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Class 1: 01/09

23: Poisson Processes

Poisson approximation, law of small numbers.

Take Bin(n, pn) =

n∑
k=1

1[trial k is a success]

Where pn = λ
n , λ ∈ (0,∞)

Then we have,

Proposition 1. Bin(n, λ
n ) → Pois(λ)

Where the convergence is convergence in distribution, or it converges weakly. It means
that the cdf converges pointwise.
Let Fn(x) be the cdf of Bin(n, pn) and let F (x) be the cdf of Pois(λ).
Then, Fn(x) → F (x) for every x where F is continuous.
The definition of cdf tells us that,
FX(x) := Pr(X ≤ x)
The cdf only changes at the ‘atoms’.
Suppose x ∈ (k, k − 1). Then,

Fn(x) =

k∑
j=0

Pr[Xn = j]

F (x) =

k∑
j=0

Pr[X = j]

Thus, We only need to show that,
Pr[Bin(n, λ

n ) = k] → Pr[Pois(λ) = k] for all k ∈ N

Proof. We need to show that,(
n

k

)(
λ

n

)k (
1− λ

n

)n−k

→ e−λλ
k

k!

⇐=
n(n− 1) . . . (n− k + 1)

k!

λk

nk

(1− λ
n )

n

(1− λ
n )

k
→ e−λλ

k

k!

⇐=
n(n− 1) . . . (n− k + 1)

nk

(
1− λ

n

)n(
1− λ

n

)−k

→ e−λ

Which is obvious.

Theorem 1 (23.2 Law of Rare Events). Suppose that ∀n, ⟨zn,k; k ≤ rn⟩ are indepen-

dent indicator r.v.s. If lim
n→∞

rn∑
k=1

Pr[zn,k = 1] = λ ∈ [0,∞) and lim
n→∞

max
1≤k≤rn

Pr[zn,k =

1] = 0, then

rn∑
k=1

zn,k → Pois(λ)
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Proof. Set pn,k := Pr[zn,k = 1] and λn :=

rn∑
k=1

pn,k. Since λn → λ, we have Pois(λn) →

Pois(λ).

So, it suffices to show that Pr

[
rn∑
k=1

zn,k = i

]
− e−λn

λi
n

i!
→ 0

We do this by finding r.v.s Vn,Wn on a common probability space such that Vn =
rn∑
k=1

zn,k,Wn ∼ Pois(λn) and Pr[Vn ̸= Wn] → 0.

[Rest of proof not clear from images. Need to rewrite]

Class 2: 01/11
[Insert Picture for finishing proof of law of rare events]
Basically V ∪W ∼ Pois(p)
Uk ∼ U(0, 1) independent
We have Vn,k,Wn,k

We have Vn :=
∑rn

k=1 Vn,k and Wn :=
∑rn

k=1 Zn,k

Since ∀n, ⟨Vn,k : 1 ≤ k ≤ rn⟩
D
= ⟨Zn,k : 1 ≤ k ≤ rn⟩

Thus
∑rn

k=1 Vn,k
D
=
∑rn

k=1 Zn,k

Recall that for random variable X : (Ω,Pr,F) → (E, E) the distribution is given by
the pushforward Pr ◦X−1 = X∗P
So, if we have a composition X → f(X)

(Ω,Pr,F)
X→ (E, E) f→ (R,R)

So we have the pushforward f∗X∗ Pr for composition. [Don’t understand this prop-
erly]
Now, since Wn is just sum of independent Poisson r.v.s, Wn ∼ Pois(

∑rn
k=1 pn,k) =

Pois(λn)
We want to show that Pr[Vn ̸= Wn] → 0.
Pr[Vn ̸= Wn] ≤ Pr[∃k : Vn,k ̸= Wn,k]
From picture, for each k, the RHS probability is ≤

∑rn
k=1 Pr[Vn,k ̸= Wn,k] [Union

Bound]
=
∑rn

k=1 =
∑rn

k=1 Pr[Vn,k = 1]−Pr[Wn,k = 1] =
∑rn

k=1(pn,k−e−pn,kpn,k =
∑rn

k=1 pn,k(1−
e−pn,k))
≤ max pn,k ·

∑
k(1− e−pn,k ≤ max pn,k ·

∑
k pn,k) → 0

We finally start studying Poisson Processes.
There’s also Poisson Point Processes. FIrst we look at examples
Suppose you’re manufacturing, and you have surface of a tablet. You don’t want
defects, but defects are random. You can model that with a poisson point process.
Also suppose you’re raising dough for baking cookies. Raise isn’t predictable, it can
be modeled as a poisson point process.
Typos in location of book is a poisson point process.
Before people understood what stars were, they were assumed to be randomly dis-
tributed, poisson point process.
First of all, there are stochastic processes. This course isn’t explicitly about them,
but we have studied them in Markov Processes. We can consider random variables
indexed by time, or we can consider indexed by sets in the space case.
Time t is positive real variable. For each t we can define N(t)
⟨N(t); t ≥ 0⟩
Before Poisson Process, we’re going to talk about something more general: A counting
process. Since we’re counting particles or something in space or in time. These values
are going to be non-negative integers. N(t) is the (finite) member of “events” that
occur in (0, t] , if something happens that is called an event. [This is not related to
measurable subsets of the probability space.]
Thus, for s ≤ t, we have, N(t)−N(s) counting the number of events in (s, t]
Formal definition:
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Definition 1. Counting Process: For ∀t,N(t) is an N-valued r.v., so that ∀s <
t,N(s) ≤ N(t), and N(·) is right-continuous a.s.

Right continuity is equivalent to taking the time interval to be closed on the right.

Definition 2. The increments of N(·) are ⟨N(t)−N(s); 0 ≤ s < t⟩

Definition 3. We say N(·) has independent increments if suppose we have an inde-
pendent finite sequence of times 0 = t0, t1, . . . , tn implies ⟨N(ti+1−N(ti)); 0 ≤ t < n⟩
are independent.

Definition 4. We say N(·) has stationary increments if the distribution of N(t) −
N(s) where s < t depends only on t− s.

Note that these conditions require uncountably many things!
Poisson processes are Counting processes that satisfy both. Added stipulation, assume
that two events cannot happen at the same time. These are simple counting processes.
First we think of them as discrete times. Then time is indexed by N and we have
bernoulli process in each time slot.
Poisson Processes are essentially limit of Bernoulli processes.

Theorem 2. Suppose that N(·) is a counting process with independent stationary
increments that never jumps by > 1. Suppose N(0) = 0 but N ̸≡ 0. Then ∃λ ∈ (0,∞)
so that ∀t,N(t) ∼ Pois(λt).

Definition 5. A process satisfying those hypotheses is called a Poisson process with rate
λ.

Proof. We use theorem 23.2 (law of rare events) as extended in the HW.
[draw picture from 0 to t with x where the event occurs]
[divide the picture into n equal parts with length t/n]
[at each interval we have increments]
[number of events can be anything. but if we take small enough intervals there can
only be at most 1 event in any interval]
[it is almost an indicator function]
[increments are nearly indicators, independent and have similar probability, which
means they’re bernoulli.]

Fix t > 0 and let Xn,i := N( itn ) −N( (i−1)t
n ) for 1 ≤ i ≤ n. Thus N(t) =

∑n
j=1 Xn,i.

Because N(·) is simple (it never jumps by > 1 ), we have N(t) =
∑n

r=1 1[Xn,i≥1] for
large enough n.
Let pn := Pr[Xn,1 = 1] = Pr[Xn,i = 1]
Take a subsequence ⟨nk; k ≥ 1⟩ so that nkpnk

converges in [0,∞]. Call its limit g(t).
The Homework [Insert Problem from HW1] implies, N(t) ∼ Pois(g(t))
Thus, g(t) must also be finite, and g(t) = E[N(t)].
So, g(t) does not depend on ⟨nk⟩. So the limit must exist.
Now let t vary. Then g(s + t) = E[N(s + t)] = E[N(s) + (N(s + t) − N(s))] =
E[N(s)] + E[N(t)] = g(s) + g(t)
Since g is non-decreasing (since N is non-decreasing), we can use Cauchy’s Functional
Equation to conclude that g(t) = λt.
So, N(t) ∼ Pois(λt)

Class 3: 01/16
Correction: Suppose you have a counting process of some qualiative stuff. Then the
points of incerement are distributed via poisson.
[Picture of interval [0,t] divided into parts]

Then, N(t) =

n∑
i=1

1[Xn,i≥1] for large n. Basically, there is a n for each ω.

That is, N(t) = lim
n→∞

n∑
i=1

1[Xn,i≥1]
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So, N(t) is the weak limit of the
∑

.
Now, if we set pn := P [Xn,i ≥ 1]

Then

n∑
i=1

1[Xn,i≥1] ∼ Bin(n, pn)

nk so that npnk
→ λ ∈ [0,∞]

[Insert Picture ——x–t-x—-x——-x—–¿ ]
We have arrival times, and inbetween we have waiting times. A lot of the terminology
comes from the original application, queueing theory.
Let X1 := time of the first arrival.
P [X1 ≤ t] = 1− e−λt

Since P [X1 > t] = P [N(t) = 0] = e−λt

Since, [N(t) = 0] = [X1 > t]
Thus we have, X1 ∼ Exp(λ)
Note, exponential random variables are important because of its ‘memorylessness’,
aka P [X1 > s + t|X1 > s] = P [X1 > t]. One discrete analogue is geom(p) random
variables, since that is also memoryless.
We can assume wait times are i.i.d. exponential random.
Now time to prove it rigorously.

Theorem 3. ∀λ ∈ (0,∞)∃ Poisson process of rate λ.

Proof. Let Xn ∼ Exp(λ) be independent. Now, define Sn :=

n∑
i=1

Xi

In particular, by the strong law of large numbers, Sn → ∞ a.s.
Also, Xi > 0 a.s.
Assume those hold always. Define N(t) = maxn {n;Sn ≤ t}
Note that N(t) is a random variable since firstly it’s defined in the same probability
space and measurable?
[N(t) ≥ n] = [Sn ≤ t] and [N(t) = n] = [Sn ≤ t < Sn+1]
In particular, N is indeed a random variable.
Also, it is clearly a counting process with N(0) = 0, never jumps by more than 1, and
N ̸≡ 0.

Fix t. The waiting times after t are X
(t)
1 := SN(t)+1 − t

X
(t)
2 := XN(t)+2, X

(t)
3 := XN(t)+3, . . .

The counting process ⟨N(t+ s)−N(t); s ≥ 0⟩ is defined via waiting times exactly as
⟨N(t), t ≥ 0⟩ defined via ⟨Xn;n ≥ 1⟩
The memory loss property is responsible for ⟨N(t+s)−N(t), s ≥ 0⟩ being independent
of N(t) and with the same law as N(·). This gies that the increments of N(·) are
independent and stationary.
To establish this rigorously, we can prove the following:
(i) ∀j ≥ 0, n ≥ 0,
P [Sn ≤ t < Sn+1, Sn+1 − t > y] = e−λyP [Sn ≤ t < Sn+1]
(ii) ∀n ≥ 0∀j ≥ 0 P [Sn ≤ t < Sn+1, Sn+1 − t > y1, Xn+2 > y⃗2 . . . , Xn+j > yj ] =
P [Sn ≤ t < Sn+1] · e−λy1 · · · e−λyj

(iii) ∀n ≥ 0∀j ≥ 1,∀H ∈ R0, P [N(t) = n, (X
(t)
1 , . . . , X

(t)
j ) ∈ H] = P [N(t) =

n], P [(X1, · · · , Xj) ∈ H]
(iv) ∀u ≥ 1∀m1 ≥ 0∀n ≥ 0∀0 < s1 < s2 < · · · < su,
P [N(t) = n, ∀i ∈ [1, n]N(t+ si)−N(t) = mi] = P [N(t) = n]P [∀i ∈ [1, n]N(si) = mi]
(v) ∀k ≥ 1∀ni ≥ 0∀0 = t0 < t1 < · · · < tk,

P [∀i ∈ [1, k], N(ti)−N(ti−1) = ni] =

k∏
i=1

P [N(ti − ti−1) = ni]

Proof of i:
P [Sn ≤ t < Sn+1, Sn+1 − t > y] = P [Sn = t,Xn+1 > t+ y − Sn]

=

∫
x≤t

P [Xn+1 > t+y−x] dFSn
(x) = e−λyP [Sn ≤ t < Sn+1] = e−λyP [Xn+1 > t−x]

Proof of ii: First, Xn+2, . . . , Xn+j are independent of [Sn ≤ t < Sn+1] ∩ [Sn+1 − ty1]
so we an take out Xn+i > yi and use (i).

4



Proof of iii: if H = (y1,∞) × (y2,∞) × . . . (yj ,∞) then this is the same as ii. π − λ
theorem gives this to us. [Theorem 10.4]
(iv) Use (3) with j =

∑u
i=1 wi ⋆ 1 and

H :=
{
(x1, . . . xj) ∈ Rj : ∀i ∈ [1, u]X1 + · · ·+Xmi

≤ Si < X1 + · · ·+Xmi+1

}
Class 4: 01/18
iv: ∀u ≥ 1, ∀mi ≥ 0, ∀0 < s1 < s2 < · · · < sn, P [N(t) = n, ∀i ∈ [1, n], N(t + si) −
N(t) = mi] = P [N(t) = n]P [∀i ∈ [1, n], N(si) = mi]
v: ∀ni ≥ 0,∀k ≥ 1,∀0 = t0 < t1 < · · · < tk, P [∀i ∈ [1, k], N(ti) − N(ti−1) = ni] =∏k

i=1 P [(N(ti − ti−1) = ni)]
How to get iv =⇒ v?
The increments are not the same. The increments in v are successive. But the first
one we can. In v, set t1 = t, then first one is the same. Note, in iv, N(t+ si)−N(t)
got changed to N(si) so starting time became 0. We keep going, and by induction on
k, the number of terms, we get v from iv.
Basically,
n := n1, u := k − 1
mi = n2 + · · ·+ ni+1

s1 = t2 − t1, si = ti+1 − t1
Now we need to show that λ is indeed the correct parameter for the poisson process.
Now, P [N(1) = 0] = P [X1 > 1] = e−λ·1

This tells us λ is indeed the right variable for this distribution.

Theorem 4. If N(·) is a Poisson process with rate λ then there exists independent
Xk ∼ Exp(λ) so that almost surely (a.s.) ∀t,N(t) = max{n :

∑n
k=1 Xk ≤ t}

This is the same relationship we used to construct N from X in the previous theorem.

