of change in Ω ∈ R3

d

dt

∫
Ω

u(x, t) dx = −
∫
∂Ω

F · n⃗ dS = −
∫
Ω

∇ · F dx

For arbitrary Ω we have: ∫
Ω

(ut +∇ · F ) dx = 0

F is flux.
Thus, we have

ut +∇ · F = 0

If F = −κ∇u we have Fourier’s law:

=⇒ ut = k∆u

What if F = F (u(x, t))?
Example: traffic flows
Road can be empty or in a jam, flux is non-linear.
F = F (u). Substitute.

ut +∇ · F (u) = 0

Specialize to 1 space dimension.
u = u(x, t) where x ∈ R, t > 0
So,

ut +
∂

∂x
(F (u)) = 0

Equivalently,

ut + F ′(u)ux = 0

Initial condition: u(x, 0) = u0(x) where u0 : R → R is given
This is called scalar conservation law in 1 space dimension.
Going back to method of characteristics
For a1ux1 + · · ·+ anxn = c(x, u)
We have ∂x1

∂τ = a1, · · · , ∂xn

∂τ = an and ∂u
∂τ = c(x, v)

Thinking of t as xn we have ∂xn

∂τ = 1, xn(s, 0) = 0
So, xn = τ
So, t = τ .

59



So we don’t need to introduce τ since it is just τ = t

ut + F ′(u)ux = 0

u(x, 0) = u0(x)

When −∞ < x <∞
Note: If F (u) = cu aka F is linear and thus F ′ = c then ut + cux = 0 is just simple
transport, solution is u(x, t) = u0(x− ct)
Continuing with method of characteristics,
∂X
∂t = F ′(U)
∂U
∂t = 0
X(s, 0) = s
U(s, 0) = u0(s)
Since ∂U

∂t = 0 it doesn’t depend on t so U(s, t) = u0(s)

Therefore, ∂X
∂t = F ′(U) = F ′(u0(s)) and X(s, 0) = s

X(s, t) = F ′(u0(s))t+ s
Now invert
We want s = S(x, t)
x = F ′(u0(s)) + s
Using this we have some non-linear equation for s.
Check inverse function theorem:

det

(
∂X1

∂s
∂X2

∂s
∂X1

∂τ
∂X2

∂τ

)
= det

(
1 F ′(u0(s))
0 1

)
= 1 ̸= 0

So, there exists solution for |t| small and u0 smooth.
So, u(x, t) = u0(S(x, t))
Sketch charateristics in x− t plane
X = F ′(u0(s))t+ s
So characteristics are lines for fixed s in terms of t.
dt
dx = 1

F ′(u0(s))

It hits x axis when s is x
2 cases:
i: s 7→ F ′(u0(s)) is non-decreasing
ii: s 7→ F ′(u0(s)) decreases on some interval
Case 1:
Lines of increasing intervals foliate the upper half plane!
Lines fan out to cover the upper half plane.
Case 2:
Then lines can intersect, but the solutions are constants along each line and they can
be different constants. So this is disastrous!
Collision of Characteristics
So solution has singularities (maybe lots of them)
Example:

Take simplest non-linear: F (u) = 1
2u

2 =⇒ F ′(u) = 0
So, PDE is ut + uux = 0
This is called Burger’s Equation

take initial condition u(x, 0) = e−x2

= u0(x)
Slopes of characteristics:

dt

dx
=

1

F ′(u)
=

1

u
=

1

e−s2
= es

2

At s = 0 the slope is 1 and after s = 0 we have increasing slopes so we get collisions.
What happens before collision? u0(0) = 1 so u = 1 along the line.

u0(
1
2 ) = e−

1
4 so u = e−

1
4 along that line. So that’s a collision.

Before collision: they are practically vertical, so we have very little change. The peak
has been carried along the line of slope 1
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But it is dangerously close to collision, so there is a big derivative drop.
This is called ‘wave-breaking’
This is a non-linear wave effect.

Class 33: 04/03
Scalar Conservation Law in 1 Space Dimension

ut + F (u)x = 0

u(x, 0) = u0(x)

Reall: ut + F ′(u)ux = 0
Method of Characteristics:
∂X
∂t = F ′(U), X(s, 0) = s
∂U
∂t = 0, U(s, 0) = u0(s)
Then, X(s, t) = F ′(u0(s)) + s
And U(s, t) = u0(s)
Characteristics are lines with slope

dt

dx
=

1

F ′(u0(s))

Note that t > 0
We have two cases:
Nice case: If s 7→ F ′(u0(s)) is non-decreasing, then the lines are not intersecting so
we get nice solutions
Bad case: If s 7→ F ′(u0(s)) is decreasing in some interval, then the lines intersect so
we get singularities. Singularities develop in finite time.
Estimating time of existence of a classical solution:
Inverse Function Theorem gurantees (at least for a little while) that there exists S(x, t)
which is the inverse of the map: x = F ′(u0(S(x, t)))t+ S(x, t)
The solution is given by:

u(x, t) = u0(S(x, t))

