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23: Poisson Processes

Poisson approximation, law of small numbers.
n

Take Bln(nypn) = Z ]l[trial k is a success]
k=1

Where p,, = %,)\ € (0,00)

Then we have,
Proposition 1. Bin(n, %) — Pois()\)

Where the convergence is convergence in distribution, or it converges weakly. It means
that the cdf converges pointwise.

Let F,(z) be the cdf of Bin(n, p,) and let F(z) be the cdf of Pois(\).

Then, F,(z) — F(z) for every & where F is continuous.

The definition of cdf tells us that,

Fx(z) =Pr(X <z

The cdf only changes at the ‘atoms’.

Suppose = € (k,k —1). Then,

=
k
F(z) =Y Pr[X =j]
§=0
Thus, We only need to show that,
Pr(Bin(n, 2) = k] — Pr[Pois(\) = k] for all k € N

Proof. We need to show that,

()G (-2 -

nn—1)...(n—k+1) X (L= )\
! TIPS o)
n(n — .(n—k A\ " A\ F
(n—1) nlf +1) <1 n) <1—n> —e

‘Which is obvious.

Theorem 1 (23.2 Law of Rare Events). Suppose that ¥n, (z, x; k < r,) are indepen-

Tn

dent indicator r.v.s. If lim ZPT[Zn,k =1]=X€[0,00) and lim max Pr[z,; =

n—oo n—oo 1<k<r,
k=1 =t
Tn
1] = 0, then Z Zn,k — Pois())
k=1



Proof. Set py i = Pr[zp, = 1] and A, == an,k. Since A, — A, we have Pois(\,) —
k=1

Tn )\Z
ZZn,k = z] — e*A"_—? —0
P il
We do this by finding r.v.s V,,, W,, on a common probability space such that V,, =
>z, Wi ~ Pois(\y) and Pr[V;, # W] — 0.

k=1

[Rest of proof not clear from images. Need to rewrite]

Pois(A).

So, it suffices to show that Pr
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[Insert Picture for finishing proof of law of rare events]

Basically V U W ~ Pois(p)

U ~ U(0,1) independent

We have V,, i, Wi i

We have V,, .= Y17 Vo, and Wy, =317 Zy

Since Vn, (Vg : 1<k <rp) 2 (Zpp: 1<k < 1)

Thus S0 Vs 2 X4y Zog

Recall that for random variable X : (Q,Pr, F) — (E,€) the distribution is given by
the pushforward ProX ' = X, P

So, if we have a composition X — f(X)

(Q,Pr,F) S (B,6) L (R,R)

So we have the pushforward f,X, Pr for composition. [Don’t understand this prop-
erly]

Now, since W, is just sum of independent Poisson r.v.s, W, ~ Pois(>"}", Pn,k) =
Pois(\y,)

We want to show that Pr[V,, # W,,] — 0.

Pr[Vn #* Wn] < PI‘Bk‘ Vok # ka]

From picture, for each k, the RHS probability is < > ;" Pr[V,, x # W, ;] [Union
Bound]

=21 = 2y Pr[Vag = 1=Pr[Wy p = 1] = 3707 (ppg—e PriPrk = 3700 pry (1
)

< max pPn k - Zk(l —e Pk < max ppn k Zk pn,k) — 0

We finally start studying Poisson Processes.

There’s also Poisson Point Processes. Flrst we look at examples

Suppose you’re manufacturing, and you have surface of a tablet. You don’t want
defects, but defects are random. You can model that with a poisson point process.
Also suppose you're raising dough for baking cookies. Raise isn’t predictable, it can
be modeled as a poisson point process.

Typos in location of book is a poisson point process.

Before people understood what stars were, they were assumed to be randomly dis-
tributed, poisson point process.

First of all, there are stochastic processes. This course isn’t explicitly about them,
but we have studied them in Markov Processes. We can consider random variables
indexed by time, or we can consider indexed by sets in the space case.

Time ¢ is positive real variable. For each ¢ we can define N (t)

(N(t);t > 0)

Before Poisson Process, we're going to talk about something more general: A counting
process. Since we’re counting particles or something in space or in time. These values
are going to be non-negative integers. N(t) is the (finite) member of “events” that
occur in (0,t] , if something happens that is called an event. [This is not related to
measurable subsets of the probability space.]

Thus, for s < t, we have, N(t) — N(s) counting the number of events in (s, t]
Formal definition:



Definition 1. Counting Process: For Vt, N(t) is an N-valued r.v., so that Vs <
t,N(s) < N(t), and N(-) is right-continuous a.s.

Right continuity is equivalent to taking the time interval to be closed on the right.

Definition 2. The increments of N(-) are (N(t) — N(s);0 <s <)

Definition 3. We say N(-) has independent increments if suppose we have an inde-
pendent finite sequence of times 0 = tg, t1,. .., t, implies (N(t;11 — N(¢;));0 <t < n)
are independent.

Definition 4. We say N(-) has stationary increments if the distribution of N(t) —
N(s) where s < t depends only on ¢ — s.

Note that these conditions require uncountably many things!

Poisson processes are Counting processes that satisfy both. Added stipulation, assume
that two events cannot happen at the same time. These are simple counting processes.
First we think of them as discrete times. Then time is indexed by N and we have
bernoulli process in each time slot.

Poisson Processes are essentially limit of Bernoulli processes.

Theorem 2. Suppose that N(-) is a counting process with independent stationary
increments that never jumps by > 1. Suppose N(0) = 0 but N # 0. Then 3\ € (0, o)
so that Vt, N(t) ~ Pois(At).

Definition 5. A process satisfying those hypotheses is called a Poisson process with rate
A

Proof. We use theorem 23.2 (law of rare events) as extended in the HW.
[draw picture from 0 to t with x where the event occurs]
[divide the picture into n equal parts with length t/n]
[at each interval we have increments]
[number of events can be anything. but if we take small enough intervals there can
only be at most 1 event in any interval]
[it is almost an indicator function]
[increments are nearly indicators, independent and have similar probability, which
means they’re bernoulli.]
Fix ¢ > 0 and let X,,; == N(%) = N(Y“=12) for 1 <i < n. Thus N(t) = 31, X,
Because N(-) is simple (it never jumps by > 1), we have N(t) = >_"_, 1;x, ,>q] for
large enough n.
Let py, :==Pr[X,,1 = 1] = Pr[X,,; = 1]
Take a subsequence (ny;k > 1) so that ngpy, converges in [0, c0]. Call its limit g(¢).
The Homework [Insert Problem from HW1] implies, N (t) ~ Pois(g(t))
Thus, g(t) must also be finite, and g(t) = E[N(¢)].
So, ¢g(t) does not depend on (ny). So the limit must exist.
Now let ¢ vary. Then g(s +t) = E[N(s+t)] = E[N(s) + (N(s+t) — N(s))] =
E[N(s)] + EIN()] = g(s) + g(¢)
Since g is non-decreasing (since N is non-decreasing), we can use Cauchy’s Functional
Equation to conclude that g(t) = At.
So, N(t) ~ Pois(\t)

O
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Correction: Suppose you have a counting process of some qualiative stuff. Then the
points of incerement are distributed via poisson.
[Picture of interval [0,t] divided into parts]
n

Then, N(t) = Z Ix, ,>1) for large n. Basically, there is a n for each w.
i=1

That is, N(t) = lim D x>
=1



So, N(t) is the weak limit of the ).
Now, if we set p,, == P[X,,; > 1]
n

Then Z Iix, ,>1 ~ Bin(n,pn)
i=1
ny so that np,, — A € [0, 0]
[Insert Picture X—t-x—-x X—, |
We have arrival times, and inbetween we have waiting times. A lot of the terminology
comes from the original application, queueing theory.
Let X7 := time of the first arrival.
P[Xlét]:].—e_)\t
Since P[X; >t] = P[N(t) = 0] = e~
Since, [N(t) = 0] = [X1 > ]
Thus we have, X1 ~ Exp(\)
Note, exponential random variables are important because of its ‘memorylessness’,
aka P[X; > s+ t|X1 > s] = P[X; > t]. One discrete analogue is geom(p) random
variables, since that is also memoryless.
We can assume wait times are i.i.d. exponential random.
Now time to prove it rigorously.

Theorem 3. VA € (0,00)3 Poisson process of rate .

Proof. Let X,, ~ Exp(\) be independent. Now, define S,, := ZXi
i=1

In particular, by the strong law of large numbers, S, — oo a.s.

Also, X; > 0 a.s.

Assume those hold always. Define N(t) = max, {n;S, <t}

Note that N(t) is a random variable since firstly it’s defined in the same probability
space and measurable?

[N(#) >n] =[S, <t]and [N(t) =n] = [Sn <t < Sp11]

In particular, N is indeed a random variable.

Also, it is clearly a counting process with N(0) = 0, never jumps by more than 1, and
N 0.

Fix t. The waiting times after ¢t are Xl(t) = SNnwy+1—t

Xét) = XN(t)+27 Xg()t) = )(]\[(,5)_,_37 e

The counting process (N (t+s) — N(t); s > 0) is defined via waiting times exactly as
(N(t),t > 0) defined via (X,;n > 1)

The memory loss property is responsible for (N (t+s)—N(t), s > 0) being independent
of N(t) and with the same law as N(-). This gies that the increments of N(-) are
independent and stationary.

To establish this rigorously, we can prove the following;:

(i) Vj > 0,n >0,

P[S, <t < Sput1,Sn01 —t >y] =e NWP[S, <t < Syi1]

(11) Vn > OV] >0 P[Sn <t < Sn+175n+1 -t > yl,Xn+2 > y_é...,Xn+j > yj] =
P[S, <t < Spyq]-e .o

(i) ¥n > 0Vj > LYH € R%P[N(t) = n,(X{",....X\") € H] = P[N(t) =
n]’P[(le' o vXj) € H]

(iv) Yu > 1Vmy > 0Vn > 0V0 < 51 < 82 < -+ < Sy,

P[N(t) =n,Vi € [1,n]N(t+ s;) — N(t) = m;] = P[N(t) = n]P[Vi € [1,n]N(s;) = m;]
(V) Vk>1Vn; > 0V0 =tg < t1 < --- < tg,

k
P[Vi € [1,k], N(t;) = N(ti-1) = ni] = [[ PIN(t: — ti1) = ni]

Proof of i

P[S, <t < Spt+1,41 —t>y|=P[Sp, =t, Xp11 >t +y — Sy

= / P[Xp41 >t+y—x|dFs, (¥) = e MP[S, <t < Spi1] =e WP[X,1 >t—a]
<t

Proof of ii: First, X,49,...,X,4; are independent of [S, <t < S,11] N [Spq1 — ty1]
so we an take out X,,4; > y; and use (i).



Proof of iii: if H = (y1,00) X (y2,00) X ...(y;,00) then this is the same as ii. 7 — A
theorem gives this to us. [Theorem 10.4]
(iv) Use (3) with j = >_7 , w; * 1 and
H = {($1,...J3j) ceRI:Vie [1,U}X1 ++XmL <S5 <Xy ++Xml+1}
O
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ivi: Yu > 1,Vm; > 0,Y0 < 81 < s2 < -+ < 8y, PIN(t) =n,Vi € [1,n], N(t + s;) —
N(t) = m;] = P[N(t) = n]P[Vi € [1,n], N(s;) = m;]

v: Vn; > 0,Vk > 1,V0 =ty < t1 < -+ < ty, P[VZ S [1,/{3],N(ti) — N(ti_1) = n,] =
ITiss PIN (8 = tir) = )]

How to get iv = v7

The increments are not the same. The increments in v are successive. But the first
one we can. In v, set t; = ¢, then first one is the same. Note, in iv, N(¢t + s;) — N(t)
got changed to N (s;) so starting time became 0. We keep going, and by induction on
k, the number of terms, we get v from iv.

Basically,

n=ny,u=k—1

m; =n2—|—-~-—|—ni+1

s1 =12 —t1,8 =tip1 — 11

Now we need to show that \ is indeed the correct parameter for the poisson process.
Now, P[N(1) =0] = P[X; > 1] = e !