Proof. Define Sn := inf {t;N(t) ≥ n} for n ≥ 0
We use infimum instead of minimum since a priori we don’t know it exists. It is a.s.
a minimum.
Then Xn := Sn − Sn−1 for n ≥ 1
First, we show that these are actually random variables.
So,[Sn ≤ t] has to be measureable.
[Sn ≤ t] = [N(t) ≥ n]
Since N(t) is a random variable the latter set must be measurable, so the former set
is measureable so Sn is indeed a random variable.
Now, P [X1 > t] = P [S1 > t] = P [N(t) = 0] = e−λt which means X1 ∼ Exp(λ)
Intuition behind why Xk is independent: memorylessness!!!
Suppose we know the value of X1, then after that X2, X3, . . . must also be random
similarly. Pursuing this argument is a bit difficult since X1 is random so we can’t
actually set t = X1

Our proof will be to show that (S1, . . . , Sk) has density λke−λyk

on
{
y ∈ Rk; 0 < y1 < · · · < yk

}
and 0 elsewhere.

Then deduce that (X1, . . . , Xk) has density
∏k

i=1(λe
−λxi) on x ∈ Rk; ∀ixi > 0 and 0

elsewhere.
The second stepfollows from 20.20, using the linear map xi := yi − yi−1 with the
Jacobian = 1
Consier 0 ≤ s1 < t1 ≤ s2 < t2 ≤ · · · ≤ sk < tk
0—s1—-S1—-t1—–s2—-S2—t2
Then P [si < Si ≤ ti for 1 ≤ i ≤ k] = P [N(s1) = 0, N(t1) − N(s1) = 1, N(s2) −
N(t1) = 0, . . . , N(tk)−N(sk) ≥ 1]
We have expressed the probability over disjoint intervals of N so we can just multiply
to get the probability
= e−λs1e−λ(t1−s1)λ(t1−s1)e

−λ(s2−t1)e−λ(t2−s2)λ(t2−s2) · · · e−λ(sk−tk−1)(1−e−λ(tk−sk))
= λk−1e−λsk(t1 − s1)(t2 − s2) . . . (tk−1 − sk−1)(1− e−λ(tk−sk))

= λk−1(
∏k−1

i=1 (ti − si))(e
−λsk − e−λtk)

=

∫
A

λke−λyk dy for A = (s1, t1]× · · · × (sk, tk]
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So, the densities actually give us probabilities.
That is, if A is a rectangle contained in G = {y; 0 < y1 < y2 · · · < yk} we have

P [(S1, . . . , Sk) ∈ A] =

∫
A

λke−λyk dy

These rectangles form a π-system that generates the sigma algebra that has all the
borel sets contained in G which is Rk ∩G
So this holds for all A in Rk ∩G. This gives us the density we wanted.
Since Sn strictly increases to ∞ almost surely we get the desired relation.

Let N(·) be a poisson process with parameter λ. Modify it with the deterministic
function f(t) := t1Q(t) and M(t) := N(t) + f(t+X1)
Suppose t is fixed. Then t+X1 is irrational a.s.
So we’re adding 0 a.s.
So M(t) = N(t) a.s.
So, finite dimensional distributions of M and N are the same - a poisson process
But M is not a counting process.
So knowing finite dimensional distributions only is not enough. This makes Brownian
Motion very difficult.

Class 05: 01/23
For HW1 P1, the simplest solution is just using Scheffé’s theorem.
Today we work with central limit theorem.
This is called central because it’s central to so many things.
Chapter 5: Convergence of Distributions.
Section 25: Weak Convergence
Weak convergence is denoted by =⇒ . It is the same thing as convergence in distri-
bution.
We can look at:
Fn =⇒ F
µn =⇒ µ
Xn =⇒ X
Note that for weak convergence, Xn, X don’t HAVE to be on the same space.
Section 25 is about the interplays between these 3.
Theorem 25.1 we omit.

Theorem 5 (25.2:). Suppose that Xn, X are real valued random variables on the
same probability space.

Then, Xn
a.s.→ X implies Xn

P→ X implies Xn =⇒ X

Proof. We just prove Xn
P→ X implies Xn =⇒ X

Let x be a point where F is continuous and ϵ > 0. We are interested in comparing
probabilities of [X ≤ x] and [Xn ≤ x].
Consider the event [|Xn −X| ≥ ϵ]. This goes to 0 as n → ∞
Then,
[X ≤ x− ϵ] ⊆ [Xn ≤ x] ∪ [|Xn −X| ≥ ϵ]
Because if X ≤ x− ϵ then Xn ≤ x or |Xn −X| ≥ ϵ
Also,
[Xn ≤ x] ⊆ [X ≤ x+ ϵ] ∪ [|Xn −X| ≥ ϵ]
Because if Xn ≤ x then X ≤ x+ ϵ or |Xn −X| ≥ ϵ
Taking probability,
P [X ≤ x− ϵ] ≤ P [Xn ≤ x] + P [|Xn −X| ≥ ϵ]
P [Xn ≤ x] ≤ P [X ≤ x+ ϵ] + P [|Xn −X| ≥ ϵ]
Let n → ∞. Since we’renot sure the limits exist we take limsup/liminf as it suits us.
P [X ≤ x− ϵ] ≤ lim infn→∞ P [Xn ≤ x]
lim supn→∞ P [Xn ≤ x] ≤ P [X ≤ x+ ϵ]
Now let ϵ → 0
Then,
P [X ≤ x] ≤ lim infn→∞ P [Xn ≤ x] ≤ lim supn→∞ P [Xn ≤ x] ≤ P [X ≤ x]
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So we’re done.

At this point, we depart from the order of the book. We prove a later theorem and
use that to prove some intermediate theorem.

We have (Xn
a.s.→ X) =⇒ (Xn

P→ X) =⇒ (Xn =⇒ X).
We can also go from last to first under some kind of conditions and stuff. This is
theorem 25.6, due to Skorohod.

Proposition 2. If Xn =⇒ X, then ∃Yn, Y on a common probability space with

Yn
D
= Xn and X

D
= Y , and Yn → Y pointwise.

Proof. Remember the proof of Poisson? We put them in the same probability space.
This is also a similar idea.
We use Lebesuge Measure on (0, 1) and let Yn, Y be the ‘inverses’ of the cdf’s of Xn, X
[Insert Picture here]
The graphs converge in the Lévy metric as defined in Problem 14.5:
F (x− ϵ)− ϵ ≤ Fn(x) ≤ F (x+ ϵ) + ϵ
We have a problem in places where cdf is constant. But there can only be countably
many such places, so the problematic stuff has lebesgue measure 0. So we can just
not care about it.

Now we use this to prove theorem 25.3:

Proposition 3. If a ∈ R and Xn =⇒ a, Then Xn
“P ′′

→ a in the sense that ∀ϵ > 0
we have P [|Xn − a| ≥ ϵ] → 0 as n → ∞ although Xn may not be defined in the same
probability space.

Proof. We can just use 25.6 to change them in variables so that they converge almost
surely, and then just use 25.2.

Now consider theorem 25.4:

Proposition 4. Let Xn, Zn be defined on the same probability space for each n
seperately. [Xj , ZJ on the same space, not necessarly Xj , Xk or Zj , ZK ]. Suppose
Xn =⇒ X,Zn =⇒ 0. Then Xn + Zn =⇒ X

We can’t directly use Skorohood because even though we can send Xn to something,
we can’t do it with Xn + Zn

The proof is similar to the proof of theorem 25.2
Convergence in Distribution we can have some leeway, in our ϵ

Proof. Consider x so that P [X = x] = 0
Then we may choose x′ < x < x′′ so that P [X ∈ (x′, x′′]] is arbitrarily small and such
that P [X ∈ {x′, x′′}] = 0. Now,
[Xn ≤ x′] ⊆ [Xn + Zn ≤ x] ∪ [|Zn| ≥ x− x′]
[Xn + Zn ≤ x] ⊆ [Xn ≤ x′′] ∪ [|Zn| ≥ x′′ − x]
Taking n → ∞
P [X ≤ x′] ≤ lim infn→∞ P [Xn + Zn ≤ x]
lim supn→∞ P [Xn + Zn ≤ x] ≤ P [X ≤ x′′]
This gives us
P [Xn + Zn ≤ x] → P [X ≤ x]

This is Slutsky’s theorem.
Omit theorem 25.5
In HW, the first problems we can already do with what we have.

Class 06: 01/25
Note about HW: you will have more mathematical power if you do less calculation
and understand more.
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Theorem 6 (25.7, Mapping Theorem). Let h : R → R be Borel, Xn =⇒ X,
P [h discontinuous at X] = 0. Then h ◦Xn =⇒ h ◦X

Proof. We use Skorohood. Let Yn
D
= X,Y

D
= X,Yn → Y pointwise. Then h◦Yn → h◦y

when h is continuous at Y . Note that P [h discontinuous on X] = 0 statement only
depends on the distribution of X since distribution is a probability measure on the
values X can take, so h ◦ Yn → h ◦ Y on the set of probability 1.
Formally, the hypothesis is (X∗P (discont. set of h) = 0)
Therefore, h ◦ Yn =⇒ h ◦ Y and thus h ◦Xn =⇒ h ◦Xn

Some notation:

Definition 6.
Dh := {x ∈ R;h is discontinuous set of x}

So, the hypothesis was: P [X ∈ Dh] = 0
We need Dh to be a borel set for [X ∈ Dh] to be an event.
Claim: Dh is a borel set for all function h [not necessarily borel h].

Proof.

Dh =
⋃
ϵ>0

⋂
δ>0

Ah(ϵ, δ)

Where Ah(ϵ, δ) := {x;∃y, z ∈ (x− δ, x+ δ), |h(y)− h(z)| ≥ ϵ} is open.
This is not countable union and intersection but we can make it countable using 1

n

If µ is the law of X then µ ◦ h−1 = h∗µ is the law of h ◦X

Theorem 7 (25.8, Portmonteau Theorem). Note: a word blending the sounds and
combining the meanings of two others, for example motel (from ‘motor’ and ‘hotel’)
or brunch (from ‘breakfast’ and ‘lunch’).
Let µn, µ be probabilities on R. The Following Are Equivalent (TFAE):

1. µn =⇒ µ

2.
∫
f dµn =

∫
f dµ, ∀f ∈ Cb(R) [bounded, continuous]

3.
∫
f dµn =

∫
f dµ if f is bounded, borel and µ(Df ) = 0

4. µn(A) → µ(A) if A is borel and µ(∂A) = 0

Proof. 3 =⇒ 2, 4 clearly. 4 =⇒ 1 by taking A := (−∞, x]
For 1 =⇒ 3: Let Yn ∼ µn, Y ∼ µ, Yn → Y pointwise.
If µ(Df ) = 0 then f ◦ Yn → f ◦ Y by mapping theorem and so E[f ◦ Yn] → E[f ◦ Y ]
which gives us 3. [eqn 21.1] by dominated convergence since f is bounded.
For 2 =⇒ 1,
Let f = 1(−∞,x]

draw picture:
f is not necessarily continuous. But we can bound f by continuous functions that
converge to f :
gk ≤ 1(0,−∞] ≤ fk

lim
n→∞

∫
gkdµ ≤ µ(−∞, x] ≤ lim

n→∞

∫
fkdµ

Note: on real numbers, sometimes ineqalities are enough. This is an important trick,
might be on exams.
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Class 07: 01/30
For definition of Weak⋆ topologies look at the note in canvas.
This is useful because of the Riesz Representation Theorem, identifying M(R) [the
banach space of finite, signed measures on R wit norm being the total variation]
asthe dual of C0(R) [the space of continuous functions on R that vanish - tend to 0-
at ∞, with the sup norm]. Kakutani extended this from R to every locally compact
Hausdorff space, such as Rd. Recall some basic facts from functional analysis
Just read the note. Won’t write the rest.

Basically, µn
w⋆

→ µ if and only if
∫
f dµn →

∫
f dµ for all f ∈ C0(R) [if we required

it for f ∈ Cb(R) then by portmanteau theorem, this is the same as weak convergence
for probability measures.]
Uniform Integrability: [Look at notes]
Let X be a class of real valued random variables. X is uniformly integrable (UI) if:

lim
α→0

sup
X∈X

E[|X| : |X| ≥ α] = 0

If ϕ : [0,∞) → [0,∞) is Borel and limx→∞ ϕ(x)/x = ∞ then for all M < ∞ we have
{X;E[ϕ(|X|) < M ]} is UI.
Also, UI ⇐⇒ sup{E[|X|];X ∈ X} < ∞ and

∀ϵ > 0∃δ > 0 : P (A) < δ =⇒ sup{E[|X|;A];X ∈ X} < ϵ

Thus if X is UI so is its convex hull.
Corollary: Let X,Xn be integrable random variables with Xn → X a.s. Then TFAE:

1. {Xn} is UI

2. E[|Xn −X|] → 0

3. E[|Xn|] → E[|X|]

We could have a sequence of bounded measure that converges to a not measure. Note
that bounded would mean we can’t have infinite mass so we can’t do the trick in
assignment.
A collection M of probability measures on R is tight [masses can’t run off to infinity]
if lima→∞ supµ∈M µ((−a, a)c) = 0
Equivalently, lima→∞ infµ∈M µ(−a, a) = 1. Here we’re talking about probability
measures, the first one is true for any measures.
Fatou’s lemma for weak convergence:

Xn =⇒ X =⇒ E[|X|] ≤ lim inf
n→∞

E[|Xn|]

Characteristic Functions [Section 26]

They are basically Fourier Transforms. So alternative name for this section is Fourier
Analysis.

Definition 7. The characteristic function or fourier transform of a probability mea-
sure µ (or of a random variable X with law µ or distribution F of µ ) is the function
ϕ : R → C given by

ϕ(t) := µ̂(t) :=

∫ ∞

−∞
eitx dµ(x) = E[eitX ] =

∫ ∞

−∞
eitx dF (x)

Note that as long as µ is a finite measure this is well-defined.

9



Alternate definitions: e±itx, 1√
2π

e±itx, 1
2π e

±itx

Note that we write µ̂ but not X̂ or F̂ . But if F has a density, f , then we can write f̂ .
Note that this is defined since the integrand eitx has absolute value 1. So |µ̂| ≤ 1.
Note that we have µ̂(s)− µ̂(t) =

∫∞
−∞(eisx − eitx) dµ(x)

If sn → t then µ̂(sn) → µ̂(t) by Bounded Convergence Theorem (BCT).
Thus, µ̂ ∈ Cb(R)
The reason this is useful to us:

1. Independence: if X,Y are independent then E[eit(X+Y )] = E[eitX ]E[eitY ]

2. Uniqueness: [to be proved] µ 7→ µ̂ is 1-1 [injective]. So if we can find the
characteristic function we know what the measure is.