Use this to write an implicit formula for u

u(x, t) = u0(x− F ′(u(x, t))t)

Compute ux. Assume F ∈ C2

ux = u′0(x− F ′(u(x, t))t)(1− F ′′(u(x, t))ux · t)

Solve for ux

ux =
u′0(x− F ′(u(x, t))t)

1 + F ′′(u)u′0(x− F ′(u(x, t))t)t

Now, F ′′(u(x, t))u′0(x− F ′(u(x, t))t) = d
dsF

′(u0(s))
There’s not going to be trouble if we never have to divideby 0
If F ′(u0(s)) has a positive derivative, then at any time, the denominator is > 0 so we
don’t have any problem.
If s 7→ F ′(u0(s)) decreases somewhere then ∃t > 0 when denominator = 0
First time this happens is at t∗ = − 1

F ′(u0(s∗))

Where F ′′(u0(s
∗))u′0(s

∗) minimizes F ′′(u0(s))u
′
0(s)

ex: Burger’s Equation
F (u) = 1

2u
2

ut + uux = 0
Take u0(x) = e−x2

Then F ′(u0(s)) = u0(s) = e−s2

Minimize (e−s2)′ equals minimize −2se−s2
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Can easily check s∗ =
√

2
e

So t∗ =
√

e
2

Weak Solutions of Conservation Laws

Idea Let ϕ be a test function ϕ = ϕ(x, t) where ϕ ∈ C∞ for x ∈ R, t ≥ 0. Support ϕ
is compact in x and also ϕ vanishes for t large (or t near 0 )

0 =

∫ ∞

0

∫ ∞

−∞
(ϕut + ϕF (u)x) dx dt

= −
∫ ∞

0

∫ ∞

−∞
(ϕtu+ ϕxF (u)) dx dt

Note that equality to 0 requires it to be a classical solution. But the equality of
integrals doesn’t require any differentiability of u.

Definition 16. If u is locally integrable (L1
loc(R× (0,∞))) and if:∫ ∞

0

∫ ∞

−∞
ϕtu+ ϕxF (u) dx dt = 0

For every test function then we say u is a weak solution of the PDE ut + F (u)x = 0

A key example of a weak solution is a shock solution.
We seek a weak solution of the following form:

u(x, t) =

{
uL(x, t), if ΩL;

uR(x, t), if ΩR;

where R × (0,∞) = ΩL ∪ ΩR ∪ Γ where Γ is a curve and uL and uR are classical
solutions in ΩL and ΩR respectively.
uL ̸= uR for (x, t) ∈ Γ
Question: Is there a condition on Γ such that this formula yields a weak solution?

Class 24: 04/05
Skipped

Class 25: 04/10
Reivew: weak solutions of conservatin laws
ut + F (u)x = 0
Characteristics: Straight Lines with slope dt

dx = 1
F (u0)

u constant along characteristics.
Weak solution: ∫ ∫

ϕtu+ ϕxF (u) dx dt = 0

for all test function ϕ
Given curve x = s(t) on the left solution u = uL(x, t) on the right solution u = uR(x, t)
is a weak solution iff

s′(t) =
F (uL)− F (uR)

uL − uR
(R−H)

2 examples of ‘Riemann problems’
ex 1: Burger’s eqn F (u) = 1

2u
2

u0(x) = 1 for x < 0, u0(x) = 0 for x > 0
ex 2: F (u) = 1

2u
2

u(x, t) = 0 for x < 1
2 t, u(x, t) = 1 for x > 1

2 t
Another kind of wave solution is ‘Rarefaction waves’. A type of solution that is
constant along rays.
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Back to example 2.
Look for a solution that continuously interpolates between 0 and 1
To try this.
Seek a solution in the region 0 < x < t of the form u(x, t) = f(xt )
Let η = x

t
ux = f ′(xt ) ·

1
t

ut = f ′(xt ) · (−
x
t2 )

Substitute into Burger’s equation.
ut + uux = f ′(xt )(−

x
t2 ) + f(xt )

1
t

Multiply by t
f ′(η)(−η) + f(η)f ′(η) = 0
=⇒ f ′(η)(f(η)−) ≡ 0
f(η) = η =⇒ ; either f ′(η) ≡ 0, f(η) = η
f(η) = η =⇒ u(x, t) = x

t
We get a caondidate for a weak solution:

u(x, t)


0, if z < [; .];
x

t
, if ;

1 otherwise.
This is not a classical solution:

lim
x→0−

u(x, t)− u(0, t)

x
= 0

lim
x→0+

u(x, t)− u(x, 0)

x
=

1

t

Need a more refined notion of a weak solution.
A good shock (“physical” shock is one)
It is one such that characteristics run into the shock as t increases
If two characteristics interact at a point P in the x − t space then each one doesn’t
but any other characersistic no one traces back time back down to t = 0
Characteristics run into shock:

1

F ′(uL)
<

1

S′(t)
<

1

F ′(uR)

Or:
F ′(uR) < S′(t) < d′ < F ′(uL)
This is alled the entropy condition.
A ‘good shock’ must satisfy (RH) and the entropy condition.
If we consider uniformly convex fluxes F
ie F ′′(u) ≥ θ > 0 for all u
Then F ′ is inceasing.
Then the entropy condition becomes much simpler. It is equivalent to uR < s′(t) <
F ′(uL) along x = s(t)
Note: for the shock in example 2, uL = 0, uR = 1 and s′ = 1

2 and it fails.