This tells us A is indeed the right variable for this distribution.

Theorem 4. If N(-) is a Poisson process with rate A then there exists independent
X}, ~ Exp(X) so that almost surely (a.s.) V&, N(t) = max{n: > ;_, X <t}

This is the same relationship we used to construct N from X in the previous theorem.

Proof. Define S,, := inf {¢; N(¢t) > n} for n >0

We use infimum instead of minimum since a priori we don’t know it exists. It is a.s.
a minimum.

Then X, =85, — 5,1 forn>1

First, we show that these are actually random variables.

So,[Sy, < t] has to be measureable.

(S < 8] = [N(t) = n]

Since N(t) is a random variable the latter set must be measurable, so the former set
is measureable so .5, is indeed a random variable.

Now, P[X; > t] = P[S; > t] = P[N(t) = 0] = e~* which means X; ~ Ezp(\)
Intuition behind why X}, is independent: memorylessness!!!

Suppose we know the value of X7, then after that X5, X3,... must also be random
similarly. Pursuing this argument is a bit difficult since X7 is random so we can’t
actually set ¢t = X

Our proof will be to show that (Si,...,S) has density A\¥e=*v*

on {y e R¥;0 <y <--- <y} and 0 elsewhere.

Then deduce that (X7,..., Xy) has density Hle()\e’/\“) on z € R¥;Viz; >0 and 0
elsewhere.

The second stepfollows from 20.20, using the linear map x; = y; — y;—1 with the
Jacobian = 1

Consier 0 < 51 <t <89 <ty <--- <8 <ty

0—s1—S1—t1—s2—S2—t2

Then Pls; < S; < t;forl < i < k] = P[N(s1) = 0,N(t1) — N(s1) = 1,N(s2) —
N(tl) :07...,N(tk) —N(Sk) 2 1]

We have expressed the probability over disjoint intervals of N so we can just multiply
to get the probability

— 67)\5167)\(t1751)>\(t1751)67/\(527t1)efA(tgfsg))\(]hiSQ) L. e*)\(Sk*tk—l)(176*/\(%*510)
= \e—lg=Ask (tl — 81)(t2 — 82) Ce. (tk—l — Sk_l)(l — eiA(tkisk))

= NUITES (6 = s)) (e — e

= / Aee=Mk dy for A = (s1,t1] X -+ X (g, t1]
A



So, the densities actually give us probabilities.
That is, if A is a rectangle contained in G = {y;0 <y; <y2--- < yx} we have

P[(Sh ceey Sk) S A] = / )\ke—/\yk dy

These rectangles form aAﬂ—system that generates the sigma algebra that has all the
borel sets contained in G which is R* N G
So this holds for all A in R* N'G. This gives us the density we wanted.
Since S, strictly increases to oo almost surely we get the desired relation.
O

Let N(-) be a poisson process with parameter A. Modify it with the deterministic
function f(t) == tlg(t) and M(t) = N(t) + f(t + X1)

Suppose t is fixed. Then ¢t + X is irrational a.s.

So we're adding 0 a.s.

So M(t) = N(t) a.s.

So, finite dimensional distributions of M and N are the same - a poisson process
But M is not a counting process.

So knowing finite dimensional distributions only is not enough. This makes Brownian
Motion very difficult.
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For HW1 P1, the simplest solution is just using Scheffé’s theorem.

Today we work with central limit theorem.

This is called central because it’s central to so many things.

Chapter 5: Convergence of Distributions.

Section 25: Weak Convergence

Weak convergence is denoted by = . It is the same thing as convergence in distri-
bution.

We can look at:

F, = F

Hn == K

X, = X

Note that for weak convergence, X,, X don’t HAVE to be on the same space.
Section 25 is about the interplays between these 3.

Theorem 25.1 we omit.

Theorem 5 (25.2:). Suppose that X,,, X are real valued random variables on the
same probability space.

Then, X,, 3 X implies X, Ex implies X,, — X

Proof. We just prove X,, Bx implies X,, — X

Let x be a point where F' is continuous and € > 0. We are interested in comparing
probabilities of [X < z] and [X,, < z].

Consider the event [|X,, — X| > €]. This goes to 0 as n — oo

Then,

(X <z—¢ C[X,<z]U[|X,—X|>¢

Because if X <z — € then X,, <z or|X, — X|>e¢

Also,

[Xn<2]C[X <z+eU[|X,—X|>¢

Because if X,, <z then X <z +ceor |X, — X|>¢

Taking probability,

PIX <z —¢ <P[X, <z]+ P[|X,— X|> ¢

P[X, <z|<P[X <z+¢e+P[|X, - X|>¢

Let n — oco. Since we’renot sure the limits exist we take limsup/liminf as it suits us.
P[X <z —¢] <liminf, o P[X, < z]

limsup,, ., P[X, <z] < P[X <z+¢

Now let e = 0

Then,

P[X < z] <liminf, o P[X, < z] <limsup,,_, ., P[X, <z] < P[X < 2]



So we're done.
O

At this point, we depart from the order of the book. We prove a later theorem and
use that to prove some intermediate theorem.

We have (X, % X) = (X, £>X) = (X, = X).

We can also go from last to first under some kind of conditions and stuff. This is
theorem 25.6, due to Skorohod.

Proposition 2. If X,, = X, then 3Y,,,Y on a common probability space with
Y, L X, and X L Y, and Y,, — Y pointwise.

Proof. Remember the proof of Poisson? We put them in the same probability space.
This is also a similar idea.
We use Lebesuge Measure on (0, 1) and let Y,,, Y be the ‘inverses’ of the c¢df’s of X,,, X
[Insert Picture here]
The graphs converge in the Lévy metric as defined in Problem 14.5:
Flx—e)—e<Fy(z) < F(z+e)+e
We have a problem in places where cdf is constant. But there can only be countably
many such places, so the problematic stuff has lebesgue measure 0. So we can just
not care about it.

O

Now we use this to prove theorem 25.3:

Proposition 3. If a € R and X,, = a, Then X, B 4 in the sense that Ve > 0
we have P[|X,, —a| > €] — 0 as n — oo although X,, may not be defined in the same
probability space.

Proof. We can just use 25.6 to change them in variables so that they converge almost
surely, and then just use 25.2. O

Now consider theorem 25.4:

Proposition 4. Let X,,,Z, be defined on the same probability space for each n
seperately. [X;, Z; on the same space, not necessarly X;, Xj, or Z;, Zx ]. Suppose
X, = X,Z, — 0. Then X,, + 72, — X

We can’t directly use Skorohood because even though we can send X, to something,
we can’t do it with X,, + Z,,

The proof is similar to the proof of theorem 25.2

Convergence in Distribution we can have some leeway, in our e

Proof. Consider z so that P[X =] =0

Then we may choose 2’ < z < 2 so that P[X € (2/,2"]] is arbitrarily small and such
that P[X € {z/,2"}] = 0. Now,

[Xn S .73/} g [Xn + Zn S .13] U [|Zn| Z T — xl]

X + Zo < 2] C [Xn < 2] U[|Zo] > 2 — 2]

Taking n — oo

P[X < 2] <liminf,, o P[X, + Z, < z]

limsup,,_,, P[Xn + Z, < 2] < P[X < 2”]

This gives us

P[X,, + Zy < 2] — P[X < 2]

This is Slutsky’s theorem.
Omit theorem 25.5
In HW, the first problems we can already do with what we have.

Class 06: 01/25
Note about HW: you will have more mathematical power if you do less calculation
and understand more.



Theorem 6 (25.7, Mapping Theorem). Let ~ : R — R be Borel, X,, — X,
Plh discontinuous at X] =0. Then ho X,, = hoX

Proof. We use Skorohood. Let Y, 4 XY 2 X,Y, — Y pointwise. Then hoY,, — hoy
when h is continuous at Y. Note that P[h discontinuous on X] = 0 statement only
depends on the distribution of X since distribution is a probability measure on the
values X can take, so hoY,, — hoY on the set of probability 1.

Formally, the hypothesis is (X, P(discont. set of h) = 0)

Therefore, hoY,, = hoY and thus ho X,, = ho X,

Some notation:

Definition 6.
Dy, = {z € R; h is discontinuous set of x}

So, the hypothesis was: P[X € D] =0
We need Dy, to be a borel set for [X € D] to be an event.
Claim: Dy, is a borel set for all function h [not necessarily borel h].

Proof.

Dh = U m Ah(6,§)
€e>06>0
Where Ap(€,0) == {x; 3y, z € (x — 6,2 + 9), |h(y) — h(z)| > €} is open.
This is not countable union and intersection but we can make it countable using %
O

If 41 is the law of X then poh™! = h,p is the law of ho X

Theorem 7 (25.8, Portmonteau Theorem). Note: a word blending the sounds and
combining the meanings of two others, for example motel (from ‘motor’ and ‘hotel’)
or brunch (from ‘breakfast’ and ‘lunch’).

Let iy, 1 be probabilities on R. The Following Are Equivalent (TFAE):

1. g =

2. [ fdun = [ fdu,Vf € Cp(R) [bounded, continuous]

3. [ fdun, = [ fduif fis bounded, borel and p(Dy) =0
4. pn(A) = u(A) if A is borel and p(0A) =0

Proof. 3 = 2,4 clearly. 4 —> 1 by taking A := (—o0, z]

For1 = 3: Let Y, ~ pp,Y ~ 1, Y,, = Y pointwise.

If 1(Dy¢) =0 then foY, — foY by mapping theorem and so E[f oY,]| — E[f o Y]
which gives us 3. [eqn 21.1] by dominated convergence since f is bounded.

For 2 — 1,

Let f = IL(—oo,x]

draw picture:

f is not necessarily continuous. But we can bound f by continuous functions that
converge to f :

9k < L0,—00] < [k

lim /gkdu < p(—o0,z] < lim /fkdu
n—0o0 n—oo

Note: on real numbers, sometimes ineqalities are enough. This is an important trick,
might be on exams.
O
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For definition of Weak* topologies look at the note in canvas.

This is useful because of the Riesz Representation Theorem, identifying M (R) [the
banach space of finite, signed measures on R wit norm being the total variation]
asthe dual of Cy(R) [the space of continuous functions on R that vanish - tend to 0-
at 0o, with the sup norm]. Kakutani extended this from R to every locally compact
Hausdorff space, such as R%. Recall some basic facts from functional analysis

Just read the note. Won’t write the rest.

Basically, u, = p if and only if [ fdu, — [ fdu for all f € Co(R) [if we required
it for f € Cy(R) then by portmanteau theorem, this is the same as weak convergence
for probability measures.]

Uniform Integrability: [Look at notes]

Let X be a class of real valued random variables. X is uniformly integrable (UI) if:

lim sup E[|X]:|X|>a]=0
a%OXeX

If ¢ :]0,00) = [0,00) is Borel and lim,_,o ¢(z)/x = oo then for all M < co we have
(X Bl6(1X]) < M} is UL
Also, Ul <= sup{FE[|X|]; X € X} < co and

Ve > 030 >0: P(A) <6 = sup{E[|X;A; X € X} <e¢

Thus if X is UI so is its convex hull.
Corollary: Let X, X,, be integrable random variables with X,, — X a.s. Then TFAE:

1. {X,}is UI
2. E[|X, — X|| = 0
3. B[|X.|] — E[1X]]

We could have a sequence of bounded measure that converges to a not measure. Note
that bounded would mean we can’t have infinite mass so we can’t do the trick in
assignment.

A collection M of probability measures on R is tight [masses can’t run off to infinity]
if limg— o0 SUP e pq p#((—a,a)) =0

Equivalently, lim,_, o inf, cpq p(—a,a) = 1. Here we're talking about probability
measures, the first one is true for any measures.

Fatou’s lemma for weak convergence:

X, = X = E[|X]] < liminf B[ X,]
n—roo

Characteristic Functions [Section 26|

They are basically Fourier Transforms. So alternative name for this section is Fourier
Analysis.