3. Weak Convergence: [to be proved] µn =⇒ µ iff µ̂n → µ̂ pointwise.

|eix − 1| ≤ |x| for x ∈ R
To see this, just draw unit circle.
Recall [Example 18.4]:

lim
T→∞

∫ T

0

sinx

x
dx =

π

2

Let S(T ) :=
∫ T

0
sin x
x dx

Then for real θ ̸= 0, ∫ T

−T

eitθ

2it
dt

This is not Lebesuge integrable. We can write eitθ = cos(tθ) + i sin(tθ), since cos is
even and divided by odd it is odd and goes away. So we have:∫ T

0

sin(tθ)

t
dt =

∫ T

t=0

sin(tθ)

tθ
d(tθ) = sgn θS(T |θ|)

Also, given µ̂ we can find µ
Inversion and Uniquness:

Theorem 8 (26.2, Inversion Formula). If a ≤ b and µ{a, b} = 0 then

µ(a, b] = lim
T→∞

1

2π

∫ T

−T

e−ita − e−itb

it
µ̂(t) dt

The map µ 7→ µ̂ is 1− 1

Last piece of motivation [vague]: we can think of µ(a, b] as 1[a,b). Think of its fourier
transform:

1̂(a,b](t) =

∫ ∞

−∞
eitx1(a,b](x) dx =

∫ b

a

eitx dx =
eitx

it

∣∣∣∣b
a

=
eitb − eita

it

Look at the similarity with Inversion Formula. Proof next time.

Class 08: 02/01
|eix − 1| ≤ |x| for x ∈ R

S(T ) :=

∫ T

0

sinx

x
dx

∫ T

−T

eitθ

2it
dt = sgn(T |θ|) when θ ̸= 0

We also had theorem 26.2 above.
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Proof. Note that the integrand is bounded by b− a in absolute value.
Let’s talk about uniqueness first.
We have µ(a, b] = F (b)− F (a) if F is the distribution function of µ.
We can let a → −∞, and we don’t get in trouble since µ({a}) is non-zero for only
countably many, and µ(b) is zero because we define it that way.
Since this is increasing, we can say that F is the distribution function of µ when
µ({b}) = 0. Since F is right continuous we use that on both sides of b to see that F
is actually the distribution function everywhere. That gives us uniqueness.
To prove the inversion formula, calculate the RHS.

1

2π

∫ T

−T

e−ita − e−itb

it
µ̂ dt

=
1

2π

∫ T

−T

e−ita − e−itb

it

∫ ∞

−∞
eitx dµ(x) dt

The integrand is bounded (in (x, t)) and te product measure is finite so we can apply
Fubini’s Theorem to get:

=

∫ ∞

−∞

∫ T

−T

e−ita − e−itb

it
eitx dt dµ(x)

=

∫ ∞

−∞

∫ T

−T

e−it(x−a) − e−it(x−b)

it
dt dµ(x)

=

∫ ∞

−∞
2[sgn(x− a) · S(T |x− a|)− sgn(x− b) · S(T |x− b|)] dµ(x)

We want to take the limit T → ∞ inside the integral. We can do this because of the
bounded convergence theorem.
[Taking limit T → ∞ ]

=
1

2π

∫ ∞

−∞
(. . . ) dµ(x)

Note that, when x ̸= a, b, as T → ∞ we have S(T |x− a|) → π
2 , same for x− b. Using

this,

=
1

2π

∫ ∞

−∞
2[1(−∞,a)(x)[0] + 1(a,b)(x)[π] + 1(b,∞)(x)[0]] dµ(x)

=

∫ b

a

dµ(x) = µ(a, b]

Which was what we wanted.

Finally, Continuity Theorem

Theorem 9. [26.3, Continuity Theorem] Let µn, µ be probabilities. Then µn =⇒
µ ⇐⇒ µ̂n → µ̂ pointwise. In fact, [Stronger Condition] if µn are probabilities with
µ̂n → g pointwise then there exist probability µ such that g = µ̂ and µn =⇒ µ.

Proof. =⇒ is the easy one, weak convergence implies pointwise transform of the
characteristic function.
Look at the formula:

µ̂(t) =

∫ ∞

−∞
eitx dµ(x)

Note that f := eitx is a bounded continuous function.
So, if µn =⇒ µ then using theorem 25.8 with x 7→ eitx being the function in Cb(R)
we directly get the result.
For ⇐= :For the converse: we use a “mysterious” calculation.
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A key concept is tightness of µn so the ‘mass’ outside big intervals (−a, a) goes to 0.
We want to get that from pointwise convergence of µ̂
x 7→ eitx is a function of f and it’s frequency of oscillation is determined by how big
t is. If we have a lot of oscillation we’re more likely to have cancellations.
So, we’ll try to bound the oscillation for small t
Calculation: ∀u > 0 we look at the integral:

1

u

∫ u

−u

(1− µ̂n(t)) dt

=

∫ ∞

−∞

1

u

∫ u

−u

(1− eitx) dtdµn(x)

=

∫ ∞

−∞

(
2− eitx

uix

∣∣∣∣u
−u

)
dµn(x)

=

∫ ∞

−∞

(
2− eixu − e−ixu

uix

)
dµn(x)

=

∫ ∞

−∞

(
2− 2 sin(xu)

xu

)
dµn(x)

= 2

∫ ∞

−∞

(
1− sin(ux)

ux

)
dµn(x)

≥ 2

∫
|x|≥ 2

u

(
1− 1

|ux|

)
dµn(x)

≥ 2 · 1
2
µn

([
− 2

u
,
2

u

]c)
= µn

([
− 2

u
,
2

u

]c)
Now, g(0) = limn→∞ µ̂n(0) = 1. So, 1 − g(t) ≈ 0 for t ≈ 0. That is, given ϵ > 0
choose u so that 1

u int
u
−u(1− g(t)) dt < ϵ.

By Bounded Convergence Theore, there exists n0 so that n ≥ n0 such that 1
u

∫ u

−u
(1−

ˆµn(t)) dt < ϵ
Thus n ≥ n0 =⇒ µn[− 2

u ,
2
u ]

c < ϵ
If we choose a ≥ 2

u such that n < n0 =⇒ µn[−a, a]c < ϵ then for all n we have
µn[−a, a]c < ϵ.
So we have tightness.
Use the corollary from the weak* note.
So we have a subsequential weak limit.
Then we only have to show that the only subsequential weak limit has g as charac-
teristic function by theorem 26.2.
This follows from our first part.

Note that ||µ̂||∞ ≤ ||µ||M(R).

In particular, ∥f̂∥∞ ≤ ∥f∥L1(R)
Where µ = f · λ

Theorem 10 (26.1, Riemann-Lebesgue Lemma). If f ∈ L1(R) then f̂ ∈ C0(R)

Lots of ways to prove this.
Note that step functions are finite linear combinations of indicator functions of inter-
vals, and thus are C0(R). But any f ∈ L1(R) can be approximated by step functions!
Then we just use the inequality.
Now we have everything needed to to HW.

Class 09: 02/06
Today we prove:∣∣∣ e−ita−e−itb

it

∣∣∣ ≤ b− a
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We prove that using the fact ∥f̂∥∞ ≤ ∥f∥L1(R)

See that 1̂(a,b](t) =
eitb−eita

it , taking the L1 norm it’s b− a so we have the inequality.
For x ∈ R,
We prove |eix − 1| ≤ |x|
For x ∈ R,
|eix − (1 + ix− x2

2 )| ≤ min{ |x|3
6 , |x|2}

To prove this: [not geometric, taylor series with remainder]
Integrate by parts to get, for n ≥ 0,∫ x

0

(x− s)neis ds =
xn+1

n+ 1
+

i

n+ 1

∫ x

0

(x− s)n+1eis ds

This gives, for any n ≥ 0,

eix =

n∑
k=0

(ix)k

k!
+

in+1

n!

∫ x

0

(x− s)neis ds

Use n = 2 case, we get upper bound:∣∣∣∣ i32!
∫ x

0

(x− s)2eis ds

∣∣∣∣ ≤ 1

2

∣∣∣∣x3

3

∣∣∣∣ = |x|3

6

For n = 1 case, we get,

|eix − (1 + ix)| ≤
∣∣∣∣ i21!
∫ x

0

(x− s)1eis ds

∣∣∣∣ ≤ x2

2

Triangle inequality gives us the other bound since x2

2 + x2

2 = x2

Central Limit Theorem (CLT) [Section 27]

Theorem 11 (Standard CLT, the plain version, 27.1, Lindenberg - Lévy). This
applies for an infinite i.i.d. sequence of random variables.
Let ⟨Xn;n ≥ 1⟩ be i.i.d. with mean c and standard deviation σ ∈ (0,∞)
If Sn :=

∑n
k=1 Xk,

Question: What is the approximate law of Sn as n is big?

Sn − nc

σ
√
n

=⇒ N(0, 1)

We’re going to only see the idea of this, and see the proof of a more general version.
Idea: Weak convergence is the same as pointwise convergence of characteristic func-
tion. For ease of writing, take c = 0, σ = 1. Then, we have,

E[eitSn/
√
n] = (E[eitX/

√
n])n

[we have to justify this] ≈
(
E

[
1 +

itX√
n

− t2X2

2n

])n

=

(
1− t2

2n

)n

→ e−t2/2

The generality we will work with:
We will assume independence, but do not assume i.i.d.
Second generality:
This is just an statement about distribution. So, they don’t have to be in the same
probability space.
For each n, we can have independent random variables:
Xn,1, . . . , Xn,rn [not necessarily identically distributed]

13



Theorem 12 (27.2, Lindeberg). Let ⟨Xn,k; 1 ≤ k ≤ rn⟩ be independent for each n
and let E[Xn,k] = 0 and σ2

n,k = E[X2
n,k], s

2
n =

∑rn
k=1 σ

2
n,k ∈ (0,∞).

If we have the condition [Lindeberg Condition, 27.8]:

∀ϵ > 0, lim
n→∞

rn∑
k=1

1

s2n

∫
|Xn,k|≥ϵSn

X2
n,k dP = 0

[In words, we can’t have any set of random variables dominating the others. So, if we
compute the normalized total variance in the space where all the random variables
are somewhat big, that must be 0]
Sn :=

∑rn
k=1 Xn,k

Then,

Sn

sn
=⇒ N(0, 1)

For intuition of the fact that no one is dominating:

max
1≤k≤rn

σ2
n,k

s2n
= max

1≤k≤rn

1

s2n

(∫
|Xnk<ϵsn|

X2
nk dP +

∫
|Xnk|≥ϵsn

X2
nk dP

)
as n → ∞ this is ≤ ϵ2 + o(1) [use the fact that max is ¡ sum]
Example: Theorem 27.1 follows, we only need to verify the Lindeberg condition. That
becomes: ∀ϵ > 0,

lim
n→∞

n∑
k=1

1

nσ2

∫
|X|>ϵσ

√
n

X2 dP = lim
n→∞

1

σ2

∫
|X|>ϵσ

√
n

X2 dP → 0

Which must be true since
∫
X2 dP is finite.

Lindeberg condition is complicated, so sometimes we might want a sufficient easier
condition.
Example: Lindeberg condition holds if for some δ > 0,

lim
n→∞

rn∑
k=1

1

s2+δ
n

E[|Xn,k|2+δ] = 0

This is called Lyapounov’s Condition.
Suppose δ = 1 then we ae talking about the third moment.

Proof.
rn∑
k=1

1

s2n

∫
|Xn,k|>ϵsn

X2
n,k dP ≤

rn∑
k=1

1

s2n

∫
|Xn,k|≥ϵsn

|Xn,k|2+δ

(ϵsn)δ
dP

≤ 1

ϵδ

rn∑
k=1

1

s2+δ
n

E[|Xn,k|2+δ] → 0

Example 27.4 (27.8) holds if supn,k∥Xn,k∥∞ < ∞ and sn → ∞

Proof.
rn∑
k=1

∫
|Xn,k|≥ϵsn

X2
n,k dP = 0

Since for big enough n, ϵsn is big enough so that we’re integrating where Xn,k can’t
be that big.
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Proof. We start today, but we won’t finish today.
To prove 27.2, we use two easy estimates.
ex − (1 + x) = o(x) as x → 0
If |zi|, |wi| ≤ 1 then, ∣∣∣∣∣

m∏
i=1

zi −
m∏
i=1

wi

∣∣∣∣∣ ≤
m∑
i=1

|zi − wi|

Proof by induction.

∣∣∣∣∣
m∏
i=1

zi −
m∏
i=1

wi

∣∣∣∣∣ =
∣∣∣∣∣
m−1∏
i=1

zi(zm − wm) + wm

(
m−1∏
i=1

zi −
m−1∏
i=1

wi

)∣∣∣∣∣ ≤ |zm − wm|+ [. . . ]

Class 10: 02/08

Billingsley 27.2. WLOG, s2n = 1.∣∣∣∣E[eitXn,k ]−
(
1− 1

2
t2σ2

n,k

)∣∣∣∣
=

∣∣∣∣E [eitXn,k −
(
1 + itXn,k +

(itXn,k)
2

2

)]∣∣∣∣
≤ E

[∣∣∣∣eitXn,k −
(
1 + itXn,k +

(itXn,k)
2

2

)∣∣∣∣]

≤ E

[
min

{
|tXn,k|3

6
, |tXn,k|2

}]
When random variable is small, first inequality is better. When random variable is
big, second inequality is better. For all ϵ > 0,

≤
∫
|Xn,k|<ϵ

1

6
|tXn,k|3 dP +

∫
|Xn,k|≥ϵ

|tXn,k|2 dP

For first integral, bounding by ϵ3 isn’t good enough since it’ll become rnϵ
3. But since∑

|X2
n,k| is bounded, we can do a trick:

≤ ϵ|t|3

6

∫
|Xn,k|<ϵ

X2
n,k dP + t2

∫
|Xn,k|≥ϵ

X2
n,k dP

Adding all this over k, for every ϵ we have,

rn∑
k=1

∣∣∣∣E[eitXn,k ]−
(
1− 1

2
t2σ2

n,k

)∣∣∣∣ ≤ ϵ|t|3

6
+ t2

rn∑
k=1

∫
|Xn,k|≥ϵ

X2
n,k dP

Thus, taking limit,

lim sup
n→∞

rn∑
k=1

∣∣∣∣E[eitXn,k ]−
(
1− 1

2
t2σ2

n,k

)∣∣∣∣ ≤ ϵ
|t|3

6

lim
n→∞

rn∑
k=1

∣∣∣∣E[eitXn,k ]−
(
1− 1

2
t2σ2

n,k

)∣∣∣∣ = 0

Now consider the characteristic function of normals.

rn∑
k=1

∣∣∣∣(1− 1

2
t2σ2

n,k

)
− e−t2σ2

n,k/2

∣∣∣∣
15



Recall that maxk
σ2
n,k

s2n
→ 0. Using that,

=

rn∑
k=1

o

(
t2σ2

n,k

2

)
= o

(
t2

2

)
Therefore,

lim
n→∞

rn∑
k=1

∣∣∣∣(1− 1

2
t2σ2

n,k

)
− e−t2σ2

n,k/2

∣∣∣∣→ ∞

Therefore, for all t,

lim
n→∞

rn∑
k=1

∣∣∣E[eitXn,k ]− e−t2σ2
n,k/2

∣∣∣→ 0

From yesterday’s lemma,

lim
n→∞

∣∣∣E[eitSn ]− e−t2/2
∣∣∣→ 0

Therefore, Sn =⇒ N(0, 1)

Estimating the parameter of Exponential Distribution [Useful for, lets say, radioactive
decay]
Example 27.2:
Suppose we want to estimate the parameter of an exponential disribution. If i.i.d.
Xk ∼ Exp(α) then Xn := 1

nXk → 1
α a.s. Furthermore,

Sn − n
α

1
α

√
n

=⇒ N(0, 1)

=⇒ α
√
n

(
Xn − 1

α

)
=⇒ N(0, 1)

=⇒ |Xn| ≈ N

(
1

α
,

1

nα2

)
How good of an estimate of α is X

−1

n ?