Class 26: 04/12
We discuss HW5 P1.
Back to class.
Example 3: Last example of a weak solution to Burger’s Equation.
ut + uux = 0
On −∞ < x <∞, t > 0.
u(x, 0) = u0(x)

u0(x) =


0, if x < 0;

1, if 0 < x < 1;

0, if x > 1.
Some have two piecewise discontinuities.
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Recall that for u0(x) =

{
1, if x < 0;

0, if x > 0.
we have a shock solution.

Also, for u0(x) =

{
0, if x < 0;

1, if x > 0;
we have 2 solution. “bad” shock solution (failed

entropy condition, F ′(uR) < s′(t) < F ′(uL) ) and “good” rarefaction wave.
Recall slopes of characteristics: dt

dx = 1
F ′(u0)

= 1
u0

So, we have vertical lines for x < 0, slope 1 lines from 0 < x < 1 and again vertical
lines for x > 1
For 0 < x < t let u(x, t) be the rarefaction wave: u(x, t) = x

t
From x = 1 we have collision of characteristic so we seperate them with a shock.
RH: uL = 1, uR = 0

So s′(t) = F (uL)−F (uR)
uL−uR

=
1
2 1

2− 1
2 0

2

1−0 = 1
2

Also s(0) = 1
So, s(t) = 1

2 t+ 1
So, shock line is x = 1

2 t+ 1
Therefore, we have:

u(x, t) =



0, if x < 0;
x

t
, if 0 < x < t;

1, if t < x <
1

2
t+ 1;

0, if x >
1

2
t+ 1.

This is only good for a little while though, since the rarefaction wave (u = x
t ) hits

the shock when x = t hit x = 1
2 t+ 1 aka when t = 2

So, solution is only true for 0 < t < 2.
We look for a 2nd shock x = s̃(t) emanating from (2, 2)
We use RH.
s̃′(t) = F (uL)−F (uR)

uL−uR

Note that uL = x
t

So, s̃′(t) =
1
2 (

s̃(t)
t )

2
− 1

2 0
2

s̃(t)
t −0

Thus, s̃′(t) = 1
2
s̃(t)
t

Also s̃(2) = 2
So, ds̃

s̃ = 1
2
1
t dt

Integrating, ln s̃ = 1
2 ln t+ C

Thus, s̃(t) = C̃e
1
2 ln t = C̃

√
t

So, x = s̃(t) =
√
2t

So, t = 1
2x

2

We therefore have a piecewise shock.
Note: x = s̃(t) satisfies the entropy condition since F ′(uR) = 0 < s̃′(t) = 1√

2t
<

F ′(uL) = uL = x
t =

√
2t
t =

√
2√
t

Class 27: 04/15
ut + F (u)x = 0,−∞ < x <∞, t > 0
u(x, 0) = u0(x)
- Classical Solution via Method of Characteristics
- Weak Solution (In the sense of Distribution) (Rieman Problems)
– Shock solution (Rankine-Hugoniot) (Rarefaction Waves)
– Possible non-uniqueness alleviated by an entropy condition
What about existence/uniquenes for general initial data u0?
Today: Discuss Lax-Oleinik Formula
Assume F : R → R is uniformly convex. F ′′(u) ≥ Θ > 0∀u ∈ R.
Then tangent line always lies below the graph.
Graph of tangent line at v: F (v) + F ′(v)(u− v).
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So, F (u) > F (v) + F ′(v)(u− v)
We’ll need: Convex Dual of F .

F ∗(z) := [max
v

zv − F (v)]

We are maximizing v 7→ zv − F (v).
Differentiating, z = F ′(v)
Second derivative: −F ′′(v) < 0
So, at z = F ′(v) this becomes maximum.
Thus, F ∗(z) = z(F ′)−1(z)− F ((F ′)−1(z))
Since F ′ is increasing its inverse is well defined.
Let b(z) := (F ′)−1(z)
Then F ∗(z) = zb(z)− F (b(z))
example: burger’s eqn.
F (u) = 1

2u
2 =⇒ F ′(u) = u =⇒ b(z) = z =⇒ F ∗(z) = z2−F (z) = z2− 1

2z
2 = 1

2z
2

So, it is self-dual.
In general, F ∗(z) = F ′(v)v − F (v)
where z = F ′(v)
Assume u0 ∈ L1(R)
Meaning