Definition 7. The characteristic function or fourier transform of a probability mea-
sure u (or of a random variable X with law p or distribution F' of p ) is the function
¢ : R — C given by

oo o0

o) =il = [ e duta) = B = [ e ar(a)

— 00 —0o0

Note that as long as p is a finite measure this is well-defined.



Alternate definitions: e***, %eiim, Letite

Note that we write /i but not X or F.. But if F' has a density, f, then we can write f.
Note that this is defined since the integrand e®* has absolute value 1. So || < 1.
Note that we have fi(s) — a(t) = [7_(e'* — €™®) dp(z)

If s, — t then fi(s,) — fi(t) by Bounded Convergence Theorem (BCT).

Thus, /i € Cy(R)

The reason this is useful to us:

1. Independence: if X,Y are independent then E[e*(X+Y)] = E[ei*X]E[e?Y]

2. Uniqueness: [to be proved] p — [ is 1-1 [injective]. So if we can find the
characteristic function we know what the measure is.

3. Weak Convergence: [to be proved| p, = p iff i, — (i pointwise.

le? — 1| < |z| for x € R
To see this, just draw unit circle.
Recall [Example 18.4):

=,

]

8
I3

Let S(T) := fOT SILE g
Then for real 6 # 0,

T ito
/ —T)
-T QZt
This is not Lebesuge integrable. We can write "’ = cos(t0) + isin(t6), since cos is
even and divided by odd it is odd and goes away. So we have:

T o T g
/ sin(to) ., :/ S0 4 19) = sgnoS(TI0))
0 t t=0 10

ito

Also, given 1 we can find u
Inversion and Uniquness:

Theorem 8 (26.2, Inversion Formula). If a < b and u{a,b} = 0 then

1 T e—ita _ o—ith
o L[ et
ot = 5 [ a0

The map p— f1is 1 -1

Last piece of motivation [vague]: we can think of y(a,b] as 1j,). Think of its fourier
transform:

e
it

b . .
eztb _ Lita

~ oo b i eit:c
Lia(t) = / "1 (g ) (z) da = / e dg = =

—o0 a it

a

Look at the similarity with Inversion Formula. Proof next time.

Class 08: 02/01
le?® — 1| < |z| for x € R

T ito
/ — dt = sgn(T'|0]) when 6 # 0
-T 2’Lt

We also had theorem 26.2 above.
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Proof. Note that the integrand is bounded by b — a in absolute value.

Let’s talk about uniqueness first.

We have p(a,b] = F(b) — F(a) if F is the distribution function of p.

We can let a — —oo, and we don’t get in trouble since p({a}) is non-zero for only
countably many, and p(b) is zero because we define it that way.

Since this is increasing, we can say that F' is the distribution function of p when
w({b}) = 0. Since F is right continuous we use that on both sides of b to see that F
is actually the distribution function everywhere. That gives us uniqueness.

To prove the inversion formula, calculate the RHS.

1 T _—ita _ ,—itd
27 %ﬂ dt
™ J_T 1t
1 T _—ita _ ,—ith poo
= — S / e dy(x) dt
27T -7 1t oo

The integrand is bounded (in (z,t)) and te product measure is finite so we can apply
Fubini’s Theorem to get:

00 T _—ita _ ,—ith
—oo0 J=T it

oo T _—it(x—a) _ ,—it(z—b)
= / / ‘ - dt dp(x)
—o0 J =T it

= /OO 2[sgn(z —a) - S(T|z — a|]) — sgn(z — b) - S(T|z — b|)] du(x)

—0Q0

We want to take the limit 7" — oo inside the integral. We can do this because of the
bounded convergence theorem.
[Taking limit 7' — oo ]

2 )

() dp(z)

Note that, when = # a,b, as T' — oo we have S(T'|z — a|) — 7, same for  — b. Using
this,

oo

= % i 2[]1(700,11) (x)[0] + ]l(a’b)(a;)[ﬂ-] + ]l(b,oo)(l')[()]] dp(z)

b
=/dmm=me

Which was what we wanted.

Finally, Continuity Theorem

Theorem 9. [26.3, Continuity Theorem] Let pu,,, x be probabilities. Then p,, =
U < (i, — [ pointwise. In fact, [Stronger Condition] if p, are probabilities with
lin — g pointwise then there exist probability p such that ¢ = & and p,, = p.

Proof. = is the easy one, weak convergence implies pointwise transform of the
characteristic function.
Look at the formula:

o0
i) = [ e dufa)
— 00

Note that f := e® is a bounded continuous function.

So, if pt, = p then using theorem 25.8 with z + €“* being the function in Cy(R)
we directly get the result.

For <= :For the converse: we use a “mysterious” calculation.

11



A key concept is tightness of i, so the ‘mass’ outside big intervals (—a, a) goes to 0.
We want to get that from pointwise convergence of [

x — e is a function of f and it’s frequency of oscillation is determined by how big
t is. If we have a lot of oscillation we’re more likely to have cancellations.

So, we’ll try to bound the oscillation for small ¢

Calculation: Yu > 0 we look at the integral:

u

:/ 7/ (1 — ") dt dp, ()
oo U Sy
_ /oo <2 B ei.tr u

oo UL

) dpin ()

[e's) ITU __ ,—1TU
- [ (- )
5o uLx

[ o moyar

Now, ¢(0) = lim, 00 tin(0) = 1. So, 1 — g(¢t) =
choose u so that Lint“, (1 — g(t))dt <.

By Bounded Convergence Theore, there exists ng so that n > ng such that % ffu(l —
fin () dt < €

Thus n > ng = pn[—2,2]° <e

If we choose a > % such that n < ng = pn[—a,a]® < € then for all n we have
pnl—a,al® < e.

So we have tightness.

Use the corollary from the weak* note.

So we have a subsequential weak limit.

Then we only have to show that the only subsequential weak limit has g as charac-
teristic function by theorem 26.2.

This follows from our first part.

for t &~ 0. That is, given € > 0

O

Note that |[]]oc < [|p]|ar(r)-

In particular, ||f|\OO < fllzr )
Where = f- A

Theorem 10 (26.1, Riemann-Lebesgue Lemma). If f € L'(R) then f € Co(R)

Lots of ways to prove this.

Note that step functions are finite linear combinations of indicator functions of inter-
vals, and thus are Co(R). But any f € L'(R) can be approximated by step functions!
Then we just use the inequality.

Now we have everything needed to to HW.

Class 09: 02/06
Today we prove:

—ita__ ,—ith
e ¢ | <bh—a
1t —

12



We prove that using the fact ||f||oo < fllzrw)

See that ]Al(mb] (t) = M, taking the L1 norm it’s b — a so we have the inequality.
For z € R,

it
We prove [e'* — 1| < |z
For x € R,
. 3
" — (1+ iz — 5)| < min{ 5=, o]}
To prove this: [not geometric, taylor series with remainder]
Integrate by parts to get, for n > 0,

T ) xn+1 q r 1
/O(z—s)”e’sds:n+1+n+1/0 (z—s)"" e ds

This gives, for any n > 0,

T ka in+1 ¢ n s
e'zz(k!) + /O(x—s)e‘ds

n!
k=0

n

Use n = 2 case, we get upper bound:

B y
5/0 (x —s)%e” ds

For n =1 case, we get,

) ,L'2 T . £C2

e — (1 +iz)| <|= [ (z—s)le*ds| < —

1/, 2

Triangle inequality gives us the other bound since 3”2—2 + % = 22

Central Limit Theorem (CLT) [Section 27]

Theorem 11 (Standard CLT, the plain version, 27.1, Lindenberg - Lévy). This
applies for an infinite i.i.d. sequence of random variables.

Let (X,;n > 1) be i.i.d. with mean ¢ and standard deviation o € (0, c0)

If Sn = 22:1 Xk,

Question: What is the approximate law of S;, as n is big?

S, —ne
ov/n
We're going to only see the idea of this, and see the proof of a more general version.

Idea: Weak convergence is the same as pointwise convergence of characteristic func-
tion. For ease of writing, take ¢ = 0,0 = 1. Then, we have,

= N(0,1)

E[eitSn/\/ﬁ] — (E[eitX/\/TL])n

vn 2n

2\" 2
=(1-—) —et/?
(1-5)

The generality we will work with:

We will assume independence, but do not assume i.i.d.

Second generality:

This is just an statement about distribution. So, they don’t have to be in the same
probability space.

For each n, we can have independent random variables:

Xni,---,Xn,r, [not necessarily identically distributed]

X 2X2]\"
[we have to justify this] = (E [1 + 82 ])

13



Theorem 12 (27.2, Lindeberg). Let <Xn Bl <k< rn> be independent for each n
and let E[X,, ] = 0 and o , = E[X? ], 57 = Y"1 07, € (0,00).
If we have the condition [Lindeberg Condition, 27.8]:

1 X2, dP =
Ve > 0 nl—{r;oz 52 / N Xoxd 0
[In words, we can’t have any set of random variables dominating the others. So, if we
compute the normalized total variance in the space where all the random variables
are somewhat big, that must be 0]
Sy = Z;Ll X,k
Then,
Sn

For intuition of the fact that no one is dominating:

2
o 1
k
max n2 = max — / X2, dP—l—/ X2, dpP
Isk<rn Sy Isksrn Sy [ Xk <esn| [Xnk|>esn

as n — oo this is < €2 + o(1) [use the fact that max is | sum]
Example: Theorem 27.1 follows, we only need to verify the Lindeberg condition. That
becomes: Ve > 0,

—~ 1 1
11m2—2/ X?dP = lim—Q/ X?dP -0
oo T 0T JIX [ >eovn n—=o0 0% JIX|>eov/n

Which must be true since f X?dP is finite.

Lindeberg condition is complicated, so sometimes we might want a sufficient easier
condition.

Example: Lindeberg condition holds if for some ¢ > 0,

T
~ 1 246
Jim 37— Bl X P =0
k=151
This is called Lyapounov’s Condition.
Suppose § = 1 then we ae talking about the third moment.
Proof.

”"n Tn

Xn 246
/ Xnde<Z / | ’“'6 apP
n Xn k|>€sn X k| >e€sn 68 )

kl kl”

1 Tn 1 245
S5 > S EIXn kP =0

k=1°"
O
Example 27.4 (27.8) holds if sup,, 4[| Xn k[lcc < o0 and s, — 00
Proof.
Z / pdP =0
X, k\>es,L
O

Since for big enough n, €s, is big enough so that we're integrating where X, , can’t
be that big.

14



Proof. We start today, but we won’t finish today.

To prove 27.2, we use two easy estimates.
—(14+2z)=o(z)asxz—0

If ||, Jw;| <1 then,

m m m
Hzi*Hwi < E |zi — w;
i=1 i=1 i=1

Proof by induction.

- < [zm = wm| + [

m m
[[z-1]w
i=1 i=1

m—1 m—1 m—1
11 #Cem = wm) +wm | I 2= [] wi
i=1 i=1 =1

O

Class 10: 02/08
Billingsley 27.2. WLOG, s2 =

; 1
’E[e”X"vk] - (1 - 2#0317,6) ’

: 2
— ‘E [e“X””‘" — (1 + it Xk + 7(“)(2"”“) )H

; 2
eitXn,k _ (1 +ZtXn)k + (ltXn.k) )H

2
X2
<FE [min {'Z;k, |tXn,k|2}]
When random variable is small, first inequality is better. When random variable is
big, second inequality is better. For all € > 0,

<p|

1
g/ f\tXn,k|3dP+/ [t X, x|* dP
\ nk\<e6

[ X,k >e

For first integral, bounding by €3 isn’t good enough since it’ll become r,€3. But since
> |X2 .| is bounded, we can do a trick:

€‘t|3 2 2 2
< &' X2, dP +t X2, dP
6 Jix,.l<e X k| >e

Adding all this over k, for every e we have,

, 1 t3
EleitXnr] — (1 — ~t%02 )' it +t22/ X2,dpP
2 X, k|>€
Thus, taking limit,
o 1 P

o 1
i § e oﬁzk)\—o

Now consider the characteristic function of normals.

(1 - ;t20'7217k> — et onk/?