First, we’re working with weak convergence. Apply Skorohod to get Zn
D
= α

√
n(Xn−

1
α )

So Yn
D
= Xn and Y −1

n
D
= X

−1

n

Moreover,

√
n

α
(Y −1

n − α) =

√
n

Yn

(
1

α
− Yn

)
= − Zn

αYn

Note that Zn is going to Z and αYn → 1. So, this goes to −Z ∼ N(0, 1)

Thus,
√
n
α (X

−1

n − α) =⇒ N(0, 1)

We can say Xn ≈ N(α, α2/n)
Weak convergence is a precise statement, but ≈ is not a precise mathematical state-
ment.
Caution: α is NOT E[X

−1

n ] and α2

n is not V ar[(X
−1

n )]. In fact, expectation can be
infinite, and convergence statements can be true.
We omit page 363-367, which is CLT for approximate independence, not true inde-
pendence.
Something that is in the book but we do not prove: CLT says it converges, but how
should we tell the ‘rate’ of convergence?
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Theorem 13 (Berry-Esseen). Suppose that Xk are i.i.d. of mean 0, variance σ2, and
E[|Xk|3] = ρ < ∞.
If Fn is the distribution function of Sn

σ
√
n

and Φ is the distribution functionalion of

N(0, 1) then ∥Fn − Φ∥∞ ≤ 3ρ
σ3

√
n

We skip section 28 and go to section 29, which is CLT in Rk

First we do weak convergence. First we recall distribution functions in higher dimen-
sion.
Suppose X is an Rk- valued random variable.
Its distribution function F is defined by:

F (x) := P [X ≤ x]

for x ∈ Rk. ≤ in Rk means ≤ in every coordinate. For ‘boxes’ A the total mass
in them can be calculated by principle of inclusion and exclusion, and that is called
∆AF .
Fn =⇒ F means Fn(x) → F (x) when x is a continuity point of F .
That also gives us the notion of µn =⇒ µ and Xn =⇒ X
First we do Portmonteau theorem.

Theorem 14 (Portmonteau Theorem in Rk). Let µn, µ be probability measures on
Rk. Then TFAE:

1. µn =⇒ µ

2.
∫
f dµn →

∫
f dµ, ∀f ∈ Cb(Rk)

3. µn(A) → µ(A) whenever A is borel and µ(∂A) = 0

4. lim supn→∞ µn(C) ≤ µ(C) for all closed C

5. lim infn→∞ µn(G) ≥ µ(G) for all open G

1,2,3 are what we expected from 1 dimensional version. In 4,5 we have inequalities
instead of equality.

Proof. 1 =⇒ 2:
We look at boxes (open in left, down etc) even though 2 doesn’t talk about boxes.
The boxes aren’t closed or open.
We have µn(A) = ∆AF → ∆AF = µ(A) whenever A is a box all of whose corners are
continuity points of F .
Given f ∈ Cb(Rk), ϵ > 0, let A be a bounded box with corners at F -continuity
points and µ(Ac) < ϵ. We can choose because we have countable discontinuous
hyperplanes.

Class 11: 02/13
We finish the proof from yesterday.

Proof. 1 =⇒ 2:
µn(A) = ∆AFn → ∆AF = µ(A) when A is a box with F -continuous corners. Given
f ∈ Cb(Rk) and ϵ > 0 let A be a bounded box with F -continuous corners and
µ(Ac) < ϵ. We can choose because we have countably many hyperplanes with positive
measure.
Another way to see this is: fix a line, and consider the family of hyperplanes perpen-
dicular to that line. We can ‘project’ to get a measure on the real line, by passing
the measure of the half space to that of the ‘left’ of the line.
[insert picture]
Claim: for n large, µn(A

c) < ϵ.
To see this, note that µn(A) → µ(A) so µn(A

c) → µ(Ac) and thus µn(A
c) < ϵ for

large enough n.
What happens inside A?
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Note that f is uniformly continuous in A.
Notation: f ↾ A means f restricted to A.
We may partition A into boxes A1, . . . , Ar with corners F -continuous and sup f ↾
Ai − inf f ↾ Ai < ϵ. Then,

lim sup
n→∞

∫
f dµn ≤ lim sup

n→∞

(
ϵ∥f∥∞ +

r∑
i=1

∫
Ai

f dµn

)

≤ ϵ∥f∥∞ + lim sup
n→∞

r∑
i=1

(max f ↾ Ai)µn(Ai)

= ϵ∥f∥∞ +

r∑
i=1

(max f ↾ Ai)µ(Ai)

≤ 2ϵ∥f∥∞ +

∫
f dµ+ ϵ

Likewise,

lim inf
n→∞

∫
f dµn ≥ −2ϵ∥f∥∞ +

∫
f dµ− ϵ

Hence
∫
f dµn →

∫
f dµ

Now, 2 =⇒ 4:
We want to take Cb(Rk) ∋ f ≥ 1C with close integrals w.r.t. µ.
Construction: For x ∈ C, set f(x) = 1
For x /∈ C do linear interpolation with dist(x,C) from 1 to 0 over a distance ϵ. Then,

lim sup
n→∞

µn(C) = lim sup
n→∞

∫
1C dµn ≤ lim sup

n→∞

∫
f dµn =

∫
f dµ = µ(C +Bϵ(0))

Where C +Bϵ(0) is ‘adding’ the ball of radius ϵ to every point in C, which means it
contains stuff ϵ distance away. Since C is closed, µ(C + Bϵ(0)) has limit µ(C) when
ϵ → 0. That gives us 4.
4 ⇐⇒ 5 by taking complement, µn(Rk) = 1 = µn(G) + µn(G

c)
5 =⇒ 3 : Since 4 ⇐⇒ 5 we can use both 4 and 5.
Since µ(∂A) = 0, we have:

µ(A) = µ(Ao) ≤ lim inf
n→∞

µn(A
0) ≤ lim inf

n→∞
µn(A) ≤ lim sup

n→∞
µn(A)

≤ lim sup
n→∞

µn(A) ≤ µ(A) = µ(A)

Finally, we prove that 3 =⇒ 1 to finish the proof.
1 is just a special case of 3. Take A to be a box {y : y ≤ x} with F continuous at x.
From definition of continuity means µ(∂A) = 0. This gives us the result.

Definition 8. Tightness in Rk: A collection M of probabilities on Rk is tight if

lima→∞ supµ∈M µ
((
(−a, a]k

)c)
= 0

Theorem 15 (29.3). Every tight sequence has a weakly convergent subsequence.

This is sequential compactness of measures. This proof is different from the 1d case.

Proof. Let ⟨µn;n ≥ 1⟩ be tight.
Regardless of tightness, there is a subsequence that converges in weak*.
Take a subsequence ⟨µnj

; k ≥ 1⟩ that converges weak* [by Banach-Alaoglu] to some
µ.
We will show that µnj =⇒ µ.
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We are going to use part 2 of Portmonteau Theorem. Consider f ∈ Cb(Rk), ϵ > 0.
Choose a > 0 such that µ((−a, a]k) < ϵ [since µ is finite] and for all n, µn(((−a, a]k)c) <
ϵ [since tight].
We want to approximate f ∈ Cb(Rk) with g ∈ C0(Rk).
Define g ∈ C0(Rk) so that f = g on (−a, a]k and ∥g∥∞ ≤ ∥f∥∞. Why can we do
something like this?
Take A = (−a, a]k, take h ∈ C0 that goes to 0 by linear interpolation and 1 in A, and
take g = fh.
Other construction: Instead of A take a ball containing A, make g = f in A, and go
down linearly on the rays. That gives us a g.
We can also make make g have compact support.
Then,

∣∣∣∣∫ f dµnj −
∫

f dµ

∣∣∣∣ ≤ ∫ |f − g| dµnj +

∣∣∣∣∫ g dµnj
−
∫

g dµ

∣∣∣∣+ ∫ |g − f |dµ

Define the integrals to be I1, I2, I3
Then, I1 ≤ 2ϵ∥f∥∞
I2 → 0 because weak*.
I3 ≤ 2ϵ∥f∥∞
Thus, I2 + I2 + I3 ≤ 4ϵ∥f∥∞.
Thus µn =⇒ µ.
Now we need to prove that µ is a probability measure. That is given by taking f ≡ 1.

It follows that ⟨µn;n ≥ 1⟩ is tight if and only if every subsequence contains a further
weakly convergent subsequence.
Why is the reverse direction true? Recall the definition of tightness. If not tight, then
we can find ϵ so that for some µ in the sequence supµ(((−a, a]k)c), so by varying a
we can find a subsequence so µnj (((−j, j]k)c) > ϵ. We can choose µnjl

=⇒ µ. Thus,

µ(((−j, j]k)c) > ϵ for all j. So µ is not a probability measure µ(Rk) < 1− ϵ.

Class 12: 02/20
Today we talked about Exam 1 solutions.
Before the exam, we were doing weak convergence in Rk in order to do CLT in Rk.
We also had theorem 29.3: every tight sequence has a weakly convergent subsequence.
Lemma: Let ⟨µn;n ≥ 1⟩ be a tight sequence of probability measures on Rk Let µ be

a sub-probability measure. Then µn =⇒ µ ⇐⇒ µn
w∗

→ µ.
Proof is in the lecture notes.
We also had corollary: If ⟨µn, n ≤ 1⟩ is a tight sequence with ≤ 1 weak limit point,
then it has a weak limit.

Proof. By theorem 29.3 the sequence has some a limit point. Let it be µ. Thus, it
has exactly one weak limit point.
[if we had a metric then it would be over. but we might not so we go the weak *
route]
For every subsequence of µn that converges weakly to µ, it converges weakstarly to
µ. Since we have a metric in weakstar, the sequence converges to µ in weakstar and
thus it converges weakly to µ.
Since the sequence has exactly one weak limit point, it only has one weak* limit point.

By the metrizability of the weak* topology, µn
w∗

→ µ. Thus, µn =⇒ µ.

Characteristic Function on Rk

Definition 9. For a Rk-valued random variable X, t ∈ Rk, we define the character-
istic function:
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t 7→ E[eit·X ]

Note that instead of multiplying we have the dot product. We write it as û(t) if the
law of X is µ.

The proof that µ 7→ µ̂ is 1− 1: in R was by the ‘inversion formula’. That extends to
Rk as follows:
If A = (a1, b1]× · · · (ak, bk] is a bounded rectangle such that µ(∂A) = 0, then:

µ(A) = lim
T→∞

1

(2π)k

∫
[−T,T ]k

k∏
j=1

(e−itjaj − e−itjbj ) · µ̂(t) dt

Indeed, µ̂(t) =
∫
Rk

∏k
j=1 e

itjxj dµ(x)
The integrand in the inversion formula is product of two things that are uniformly
bounded so we can apply Fubini. Lebesgue measure is a product measure. Thus,

lim
T→∞

∫
Rk

k∏
j=1

[
1

π
sgn(xj − aj)S(T |xj − aj |)−

1

π
sgn(xj − bj)S(T |xj − bj |)

]
dµ(x)

Applying Bounded Convergence Theorem

=

∫
Rk

k∏
j=1

1(aj ,bj ](x) dµ(x) =

∫
Rk

1A(x) dµ(x) = µ(A)

So, µ is detemined uniquely on bounded rectangles. This determines the distribution
function Fµ where it is continuous. Since Fµ is right continuous and continuity points
are dense, Fµ is determined everywhere. So µ is also determined.
Write ht(x) := t · x. If t is a unit vector, then t · x is the length of the orthogonal
projection. So it is the length of orthogonal projection scaled by the length of t.
So, inverse image of any point is a hyperplane.
Suppose α ∈ R. We look at h−1

t (−∞, α]. This gives us one side of the hyperplane,
that is a half space. Also, for s ∈ R,

µ̂ ◦ h−1
t (s) =

∫
R
eisy d(µh−1

t )(y)

Using theorem 16.13,

=

∫
Rk

eisht(x) dµ(x)

=

∫
Rk

eist·x dµ(x) = µ̂(st)

Thus, the values of µ on half spaces determine all measures µh−1
t , hence µ̂h−1

t hence
all µ̂ and hence µ.

Theorem 16 (29.4, Cramér-Wold device). Xn =⇒ Y ⇐⇒ ∀t ∈ Rk, t·Xn =⇒ t·Y

Class 13: 02/22

We try to construct a counterexample to the case X
(i)
n =⇒ Y (i) but Xn ̸ =⇒ Y .

We use dependence.

Suppose all the X
(j)
n have same distribution as Y (j). But we can use dependence to

show that Xn might not converges to Y .
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Proof. Easy direction: Suppose Xn =⇒ Y . Then, for all f ∈ Cb(R) we need to
prove that E[f(t ·Xn)] =⇒ E[f(t · Y )].
Note that E[f(t ·Xn)] = E[(f ◦ ht)(Xn)] =⇒ E[(f ◦ ht)(Yn)] = E[f(t · Y )]
Thus t ·Xn =⇒ t · Y .
Hard direction: If for all t we have t ·Xn =⇒ t · Y ,
ϕt·Xn(1) = E[eit·Xn ]
Since y 7→ eiy ∈ Cb(R) we have:
E[eit·Xn ] → E[eit·Y ]
Thus, ϕXn

(t) → ϕY (t)
Note that {Xn;n ≥ 1} is tight by HW [29.3b].
So, there is at least one weak limit.
Recall that weak convergence implies convergence in characteristic functions. The
above shows that every weak limit has the same characteristic function as Y , so by
the uniqueness of characteristic functions, ⟨Xn⟩ has ≤ 1 weak limit. Thus, it converges
to Y .