∫∞
−∞ |u0(x)| dx <∞

Also assume F strictly convex. Aka graph always lies above tangent line.
F (v) + F ′(v)(u− v) ≤ F (u) with strict inequality unless u = v.
Suppose u classically solves our conservation law and the initial condition.
Consider antiderivative: U(x, t) =

∫ x

−∞ u(x′, t) dx′

Integrating ut + F (u)x = 0 over the real line,

Ut + F (Ux) = 0

U(x, 0) =
∫ x

−∞
u0(x

′) dx′

This is a Fully nonlinear PDE called Hamilton-Jacobian equation.
For any v ∈ R we have the following:

Ut + F ′(v)Ux = F ′(v)Ux − F (Ux) ≤ F ′(v)v − F (v)

Inequality is strict unless v = Ux = u
Now fix any (x, t) where t > 0.
For any v let y = y(x, t; v) be the point on x-axis by tracing back by a line with slope
dx
dt = F ′(v).

So, F ′(v) = x−y
t

Parametrize this line: lv(τ) = (x, t) + τ(F ′(v), 1)
Note: lv(0) = (x, t), lv(−t) = (x− tF ′(v), 0) = (y, 0)

d

dτ
U(lv(τ)) = Ux · F ′(v) + Ut

Integrate both sides of (∗),
∫ 0

−t
· dτ

U(x, t)− U(y, 0) ≤
∫ 0

−t

(F ′(v)v − F (v)) dτ

U(x, t) ≤ U0(y) + t(F ′(v)v − F (v))

with equality only when v = Ux = u(x, t)
Equivalently, U(x, t) ≤ U0(y) + tF ∗(z)
where z = F ′(v) = x−y

t
Instead view v = v(x, t; y)
Define Y (x, t) as a minimizer of y 7→ U0(y) + tF ′(v(x, t; y))v(x, t; y)− F (v(x, t; y))
Equivalently, Y minimizes:
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y 7→ U0(y) + F ∗(z) = U0(y) + F ∗
(
x− y

t

)
Since Y minimizes, using that Y ,
v(x, t;Y ) = u(x, t) should solve the original conservation law.
The Lax-Oleinik formula is:

u(x, t) = b

(
x− Y (x, t)

t

)
where Y minimizes U0(y) + F ∗ (x−y

t

)
and b = (F ∗)−1

Check:
– This is consistent with solution obtained via method characteristics.
– Lax-Oleinik proves a formula for a weak solution valid ∀t > 0

Class 04/17
Recap
ut + F (u)x = 0
u(x, 0) = u0(x)
F uniformly convex
Then F ∗(z) := maxu zu− F (u)
U(x, t) =

∫ x

−∞ u(x′, t) dx′

Ut + F (Ux) = 0
We have Lax-Oleinik Formula
Let Y (x, t) denote a minimum [not necessarily unique] of:

y 7→ U0(y) + tF ∗
(
x− y

t

)
Where U0(y) :=

∫ y

−∞ u0(x
′) dx′

Now, u(x, t) := b
(

x−Y (x,t)
t

)
solves ut + F (u)x = 0
where b = (F ′)−1

Relation to the method of characteristics
ut + F ′(u)ux = 0
∂X
∂t = F ′(U) X(s, 0) = s
∂U
∂t = 0 U(s, 0) = u0(s)
Now, U(s, t) = u0(s)
∂X
∂t = F ′(u0(s))
X(s, t) = F ′(u0(s))t+ s
We want to solve in terms of X and t
So, we want to find the value of s from x = F ′(u0(s))t+ s
x = F ′(u)t+ s for as long as solution exists classically, we can find s = S(x, t) exists
smoothly.
We have:
x = F ′(u)t+ S(x, t)

=⇒ x−S(x,t)
t = F ′(u)

Thus, u(x, t) = b
(

x−S(x,t)
t

)
So, the mysterious minimizer in the Lax-Oleinik formula in the classical case is just
S(x, t) !!!
Non-uniqueness of Y (x, t) ⇐⇒ collision of characteristics
Real importance of Lax-Oleinik formula:
Claim: Lax-Oleinik formula yields an entropy-satisfying weak solution for all t > 0
One key aspect of the proof:
One shows that if Y (x1, t) is any minimum and Y (x2, t) is also any minimum then
x1 < x2 implies:
Y (x1, t) < Y (x2, t)
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Again,
ut + F (u)x = 0
u(x, 0) = u0(x)
Another approach assumping only that F is Lipschitz continuous
That is: |F (u2)− F (u1) ≤ L(u2 − u1)| for all u1, u2 ∈ R
Further assume