15

Tn

D

k=1

Tn

lim sup Z

n—0o0

Tn

D

k=1




g

2
%% — 0. Using that,

-5 () = (5)
2%\ T
k=1

2 )

Recall that max;

Therefore,

Tn
lim E
n—oo
k=1

Therefore, for all ¢,

— 0

EleitXn] — 67t2ai'k/2‘ -0

Tn
lim E
n—oo
k=1
From yesterday’s lemma,

lim ‘E[eits"'] - e—tz/Q‘ 0
n—o0
Therefore, S,, = N(0,1)

O

Estimating the parameter of Exponential Distribution [Useful for, lets say, radioactive
decay]

Example 27.2:

Suppose we want to estimate the parameter of an exponential disribution. If i.i.d.
Xy ~ Exp(a) then X,, :== %Xk — é a.s. Furthermore,

n

o — N(0,1
T 0.0

= avn (Xn— ;) = N(0,1)

1 1
:>|Xn|zN( )

a’ na?
How good of an estimate of « is Y;l ?
First, we’re working with weak convergence. Apply Skorohod to get Z, z ayvn(X, —
)
SoY, 2 X, and Y, ! s Y_l
Moreover,

n

@(Yn_l - O[) = @ <1 _Yn> = - Zn
« Y, \« aY,

Note that Z, is going to Z and «Y,, — 1. So, this goes to —Z ~ N(0,1)
Thus, Y2(X,,' —a) = N(0,1)
We can say X, =~ N(a,a?/n)
Weak convergence is a precise statement, but ~ is not a precise mathematical state-
ment.
Caution: « is NOT E[Y;l] and %2 is not Var[(Y;l)]. In fact, expectation can be
infinite, and convergence statements can be true.
We omit page 363-367, which is CLT for approximate independence, not true inde-
pendence.
Something that is in the book but we do not prove: CLT says it converges, but how
should we tell the ‘rate’ of convergence?

16



Theorem 13 (Berry-Esseen). Suppose that X are i.i.d. of mean 0, variance o2, and
E[|X5|?] = p < 0.
If F, is the distribution function of =22 and @ is the distribution functionalion of

ov/n
3

N(0,1) then ||F, — || < 03\’%
We skip section 28 and go to section 29, which is CLT in R¥
First we do weak convergence. First we recall distribution functions in higher dimen-
sion.
Suppose X is an R¥- valued random variable.
Its distribution function F' is defined by:

F(z) = P[X < 1]

for x € R*. < in R* means < in every coordinate. For ‘boxes’ A the total mass
in them can be calculated by principle of inclusion and exclusion, and that is called
Ay F.

F,, = F means F,(z) — F(x) when z is a continuity point of F.

That also gives us the notion of y,, = pand X,, = X

First we do Portmonteau theorem.

Theorem 14 (Portmonteau Theorem in R¥). Let p,,, u be probability measures on
R*. Then TFAE:

1. g =

2. [ fdp, — [ fdu,Vf € Cy(R)
. tn(A) = u(A) whenever A is borel and p(0A4) =0

w

4. limsup,,_, o pn(C) < p(C) for all closed C

5. liminf, o0 un(G) > 1(G) for all open G

1,2,3 are what we expected from 1 dimensional version. In 4,5 we have inequalities
instead of equality.

Proof. 1 = 2:

We look at boxes (open in left, down etc) even though 2 doesn’t talk about boxes.
The boxes aren’t closed or open.

We have p,(A) = AsF — A4 F = p(A) whenever A is a box all of whose corners are
continuity points of F'.

Given f € Cy(R¥), ¢ > 0, let A be a bounded box with corners at F-continuity
points and p(A°) < e. We can choose because we have countable discontinuous
hyperplanes. O

Class 11: 02/13
We finish the proof from yesterday.

Proof. 1 = 2:

pn(A) = AgF, — AuF = u(A) when A is a box with F-continuous corners. Given
f € Cp(R¥) and € > 0 let A be a bounded box with F-continuous corners and
p(A°) < e. We can choose because we have countably many hyperplanes with positive
measure.

Another way to see this is: fix a line, and consider the family of hyperplanes perpen-
dicular to that line. We can ‘project’ to get a measure on the real line, by passing
the measure of the half space to that of the ‘left’ of the line.

[insert picture]

Claim: for n large, p,(A°) <e.

To see this, note that u,(A) = p(A) so un(A%) — u(A°) and thus p,(A°) < € for
large enough n.

What happens inside A?

17



Note that f is uniformly continuous in A.

Notation: f [ A means f restricted to A.

We may partition A into boxes Aj,..., A, with corners F-continuous and sup f [
A; —inf f [ A; < e. Then,

limsup/ fduy, <limsup | €] f]loo + Z/ fdpn
n—oo i1 J A

n— oo

< el flloo + limsup > (mas £ | Ad)pin(A)

n—oo i=1
= e[ flloo + D (max f | Ai)u(Ai)
i=1

< 2| fllo+ [ fdute

Likewise,
timint [, > <26l fl+ [ Fan-e
n— 00

Hence [ fdp, — [ fdu

Now, 2 = 4:

We want to take C,(R¥) > f > 1o with close integrals w.r.t. p.

Construction: For z € C, set f(z) =1

For z ¢ C do linear interpolation with dist(x, C') from 1 to 0 over a distance e. Then,

lim sup p, (C) = limsup/ ledu, < limsup/fd,un = / fdu = pu(C+ B(0))
Where C' + B.(0) is ‘adding’ the ball of radius € to every point in C, which means it
contains stuff e distance away. Since C' is closed, u(C + B(0)) has limit x(C) when
€ — 0. That gives us 4.

4 <= 5 by taking complement, ji,,(R*) =1 = 11,,(G) + 11, (G°)

5 = 3: Since 4 <= 5 we can use both 4 and 5.

Since pu(0A) = 0, we have:

w(A) = u(A°) < liminf p, (A%) < liminf 2, (A) < limsup p, (A)
n—oo

n—oo n—oo
< limsup p, (A) < p(A) = p(A)
n— o0

Finally, we prove that 3 = 1 to finish the proof.
1 is just a special case of 3. Take A to be a box {y: y < z} with F' continuous at x.

From definition of continuity means ;(0A) = 0. This gives us the result.
O

Definition 8. Tightness in R¥: A collection M of probabilities on R* is tight if
1M 00 SUD e pq 1 (((—a, a]k)c) =0
Theorem 15 (29.3). Every tight sequence has a weakly convergent subsequence.

This is sequential compactness of measures. This proof is different from the 1d case.

Proof. Let (un,;n > 1) be tight.

Regardless of tightness, there is a subsequence that converges in weak*.

Take a subsequence (j,,;k > 1) that converges weak™ [by Banach-Alaoglu] to some
78

We will show that p,, = pu.

18



We are going to use part 2 of Portmonteau Theorem. Consider f € Cy(RF),e > 0.
Choose a > 0 such that ;u((—a,a]¥) < € [since p is finite] and for all n, u, (((—a,al¥)¢) <
€ [since tight].

We want to approximate f € Cy(R¥) with g € Co(R¥).

Define g € Co(RF) so that f = g on (—a,a)* and ||g|lec < ||fllec- Why can we do
something like this?

Take A = (—a,a]*, take h € Cy that goes to 0 by linear interpolation and 1 in A4, and
take g = fh.

Other construction: Instead of A take a ball containing A, make ¢ = f in A, and go
down linearly on the rays. That gives us a g.

We can also make make g have compact support.

Then,

’/fdunj—/fdulé/f—gldunﬂr‘/gdum—/gdu‘ﬁL/g—fldu

Define the integrals to be Iy, I, I3

Then, I; < 2¢||f||~

I5 — 0 because weak*.

I, < 2€] o

Thus, I, + I + I3 < 4€Hf||oo

Thus p, = u.

Now we need to prove that p is a probability measure. That is given by taking f = 1.
O

It follows that {u,;n > 1) is tight if and only if every subsequence contains a further
weakly convergent subsequence.

Why is the reverse direction true? Recall the definition of tightness. If not tight, then
we can find € so that for some p in the sequence sup u(((—a, a]¥)¢), so by varying a
we can find a subsequence so i, (=3, j]¥)¢) > €. We can choose fin;, = p. Thus,

w(((—7,71%)¢) > € for all j. So u is not a probability measure u(RF) < 1 —e.

Class 12: 02/20

Today we talked about Exam 1 solutions.

Before the exam, we were doing weak convergence in R* in order to do CLT in R,
We also had theorem 29.3: every tight sequence has a weakly convergent subsequence.
Lemma: Let {u,;n > 1) be a tight sequence of probability measures on R* Let u be

a sub-probability measure. Then ju, = p <= fin — .

Proof is in the lecture notes.

We also had corollary: If (u,,n < 1) is a tight sequence with < 1 weak limit point,
then it has a weak limit.

Proof. By theorem 29.3 the sequence has some a limit point. Let it be p. Thus, it
has exactly one weak limit point.

[if we had a metric then it would be over. but we might not so we go the weak *
route]

For every subsequence of u, that converges weakly to u, it converges weakstarly to
i. Since we have a metric in weakstar, the sequence converges to u in weakstar and
thus it converges weakly to u.

Since the sequence has exactly one weak limit point, it only has one weak™® limit point.

By the metrizability of the weak* topology, f, — p. Thus, p, = pu.
O

Characteristic Function on R*

Definition 9. For a RF-valued random variable X, t € R¥, we define the character-
istic function:
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t s Ele®¥]

Note that instead of multiplying we have the dot product. We write it as @(¢) if the
law of X is pu.

The proof that p— [ is 1 — 1: in R was by the ‘inversion formula’. That extends to
R as follows:
If A= (a1,b1] x ---(ag,bg] is a bounded rectangle such that p(9A) = 0, then:

k
1 . )
1(A) = lim 7/ e~ ti% _ o=ty L p(t) dt
(4) = Jim 7oy mwg( ) - fi(t)

Indeed, /i(t) = [p« H?zl eti®i du(x)
The integrand in the inversion formula is product of two things that are uniformly
bounded so we can apply Fubini. Lebesgue measure is a product measure. Thus,

k
. 1 1
Jim - 31;[1 Lsgn(%’ = a;)S(T|z; — a5]) = —sgn(z; — b;)S(T|z; = bjl) | du(z)

Applying Bounded Convergence Theorem

k
- /]R ]1;[1 Lay b1 (%) dp(z) = /R La(e) du(e) = u(4)

So, p is detemined uniquely on bounded rectangles. This determines the distribution
function F), where it is continuous. Since F), is right continuous and continuity points
are dense, F), is determined everywhere. So p is also determined.

Write hy(z) == t-x. If t is a unit vector, then ¢ -z is the length of the orthogonal
projection. So it is the length of orthogonal projection scaled by the length of .

So, inverse image of any point is a hyperplane.

Suppose o € R. We look at h; '(—o0,a]. This gives us one side of the hyperplane,
that is a half space. Also, for s € R,

1o h;l(s) = /Reisy d(Mh;l)(y)

Using theorem 16.13,
:/ eisht(w) du(l‘)
RE

= [ et dute) = st
Rk

—

Thus, the values of p on half spaces determine all measures ph; ! hence why ! hence
all 1 and hence p.

Theorem 16 (29.4, Cramér-Wold device). X,, = Y <= VtcRF . X,, = .V

Class 13: 02/22

We try to construct a counterexample to the case X,(li) = Y@ but X,, /= Y.
We use dependence.

Suppose all the X,Sj ) have same distribution as Y@). But we can use dependence to
show that X, might not converges to Y.
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Proof. Easy direction: Suppose X,, = Y. Then, for all f € C,(R) we need to
prove that E[f(t- X,)] = E[f(t-Y)].
Note that E[f(t- X)) = B[(f o he)(Xa)] = E[(f o h)(Y)] = E[f(t-Y)]
Thust- X, — t-Y.
Hard direction: If for all t we have t - X,, — ¢-Y,
6.x, (1) = EleitX0]
Since y — e € Cy(R) we have:
E[eitXn] — E[eit‘Y]
Thus, g, (1) - 6y (1)
Note that {X,,;n > 1} is tight by HW [29.3b].
So, there is at least one weak limit.
Recall that weak convergence implies convergence in characteristic functions. The
above shows that every weak limit has the same characteristic function as Y, so by
the uniqueness of characteristic functions, (X,,) has < 1 weak limit. Thus, it converges
to Y.