Thus, Xn =⇒ Y if and only if ϕXn
→ ϕY

Multivariate Normal Distribution

Key: all we need are means of the coordinates and covariances of the coordinates.
Notation: for x ∈ Rk, we will use |x| :=

√
x · x.

The function:

x 7→ (2π)−
k
2 e−|x|2/2

is a density, called the standard normal density.
If X = (X1, · · · , Xk) has this density, then X1, · · · , Xk are independent N(0, 1) ran-
dom variables by section 20 and conversely.

E[eit·X ] =
∏
k

E[eitkXk ] =
∏
k

ϕXk
(tk) =

∏
k

e−t2k/2 = e−
∑

k t2k/2 = e−|t|2/2

Now we need to discuss the Covariance Matrix.
Let X be a n-dimensional random variable with mean 0, that is E[X] = 0, the
covariance matrix has i, j-th entry given by E[XiXj ].
We write it in matrix form. If s, t are column vectors, then s · t = s⊤t. But in
probability, transpose is denoted often by ′. So we write s′t instead of s⊤t.
Thus, if X is a column vector random variable, the covariance matrix is given by:

Σ := E[XX ′]

Σ is non-negative definite/positive semidefinite, meaning for al x ∈ Rk [column vec-
tor], we have x′Σx ≥ 0.
x′Σx = x′E[XX ′]x = E[x′XX ′x] = E[(X ′x)′X ′x] = E[|X ′x|2] ≥ 0

Proposition 5. For every symmetric p.s.d. Σ, there is a normal distribution N(0,Σ)
with covariance matrix Σ.

Proof. Because Σ is symmetric, we can diagonalize it by an orthogonal matrix U .
Because it is p.s.d., the eigenvalues must be ≥ 0. Thus Σ = UDU ′ where D is
diagonal. Columns of U are the eigenvectors.
Notation: positive semidefinite is also written as Σ ≥ 0. That tells us D ≥ 0.
Let A := U

√
D. Then AA′ = U

√
D
√
DU ′ = UDU ′ = Σ.

Now, if X ∼ N(0, I) [standard normal in k variables], Define:

Y := AX

We have E[Y Y ′] = E[AXX ′A′] = AE[XX ′]A′ = AIA′ = AA′ = Σ.
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Lets calculate the characteristic function of Y = AX.

ϕY (t) = E[eit·Y ] = E[eit
′AX ] = E[ei(A

′t)·X ] = ϕX(A′t) = e−|A′t|2/2

= e−t′AA′t/2 = e−t′Σt/2

Thus the characteristic function only depends on Σ.
This shows that the distribution depends only on Σ.
If Σ is singular, then so is D since one of the eigenvalues must be 0. So A must be
singular as well.
We defined Y := AX. Since A is singular, A must have a null space. So, Y does not

have a density. Canonical example: Σ =

(
1 0
0 0

)
, then Y =

(
X1

0

)
which does not

have a density in R2.
If Σ is invertible then so is A. We claim that in this case Y does have a density.
Let f be the density of X.
Let λk be the lebesgue measure on Rk.
Then Y has law (fλk) ◦A−1 = (f ◦A−1)(λk ◦A−1)
Since

∫
hd(fλk) ◦A−1 =

∫
h ◦Ad(fλk) =

∫
(h ◦A)fdλk

And
∫
h(f ◦A−1)d(λk ◦A−1) =

∫
(h ◦A)fdλk.

Now, (f ◦A−1)(x) = (2π)−k/2e−|A−1x|2/2 = (2π)−k/2e−x′A′−1A−1x/2

= (2π)−k/2e−x′Σ−1x/2

And λk ◦A−1 = |detA−1|λk = |detA|−1λk = (detΣ)
1
2λk

Therefore, Y has density:

(2π)−k/2(detΣ)−1/2e−x′Σ−1x/2

There are several properties of multivariate normal random variables.
If two random variables are independent then they are uncorrelated. The converse is
not true: random variables can be uncorrelated and dependent.
We construct a counterexample. SupposeX,Y have mean 0, indepdendent [so E[XY ] =
0] and E[Y 3] = 0
Take X − aY 2, Y .
Then E[(X − aY 2)Y ] = 0− aE[Y 3] = 0
So they are uncorrelated for all a.
Uncorrelatedness is a one-dimensional phenomenon, independence is more general
and thus more restrictive.
We want to show that for multivariate/joint normal, uncorrelatedness is equivalent
to independence.

Class 14: 02/27
Recall:
Uncorrelation is a one dimensional concept, Independence is infinite dimensional. So
we do not expect uncorrelated to imply indepndent, but that happens for joint normal.
Today we see why.

Proposition 6. Suppose (X1, . . . , Xk) has a normal distribution. Then so does
X1, . . . , Xj is normal for all j < k

Proof. There is a covariance matrix for X = (X1, · · · , Xk). Say that is A. Then
X = AY where Y is a standard normal.
Let π be the projection on the first j coordinates. If Z = (X1, · · · , Xj) then we have:
Z = π(X) = π(AY ) = π ◦A(Y )
Then, Z ′ = (X1, · · · , Xj , 0, · · · , 0) ∈ Rk is normal because of the covariance matrix
π ◦A.
We are going nowhere.
X has a covariance matrix, so does Z. Let them be Σ1,Σ2

E[eit·X ] = e−t′Σ1t/2

E[eis·Z ] = e−t′Σ2t/2
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for each s ∈ Rj we have t ∈ Rk so that s · Z = t ·X
So we have the characteristic function, so it is normal.

Suppose all coordinates ofX are uncorrelated. We want to show they are independent.
Since all coordinates of X are uncorrelated, Σ is diagonal.
Then, the characteristic function is t 7→ e−

∑
i σ

2
i t

2
i /2 where σ2

i = V ar(Xi).

We can write it as
∏

i e
−σ2

i t
2
i /2

This is the same characteristic function we would have if they were independent,
therefore they must be independent.
Characteristic functions are product if and only if random variables are independnet.
General statement: if Y ∈ Rk is normal and M is a linear transformation Rk → Rj ,
then MY ∈ Rj is also normal.
Note that this also means normality doesn’t depend on the basis, it is a property of
the space.
If the covariance matrix of Y is Σ, then,

E[eit
′MY ] = E[ei(M

′t)′Y/2] = e−t′MΣM ′t/2 = e−t′(MΣM ′)t/2

Note that MΣM ′ is symmetric and positive semidefinite, therefore it is a covariance
matrix, and as a result this is the characteristic function of a normal random variable.
Thus this is a normal random variable.

Theorem 17 (29.5, IID). Let Xn be i.i.d. Rk valued random variables with all
components having finite 2nd moment. Let c = E[Xn] and Σ = E[(Xn− c)(Xn− c)′].
Let Sn :=

∑n
k=1 Xk.

Then, Sn−nc√
n

=⇒ N(0,Σ).

If Σ is invertible,
√
Σ

−1 Sn−nc√
n

=⇒ N(0, I).

Proof. Recall Cramér-Wold, we only need to show one dimensional.
Let Y ∼ N(0,Σ). By 29.4, it suffices to prove that for all t ∈ Rk,
t′(Sn − nc)/

√
n =⇒ t′Y .

Note that, t′Y ∼ N(0, t′Σt).

t′ Sn−c√
n

=
∑n

k=1 t′(Xk−c)√
n

So, we are summing i.i.d. random variables in the numerator with mean E[t′(Xk−c)] =
t′E[Xk − c] = t′0 = 0 and variance E[(t′(Xk − c))2] = E[t′(Xk − c)(Xk − c)′t] =
t′E[(Xk − c)(Xk − c)′]t = t′Σt.
If t′Σt = 0 then these random variables have mean 0 and variance 0, so the random
variables are trivially 0.
If not, we can divide by t′Σt [this is just a number], and since t′(Xk − c) are i.i.d. we
have our result by the Lindeber Lévy theorem.

Now we go to chapter 6.

Chapter 6: Derivatives and Conditional Probability

Section 32: The Radon-Nikodym Theorem.
Recall that if µ, ν are signed or complex measures on the same measurable space, we
call ν absolutely continuous with respect to µ, written ν ≪ µ if every µ-null set is
a ν-null set. Recall that, a null set is a set such that every subset of that set has
measure 0.
If ν is finite, this is equivalent to: ∀ϵ > 0∃δ > 0∀measurable E, |µ|E < δ =⇒ |ν| < ϵ.
If there is a µ-null set whose complement is ν-null, then we call µ and ν singular,
written µ ⊥ ν
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Theorem 18 (Lebesgue-Radon-Nikodym Theorem). Let µ, ν be σ-finite [the whole
set can be written as a countable union of sets with finite measure] signed or complex
measures on (Ω,F). Then there are unique signed or complex measures νa and νs on
Ω,F such that:
ν = νa + νs
νa ≪ µ
νs ⊥ µ
This is a lebesgue decomposition.
There is a function f : Ω → C, unique upto ν-null modifications, such that νa = fµ.
This means any two are equal µ-almost everywhere. We denote f by dνa

dν . Also, νa is
finite if and only if f ∈ L1(|µ|).

33. Conditional Probabilities

Instead of conditioning on an event, we condition on a σ-field.
How do we define P (A|G), for a σ-field G ⊆ F?
Typically, G is generated by a (or some) random variables. Consider the simplest
case: G = {∅,Ω}.
This doesn’t give us any information, so it should be that P (A|{∅,Ω}) = P (A).
Next, suppose G = {∅, B,Bc,Ω}.
This gives us information on whether B happened or not. So, this gives us different
values, and thus this is actually a random variable!
P (A|G) = P (A|B)1B + P (A|Bc)1Bc

Similarly, if G is generated by a countable partition P, then,
P (A|G) =

∑
B∈P P (A|B)1B

To generalize, note that,
P (A|G) is a random variable. It is measureable with respect to F , but it is also
measureable with respect to G. We write it as P (A|G) ∈ G.
∀G ∈ G ,

∫
G
P (A|G) dP . Since we’re integrating on G, we’re integrating over all

possible sets. Thus, we have∫
G
P (A|G) dP =

∑
B∈P

∫
G
P (A|B)1B dP =

∑
B∈P P (A|B)P (B ∩G)

Note that, B ∩G = B or ∅
=
∑

B∈P,B⊆G P (A|B)P (B) =
∑

B∈P,B⊆G P (A ∩B) = P (A ∩G).

Class 15: 02/29
Last time, we saw conditional probability given a σ-field. It had two properties:

Definition 10. Any random variable P (A|G) such that:
i: P (A|G) is G-measurable and integrable random variable
ii: For any G ∈ G if we integrate the random variable on this set,

∫
G
P (A|G) dP =

P (A ∩G)
is called a version of the probability of A given G

Recall from real analysis: if we have a measurable function on some measure, and we
know the integral of that function on every set of the sigma field, then we know the
function except on a set of measure 0. That implies this.
Another way: think of this as a function times a measure instead of a fucntion, where
the measure is defined by the formula

∫
G
P (A|G) dP . Then this tells us what is

the measure of the sigma field. Question: why is it absolutely continuous w.r.t. P?
because it’s a function times P .

Theorem 19. ∀A ∈ F , ∀σ field G ⊂ F there is a version of P (A|G ). It is unique
up to P -null modifications.

This theorem is due to Kolmogorov.

Proof. This will be a radon nikodym derivative.
Fix A,G . Let PG := P ↾ G , P restricted to G
Define νA : G → P (A ∩G) on G
These are measures in G .
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We have νA ≪ PG .
By Radon-Nikodym theorem, we may set P (A|G ) := dνA

dPG

This gives us what we wanted.

Example: P (A|F ) = 1A almost surely.
Example: if A ∈ G we have
P (A|G ) = 1A

Example 33.6: If A is independent of G , then P (A|G ) = P (A) almost surely.
If X is a collection of random variables, we write P (A|X ) for P (A|σ(X )). If X =
{X} we just write P (A|X)
P (A|X) must be measurable with respect to X aka σ(X)
By theorem 20.1, if X = {X} then P (A|X) is a function of X. This is because
random variables are measurable with respect to a random variable, it is a function
of that random variable.

Conditioning on a random varible with density

Example 33.5: Suppose that (X,Y ) ∼ fλ2 [f is density, λ2 is lebesgue measure, so f
is lebesgue measurable].
What is P (Y ∈ ·|X)?
The classical formula says that it has a density:

When X = x, it is y 7→ f(x,y)∫
R f(x,t) dt

In other words, we want a version of P (Y ∈ C|X) to be:∫
y∈C

f(X, y) dy∫
R f(X, t) dt

This is a measurable function of X by theorem 18.3 [fubini].
So, this is σ(X) measurable.
Now, for every G ∈ σ(X), we have G = [X ∈ H] for some borel set H ∈ R1, hence∫

G

∫
t∈C

f(X, t) dt∫
t∈R f(X, t) dt

dP =

∫
[X∈H]

∫
t∈C

f(x, t) dt∫
t∈R f(X, t) dt

dP

Change of varibles fn of (X,Y )∫
x∈H,y∈R

∫
t∈C

f(x, t) dt∫
t∈R f(x, t) dt

f(x, y) dλ2(x, y)

By Tonelli:

=

∫
x∈H

∫
y∈R

∫
t∈C

f(x, t) dt∫
t∈R f(x, t) dt

f(x, y) dy dx

=

∫
x∈H

∫
t∈C

f(x, t) dt dx

= (fλ2)(H × C) = P [(X,Y ) ∈ H × C] = P [X ∈ H,Y ∈ C]

= P [G ∩ [Y ∈ C]]

So we have verified property 2. It is indeed a version.
Now we prove some general properties of conditional probability theory.
A key idea in undergrad probability is: if we condition on an event, we are reducing
the probability space.
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Theorem 20 (33.2). :
i: If P (A) = 0 then P (A|G ) = 0 a.s.
ii: If P (A) = 1 then P (A|G ) = 1 a,s,
iii: If ⟨An;n ≥ 1⟩ are disjoint, then P (

⋃
n An|G ) =

∑
n P (An|G )

iv: 0 ≤ P (A|G ) ≤ 1 a.s.
v: If A ⊆ B then P (A|G ) ≤ P (B|G )
vi: If An ↑ A or An ↓ A then P (An|G ) → P (A|G ) a.s.