∫
|u0| <∞

Also that u0 is of bounded variation
Steps for solution:
1. Fix any N ∈ Z+ [eventually → ∞ ]
2. Approximate u0 by a function uN0 such that:
2.1: uN0 piecewise constant
2.2: uN0 only takes value in the set {2−N j; j ∈ Z}
3. Approximate flux F by Fn where FN is piecewise linear on each interval
[2−N j, 2−N (j + 1)] for all j ∈ Z
4. Attempt to solve ut + FN (u)x = 0
where u(x, 0) = uN0 (x)
using only shocks
[Note: FN is not differentiable at all points, but it is piecewise continuous.]
Stop after first collision.
They carry the values from dyadic sets.
Restart solving new Riemann problems
From this, we again solve the riemann equations
Proof hinges on showing that the number of restarts and the number of shocks are
bounded independent of N

Class 29: 04/19
ut + F (u)x = 0 (1)
Recall the derivation
u = density
Q = flux
Let ut +Qx = 0
conservation law
Modeling diffusion:
Q = −κux
=⇒ ut = κuxx
if Q = F (u) (traffic flow)
Another approach to obtaining ‘good’ weak solutions valid for all t > 0
Replace some missing effect that incorporates independence on ux
Use Q = F (u)− ϵux
0 < ϵ≪ 1 =⇒
ut + F (u)x = ϵuxx (2) [this comes from the ut +Qx = 0 equation]
“viscous conservation law”
Hybrid between (hyperbolic) conservation law and the heat equation
Maybe “good” weak solutions of (1) are those that arise as limit of solutions of (2)
as ϵ→ 0
Given u(x, 0) = u0(x) it turns out solutions to (2) exist for all t > 0 and are smooth
Adding in ϵuxx to (1) to get (2) leads to a singular perturbation problem in PDE
(Meaning: The perturbation involves the highest order of the PDE)
Lets pursue a connection between (1) and (2) for Riemann-type (piecewise constant)
initial condition
ex: Assume F is strictly convex.

Take: u0(x) =

{
uL, if x < 0;

uR, if x > 0.

Assume uL > uR
Again, draw x− t graph.
dx
dt = F ′(u0)
Slope is F ′(uL) vs F

′(uR)

67



not necessarily the same curve as burgers equation, but we have F ′(uL) > F ′(uR) so
there is collision
So s′(t) = F (uL)−F (uR)

uL−uR

s′(t) = F (uL)−F (uR)
uL−uR

So s(t) = (
F (uL)− F (uR)

uL − uR
)︸ ︷︷ ︸

v0

t

Since F ′(uL) > F ′(uR) the characteristics run into the shock so this is an entropy
satisfying solution
So, weak solution:

u(x, t) =

{
uL, if x < v0t;

uR, if x > v0t;

In fact, another way to write it is: u(x, t) = u0(x− v0t)
This is a travelling wave solution to PDE
Now turn to (2)
Seek a travelling wave solution to (2). That is: find U : R → R such that:
u(x, t) = U(x− vt)
We have equation:
ut + F (u)x = ϵuxx
=⇒ ut + F ′(u)ux = ϵuxx
And we seek u(x, t) = U(x− vt) where v ∈ R
Write y := x− vt
u(x, t) = U(y). We have yx = 1, yt = −v
ut = −vUy

ux = Uy

uxx = Uyy

So, our equation (2) becomes:

−vUy + F ′(U)Uy = ϵUyy

We also need to specify: limy→∞ U(y) = UR, limy→−∞ U(y) = uL
Now it’s an ODE problem.
This is a second order ODE.
Integrate

∫ y

−∞ to get a first order ODE. Assume Uy(±∞) = 0∫ y

−∞
−vUy dy +

∫ y

−∞
F (u)y dy = ϵ

∫ y

−∞
Uyy dy

−v(U(y)− uL) + F (U)− F (UL) = ϵUy

This is a first order ODE
Still want uR, uL at ±∞
Note that U really depends on ϵ
Rewrite:

−v(U ϵ(y)− uL) + F (U ϵ)− F (uL) = ϵU ϵ
y

eliminate ϵ by introducing z = y
ϵ

Then ∂
∂yU = ∂U

∂z · 1
ϵ

Substituting,
−v(U(z)− UL) + F (U(z))− F (uL) = Uz(z) (3)
Still want: U(∞) = uR, U(−∞) = uL
Again assume Uz(±∞) = 0
Set z → ∞ at (3):
−v(uR − uL) + F (uR)− F (uL) = 0

So, v = F (uL)−F (uR)
uL−uR

Note: upto here, our analysis of (2) did NOT assume uL > uR
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Class 30: 04/22
Viscous Conservation Laws
ut + F (u)x = 0

u(x, 0) = u0(x) =

{
uL, if x < 0;

uR, if x > 0;

F strictly convex.
We instead solve:
uϵt + F (uϵ)x + ϵuϵxx
u(x, 0) = u0(x)
Can we obtain a limit of uϵ?
If so, does that limit solve the conservation law?
Look for travelling wave solution:
uϵ = U ϵ(x− vt︸ ︷︷ ︸

y

)