O

Thus, X,, = Y if and only if ¢x, — ¢y

Multivariate Normal Distribution

Key: all we need are means of the coordinates and covariances of the coordinates.
Notation: for z € R*, we will use |z| :== /z - .
The function:

T (271’)7%67"70‘2/2

is a density, called the standard normal density.
If X = (X1, -, X)) has this density, then X5, -+, Xy are independent N(0,1) ran-
dom variables by section 20 and conversely.

Bl = [T Bles ] = [Low, () = [[e /2 = e Btz =
k k

k

Now we need to discuss the Covariance Matrix.

Let X be a n-dimensional random variable with mean 0, that is E[X] = 0, the
covariance matrix has 4, j-th entry given by E[X,;X;].

We write it in matrix form. If s,¢ are column vectors, then s -t = s't. But in
probability, transpose is denoted often by /. So we write s't instead of s'¢t.

Thus, if X is a column vector random variable, the covariance matrix is given by:

S = B[XX]

¥ is non-negative definite/positive semidefinite, meaning for al z € R* [column vec-
tor|, we have 2’3z > 0.
2'Yr =2’ E[XX'|x = B2’ XX'z] = E[(X'z)' X'z] = E[|X'z[?] > 0

Proposition 5. For every symmetric p.s.d. X, there is a normal distribution N (0, X)
with covariance matrix .

Proof. Because ¥ is symmetric, we can diagonalize it by an orthogonal matrix U.
Because it is p.s.d., the eigenvalues must be > 0. Thus ¥ = UDU’ where D is
diagonal. Columns of U are the eigenvectors.

Notation: positive semidefinite is also written as 3 > 0. That tells us D > 0.

Let A:=UvD. Then AA’ = UVDVDU' =UDU’ = X.

Now, if X ~ N(0,I) [standard normal in k variables|, Define:

We have E[YY'] = E[AXX'A'] = AE[XX'|A' = ATA’ = AA' = ¥..
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Lets calculate the characteristic function of Y = AX.

by (t) = E[e“'y] — E[eit’AX] _ E[ei(A/t).X] = px(A't) = e 1At /2

’ ’ !
— A2 _ | —t'St/2

Thus the characteristic function only depends on 3.

This shows that the distribution depends only on .

If ¥ is singular, then so is D since one of the eigenvalues must be 0. So A must be
singular as well.

We defined Y := AX. Since A is singular, A must have a null space. So, Y does not

1 0 (X .
0 0), then Y = ( 0 > which does not

have a density. Canonical example: ¥ = <
have a density in R2.

If ¥ is invertible then so is A. We claim that in this case Y does have a density.
Let f be the density of X.

Let A, be the lebesgue measure on R¥.

Then Y has law (fAg) o A~ = (fo A" (Ao A7)

Since [ hd(fAg)o A™r = [ho Ad(fA\g) = [(ho A)fd\g

And [h(foA™Y)d(Ao A7) = [(ho A)fdAy.

NOW, (f o A_l)(.'L') — (27r)—k/2€—|A717;\2/2 — (QW)—k/Qe—I/A/ilAil.'L'/Q

— (27.(.)—16/26—;8'2’11-/2

And Mg o A~ =|det AL\, = | det A| 71\, = (det 2)2 A

Therefore, Y has density:

(271')7k/2(det 2)71/2671”2_11/2

There are several properties of multivariate normal random variables.

If two random variables are independent then they are uncorrelated. The converse is
not true: random variables can be uncorrelated and dependent.

We construct a counterexample. Suppose X, Y have mean 0, indepdendent [so E[XY] =
0] and E[Y3] =0

Take X —aY?2Y.

Then E[(X —aY?)Y]=0-aE[Y3] =0

So they are uncorrelated for all a.

Uncorrelatedness is a one-dimensional phenomenon, independence is more general
and thus more restrictive.

We want to show that for multivariate/joint normal, uncorrelatedness is equivalent
to independence.

Class 14: 02/27

Recall:

Uncorrelation is a one dimensional concept, Independence is infinite dimensional. So
we do not expect uncorrelated to imply indepndent, but that happens for joint normal.
Today we see why.

Proposition 6. Suppose (Xi,...,X;) has a normal distribution. Then so does
X1,...,X; is normal for all j <k

Proof. There is a covariance matrix for X = (X1, ---,Xj). Say that is A. Then
X = AY where Y is a standard normal.

Let 7 be the projection on the first j coordinates. If Z = (X4, ---, X;) then we have:
Z=7n(X)=7n(AY) =m0 A(Y)

Then, 7' = (X1, ---,X;,0,---,0) € R* is normal because of the covariance matrix
moA.

We are going nowhere.

X has a covariance matrix, so does Z. Let them be X1, 35
E[eit-X] — o t'S1t/2

E[eis-Z] — o~ t'Z2t/2
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for each s € R? we have t e R¥ so that s - Z =t- X
So we have the characteristic function, so it is normal.
O

Suppose all coordinates of X are uncorrelated. We want to show they are independent.
Since all coordinates of X are uncorrelated, ¥ is diagonal.

Then, the characteristic function is ¢ — e~ 2% /2 where 02 = Var(X;).

We can write it as [], e~ /2

This is the same characteristic function we would have if they were independent,
therefore they must be independent.

Characteristic functions are product if and only if random variables are independnet.
General statement: if Y € RF is normal and M is a linear transformation R¥ — R,
then MY € RJ is also normal.

Note that this also means normality doesn’t depend on the basis, it is a property of
the space.

If the covariance matrix of Y is 3, then,

E[eit’MY] _ E[ei(M’t)’Y/2] _ eft’MEM’t/Z _ eft’(MEM’)t/Z

Note that MY M’ is symmetric and positive semidefinite, therefore it is a covariance
matrix, and as a result this is the characteristic function of a normal random variable.
Thus this is a normal random variable.

Theorem 17 (29.5, IID). Let X,, be i.i.d. R*¥ valued random variables with all
components having finite 2nd moment. Let ¢ = E[X,,] and ¥ = E[(X,, —¢)(X, —¢)'].
Let Sn = 22:1 Xk.

Then, %222 — N(0,%).

If 3 is invertible, \/f_l S“\/_E"C = N(0,I).

Proof. Recall Cramér-Wold, we only need to show one dimensional.
Let Y ~ N(0,%). By 29.4, it suffices to prove that for all ¢ € R¥,
t'(Sp, —ne)/y/n = t'Y.
Note that, 'Y ~ N(0,t'%¢).
t/ Snp—c — 7]:=1 t/(Xk_c)
vn vn
So, we are summing i.i.d. random variables in the numerator with mean E[t'(X;—c)] =

t'E[Xy — c] = 0 = 0 and variance E[(#'(X; — ¢))?] = E[t'(Xy — ¢)(Xi — ¢)'t] =
t'E[( Xk — o) (X — o)t = t/%t.

If 3t = 0 then these random variables have mean 0 and variance 0, so the random
variables are trivially 0.

If not, we can divide by ¢'X¢ [this is just a number], and since ¢’ (X}, — ¢) are i.i.d. we
have our result by the Lindeber Lévy theorem.

O

Now we go to chapter 6.

Chapter 6: Derivatives and Conditional Probability

Section 32: The Radon-Nikodym Theorem.

Recall that if u, v are signed or complex measures on the same measurable space, we
call v absolutely continuous with respect to p, written v < p if every p-null set is
a v-null set. Recall that, a null set is a set such that every subset of that set has
measure 0.

If v is finite, this is equivalent to: Ve > 030 > 0V measurable E, |u|E < § = |v| <e.
If there is a p-null set whose complement is v-null, then we call p and v singular,
written g L v
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Theorem 18 (Lebesgue-Radon-Nikodym Theorem). Let u, v be o-finite [the whole
set can be written as a countable union of sets with finite measure| signed or complex
measures on (2, F). Then there are unique signed or complex measures v, and v on
Q, F such that:

V="V, + Vs

Vo < [

vs L

This is a lebesgue decomposition.

There is a function f : Q — C, unique upto v-null modifications, such that v, = fu.
This means any two are equal p-almost everywhere. We denote f by < d”“ . Also, v, is
finite if and only if f € L*(|ul).

33. Conditional Probabilities

Instead of conditioning on an event, we condition on a o-field.

How do we define P(A|G), for a o-field G C F?

Typically, G is generated by a (or some) random variables. Consider the simplest
case: G = {@,Q}.

This doesn’t give us any information, so it should be that P(A|{@,Q}) = P(A).
Next, suppose G = {@, B, B¢,Q}.

This gives us information on whether B happened or not. So, this gives us different
values, and thus this is actually a random variable!

P(A|G) = P(A|B)1g + P(A|B¢)1p.

Similarly, if G is generated by a countable partition P, then,

P(AIG) = ¥ sep P(AIB)Lp

To generalize, note that,

P(A|G) is a random variable. It is measureable with respect to F, but it is also
measureable with respect to G. We write it as P(A4|G) € G.

VG € G, [,P(A|G)dP. Since we're integrating on G, we’re integrating over all
possible sets. Thus, we have

Jo P(A|G)dP = ZBeP Jo P(AIB)1pdP =} ;.» P(A|B)P(BNG)

Note that, BNG = B or @

= ZBEP,BQG P(A|B)P(B) =} pep pca P(ANB) = P(ANG).

Class 15: 02/29
Last time, we saw conditional probability given a o-field. It had two properties:

Definition 10. Any random variable P(A|G) such that:
i P(A\g) is G-measurable and integrable random variable
: For any G € G if we integrate the random variable on this set, fG (A|G)dP
(A NG)
is called a version of the probability of A given G

Recall from real analysis: if we have a measurable function on some measure, and we
know the integral of that function on every set of the sigma field, then we know the
function except on a set of measure 0. That implies this.

Another way: think of this as a function times a measure instead of a fucntion, where
the measure is defined by the formula [, P(A|G)dP. Then this tells us what is
the measure of the sigma field. Question: why is it absolutely continuous w.r.t. P?
because it’s a function times P.

Theorem 19. VA € .7, Vo field 4 C % there is a version of P(A|¥). It is unique
up to P-null modifications.

This theorem is due to Kolmogorov.

Proof. This will be a radon nikodym derivative.
Fix A,9. Let Py := P | ¢, P restricted to ¢
Define vy : G - P(ANG) on ¥

These are measures in ¢.
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We have vy < Pgy.
By Radon-Nikodym theorem, we may set P(A|¥) = dll;’;
This gives us what we wanted.

Example: P(A|.%) = 14 almost surely.

Example: if A € 4 we have

P(A|9) =14

Example 33.6: If A is independent of ¢, then P(A|¥) = P(A) almost surely.

If 2 is a collection of random variables, we write P(A|2") for P(A|lo(Z")). If 2" =
{X} we just write P(A|X)

P(A]X) must be measurable with respect to X aka o(X)

By theorem 20.1, if 2" = {X} then P(A|X) is a function of X. This is because
random variables are measurable with respect to a random variable, it is a function
of that random variable.

Conditioning on a random varible with density

Example 33.5: Suppose that (X,Y) ~ fAq [f is density, A2 is lebesgue measure, so f
is lebesgue measurable].

What is P(Y € -|X)?

The classical formula says that it has a density:

T __flzy)
When X =z, it is y — To f(@,t)dt

In other words, we want a version of P(Y € C|X) to be:
Jyee F(X,y) dy
Jo F(X,t)dt

This is a measurable function of X by theorem 18.3 [fubini].
So, this is (X)) measurable.
Now, for every G € o(X), we have G = [X € H] for some borel set H € %', hence

Jiec FX ) di _/ Jiec It
¢ Jier f(X,t)dt ixer] Jier f(X 1) dt

Change of varibles fn of (X,Y)

/ hee /@0 ey

€H,yeR ftE]R f(!L'7 t) dt

By Tonelli:
Joce flz,t)dt
[ [ a0,
zeH JyeR fteR f(:ﬂ,t) dt
:/ f(z,t)dtdx
z€H JteC
=(fA)(HxC)=P[X,Y)e HxC]|=P[X € HY € (]
=P[GN[Y € O]
So we have verified property 2. It is indeed a version.
Now we prove some general properties of conditional probability theory.