Proof. i: just check definition
ii: just check definition
iii: Let A := ∪An then

∫
G

∑
n P (An|G ) dP =

∑
n

∫
G
P (An|G ) dP =

∑
n P (An∩G) =

P (A ∩G)
iv: Let G := [P (A|G ) < 0] ∈ G∫
G
P (A|G ) dP = P (A ∩G) ≥ 0

Therefore P (A|G ) ≥ 0 a.s.
For ≤ 1 just take G := [P (A|G ) > 1] and do the same.
v: part iii with part iv
vi: by part v, the limit exists by v. We want that to be a version of A.
Check that it is a version of P (A|G ) by MCT or BCT and continuity of probability.

Theorem 21 (33.1). Let G = σ(P) where P is a π system, Ω a countable union of
P-sets. An integrable f ∈ G is a version of P (A|G ) if for all G ∈ P we have:∫

G

f dP = P (A ∩G)

idea: we have a finite measure on each side and they agree on P. Since they agree
on P they agree on G on theorem 10.4.

Class 16: 03/05
The following theorem we state without proof.
We use for motivation an example. Suppose two random variable have joint density.
Classical formula of density of y given x we can interpet as given any set of Y we
integrate over that set for density of X.

Theorem 22 (33.3). Suppose that (Ω,F , P ) is a probability space, and we have
G ⊆ F a sub σ field and X : (Ω,F ) → (T,T ) with T is the collection of borel sets
of a complete seperable metric space with T the borel sets of complete, seperable
metric space T . Then there exists µ : σ(X)× Ω → [0, 1] we have:

1. ∀ω ∈ Ω, µ(·, ω) is a probability measure of σ(X)i

2. ∀A ∈ σ(X), µ(A, ·) is a version of P (A|G ).

We call such a µ a regular conditional distribution of X given G
Example 33.5 was such an example with T = R for the law of y given x.
See ex. 33.12 for more on this.
If (Ω,F ) = (T,T ) and X = id then µ is called a regular conditional probability.

Proof. We oit the proof. It is done first for T = R as in Billingsley, and then extended
by mapping T surjectively to [0, 1]. See Durrett.

Conditional Expectation

Note that when G = σ(P) with P a countable partition, the formula:

P (A) =
∑
B∈P

P (A|B)P (B) =

∫
Ω

P (A|G ) dP = E[P (A|G )]

This is a way to compute P (A).
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Likewise, we can compute expectation:

E[X] = E

[∑
B∈P

1B

]
=
∑
B∈P

E[X1B ] =
∑
B∈P

E[X|B]P (B) =

∫
Ω

E[X|G ] dP = E[E[X|G ]]

Similarly, for G ∈ G ,

E[X1G] = E[X;G] =

∫
G

X dP =

∫
G

E[X|G ] dP

The case X = 1A is conditional probability.

Definition 11. Let X ∈ L1(Ω,F ,P) and G ⊆ F be a σ field. A random variable
E[X|G ] such that:

1. E[X|G ] ∈ L1(Ω,G , P ↾ G )

2. ∀G ∈ G ∫
G

E[X|G ] dP =

∫
G

X dP

is called a version of the conditional expectation of X given G .

For G = Ω ii becomes E[E[X|G ]] = E[X], In general, ii says:

E[X|G ](P ↾ G ) = (XP ) ↾ G

Theorem 23. Conditional expectations exist and are unique up to P -null modifica-
tions.

Proof. E[X|G ] is the radon nikodym derivative of (XP ) ↾ G w.r.t. (P ↾ G ). We prove
that the conditions are satisfied.
Set PG := P ↾ G
νX : G 7→

∫
G
X dP . Then νX ≪ PG . So the conditions are satisfied, and thus we’re

done.

Example: E[X|{∅,Ω}] = E[X]
E[X|F ] = X
We can think about expectation to be the best guess of what X is. That is, it
minimizes the square error.
Checking part ii might be complicated. It suffices to check on some special sets.

Theorem 24 (34.1). Let P ⊆ F be a π-system, G = σ(P) and X ∈ L1(Ω,F ,P),
f ∈ L1(Ω,G , P ↾ G ). Then, f = E[X|G ] almost surely if and only if for all G ∈ P
we have

∫
G
f dP =

∫
G
X dP

Proof. Use 16.10

Theorem 25 (34.2). Let X,Y,Xn ∈ L1(Ω,F ,P) and G ⊆ F sigma field. We have
the following properties:

1. ∀a ∈ E we have E[a|G ] = a a.s.

2. ∀a, b ∈ R we have E[aX + bY |G ] = aE[X|G ] + bE[Y |G ] a.s.

3. X ≤ Y a.s. implies E[X|G ] ≤ E[Y |G ]

4. |E[X|G ]| ≤ E[|X||G ] a.s.

5. c-LDCT: Xn → X a.s., |Xn| ≤ Y a.s. implies E[Xn|G ] → E[X|G ]a.s.

Proof. 1. obvious
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2. check definition

3. E[Y −X|G ] ≥ 0 by the positivity of the radon nikodym derivative.

4. We want −E[|X||G ] ≤ E[X|G ] ≤ E[|X||G ] a.s., which follows from iii, ii and
−|X| ≤ X ≤ |X|

5. Convert it to easier problem: define Zn := supk≥n |Xk −X| , then Zn goes to 0
a.s. monotonically. Since |Zn| ≤ 2Y a.s., if we proved that E[Zn|G ] → 0 almost
surelythen we may deduce E[Xn|G ] → E[X|G ] a.s. by iv. To prove the former,
note that Zn decreases as n increases, so by iii E[Zn|G ] is also decreasing. So,
by MCT, we have some limit Z ≥ 0. We want to show Z = 0 a.s. Consider
E[Z] ≤ E[E[Zn|G ]] = E[Zn] and E[Zn] → 0 since Zn → 0 and |Zn| < 2Y so we
can use dominated convergence.

Theorem 26 (34.3). IfX is G -measurable and Y,XY ∈ L1(Ω,F ,P) then E[XY |G ] =
XE[Y |G ] a.s.

Intuition: we know everything G tells us. Since X is G measurable, we treat X as a
constant.

Proof. If X = 1H for H ∈ G then we must check that for all G ∈ G∫
G

1HY dP =

∫
G

1HE[Y |G ] dP

Which means ∫
G∩H

Y dP =

∫
G∩H

E[Y |G ] dP

Which is true by the definition of conditional expectation.

Class 17: 03/07
We complete the proof.

Proof. We have proved for indicator function.
By theorem 34.2(ii), our equation holds whenever X is simple.
In general, take simple Xn ∈ G such that |Xn| ≤ |X| and Xn → X. Then,

E[XnY |G ] = Xn · E[Y |G ]

Now, by LDCT, [34.2(v)]

E[XY |G ]
a.s.
= lim

n→∞
E[XnY |G ]

a.s.
= lim

n→∞
XnE[Y |G ]

a.s.
= X · E[Y |G ]

Theorem 27 (34.4). Let X ∈ L1(Ω,F ,P)
Suppose G1 ⊆ G2 ⊆ F are finite σ-fields. Then,

E[E[X|G2]|G1] = E[X|G1] = E[E[X|G1]|G2]

a.s.
In the trivial sigma field this is just law of total expectation.
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Proof. We prove the second equality first. Intuitively, since G1 ⊆ G2, if X is G1

measureable then it is G2 measureable. So we don’t get any extra info, so expectation
remains the same.

E[X|G1] ∈ G1 ⊆ G2

So it doesn’t change when we compute its conditional expectation w.r.t. G2

Also,
E[E[X|G2]|G1](P ↾ G1) = (E[X|G2]P ) ↾ G1

= (E[X|G2](P ↾ G2) ↾ G1)
= ((XP ) ↾ G2) ↾ G1

= (XP ) ↾ G1

= E[X|G1](P ↾ G1)
Therefore,

E[E[X|G2]|G1] = E[X|G1]

This is very commonly used. This is called the ‘Tower Property’.

Theorem 28 (34.5). Suppose that µ is a regular conditional probability for P [·|G ].
Then, for X ∈ L1(P ) for P -a.e.ω,

E[X|G ](ω) =

∫
ω′

X(ω′) dµ(ω′, ω)

Proof. Suppose X = 1A. Then E[X|G ](ω) = P (A|G )(ω) and∫
X(ω′) dµ(ω′, ω) = µ(A,ω)

Thus, these are equal by hypothesis.
Build from there by using theorem 34.2(ii),(v).

Jensen’s Inequality for Conditional Expectation:

Theorem 29. Let X ∈ L1(P ) and let ϕ be convex on an interval containing the
range of X and ϕ ◦X ∈ L1(P ).
Then, for all G ⊆ F

ϕ(E[X|G ]) ≤ E[ϕ ◦X|G ]

a.s.

Proof. φ is the pointwise sup of all linear functions that are ≤ φ.
We can choose a countable class of such linear functions for which their sup is still φ
For linear function, the inequality we want is actually an equality.
Hence,

φ(E[X|G ]) = sup
l

l(E[X|G ])
a.s.
= sup

l
E[l(X)|G ] ≤ E[φ(X)|G ]

Omit page 450 to end of section.
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Martingales

We use notes.
Suppose we are gambling, and Xn := our fortune after n plays.
Fn := σ(X1, · · · , Xn) or more.
Suppose we have a fair game. Then, our expected fortune after the next gamble would
be equal to our current fortune:
Xn = E[Xn+1|Fn] fair.
Xn ≥ E[Xn+1|Fn] unfavorable
Xn ≤ E[Xn+1|Fn] favorable
One way to be favorable: before we gamble we get handed some amount of money,
and then we make a fair bet. Example: Casino gives you free chips.
The amount of money doesn’t need to be definite, it can be random with positive
expectation.

Definition 12. Let Xn ∈ L1(Ω,F , P ) and Fn ⊆ F be σ fields. We get more and
more information, since the σ fields are monotonically increasing.
We call ⟨Fn;n ≥ 1⟩ a filtration if ∀n, Fn ⊆ Fn+1

We call ⟨Xn;n ≥ 1⟩ adaped to ⟨Fn⟩ if ∀n,Xn ∈ Fn

We call ⟨(Xn,Fn);n ≥ 1⟩ a martingale (submartingale, supermartingale) if:
⟨Xn⟩ is adapted to the filtration ⟨Fn⟩ and for all n , Xn = E[Xn+1|Fn] a.s. (≤;≥)
So, we go up in submartingales and down in supermartingales.
The reason for this is submartingales correspond to subharmonic and supermartin-
gales correspond to superharmonic functions.
We call ⟨Xn;n ≥ 1⟩ a martingale if there exists some filtration w.r.t. it is a martingale.
If there exists such a filtration, Fn = σ(X1, · · · , Xn) always works.
Suppose Xn ∈ F ′

n where ⟨F ′
n⟩ is a filtration and Xn = E[Xn+1|F ′

n] a.s.
We know Xn ∈ Fn ⊆ F ′

n thus,

E[Xn+1|Fn]
a.s.
= E[E[Xn+1|F ′

n]|Fn]
a.s.
= E[Xn|Fn]

a.s.
= Xn

In general, if ⟨(Xn,Fn)⟩ is a martingale, then using tower property,

E[Xm|Fn] = Xm∧n = Xmin(m,n)

Also, E[Xn] is the same for all n.

Class 18: 03/19
Today we do examples of martingales.
A popular example is: sums of independent random variable.
Example 35.1 Suppose Yn are independent random variables, E[|Yn|] < ∞.
Then Yn is the change in fortune after the n’th game [we’re gambling], and we’re
looking at the cumulative change, aka partial sums.

Xn :=

n∑
k=1

Yk

These are neither martingales or submartingales or supermartingales without addi-
tional assumptions.
If E[Yn] = 0∀n then E[Xn+1|σ(X1, · · · , Xn)]
= E[Xn+1|σ(Y1, · · · , Yn)]
= E[Xn + Yn+1|σ(Y1, · · · , Yn)]
= Xn + E[Yn+1|σ(Y1, · · · , Yn)]
They are independent and all have expectation 0. Thus this equals Xn a.s.
So this is a martingale.
Correspondingly, if the expectations were all non-negative, we would have:
Xn + E[Yn+1|σ(Y1, · · · , Yn)] ≥ Xn so this is a submartingale.
Correspondingly, non-positive would give us a supermartingale.
Another different example. Significant for the theory.
Example 35.5 If Z ∈ L1(Ω,F , P ) and ⟨Fn⟩ is a filtration. Then,
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⟨(E[Z|Fn],Fn)⟩

is a martingale by the tower property:

E[E[Z|Fn+1]|Fn] = E[Z|Fn]

Example 35.2 On (Ω,F ), let P be a probability measure and ν be a finite, signed
measure. Let ⟨Fn⟩ be a filtration.
We can only talk about Radon-Nikodym derivative if we have absolute continuity.
Suppose that ∀n, ν ↾ Fn ≪ P ↾ Fn. Let

Xn :=
d(ν ↾ Fn)

d(P ↾ Fn)

Then ⟨(Xn,Fn)⟩ is a martingale:
E[Xn+1|Fn](P ↾ Fn) = (Xn+1P ) ↾ Fn = (Xn+1P ↾ Fn+1) ↾ Fn

= (ν ↾ Fn+1) ↾ Fn = ν ↾ Fn = Xn(P ↾ Fn)

Exercise 35.3 Let P be Lebesgue measure on (0, 1] and Fn := σ(I
(n)
k ; 0 ≤ k ≤ 2n)

where I
(n)
k := (k2−n, (k+1)2−n]. Since (A ∈ Fn, P (A) = 0) =⇒ A = ∅ we have for

all ν, ν ↾ Fn ≪ P ↾ Fn. In this case,

Xn =

2n−1∑
k=0

1
I
(n)
k

ν(I
(n)
k )

P (I
(n)
k )

=

2n−1∑
k=0

1
I
(n)
k

ν(I
(n)
k )2n

Exercise 35.8 If ⟨(Xn,Fn)⟩ is a martingle, then ⟨|Xn|,Fn⟩ is a submartingale.

Theorem 30 (35.1). Let ⟨Xn⟩ ⊆ L1(P ) adapted to a filtration ⟨Fn⟩, and let φ be
convex on an interval containing all the ranges of Xn, and let φ ◦Xn ∈ L1(P ). Then
⟨(ϕ ◦Xn,Fn)⟩ is a submartingale if either:

1. ⟨(Xn, Fn)⟩ is a martingale

2. is a submartingale and φ is increasing

3. is a supermartingale and φ is decreasing

Proof. In all cases, we have:

φ(Xn) ≤ φ(E[Xn+1|Fn])

by using monotonicity and convexity.
By Jensen, this is ≤ E[φ(Xn+1)|Fn]

Now we depart from the book.