=⇒ −vU ϵ
y + F ′(U ϵ)U ϵ

y = ϵU ϵ
yy

Let z = x−vt
ϵ to get a PDE with no ϵ

−vUz + F ′(U)Uz = Uzz

We also have: U(∞) = uR, u(−∞) = uR from u0
Assuming Uz(±∞) = 0
Integrate the ODE

∫ z

−∞ · dz′

−v[U(z)− uL] + F (U(z))− F (uL) = Uz

Note: U(∞) = uR, Uz(∞) = 0

v = F (uL)−F (uR)
uL−uR

=: v0 [RH]
So, if we have a ‘travelling wave’ solution, it must have the correct ‘speed’
We consider shock solutions of it. Recall that for F strictly convex, uL > uR gives us
‘good’ [entropy satisfying] shocks, and uL < uR gives us ‘bad shocks’ [characteristics
don’t go into it].
First: assume uL > uR
Rewrite: Uz = g(U) where g(U) = −v0(U − uL) + F (U)− F (uL)
Goal: ∃ solution such that U(∞) = uR, u(−∞) = uL
Note: g(uL) = g(uR) = 0
Also, by convexity of F we see that:
g(U) < 0 for uR < U < uL
[draw a graph of g. It should look like a ‘parabola’]
Consider any initial data.
Consider U(0) = a, uR < a < uL
Uz = g(U), U(0) = a
So, ∃! local solution.
Can be extended for all z > 0 and U(∞) = uR, U(−∞) = uL
We’ve found a solution to the viscous conservation law U ϵ(x, t) = U

(
x−v0t

ϵ

)
Let ϵ→ 0
If x > v0t then U

ϵ → U(∞) = uR
If x < v0t then U

ϵ → U(−∞) = uL
If instead uR > uL
recall that we found 2 weak solutions to ut + F (u)x
So, if we plot the characteristics, there is a gap.
1: shock solution satisfing RH but not the entropy condition
2: the rarefaction wave, that ‘interpolates’ between the gaps
For uL < uR one finds g(u) < 0 for uL < u < uR
Again, if we try to extend, we get U ϵ → uL and not uR since g is negative
Cole Hopf transformation
Take Burger’s equation:
F (u) = 1

2u
2

ut + ( 12u
2)x = ϵuxx

Define w(x, t) :=
∫ x

−∞ u(x′, t) dx′

Then, we get:
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wt +
1
2w

2
x = ϵwxx

w(x, 0) = w0(x) :=
∫ x

−∞ u0(x
′) dx′

[Assuming u0 → 0 as |x| → ∞]
Let v := ϕ(w) where ϕ : R → R to be determined.
Is there a Φ that would give us a ‘nicer’ solution?
vt = ϕ′(w)wt

vx = ϕ′(w)wx

vxx = ϕ′′(w)w2
x + ϕ′(w)wxx

Multiply the PDE by ϕ′(w)
ϕ′(w)wt +

1
2ϕ

′(w)w2
x = ϵϕ′(w)wxx

=⇒ vt +
1
2ϕ

′(w)w2
x = ϵϕ′(w)wxx

=⇒ vt = − 1
2ϕ

′(w)w2
x + ϵϕ′(w)wxx

=⇒ vt = − 1
2ϕ

′(w)w2
x + ϵvxx − ϵϕ′′(w)w2

x

=⇒ vt = ϵvxx −
(
1
2ϕ

′(w) + ϵϕ′′(w)
)
w2

x

Choose ϕ such that: ϵϕ′′(w) + 1
2ϕ

′(w) = 0
Let ψ := ϕ′.
We have the ODE ψ′ = − 1

2ϵψ

So, ψ = e−
1
2ϵw

So, ϕ =
∫
ψ = e−

1
2ϵw

[we want any solution so constant doesn’t matter]
For this choice of v:
v solves vt = ϵvxx
This is a heat equation!

v(x, 0) = e−
1
2ϵw0(x) = e−

1
2ϵ

∫ x
−∞ u0(x

′) dx′

Solution explicit using the heat kernel!

Class 31: 04/24
Recap:
Cole-Hopf Transformation
ut + uux = ϵuxx
u(x, 0) = u0(x)
(F (u) = 1

2u
2), Burger’s Flux

w(x, t) :=

∫ x

−∞
u(x′, t) dx′

Make a good choice of function ϕ so that:
v(x, t) := ϕ(w(x, t))
solves a simpler equation

vt = ϵvxx −
(
1

2
ϕ′(w) + ϵϕ′′(w)