A key idea in undergrad probability is: if we condition on an event, we are reducing
the probability space.
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Theorem 20 (33.2). :

i: If P(A) =0 then P(A|4) =0 a.s.

ii: If P(A) =1 then P(A|¥9) =1 as,

iii: If (Ap;n > 1) are disjoint, then P(lJ,, An|¥) =, P(4,|9)
iv: 0 < P(A|9) <1 as.

v: If A C B then P(A|¥9) < P(B|9)

vi: If A, t Aor A, | Athen P(A,|9) — P(A|9Y) a.s.

Proof. i: just check definition

ii: just check definition

iii: Let A == UA,, then [, P(A,|9)dP =3 [, P(A,|9)dP =3} P(A,NG) =

P(ANG)

iv: Let G = [P(A|9) <0 € ¥

Jo P(A|9)dP = P(ANG) >0

Therefore P(A|¥9) > 0 a.s.

For <1 just take G := [P(A]¥) > 1] and do the same.

v: part iii with part iv

vi: by part v, the limit exists by v. We want that to be a version of A.

Check that it is a version of P(A|¥4) by MCT or BCT and continuity of probability.
O

Theorem 21 (33.1). Let ¢ = 0(2?) where & is a 7 system, ) a countable union of
P-sets. An integrable f € ¢ is a version of P(A|9) if for all G € & we have:

/fdP:P(AmG)
G

idea: we have a finite measure on each side and they agree on &. Since they agree
on & they agree on ¢ on theorem 10.4.

Class 16: 03/05

The following theorem we state without proof.

We use for motivation an example. Suppose two random variable have joint density.
Classical formula of density of y given x we can interpet as given any set of ¥ we
integrate over that set for density of X.

Theorem 22 (33.3). Suppose that (2, %, P) is a probability space, and we have
Y C .7 asubo field and X : (,.%) — (T, .7) with .7 is the collection of borel sets
of a complete seperable metric space with .7 the borel sets of complete, seperable
metric space T. Then there exists p: o(X) x Q — [0, 1] we have:

1. Vw € Q, pu(-,w) is a probability measure of o(X);
2. VA€ o(X), u(A4,-) is a version of P(A|9).

We call such a p a regular conditional distribution of X given ¢

Example 33.5 was such an example with "= R for the law of y given z.

See ex. 33.12 for more on this.

If (2,%)=(T,7) and X = id then p is called a regular conditional probability.

Proof. We oit the proof. It is done first for 7' = R as in Billingsley, and then extended
by mapping T surjectively to [0,1]. See Durrett. O

Conditional Expectation

Note that when ¥ = o(Z) with & a countable partition, the formula:
P(A) = Z P(A|B)P(B) = / P(A|9)dP = E[P(A]|9)]
Be @

This is a way to compute P(A).
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Likewise, we can compute expectation:

ElX]=E

> 113] = > E[Xlp]= Y E[X|B]P(B)= /QE[XM] dP = E[E[X|¥]]

BeZ BeZ Bez

Similarly, for G € ¢,

E[X14] = E[X:G] = / X dp = / E[X|9]dP
G G
The case X = 14 is conditional probability.

Definition 11. Let X € LY(Q,.7, ) and 4 C .Z be a o field. A random variable
E[X|¥] such that:

1. E[X|9) € LY(Q,9,P 1 9)
2. VG e¥

/GE[X|€¢]dP:/GXdP

is called a version of the conditional expectation of X given ¢.

For G = Q ii becomes E[E[X|¥]] = E[X], In general, ii says:

EX|9)(P19)=(XP) ¥

Theorem 23. Conditional expectations exist and are unique up to P-null modifica-
tions.

Proof. E[X|¥] is the radon nikodym derivative of (X P) | 4 w.r.t. (P | ¢4). We prove
that the conditions are satisfied.
Set Py =P |¥
vx : G— fG X dP. Then vy <« Pg. So the conditions are satisfied, and thus we're
done.

O

Example: E[X|{@,Q}] = F[X]

EX|#]=X

We can think about expectation to be the best guess of what X is. That is, it
minimizes the square error.

Checking part ii might be complicated. It suffices to check on some special sets.

Theorem 24 (34.1). Let & C .Z be a m-system, 4 = () and X € L' (Q, .7, P),
feLY Y, P|9). Then, f = E[X|¥9] almost surely if and only if for all G € &
we have [, fdP = [, XdP

Proof. Use 16.10 O

Theorem 25 (34.2). Let X,Y, X,, € L}(Q,.#, ) and ¢4 C .Z sigma field. We have
the following properties:

1. Va € E we have FE[a|¥9] = a a.s.

2. Va,b € R we have E[aX 4 bY |4] = aE[X|¥] + bE[Y|¥] a.s.

3. X <Y as. implies E[X|¥9] < E]Y|¥]

4. |E[X|9]| < E[|X[|¥9] as.

5. ¢-LDCT: X,, —» X a.s., | X,| <Y a.s. implies E[X,,|¥9] — E[X|¥9]a.s.

Proof. 1. obvious
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2. check definition

3. E[Y — X|¥] > 0 by the positivity of the radon nikodym derivative.

—|X] < X <|X]

5. Convert it to easier problem: define Z,, = supys,, |Xx — X| , then Z,, goes to 0
a.s. monotonically. Since |Z,| < 2Y a.s., if we proved that F[Z,|¥] — 0 almost
surelythen we may deduce E[X,,|¢] — E[X|¥] a.s. by iv. To prove the former,
note that Z,, decreases as n increases, so by iii E[Z,|¥] is also decreasing. So,
by MCT, we have some limit Z > 0. We want to show Z = 0 a.s. Consider
E|Z) < E[E|Z,¥9]] = E[Z,] and E[Z,] — 0 since Z,, — 0 and |Z,,| < 2Y so we
can use dominated convergence.

O

Theorem 26 (34.3). If X is @-measurable and Y, XY € L(Q,.#, &) then E[XY|¥] =
XE[Y|¥9] a.s.

Intuition: we know everything ¢ tells us. Since X is ¢ measurable, we treat X as a
constant.

Proof. If X = 1y for H € ¢ then we must check that for all G € ¥

/nHdez/ 1y E[Y|¥)dP
G G

‘Which means

YdP = E[Y|9]dP
GNH GNH

Which is true by the definition of conditional expectation.

Class 17: 03/07
We complete the proof.

Proof. We have proved for indicator function.
By theorem 34.2(ii), our equation holds whenever X is simple.
In general, take simple X,, € ¢ such that |X,,| < |X| and X,, = X. Then,

E[X,Y|¥9] = X,, - E[Y|¥]
Now, by LDCT, [34.2(v)]
E[XY|¥4]) < lim E[X,Y|9] < lim X,E[Y|9] 2 X - E[Y|¥]
n—oo

n—oo

Theorem 27 (34.4). Let X € LY(Q, 7, 2)
Suppose 4 C % C .% are finite o-fields. Then,

E[E[X|%]|%] = E[X[%] = E[E[X|4]|%]

a.s.
In the trivial sigma field this is just law of total expectation.
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Proof. We prove the second equality first. Intuitively, since 4 C %, if X is 4
measureable then it is % measureable. So we don’t get any extra info, so expectation
remains the same.

E[X‘gl] S gl - gg

So it doesn’t change when we compute its conditional expectation w.r.t. %
Also,

E[EX|D]|4](P | %) = (E[X|%]P) | %

= (EX|%|(P | %) | %)

=((XP)19%) %

= (XP) %

= E[X|4](P | )

Therefore,

EEX|4]|%] = E[X|4]

This is very commonly used. This is called the ‘Tower Property’.
O

Theorem 28 (34.5). Suppose that p is a regular conditional probability for P[-|¥].
Then, for X € L!(P) for P-a.e.w,

E[X|#](w) = / X() du(e,w)

w!

Proof. Suppose X = 14. Then E[X|¥9](w) = P(A]¥9)(w) and

[ X@) i @) = (4.0

Thus, these are equal by hypothesis.
Build from there by using theorem 34.2(ii),(v).

Jensen’s Inequality for Conditional Expectation:

Theorem 29. Let X € L'(P) and let ¢ be convex on an interval containing the
range of X and ¢ o X € L1(P).
Then, for all ¥ C &

P(E[X|¥9]) < E[p o X|¥]

Proof. ¢ is the pointwise sup of all linear functions that are < ¢.

We can choose a countable class of such linear functions for which their sup is still ¢
For linear function, the inequality we want is actually an equality.

Hence,

MHXWD=mpKﬂXWD@®%EWXWﬂSEW@N%

Omit page 450 to end of section.
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Martingales

We use notes.

Suppose we are gambling, and X,, := our fortune after n plays.

Fp =0(Xy, -, Xp) or more.

Suppose we have a fair game. Then, our expected fortune after the next gamble would
be equal to our current fortune:

X, = E[X,11]%,] fair.

X, > E[X,11]%,] unfavorable

X, < E[X,41].%,] favorable

One way to be favorable: before we gamble we get handed some amount of money,
and then we make a fair bet. Example: Casino gives you free chips.

The amount of money doesn’t need to be definite, it can be random with positive
expectation.

Definition 12. Let X,, € LY(Q,.%, P) and .%,, C .% be o fields. We get more and
more information, since the o fields are monotonically increasing.

We call (%#,;n > 1) a filtration if Vn, %, C %, 11

We call (X,;;n > 1) adaped to (£#,) if Vn, X,, € Z#,

We call ((X,, %#,);n > 1) a martingale (submartingale, supermartingale) if:

(X,) is adapted to the filtration (%#,) and for all n , X,, = E[X,,1|%,] as. (<;>)
So, we go up in submartingales and down in supermartingales.

The reason for this is submartingales correspond to subharmonic and supermartin-
gales correspond to superharmonic functions.

We call (X,,;n > 1) a martingale if there exists some filtration w.r.t. it is a martingale.
If there exists such a filtration, %, = o(X1, -+, X,,) always works.

Suppose X,, € %), where (%]) is a filtration and X,, = E[X,+1|-%},] a.s.

n

We know X, € %, C %/ thus,

a

E[X, 17 = E[E[Xp1|Z))|F0] = E[X, |7, = X,
In general, if ((X,,, %#,)) is a martingale, then using tower property,
E[Xm|Zn] = Xman = Xonin(mm)

Also, E[X,,] is the same for all n.

Class 18: 03/19

Today we do examples of martingales.

A popular example is: sums of independent random variable.

Example 35.1 Suppose Y,, are independent random variables, E[|Y,|] < co.

Then Y,, is the change in fortune after the n’th game [we’re gambling], and we're
looking at the cumulative change, aka partial sums.

Xn = iyk

k=1

These are neither martingales or submartingales or supermartingales without addi-
tional assumptions.

If E[Y,] = 0Vn then E[X,11]|0(X1, -, Xn)]

= E[Xny1|o(Yr, -, Y]

= E[Xn + Yoq1lo(Yr, -+, Ya)]

=Xy + E[Ynialo(Yr, -+, Y]

They are independent and all have expectation 0. Thus this equals X,, a.s.
So this is a martingale.

Correspondingly, if the expectations were all non-negative, we would have:
X, + ElY,41|o(Yy, -+ ,Y,)] > X, so this is a submartingale.
Correspondingly, non-positive would give us a supermartingale.

Another different example. Significant for the theory.

Example 35.5 If Z € L'(Q,.#, P) and (.%,) is a filtration. Then,
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((EZ|Fn], Fn))

is a martingale by the tower property:

Example 35.2 On (©2,.7), let P be a probability measure and v be a finite, signed
measure. Let (%) be a filtration.