Wald’s Equation

This is about expectation of adding up random variables but the number of random
variables is itself random.

Theorem 31 (Wald’s Equation). Let Zn ∈ L1(P ) for n ≥ 1 and let τ be an N-valued
random variable, and µ ∈ R.
Suppose that,

1. ∀n ≥ 1, P [τ ≥ n] > 0 =⇒ E[Zn|τ ≥ n] = µ [or ≤ or ≥ ]

2. one of the following holds:

(a) ∀n,Zn ≥ 0

(b) supn;P [τ≥n]>0 E[|Zn||τ ≥ n] < ∞ and E[τ ] < ∞

(c) E[|
∑τ

n=1 Zn|] < ∞ and limn→∞ E[
∑n

k=1 Zk1[τ>n]] = 0
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then E[
∑τ

n=1 Zn] = µE[τ ] [or ≤ or ≥]
where 0 · ∞ = 0

Proof. In case a, we have

E[
∑τ

n=1 Zn] = E[
∑∞

n=1 Zn1[τ≥n]]
tonelli/MCT

=
∑∞

n=1 E[Zn1[τ≥n]] =
∑∞

n=1 E[Zn|τ ≥
n]P [τ ≥ n] =

∑∞
n=1 µP [τ ≥ n] = µE[τ ].

This is equation N1.
In case b, we have
E[
∑∞

n=1 |Zn|1[τ≥n]] =
∑∞

n=1 E[|Zn||τ ≥ n]P [τ ≥ n] ≤ supE[· · · ] ·
∑

P [τ ≥ n] =
supE[· · · ] · E[τ ] < ∞
Now we do the previous calculation with Fubini.
In case c, we have

E[
∑τ

k=1 Zk]
LDCT
= limn→∞ E[

∑τ
k=1 Zk1[τ≤n]]

= limn→∞ E[
∑n

k=1 Zk1k≤τ≤n]
= limn→∞ E[

∑n
k=1 Zk(1[τ≥k] − 1[τ>n])]

by the second condition of part c,
= limn→∞ E[

∑n
k=1 Zk1[τ≥k]] = limn→∞

∑n
k=1 µP [τ ≥ k] = µE[τ ]

Stopping times will be important.
Make sure you are familiar with homework!!!

Class 18 and 19 skipped

Class 20: 04/02
We are betting on whether a card is red. We have 52 cards, 26 red, 26 black and we
keep seeing one by one. Assume uniform shuffle.
Ak := event that the k’th card is red.
τ := the time k we bet.
Fk := σ(A1, · · · , Ak−1)
τ is a stopping time.
[τ = k] ∈ Fk

At time k the chance of winning would be:
P (Ak | Fk) =: Xk

Xk is between 0 and 1
The chance of winning for stopping time τ is Xτ

Xτ is random. Our actual chance is E[Xτ ]
We check if Xk is a martingale:
E[Xk+1 | Fk] = E[P (Ak+1 | Fk+1) | Fk]
By tower property, = P (Ak+1 | Fk)
We have information about k − 1 cards. We want to know if card number k + 1 is
red. It is the same as the k’th card being red. So this is equal to Xk. For k ≤ 51.
This is a finite martingale!
⟨Xk; 1 ≤ k ≤ 52⟩ is a martingale.
So, E[Xτ ] = E[X1] =

1
2

Just read notes for this section.

Class 21: 04/04
...
Class 22: 04/09
We did Doob’s Maximal Inequality.

Chapter 7: Stochastic Processes

Recall a stochastic process is a collection of random variables on the same space
indexed by some set, T .
For example, we can think about N((s, t]) where T contains intervals.
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In higher dimension, we can have half open boxes, or even the set of borel sets as the
index set.

Section 36: Kolmogorov’s Existence/Consistency The-
orem

P [(Xk1 , · · · , Xtk) ∈ H] for t1, · · · , tk ∈ T,H ∈ Rk are the
finite dimensional distributions/marginals (f.d.d.) of the process.

⟨Xk; t ∈ T ⟩ ∈ RT =T R
For t ∈ T write Zt = Rt → R by x 7→ x(t) = xk

For S ⊆ T set RS
T := σ(Zt : t ∈ S). This is not a sigma field on RS , rather it is a

sigma field on RT

These are sub-σ-fields of RT
T

The f.d.d.’s are the probability measures µF on RF
T for finite F ⊆ T .

We can think of RF
T as

{A× RT\F︸ ︷︷ ︸
∈RT

T

;A ∈ RF
F }

These satisfy the consistency condition:

F1 ⊆ F2 =⇒ µF2
↾ RF1

T = µF1
(∗)

Thus, ⟨Zk; t ∈ T ⟩ is a stochasting process w.f.d.d.’s ⟨µF ;F ⊆ T finite⟩

Proof. Define RT
0 :=

⋃
{RF

T ;F ⊆ T, F finite}.
Sets in RT

0 are called finite-dimensional or cylinders. This is a field since given F1

and F2

RF1

T ∪RF2

T ⊆ RF1∪F2

T (∗∗)

Thus, the plan is to use theorem 3.1:
Define P on RT

0 and show that P is countably additive there.
To define P on RT

0 , set P (A) := µF (A) for any F with A ∈ RF
T . By (∗) this is well

defined. Also, since µF is a probability measure, P is finitely additive on RF
T , hence

on RT
0 . by (∗∗)

To show countable additivity, recall from example 2.10 that it suffices to show for
An ∈ RT

0 with An ↓ ∅, we have P (An) → 0.
Equivalently, if An ↓ A and P (An) ≥ ϵ > 0 then A ̸= ∅. Now, eah An ∈ RFn

T for
some finite Fn. By regularity (thm 12.3) there exists compact Kn ⊆ RFn such that
Kn×RT\Fn ⊆ An and µFn

(An\(Kn×RT\Fn)) < ϵ/2n+1. Then A ⊇
⋂

n(Kn×RT\Fn).
We claim that this is non ∅.
FIrst, note that An \ (Kn × RT\Fn)
=
⋃

n≤N (AN \ (Kn × RT\Fn))

≤
⋃

n≤N (An \ (Kn × RT\Fn))

has probability <
∑

n≤N ϵ/2n+1 < ϵ/2

whence P (
⋂
(Kn × RT\Fn)) > ϵ/2

Thus, ∀N ≥ 1∃x(N) ↾ Fn ∈ Kn for 1 ≤ n ≤ N . Let ⟨N1(j); j ≥ 1⟩ be a subse-
quence such that x(N,(j)) ↾ F covergence. Recursively, choose ⟨Nm+1(j)lj ≥ 1⟩ to e
a subsequence of ⟨Nm(j)⟩ such that xNm+1(j) ↾ Fm+1 converges. Then x(Nm(m)) ↾ Fn

converges for all n.
Define x(t) := xNm(m)(t) if t ∈ ∪nFn and 0 otherwise. Then x ∈ A so A ̸= ∅.

Class 23: 04/11
If X : Ω → Ω′ and A ⊆ 2Ω

′
then σ(X−1A ) = X−1(σ(A ))

The relevant operations of σ fields (intersection union complements) commutes with
pre-image so this is expected.
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Thus, given Xt : Ω → R [t ∈ T ] stochastic process, let X : Ω → RT be ⟨Xt; t ∈ T ⟩
Claim: σ(X) = σ({Xt; t ∈ T})
To see this, note first that:

Ω RT

R

X

Xt Zt

So Xt = Zt ◦X
Thus, σ({Xt; t ∈ T}) = σ({X−1

t R; t ∈ T})
= σ(X−1({Z−1

t R}))
= X−1(σ({Z−1

t R}))
= X−1RT

T by definition of RT
T

= σ(X)
Note also that

⋃
{σ({Xt; t ∈ S});S ⊆ T, S countable} is a σ-field.

So, it equals σ(X)
That is, every set in σ(X) depends on only countably many coordinates!
Consider T = [0,∞),Ω = RT , Xt := Zt.
Consider the class of continuous functions C(T ).
C(T ) can’t depend on only a countable set since knowing the values on a countable
set doesn’t tell us whether something is continuous.
So, C(T ) is not measurable here!
This means this space is not good enough to model brownian motion.

37 - Brownian Motion

We consider brownian motion on only one dimension. For bigger dimension we can
take independent brownian motion in perpendicular direction.
Consider ⟨Wt; t ∈ [0,∞)⟩ a stochastic process that has independent stationary incre-
ments and continuous sample paths.
W stands for Wiener.
Wt is uniformly continuous on [0, 1] so:

Hn := sup
1≤k≤n

∣∣∣∣W (
k

n

)
−W

(
k − 1

n

)∣∣∣∣
Which → 0 as n → ∞
Hence ∀δ > 0, P [Hn ≥ δ] → 0
Now, P [Hn ≥ δ] = 1− P [Hn < δ]
= 1−

∏n
k=1 P [|W ( kn )−W (k−1

n )| < δ] = 1− P [|W ( 1n )−W (0)| < δ]n

= 1− {1− P [|W ( 1n )−W (0)| ≥ δ]}n ≥ 1− e−n·P [|W ( 1
n )−W (0)|≥δ]

≥ 0.
So, 1− e−n·P [|W ( 1

n )−W (0)|≥δ] → 0
Which implies P [|W ( 1n )−W (0)| ≥ δ] → 0

(∗) ∀δ > 0, limh↓0
P [|W (h)−W (0)|≥δ]

h = 0
This implies that (∗∗)∃µ ∈ R∃σ ≥ 0∀t ≥ 0,
W (t)−W (0) ∼ N (µt, σ2t)

Theorem 32. For a stochastic process with independent stationary increment, (∗) ⇐⇒
(∗∗)

Why should such a process exist?
Let ⟨Yn⟩ be symmetric ±1 i.i.d. steps, ∆x > 0, θ > 0

D(t) :=

⌊t/∆t⌋∑
k=1

δx · Yk

Then V ar(D(t)) = (∆x)2⌊ t
∆t⌋
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So, if D(t) ‘converges’ to Wt we should have (∆x)2

∆t → 1
So take ∆t := 1

n ,∆x = 1√
n

Let Dn(t) be the corresponding process of partial sums:

Dn(t) =
1√
n

⌊nt⌋∑
k=1

Yk

So, Dn(t) converges weakly to normal.

Class 24: 04/16

D(t) =

⌊t/∆t⌋∑
k=1

∆x · yk

(∆x)2

∆t
→ σ2

Definition 13. A Brownian Motion (BM) or Wiener Process with drift µ and
variance parameter σ2 is a stochastic process ⟨Wt; t ≥ 0⟩ such that:
i: If 0 ≤ t0 < t1 < · · · < tk then ⟨Wti −Wti−1

, 1 ≤ i ≤ k⟩ ∼ N (µ⟨ti − ti−1; 1 ≤ i ≤
k⟩, σ2 · diag(⟨ti − ti−1; 1 ≤ i ≤ k⟩))
And W0 is independent of σ(Wt −W0; t ≥ 0)
ii: For every ω, t 7→ Wt(ω) is continuous.
If µ = 0, σ = 1,W0 ≡ 0 then the process is standard B.M. or just B.M.

Existence by Kolmogorov
Question: What are the f.d.d.’s?
Assume W0 ≡ 0 and t0 = 0
LetM b the linear transformation that takes ⟨y1, y2−y1, · · · , yk−yk−1⟩ to ⟨y1, y2, · · · , yk⟩

M =


1 0 0 · · · 0
1 1 0 · · · 0
1 1 1 · · · 0
...

...
...

. . .
...

1 1 1 · · · 1


Recall that if Y ∼ N (c,Σ) then MY ∼ N (Mc,MΣM ′)
Use this with Y = ⟨Wt1 −Wt0 , · · · ,Wtk −Wtk−1

⟩ and c = µ⟨t1 − t0, · · · , tk − tk−1⟩
Σ = σ2 diag(⟨t1 − t0, · · · , tk − tk−1⟩)
Then MY = ⟨Wt1 , · · · ,Wtk⟩
Mc = µ⟨t1, · · · , tk⟩
And the covariances are: for 0 ≤ s ≤ t
Cov(Ws,Wt) = E[(Ws − µs)(Wt − µt)]
We use independent increments to calculate it. Wt−µt = Ws−µs+(Wt−Ws+µ(t−s))
So, E[(Ws − µs)(Wt − µt)] = Var(Ws) + 0 = σ2s
Thus, MΣM ′ = σ2(min{ti, tj})1≤i,j≤k

These f.d.d.’s are consistent so Kolmogorov’s theorem gives a process that satisfies
(i).
If W0 ̸≡ 0 then take X independent of the process ⟨Wt; t ≥ 0⟩ constructed by Kol-
mogorov’s theorem with X having law of W0 and use a new process ⟨X + W̃t; t ≥ 0⟩
We now modify the process given by Kolmogorov’s theorem to ensure continuity.
We’ll do this for standard brownian motion and then show how to
Let D := {k2−n;n, k ∈ N}
Claim: ∀δ > 0,∀α > 0

P [sup{|W (rδ)|; r ∈ [0, 1] ∩D} > α] ≤ 3δ2

α4

It suffices to prove this with D replaced by Dn := {k2−n; k ∈ N} since these eents are
increasing in n

35



Now, ⟨W (rδ); r ∈ [0, 1] ∩Dn⟩
Forms the partial sums of i.i.d. mean 0 random variables, hence, a martingale.
Therefore, ⟨W (rδ)4⟩ is a submartingale.
Applying Doob’s inequality (thm 35.3),

P [ sup
r∈[0,1]∩Dn

|W (rδ)| > α] = P [supW (rδ)4 > α4] ≤ E[W (δ)4]

α4

Note, W (δ) ∼ N (0, δ) =
√
δN(0, 1)

So, fourth moment is 3

Thus, our probability is bounded by 3δ2

α4

Let In,k := [k2−n, (k + 1)2−n]
Mn,k = sup{|W (r)−W (k2−n)|; r ∈ In,k ∩D},
Mn := max{Mn,k; 0 ≤ k < n2n}
Claim: P [Mn > 1

n ] ≤
3n5

2n

For we have by stationarity of moments that for δ = 2−n,

P [Mn,k >
1

n
] = P [ sup

r∈[0,1]∩D

|W (rδ)| > 1

n
] ≤ 3n4

22n

THerefore,

P [Mn,k >
1

n
] ≤

n2n−1∑
k=0

P [Mnk >
1

n
>

1

n
] ≤ n2n · 3n

4

22n
=

3n5

2n

Therefore,
∑

n P [Mn > 1
n ] < ∞

So we can use Borel Cantelli
Let B := {ω;Mn(ω) >

1
n i.o.}

Then P (B) = 0 by Borel Cantelli
Claim: ∀t > 0, ∀ω ̸∈ B,W (r, ω) is uniformly continuous in r ∈ [0, t] ∩D
For let t > 0, ω ̸∈ B, ϵ > 0. Choose n such that n > t, n > 3