)
w2

x

Choose ϕ such that ϵϕ′′ + 1
2ϕ

′(w) = 0
ψ := ϕ′

ψ′ = − 1
2ϵψ

ψ = e−
1
2ϵw

ϕ = c1e
− 1

2ϵw + c2
So ϕ = e−

1
2ϵw works

So, our final equation is:

vt = ϵvxx

With initial condition:

v(x, 0) = ϕ(w(x, 0)) = ϕ

(∫ x

−∞
u(x′, t) dx′

)

v(x, 0) = exp

(
− 1

2ϵ

∫ x

−∞
u0(x

′) dx′
)
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Solving [using the heat kernel]

v(x, t) =

∫ ∞

−∞
Φ(x− y, t)v(y, 0) dy

v(x, t) =
1√
4πϵt

∫ ∞

−∞
exp

(
−(x− y)2

4ϵt

)
exp

(
− 1

2ϵ

∫ y

−∞
u0(x

′) dx′
)

dy

v(x, t) =
1√
4πϵt

∫ ∞

−∞
e
−
[

(x−y)2

4t + 1
2

∫ x
−∞ u0(x

′) dx′
]/

ϵ
dy

Now, v = e−
1
2ϵw ⇐⇒ w = −2ϵ ln v

u = wx = −2ϵvxv
Thus,

u(x, t) =
−2ϵ

∫∞
−∞ − 1

2
x−y
ϵt e

−
[

(x−y)2

4t + 1
2

∫ y
−∞ u0(x

′) dx′
]/

ϵ
dy∫∞

−∞ e
−
[

(x−y)2

4t + 1
2

∫ y
−∞ u0(x′) dx′

]/
ϵ
dy

We want to take ϵ→ 0 in this equation.
Laplace’s Method for taking the limit

lim
ϵ→0

[∫ ∞

−∞
f(y)e−

1
ϵϕ(y) dy

]/∫ ∞

−∞
e−

1
ϵϕ(y) dy

Assume ϕ has unique minimum at y = y0
Then only the point around the minimum matters because of the − 1

ϵ term.
Idea: Expand ϕ(y) ≈ ϕ(y0) +

1
2ϕ

′′(y0)(y − y0)
2 [no linear term since y0 is minimum]

Theorem 23. Assume f, ϕ are continuous and ∃!y0 such that ϕ(y) ≥ ϕ(y0) + c0|y −
y0|2∀y ∈ R
Assume |f(y)| ≤ c2 + c3|y| . Then,

lim
ϵ→0

∫∞
−∞ f(y)e−

1
ϵϕ(y) dy∫∞

−∞ e−
1
ϵϕ(y) dy

= f(y0)

Proof. Define µϵ(y) :=
e(ϕ(y0)−ϕ(y))/ϵ∫ ∞

−∞ e(ϕ(y0)−ϕ(y))/ϵ dy

Observations:
uϵ > 0∫∞
−∞ uϵ(y) dy = 1

Since e(ϕ(y0)−ϕ(y))/ϵ ≤ ec0(y−y2
0)/ϵ

So, νϵ → 0 exponentially first away from y0
Note: ∫ ∞

−∞
e−c0(y−y0)

2/ϵ dy ≃
√
ϵ

by letting s = y−y0√
ϵ
, ds = 1√

ϵ
dy

We’ve seen for such a sequence:∣∣∣∣∫ ∞

−∞
f(y)µϵ(y) dy − f(y0)

∣∣∣∣∣∣∣∣∫ ∞

−∞
[f(y)− f(y0)]µϵ(y) dy

∣∣∣∣
≤
∫
{y:|y−y0|<δ}

·+
∫
{y:|y−y0|≥δ}

· → 0
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Now, recall:

u(x, t) =
−2ϵ

∫∞
−∞ − 1

2
x−y
ϵt e

−
[

(x−y)2

4t + 1
2

∫ y
−∞ u0(x

′) dx′
]/

ϵ
dy∫∞

−∞ e
−
[

(x−y)2

4t + 1
2

∫ y
−∞ u0(x′) dx′

]/
ϵ
dy

Consider u0(x) =

{
0, if x < 0;

1, if x > 0;

Non intersecting characteristics.
We had two solutions:
shock by: u = 0, u = 1 broken by t = 2x, not entropy satisfying
rarefaction wave: interpolating by u = x/t
Now, fix x ∈ R, t > 0

ϕ(y) = (x−y)2

4t + 1
2

∫ y

−∞ u0(x
′) dx′

ϕ′(y) = − 1
2t (x− y) + 1

2u0(y)

For y < 0, ϕ(y) = (x−y)2

4t

For y > 0, ϕ(y) = (x−y)2

4t + y
Case 1: x is negative.
ϕ′(y) = 0 =⇒ (x− y) = tu0(y) =⇒ y = x− tu0(y)
Suppose x < 0
Minimum occurs at y = x [minimum of ϕ = 0]
By laplace’s method:

lim
ϵ→0

uϵ(x, t) = ‘f(x)‘ = 0

Since f = x−y
t

Case 2: suppose x > t
ϕ′(y) = 0
So − 1

2t (x− y) + 1
2 = 0 if y > 0

So, y = x− t if y > 0
If y < 0,
− 1

2t (x− y) = 0 =⇒ x = y which is not possible since x > t > 0

Then, limϵ→0 u
ϵ(x, t) = x−(x−t)

t = 1
Case 3: 0 < x < t
Note ϕ′(y) < 0 if y < 0
ϕ′(y) > 0 if y > 0
Minimum at y = 0
Laplace implies limϵ→0 u

ϵ(x, t) = f evaluated at y = 0 which equals x−0
t = x

t which
is the rarefaction wave.