We can only talk about Radon—leodym derivative if we have absolute continuity.
Suppose that Vn,v | %, < P | %#,. Let

Then ((X,,, %#,)) is a martingale:

E[X7z+1|§n](P F ) = ( 7L+1P) rﬁn = (Xn+1P rﬁn—&-l) rg\n

=Wl Fpi1) | Fn=v ] Fn=Xp(P ] Fp)

Exercise 35.3 Let P be Lebesgue measure on (0,1] and %, = J(I’in);o <k <2
where I( " = = (k27" (k:+ 1)27"]. Since (A € F#,, P(A) =0) = A = & we have for
all v, v [ /n < P | %,. In this case,

2’”._1 2'L_1
(n)
n - Z ]].I(n) I(n) Z ]lI(n)l/ I
Exercise 35.8 If ((X,,,-%,,)) is a martingle, then (| X,,|,.%#,) is a submartingale.

Theorem 30 (35.1). Let (X,,) C L'(P) adapted to a filtration (%,), and let ¢ be
convex on an interval containing all the ranges of X,,, and let p o X,, € L'(P). Then
((¢p o Xy, %)) is a submartingale if either:

1. {((Xn, Fy)) is a martingale
2. is a submartingale and ¢ is increasing
3. is a supermartingale and ¢ is decreasing

Proof. In all cases, we have:

P(Xn) < P(E[Xnt1]|Fn))

by using monotonicity and convexity.
By Jensen, this is < Elp(Xn+1)]%n] O

Now we depart from the book.

Wald’s Equation

This is about expectation of adding up random variables but the number of random
variables is itself random.

Theorem 31 (Wald’s Equation). Let Z,, € L'(P) for n > 1 and let 7 be an N-valued
random variable, and p € R.
Suppose that,

1.Vn>1,P[r>n] >0 = E[Z,|T >n]=p [or <or >]

2. one of the following holds:
(a) ¥n, Zn >0
(b) sup,,; pir>njso0 L[| Znllm = n] < 0o and Efr] < oo
(¢) E[| Y71 Znl] < 00 and limy, o0 E[Y ") _1 Zi 175y =0
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then E[Y.) | Z,] = pE[r] [or < or >]
where 0 - 0o =0

Proof. In case a, we have

E[Z;:l Zn] = E[Zfﬁ:l Zn]]-[Tzn]]
n|Plr > n] = 3707, pP[r > n] = pE[r].

This is equation N1.

In case b, we have

B[, | Zal L sn] = S50, EllZlIr = nlP[r > n] < supE[--]- TP > ]
sup E[---]- E[r] < 00

Now we do the previous calculation with Fubini.

In case c, we have

. LDCT ,. -
E[Zk:l Zy) = hmn—on[Zk:l Zk]l[TSn]]

=lim, 00 D"} Ziklk<r<n]

= hmn_mo E[Zk:l Zk(]]-[‘rzk:] - ]]'[T>TL])]

by the second condition of part c,

= limp—oe B> p_1 Zilprsg)] = limpoo Yoy pP[T > k] = pE[7]

tonelli/MCT oo 0o
= Zn:l E[Zn]]-[‘an]] = Zn=1E[Zn|T >

Stopping times will be important.
Make sure you are familiar with homework!!!

Class 18 and 19 skipped

Class 20: 04/02

We are betting on whether a card is red. We have 52 cards, 26 red, 26 black and we
keep seeing one by one. Assume uniform shuffle.

Ay, = event that the k’th card is red.

7 := the time k we bet.

yk = O'(Al, R ,Akfl)

T is a stopping time.

[7’ = /4}] € cgzk

At time k the chance of winning would be:

P(Ak | jk) = Xk

X} is between 0 and 1

The chance of winning for stopping time 7 is X,

X, is random. Our actual chance is E[X]

We check if X}, is a martingale:

EXyi1 | Fi] = E[P(Apy1 | Fr) | Tl

By tower property, = P(Ak4+1 | Fk)

We have information about k — 1 cards. We want to know if card number k + 1 is
red. It is the same as the k’'th card being red. So this is equal to Xj. For k < 51.
This is a finite martingale!

(Xg; 1 < k <52) is a martingale.

So, E[X,] = E[Xy] = 1

Just read notes for this section.

Class 21: 04/04

Class 22: 04/09

We did Doob’s Maximal Inequality.

Chapter 7: Stochastic Processes

Recall a stochastic process is a collection of random variables on the same space

indexed by some set, T
For example, we can think about N((s,t]) where T contains intervals.
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In higher dimension, we can have half open boxes, or even the set of borel sets as the
index set.

Section 36: Kolmogorov’s Existence/Consistency The-
orem

P[(Xp,, -+, Xy,) € H| for tq,-++ ,tx, € T, H € R* are the

finite dimensional distributions/marginals (f.d.d.) of the process.

(Xp;teT) e RT =T R

For t € T write Z; = R = R by x — z(t) =

For S C T set Ry = o(Z; : t € S). This is not a sigma field on R®, rather it is a
sigma field on RT

These are sub-o-fields of RT.

The f.d.d.’s are the probability measures pur on RE for finite FF C T.

We can think of RE as

{Ax R\, A e REY
eRE

These satisfy the consistency condition:

R CF = up, [ R =pp (%)
Thus, (Zg;t € T) is a stochasting process w.f.d.d.’s (up; F' C T finite)

Proof. Define R = J{RE; F C T, F finite}.
Sets in R? are called finite-dimensional or cylinders. This is a field since given F}
and Fy

REPURE CREVE ()

Thus, the plan is to use theorem 3.1:
Define P on RY" and show that P is countably additive there.
To define P on RY, set P(A) := up(A) for any F with A € REL. By (x) this is well
defined. Also, since pp is a probability measure, P is finitely additive on RE, hence
on RE. by (xx)
To show countable additivity, recall from example 2.10 that it suffices to show for
A, € RE with A, | @, we have P(A,) — 0.
Equivalently, if A, | A and P(A,) > ¢ > 0 then A # @. Now, eah A, € R for
some finite F,,. By regularity (thm 12.3) there exists compact K,, C R such that
K, xR\ C A, and pp, (An\ (K, xRT\)) < e/27+1 Then A D ), (K, x RT\Fn).,
We claim that this is non @.
Flrst, note that A, \ (K, x RT\I™)
= Un<n (AN \ (Kn x RTV))
< Upen(dn \ (K, x RTV™))
has probability < Y -y €/2" T < ¢/2
whence P(N(K, x RT\Fr)) > ¢/2
Thus, YN > 132 | F, € K, for 1 < n < N. Let (N1(j);7 > 1) be a subse-
quence such that z(N>0) | F' covergence. Recursively, choose (N, 41(5)lj > 1) to e
a subsequence of (N,,(j)) such that 2Vm+1) | F, ., converges. Then z(N=(m) | F,
converges for all n.
Define z(t) := 2N (") (t) if t € U, F,, and 0 otherwise. Then z € A so A # @.

O

Class 23: 04/11

If X:Q—Q and & C 22 then o(X ') = X (o())

The relevant operations of ¢ fields (intersection union complements) commutes with
pre-image so this is expected.
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Thus, given X; :  — R [t € T] stochastic process, let X : @ — R be (X;;t € T)
Claim: o(X) =0c({X;t€T})
To see this, note first that:

0 -—X,RT

\X:lzt
R
SOXt:ZtOX

Thus, o({ Xyt € TY) = o({ X, 'R;t € TY)

— o(X1({Z]'R}))

— XY (o({Z'R}))

= X IRL by definition of RT

=o(X)

Note also that J{o({X¢;t € S}); S C T, S countable} is a o-field.

So, it equals o(X)

That is, every set in o(X) depends on only countably many coordinates!
Consider T = [0,00),Q = RT | X; := Z,.

Consider the class of continuous functions C(T').

C(T) can’t depend on only a countable set since knowing the values on a countable
set doesn’t tell us whether something is continuous.

So, C(T) is not measurable here!

This means this space is not good enough to model brownian motion.

37 - Brownian Motion

We consider brownian motion on only one dimension. For bigger dimension we can
take independent brownian motion in perpendicular direction.

Consider (Wy;t € [0,00)) a stochastic process that has independent stationary incre-
ments and continuous sample paths.

W stands for Wiener.

W, is uniformly continuous on [0, 1] so:

w(i)-w ()

H, = sup
1<k<n

Which — 0 as n — o0

Hence V6 > 0, P[H,, > 0] — 0

Now, P[H, > 6] =1— P[H,, <]

=1- [T, PIW(E) = W) < 8] = 1= PW(2) = W(0)] < 0"
=1-{1-P|W(L) - W(0)] > 8]}" > 1 — e PIVE)-W(O0)29]
> 0.

SO, 1 — e_nPHW(%)_W(O)‘Z‘S] — O

Which implies P[[W (1) — W (0)| > 6] -0

(*) Vo > O,limhw —P[\W(h)—hW(O)\Zé] =0

This implies that (x+)3p € RIoc > 0VE > 0,

W(t) — W(0) ~ N (ut, ot)

Theorem 32. For a stochastic process with independent stationary increment, (x) <=
(+)

Why should such a process exist?
Let (Y},) be symmetric +1 i.i.d. steps, Az > 0,6 > 0

[t/At]
D(t) = Z ox - Yy
k=1

Then Var(D(t)) = (ACE)QLALJ
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(Ax)?

N

So, if D(t) ‘converges’ to W; we should have
So take At =1 Az =

un
Let D, (t) be the corresponding process of partial sums:

Lnt]
1
k=1

So, Dy, (t) converges weakly to normal.

Class 24: 04/16

Lt/At]
D(t) = Z Az -y
k=1

(AAxt)z o2

Definition 13. A Brownian Motion (BM) or Wiener Process with drift 4 and
variance parameter o2 is a stochastic process (Wy;t > 0) such that:

i If0<ty <ty <--- <ty then <th — W 1 <1< k?) NN(M(ti—ti,1;1 <1 <
k),o® - diag({t; —ti—1;1 < i < k)))

And Wy is independent of o(W; — Woy;t > 0)

ii: For every w,t +— W;(w) is continuous.

If £ =0,0 =1, Wy = 0 then the process is standard B.M. or just B.M.

i—17

Existence by Kolmogorov

Question: What are the f.d.d.’s?

Assume Wy =0and tg =0

Let M b the linear transformation that takes (y1,y2—vy1, Y —Yr—1) t0 (Y1, Y2, * , Yk)

100 0
110 0
M-]1 11 0
111 - 1

Recall that if Y ~ A (¢, X) then MY ~ N (Mc, MEM')

Use this with Y = (W, — Wy, -+ Wy, — W, ) and ¢ = p(ty — o, -+, th — tp—1)
¥ = o? diag((t1 — to, -tk — tk—1))

Then MY = <Wt1, ce >Wtk>

Me= p(ty, -+ tr)

And the covariances are: for 0 < s <t

Cov(W,, W) = E[(W, — ps)(W; — pat)]

We use independent increments to calculate it. Wy—put = Wy—pus+(Wy—Ws+pu(t—s))
So, E[(Wy — us)(Wy — ut)] = Var(W,) + 0 = o5

Thus, MM = UQ(min{ti,tj})lgi)jgk

These f.d.d.’s are consistent so Kolmogorov’s theorem gives a process that satisfies
(1).

If Wy # 0 then take X independent of the process (W;;t > 0) constructed by Kol-
mogorov’s theorem with X having law of Wy and use a new process (X + Wyt > 0)
We now modify the process given by Kolmogorov’s theorem to ensure continuity.
We'll do this for standard brownian motion and then show how to

Let D == {k27";n,k € N}

Claim: Vé > 0,Va > 0

Plup{|W(ro)fir € 0.1] 1 D} > o] < 2

It suffices to prove this with D replaced by D,, :== {k27"; k € N} since these eents are
increasing in n
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Now, (W (rd);r € [0,1] N D,)

Forms the partial sums of i.i.d. mean 0 random variables, hence, a martingale.
Therefore, (W (rd)*) is a submartingale.