ϵ ,Mn(ω) ≤ 1
n . Set

δ := 2−n.
Let r, r′ ∈ [0, t] ∩D with |r − r′| < δ.
Then ∃k ∈ [0, n2n] such that r ∈ In,k and r′ ∈ In,k+1 so that

|W (r, ω)−W (r′, ω)| ≤ |W (r, ω)−W (k2−n, ω)|+ |W (k2−n, ω)−W ((k + 1)2−n, ω)|

+|W ((k + 1)2−n −W (r′, ω))| ≤ 2Mnk(ω) +Mn,k+1(ω) ≤ 3Mn(ω) ≤
3

n
< ϵ

Class 25: 04/18
W (t), t ∈ D
unifomrly continuous on [0, t] ∩D for all t > 0
off B,P (B) = 0
Now, define W ′

t (ω) to be 0 if ω ∈ B and to be limWr(ω) as r → t with r ∈ D for
ω ∈ B:
This is because of the cauchy property. This holds by uniform contunity.
Also, W ′

t (ω) is continuous int for all ω (if t, t′ are close then ∃r close to t and r′ close
t′ such that Wr(ω) is close to Wt(ω) and Wr′(ω) is close to wt′(ω) but r, r

′ are close
so Wr(ω),Wr′(ω) are close) and W ′

t (ω) = Wt(ω) for t ∈ D for ω /∈ B
Finally, we claim that ⟨W ′

t ; t ≥ 0⟩ has the same fdd’s as ⟨Wt; t ≥ 0⟩. Given t1, · · · , tk ∈
[0,∞) let r

(n)
i → ti, r

(n)
i ∈ D

Then ⟨Wri(n)⟩ → ⟨W ′
ti⟩ everewhere.

Since we have pointwise convergence we also have weak convergence.

The covariance matrices [min{r(n)i , r
(n)
j }]i,j converges to [min{ti, tj}]i,j

Theorem 33 (37.1). Standard B.M. exists.
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C([0,∞),R)
To get a general B.M. with any W0, µ, σ let ⟨W ′

t ⟩ be a std B.M. and let X be a
random variable independent of ⟨W ′

t ⟩ with X having the law of the desired W0. Set
Wt := X + µt+ σW ′

t .
Wt −Ws = µ(t− s) + σ(W ′

t −W ′
s) ∼ N (µ(t− s), σ2(t− s))

Symmetries of BM, or new BMs from old

Let ⟨Wt⟩ be a std BM. Then so is ⟨−Wt; t ≥ 0⟩ (space reversal). Also, given t0 >
0, ⟨Wt0−t −Wt0⟩0≤t≤t0 has the law of BM on [0, t0] [time reversal].
In addition, ⟨Wt0+t −Wt0⟩t≥0 is BM [time transition]
If c > 0 then ⟨W ′

t :=
1
cWc2t⟩t≥0 is B.M. [scale invariance]

1
c2 min{c2s, c2t}
Suppose W (t0+∆t0)−W (t0)

∆t0
> ϵ

(c{W ′ ( t0
c2 + ∆t0

c2

)
−W ′( t0c2 )}/∆t0)

Let t1 := t0/c
2,∆t1 = ∆t0/c

2

W ′(t1 +∆t1)−W ′(t1)

∆t1
> cϵ

Taking c large, we see that there are chords of arbitrarily large slope arbitrarily close
to 0

Theorem 34 (37.3). On a set of probability 1, ∀t,

lim sup
s↓t

∣∣∣∣Ws −Wt

s− t

∣∣∣∣ = +∞

lim sup
s↑t

∣∣∣∣Ws −Wt

s− t

∣∣∣∣ = +∞

Proof. By symmetry enough to prove the first for t ∈ [0, 1)
Fix c > 0 and let

An :=

[
∃t ∈ [0, 1)∀s ∈ (t, t+

4

n
),

∣∣∣∣Ws −Wt

s− t
≤ c

∣∣∣∣]
It suffices to show there exists event A′

n containing An and P (A′
n) =⇒ 0

If ω ∈ An and t is a witness (that ω ∈ An ), let k be such that k−1
n ≤ t < k

n

We compareW
(

k+j
n

)
toW (t) for j = 0, 1, 2, 3 to get |W (k+j

n )−W (t)| ≤ C
∣∣∣k+j

n − t
∣∣∣ ≤

4C
n

whence
∣∣∣W (k+j+1)

n −W (k+j
n )
∣∣∣ ≤ 8C

n for j = 0, 1, 2

On the other hand,
P [|W (k+j+1

n )−W (k+j
n )| ≤ 8C

n ] = P [|W ( 1n )| ≤
8C
n ]

= P [|W (1)| ≤ 8C√
n
] ≤ 16C√

2πn

since the standard normal density is ≤ 1√
2π

Therefore, An ⊆ A′
n :=

[
∃k ∈ [1, n]s.t.∀j = 0, 1, 2, |W (k+j+1

n )−W (k+j
n )| ≤ 8C

n

]
with P (A′

n) ≤ n
(

16C√
2πn

)3
→ 0

Class 26: 04/23

Let X(t) = W (t)
t [t > 0]

Then ⟨X(t); t > 0⟩ is a Gaussian Process (i.e. all f.d.d.s are multivariate normal).
Covariances: E[X(s)X(t)] = 1

stE[W (s)W (t)] = 1
st (s ∧ t) = 1

t ∧
1
s

Thus, if W ′′(t) := X( 1t ) then ⟨W ′′(t); t > 0⟩ has f.d.d.’s of B.M.
Claim: If we define W ′′(0) := 0 then W ′′ has the law of B.M.
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IE we want limt↓0 W
′′(t) = 0 a.s.

To see this, note that W ′′ has same f.d.d.s as BM on [0,∞). In particular, on dyadic
rationals.
Therefore, W ′′ is uniformly continuous on the dyadic rationals a.s.
So if we complete W ′′ by continuity, we get B.M. But W ′′ is already continuous on
(0,∞) and has the right value at 0

Note that, W ′′(t) :=

tW (
t

t
), if t > 0;

0, if t = 0;
this is called time inversion
Claim:

lim sup
n→∞

Wn = ∞

lim inf
n→∞

Wn = −∞

Both a.s.
To see this, note that Wn =

∑n
k=1(Wk −Wk−1) with Wk −Wk−1 being i.i.d. N(0, 1).

Each of the events in question belong to the tail σ-field of ⟨Wk −Wk−1; k ≥ 1⟩
By Kolmogorov’s 0-1 law, each has probability 0 or 1
Both probabilities are equal by space symmetry.
Case 1: both 0. Means lim supn→∞, lim infn→∞ both finite. Meaning Wn is bounded
above and below. Then |Wn| is bounded.
But P [|Wn| < n

1
4 ] = P [

√
n|W1| ≤ n

1
4 ] = P [|W1| ≤ n− 1

4 ] → 0 as n → ∞
So, probability is actually 1
Thus, ⟨Wt⟩ changes sign i.o. as t → ∞
Time inversion tells us ⟨Wt⟩ changes sign i.o. as t ↓ 0
In particular, the zero set {t;Wt = 0} has 0 as a limit point.

Theorem 35 (37.4). The zero set of B.M. is almost surely perfect [every point of it
is a limit point], has lebesgue measure 0 and is unbounded.

Proof. Let Z (ω) := {t;Wt(ω) = 0}
Let λ be lebesgue measure. Then,∫

λ(Z (ω)) dP (ω) =

∫ ∫
1A(t, ω) dλ(t) dP (ω)

Where A := {(t, ω);Wt(ω) = 0}
If we show that A is measurable (R1 × F ) then we can use Fubini to get:∫ ∫

1A(t, ω) dP (ω) dλ(t)

=

∫ ∞

0

P{ω;Wt(ω) = 0}︸ ︷︷ ︸
=0

dλ(t) = 0

So we only nead to show measurability of A
In fact, we will show (thm 37.2) that (t, ω) 7→ Wt(ω) is measurable.
Now we show that Z (ω) is perfect.
The idea is to treat t ∈ Z (ω) the start of a ‘new’ brownian motion.
We know about time 0.
Now this can’t be exactly right, since ∃t ∈ Z (ω) such that ∀ϵ > 0 with (t, t + ϵ) ∩
Z (ω) = ∅. But, apparently, such t are limits of points < t in Z (ω).
Indeed, when t is NOT a limit point from below, ∃r ∈ Q+ such that (r, t)∩Z (ω) = ∅
i.e. t is the first zero after r.
So, for r ∈ Q+ let τ(ω) := τr(ω) := inf{t ≥ r;Wt(ω) = 0}
τ is a random variable since we may write {ω; τ(ω) ≤ t} = {ω; infs∈[r,t]∩Q |Ws(ω)| = 0}
∈ σ(Ws; s ∈ Q, s ≤ t) ⊆ σ(Ws; s ≤ t)
Thus, τ is a stopping time (τ ≥ 0 and [τ ≤ t] ∈ σ(Ws; s ≤ t))
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Define W ∗
t (ω) := Wτ(ω)+t(ω)−Wτ(ω)(ω) = Wτ(ω)+t(ω) for t ≥ 0

We will show (theorem 37.5) that ⟨W ∗
t ; t ≥ 0⟩ is a B.M.

Hence τr is a.s. a limit point of Z
Now, every point of Z that is not a limit point from below in Z is equal to τr for
some r ∈ Q+

Hence it is a limit of Z too.
Let Br be a set of pr. 0 such that ∀ω /∈ Br, τr(ω) is a limit point of Z (ω).
Then ∀ω /∈

⋃
r∈Q+ Br, ∀r ∈ Q+,

τr(ω) is a limit point of Z (ω) and P (
⋃

r Br) = 0

Theorem 36 (37.2). B.M is measurable R1 × F

Proof. Set W (n)(t, ω) := W (⌊nt⌋/n, ω)
HW: show W (n) is measurable R1 × F
By continuity of simple paths,
W (n) → W everywhere as n → ∞ so W is measurable.

Class 27: 04/25
HW Exercise 37.2:
W
(
2k+1
2n+1

)
= · · · [rank n]

—
Let Ft := σ(Ws; s ≤ t).
τ is an ⟨Ft; t ≥ 0⟩ stopping time if ∀t, [τ ≤ t] ∈ Ft

Fix τ a.s. finite.
W ∗

t (ω) := Wτ(ω)+t(ω)−Wτ(ω)(ω)
W ∗

t := Wτ+t −Wτ

Fτ :={A;∀t,A∩[τ≤t]∈Ft}
F ∗

τ := σ(W ∗
t ; t ≥ 0)

Theorem 37 (37.5). (Strong Markov Property):
If τ is an a.s. finite stopping time, then ⟨W ∗

t ; t ≥ 0⟩ is a std B.M. and F ∗
τ is

independent of Fτ

τa := inf{t;Wt = a}, (a ̸= 0)
This is finite a.s. since limWt = +∞ a.s. and limWt = −∞ a.s.
Also, τ is a r.v. and is a stopping time.
[τa ≤ t] = [infs∈[0,t]∩Q |Ws − a| = 0]
The reflection Principle
Look at the first time BM hits a, and from that point on reflect the brownian motion.
Then what we get is also a brownian motion.

W ′
t :=

{
Wt, if t ≤ τa

Wτa − (Wt −Wτa) = 2Wτa −Wt = 2a−Wt, if t ≥ τa

Theorem 38. ⟨W ′
t ; t ≥ 0⟩ is a B.M. In fact, this holds for any a.s. finite stopping

time instead of τa [though we might not have the simplification 2a−Wt].

Proof. Note that Wt −Wτ is W ∗
t

So, we can think of W ′ as the pair (⟨Wt; t ≤ τ⟩, ⟨W ∗
t ; t ≥ 0⟩).

Conversely, from the pair we can get W ′

Think of W as (⟨Wt; t ≤ τ⟩, ⟨W ∗
t ; t ≥ 0⟩)

Similarly, think of W ′ as (⟨W ′
t ; t ≤ τ⟩, ⟨(W ′

t )
∗; t ≥ 0⟩)

⟨Wt; t ≤ τ⟩ = ⟨W ′
t ; t ≤ τ⟩

⟨W ∗
t ; t ≥ 0⟩ = ⟨−(W ′)∗t ; t ≥ 0⟩

By theorem 37.5, in both cases, the first element of the path is independent of the
second element. Hence the theorem is an instance of the general lemma:

If X,Y, Z are r.v.’s with X,Y independent and X,Z independent and Y
D
= Z then

(X,Y )
D
= (X,Z)
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We use the reflection principle on τa.
Let Mt := sups≤t Ws

Mt is a non-negative random variable, non-decreasing in t.
What is the law [cdf]of Mt? Easier to calculate tail probability.
Note that [Mt ≥ a] = [τa ≤ t] so this is indeed an event.
This is disjoint union of [Wt ≥ a] and [Mt ≥ a,Wt < a]
Note: [Mt ≥ a,Wt < a] = [W ′

t > a]
It is a disjoint union. So, we can calculate the probability:
P [Mt ≥ a] = P [Wt ≥ a] + P [W ′

t > a] = 2P [Wt ≥ a]
Wt is normal with mean 0, variance t

=
√

2
π

∫∞
a/

√
t
e−

y2

2 dy

Or we can just write: P [|Wt| ≥ a]

So, Mt
D
= |Wt|

This may also remind you of maximal inequality.

Corollary: ∀a ̸= 0, τa
D
= a2

W 2
1
and E[

√
τa] = ∞

Proof. By symmetry, we may assume a > 0
For t > 0 P [τa ≤ t] = P [Mt ≥ a] = P [|Wt| ≥ a] = P [W 2

t ≥ a2] = P [tW 2
1 ≥ a2] =

P [ a2

W 2
1
≤ t] which proves the first part.

E[
√
τa] = E[ a

|W1| ] = aE[ 1
|W1| ] = a

∫∞
−∞

1
|t|ϕ(t) dt

ϕ is density of standard normal.
This is essentially integrating 1

|t| for t near 0 so this is infinity which gives us the

second part.

Also interesting: E[τ−1
a ] = E[

W 2
1

a2 ] = 1
a2
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