Class 32: 04/26
Final Exam: Friday May 3, 10:20 - 12:20, RH104.
5 questions
Some will be exactly the homework
Some will be a minor change. Memorizing would not help.
Formulas: If there are any question about 2/3 dim wave equation, the formula will
be given.
If needed formula of heat kernel will be given.
Should remember the formula of fourier transform.
Fourier transform of gaussian will be given if needed.
Remember d’Alembert’s formula if needed.
Remember solving first order ODEs. Can come up in the method of characteristics.
Remember RH
Topics
- Laplace/Poisson
- Heat Equation / Fourier Transformation
- Wave equation, 1,2,3 dimensions
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- Method of Characteristics
- Conservation Laws
Not on Exam:
- Duhenel’s Principle
- Lax-Oleinik
- Cole-Hopf Transformation
- Viscous Conservation Laws (travelling wave approximation of shocks)

Review

Method of Characteristics

Consider:

a(x, y, u)ux + b(x, y, u)uy = c(x, y, u)

u = f(x, y) on Γ ⊂ R2

Let (x0(s), y0(s)) be a parametrization of the curve Γ
Then:
∂X
∂τ a(X,Y, U) and X(s, 0) = x0(s)
∂Y
∂τ = b(X,Y, U) ad Y (s, 0) = y0(s)
∂U
∂τ = c(X,Y, U) and U(s, 0) = f(x0(s), y0(s))
We solve this system. We literally solve or show a solution exists. Then we get:
X(s, τ), Y (s, τ), U(s, τ)
Now (try to) invert. Look at the inverse function theorem.
Consider the Jacobian of the map. We try to see if there is inverse near Γ. So we
look at:

det

(
∂X
∂s (s, 0)

∂X
∂τ (s, 0)

∂Y
∂s (s, 0)

∂Y
∂τ (s, 0)

)

= det

(
x′0(s) a(x0(s), y0(s), f(x0(s), y0(s)))
y′0(s) b(x0(s), y0(s), f(x0(s), y0(s)))

)
If det ̸= 0 there exists an inverse by inverse function theorem.
Note: if det = 0 [Γ is “characteristic”] that doesn’t necessarily mean no inverse exists!
In this case, one idea is: use initial data u = f(x, y) on Γ, differentiate this to get a
differential equation that disagrees with the original differential equation. That is a
way to show that no solution exists.

∂

∂s
|Γu =

∂

∂s
f(x0(s), y0(s))

If there is a characteristic question, it will be ‘sketch the characteristics’. Once we
get X(s, τ), Y (s, τ) we can eliminate τ to get equations for characteristics.

Conservation Laws

ut + F (u)x = 0

ut + F ′(u)ux = 0

Initial condition is usually u(x, 0) = u0(x)
We don’t need τ since t plays that role. Then,
∂X
∂t = F ′(U) with X(s, 0) = s
∂U
∂t = 0 with U(s, 0) = u0(s)

Since ∂U
∂t = 0 U(s, t) = U(s, 0), aka along characteristics U is constant.

Then, ∂X
∂t = F ′(u0(s)) =⇒ X(s, t) = F ′(u0(s))t+ s [lines]

Characteristics are lines with slope F ′(u0(s))
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For a solution to be classical, we don’t want lines to intersect.
So, we want them to fan out.
So, we want dt

dx dcreasing.

Note that dx
dt = F ′(u0(s))

Thus, dt
dx decreasing ⇐⇒ s 7→ F ′(u0(s)) increasing.

If there exists interval where the function decreases then the function must intersect,
so there can’t be a classical solution.
When does the solution stop existing? We can just draw lines:
Let it be decreasing on s, s
x = F ′(u0(s))t+ s = F ′(u0(s))t+ s

t = s−s
F ′(u0(s))−F ′(u0(s))

t = −1
F ′(u0(s))−F ′(u0(s))

s−s

The denominator is a derivative by mean value theorem. So, first collision:

t∗ =
−1

min ∂
∂s (F

′(u0(s)))

Weak Solution

u is a weak solution if for all test functions ϕ ∈ C1
0 [compactly supported, first

derivative exists] we have: ∫ ∫
ϕtu+ ϕxF (u) dx dt = 0

Examples:
1: Shocks with uL, uR seperated by x = s(t) provided uL, uR are classical and s′(t) =
F (uL)−F (uR)

uL−uR
evaluated on the shock.

Entropy-Satisfying Shock
We want characteristics to run into shock.
So, we want: F ′(uR) < s′(t) < F ′(uL)
This is called the weak entropy condition
If entropy is not satisfied:
Rarefaction wave: solutions that are constant along rays. So, u(x, t) = v(x−a

t )
Burger’s: v(η) = η
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