Applying Doob’s inequality (thm 35.3),

4
Pl sup |W(ré)| > o] = PlsupW(ré)* > o] < E[Lff)]
ref0,1)nD,, o

Note, W (&) ~ N (0,08) = VN (0,1)

So, fourth moment is 3

Thus, our probability is bounded by %2

Let I, 5 == [k27™, (k + 1)27"]

My, = sup{|W(r) —W(k2™"™)|;r € I, , N D},

M, = max{M, ;0 < k < n2"}

Claim: P[M, > 1] < 2

For we have by stationarity of moments that for § = 277,

1 1 3nt
PMyr>—]|=P] sup |W(rd)|>—-]< =
Mo > 1= PL_swp W)l > 1)< o
THerefore,
1, et 1 1 3nt  3nd
PMu>>1< Y PMy>—> -] <n2n- - ="
[ J€>n]— P [ k>n>n] n 22n on

Therefore, 3, P[M,, > +] < o0

So we can use Borel Cantelli

Let B := {w; M,(w) > Li.o.}

Then P(B) = 0 by Borel Cantelli

Claim: V¢ > 0,Vw & B, W(r,w) is uniformly continuous in r € [0,¢] N D

For let ¢ > 0,w ¢ B,e > 0. Choose n such that n > t,n > %,Mn(w) <
0 :=2"".

Let r,7" € [0,t] N D with |r — | < 4.

Then 3k € [0,n2"] such that r € I, and 1’ € I, 41 so that

Set

1
pol

[W(r,w) — W' w)| < |Wrw)—W(E2™™ w)| + W (k2™ w) = W((k+1)27", w)]

HW((k 4+ 127" = W, @) < 2Mop (@) + My o1 (@) < 3M (@) < %

<e€

Class 25: 04/18

W(t),t € D
unifomrly continuous on [0,¢] N D for all ¢ > 0
off B, P(B) =0

Now, define W} (w) to be 0 if w € B and to be lim W;.(w) as r — ¢ with » € D for
w € B:

This is because of the cauchy property. This holds by uniform contunity.

Also, W/ (w) is continuous int for all w (if ¢,¢ are close then 3r close to t and ' close
t" such that W,.(w) is close to Wi(w) and W, (w) is close to wy (w) but r,r" are close
so W, (w), W,/ (w) are close) and W} (w) = Wi(w) for t € D for w ¢ B

Finally, we claim that (W/;¢ > 0) has the same fdd’s as (Wy;t > 0). Giventy,--- ,tx €
[0, 00) let rl(n) — ti,rl(”) eD

Then (W, (n)) — (W) everewhere.

Since we have pointwise convergence we also have weak convergence.

r{™};; converges to [min{t;, t; }i

The covariance matrices [min{r{™, ;

Theorem 33 (37.1). Standard B.M. exists.
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C([0,00),R)

To get a general B.M. with any Wy, u,o let (W/) be a std B.M. and let X be a
random variable independent of (W/) with X having the law of the desired Wy. Set
Wy =X + pt + oWy,

Wy = W, = u(t — ) + o (W, — W) ~ Nt — 5),0°(t — 5))

Symmetries of BM, or new BMs from old

Let (W:) be a std BM. Then so is (—Wy;t > 0) (space reversal). Also, given ty >
0, (Wi,—t — Wiy )o<t<t, has the law of BM on [0, t¢] [time reversal].

In addition, (Wi,4++ — Wey)e>o0 is BM [time transition]

If ¢ > 0 then (W/ :== 1W,2;);>0 is B.M. [scale invariance]

% min{c?s, *t}

W (to+Ato)—W (to)
Suppose W > €

(W (% + 550) — W' (%)} /Ato)
Let tl = to/Cz, Atl = Afo/CQ
W/(tl + Atl) — W/(tl)
Aty

Taking c large, we see that there are chords of arbitrarily large slope arbitrarily close
to 0

> ce

Theorem 34 (37.3). On a set of probability 1, Vi,

. ‘WsWt
limsup | —| = 400
st s—t
Ws — W,
1imsup‘8t =400
st s—t

Proof. By symmetry enough to prove the first for ¢ € [0,1)
Fix ¢ > 0 and let

4. |Ws—W,
A, = {Et € [0,1)Vs € (t,t + —), | ————L < CH
n s—1
It suffices to show there exists event A/, containing A, and P(A]) =

n
We compare W (k%) to W (t) for j = 0,1, 2,3 to get |W(knﬁ)—W(t)| <
4c

0
If we A, and t is a witness (that w € A, ), let k be such that 21 <t < £
C

whence ’w - W(kj;])‘ <8 for j =0,1,2
On the other hand,

PlIW (B —w(E)| < 89 = P[W(5)| < %]
_ 8C 16C

- PHW(I)‘ < ﬁ] < Vorn

since the standard normal density is <

1
V2T

Therefore, A, C A/, = [ak € [1,n]s.t.Vj = 0,1,2, [W(EEEL) _ yy(ktiy < 8C

3
with P(4;) <7 (J%)" —0

Class 26: 04/23

Let X (t) = 8 [t > 0]

Then (X (¢t);t > 0) is a Gaussian Process (i.e. all f.d.d.s are multivariate normal).
Covariances: E[X(s)X(t)] = LEW(s)W ()] = L(sAt) =1 A1

Thus, if W (t) == X(+) then (W”(t);t > 0) has f.d.d.’s of B.M.

Claim: If we define W”(0) := 0 then W has the law of B.M.
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IE we want lim; o W”(t) = 0 a.s.

To see this, note that W’ has same f.d.d.s as BM on [0, 00). In particular, on dyadic
rationals.

Therefore, W is uniformly continuous on the dyadic rationals a.s.

So if we complete W by continuity, we get B.M. But W" is already continuous on
(0,00) and has the right value at 0

t
Wby, ittt >o0;
Note that, W"(t) := t

0, if t =0;
this is called time inversion
Claim:
lim sup W,, = oo
n—oo
liminf W,, = —oc0
n— oo
Both a.s.

To see this, note that W,, = > (Wi — Wj_1) with W), — Wj_1 being i.i.d. N(0,1).
Each of the events in question belong to the tail o-field of (W), — Wj,_1;k > 1)

By Kolmogorov’s 0-1 law, each has probability 0 or 1

Both probabilities are equal by space symmetry.

Case 1: both 0. Means limsup,, ., liminf,_,~, both finite. Meaning W,, is bounded
above and below. Then |W,,| is bounded.

But P[|W,| < ni] = P[y/n|W;| < ni] = P[[Wi| <n~i] = 0 as n — oo

So, probability is actually 1

Thus, (W;) changes sign i.0. as t — oo

Time inversion tells us (W;) changes sign i.0. as t | 0

In particular, the zero set {¢; W; = 0} has 0 as a limit point.

Theorem 35 (37.4). The zero set of B.M. is almost surely perfect [every point of it
is a limit point|, has lebesgue measure 0 and is unbounded.

Proof. Let % (w) = {t; W (w) =0}
Let A be lebesgue measure. Then,

[rznare) = [ [Laewaodre)

Where A = {(t,w); Wi(w) = 0}
If we show that A is measurable (R! x .%) then we can use Fubini to get:

/ / 1a(t, w) dP(w) dA(t)

= /OO P{w; Wi(w) =0} dA(t) =0
0 —/_/

So we only nead to show measurability of A

In fact, we will show (thm 37.2) that (¢,w) — Wi(w) is measurable.

Now we show that £ (w) is perfect.

The idea is to treat ¢ € Z'(w) the start of a ‘new’ brownian motion.

We know about time 0.

Now this can’t be exactly right, since 3t € Z'(w) such that Ve > 0 with (¢,t 4+ €) N
% (w) = @. But, apparently, such ¢ are limits of points < ¢t in .2 (w).

Indeed, when ¢ is NOT a limit point from below, 3r € QT such that (r,t)N 2 (w) = @
i.e. tis the first zero after r.

So, for r € QT let 7(w) = 7.(w) == inf{t > r; Wy (w) = 0}

7 is a random variable since we may write {w; 7(w) < t} = {w;inf,cpp4ng [Ws(w)| = 0}
€Eo(Ws;8€Q,s<t) Co(Wys<t)

Thus, 7 is a stopping time (7 > 0 and [7 < t] € 0(Wy;s < 1))
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Define Wy (w) == Wr()44(w) = Wrw)(w) = Wi ()4e(w) for £ >0

We will show (theorem 37.5) that (W;¢ > 0) is a B.M.

Hence 7, is a.s. a limit point of 2

Now, every point of 2 that is not a limit point from below in £ is equal to 7, for
some r € QF

Hence it is a limit of & too.

Let B, be a set of pr. 0 such that Yw ¢ B,., 7.(w) is a limit point of 2 (w).

Then Vw & U,cq+ Br,Vr € Qt,

7, (w) is a limit point of Z(w) and P(|J, B,) =0

O
Theorem 36 (37.2). B.M is measurable R! x .7
Proof. Set W) (t,w) = W(|nt]/n,w)
HW: show W is measurable R x .%
By continuity of simple paths,
W) — W everywhere as n — co so W is measurable. O

Class 27: 04/25

HW Exercise 37.2:

W (2+H) = [rank n]

Let % == o(Ws; s < t).

T is an (%t > 0) stopping time if V¢, [r < t] € F
Fix 7 a.s. finite.

Wi (w) = WT(w)th (w) — WT(UJ) (w)

Wt* = W~,-+t — WT

Frim At AC[r <t]€F:}

Fr=oc(Wit>0)

Theorem 37 (37.5). (Strong Markov Property):
If 7 is an a.s. finite stopping time, then (W;;t > 0) is a std B.M. and .Z#* is
independent of %

T, = inf{t; W, = a}, (a #0)
This is finite a.s. since limW; = +oo a.s. and UmW; = —oo a.s.
Also, 7 is a r.v. and is a stopping time.
[Ta < t] = [infSG[O,t]ﬁQ |Ws - a| = 0]
The reflection Principle
Look at the first time BM hits a, and from that point on reflect the brownian motion.
Then what we get is also a brownian motion.
Wt, if ¢ S Ta

W‘,—a—(Wt—WT):2WTQ—Wt:2CL—Wt7 iftZTa

a

Wi =

Theorem 38. (W/;t > 0) is a B.M. In fact, this holds for any a.s. finite stopping
time instead of 7, [though we might not have the simplification 2a — Wy].

Proof. Note that Wy — W, is W}

So, we can think of W’ as the pair (Wt < 7, (Wt > 0)).

Conversely, from the pair we can get W’

Think of W as ((Wy;t < 1), (W[5t > 0))

Similarly, think of W’ as ((W/;t < ), (W])*;t > 0))

(Wit <7) = (W[t <)

(Wit > 0) = (—(Wist > 0)

By theorem 37.5, in both cases, the first element of the path is independent of the
second element. Hence the theorem is an instance of the general lemma:

If X,Y,Z are r.v.’s with X,Y independent and X, Z independent and Y Z 7 then
(X,Y) £ (X.2)
O
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We use the reflection principle on 7.

Let M; = supg,«, W

M, is a non-negative random variable, non-decreasing in t.
What is the law [cdf]of M;? Easier to calculate tail probability.
Note that [M; > a] = [, < t] so this is indeed an event.
This is disjoint union of [W; > a] and [M; > a, W; < a]
Note: [M; > a, W, < a] = [W] > a]

It is a disjoint union. So, we can calculate the probability:
P[M; > a] = P[W, > a] + P[W/ > a] = 2P[W; > q]

W, is normal wigh mean 0, variance t

= 2L

Or we can just write: P[|[W| > a]

SO7 Mt Z |Wt|

This may also remind you of maximal inequality.
2

Corollary: Va # 0,7, = v% and E[\/T,] = o

Proof. By symmetry, we may assume a > 0
For t > 0 Plr, <t] = P[M; > a] = P[|W;| > a] = PIW? > a?] = P[tW? > a?] =
P[v% < t] which proves the first part.
Ely7a) = Elnie) = aBlyb] = a [, ho(t) dt
¢ is density of standard normal.
This is essentially integrating ﬁ for t near 0 so this is infinity which gives us the
second part.
O

Also interesting: E[r, 1] = E[W—f] =4
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