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Singular Homology and CW Complexes

We want to talk about the Homology of a space X.

Definition (Homology). Let X be a topological space. Consider the sequence of
abelian groups:

H0X,H1X,H2X, · · ·

These are the homemorphism invariants.

For example, consider the 2-torus T 2 and the 2-sphere S2. They are not homeomor-
phic, we can see that from their fundamental groups.
H1T

2 = Z⊕ Z.
H1S

2 = 0.
∴ S2 ̸∼= T 2

Do note that, even if all elements from the sequence are isomorphic the spaces might
not be isomorphic!
Some application: see Davis and Kirk “Homology Greatest Hits”.
Knot theory seems very intuitive but proving statements is very troublesome. For
example, how do you prove that the trefoil and the unknot are not the same?

Theorem 1 (Brouwer’s Fixed Point Theorem). Every f : Dn → Dn has a fixed
point.

Theorem 2 (Euler’s Formula). For every ‘triangulation’ of S2 we have:

v − e+ f = 2 = χ(S2)

χ denotes the Euler Characteristic.
eg pyramid 4− 6 + 4 = 2, triangulated bipyramid 5− 9 + 6 = 2, cube 8− 12 + 6 = 2.

Theorem 3 (Hairy Ball Theorem). ̸ ∃f : S2 → S2 s.t. ∀x ∈ S2, x · f(x) = 0.
So you can’t comb the hairy ball.

Theorem 4 (Jordan Curve Theorem). The complement of a closed curve in plane
has two components.

Theorem 5 (Brouwer’s Theorem on Invariance of Domain). m ̸= n =⇒ Rm ̸∼= Rn.
Consider open U ⊂ Rn [a domain] and let f be a continuous injection f : U → Rn.
Then f(U) is open in Rn.
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Variants of Homology

defined for

Singular Homology Top Spaces Easy to define but
hard to compute

Simplicial homology simplicial complexes and Easy to define and compute
∆-complexes but difficult to show

homeo inv.

Cellular homology CW-complexes hard to define,
easy to compute, flexible.

Table 1: Variants of Homology

Definition of Singular Homology

Definition (Standard n-simplex).

∆n =

{
(t0, · · · , tn) |

∑
i

ti = 1, 1 ≥ ti ≥ 0

}
⊂ Rn+1

=

{∑
i

tiei | 1 ≥ ti ≥ 0,
∑
i

ti = 1

}

= convex hull of {e0, · · · , en}

Recall that convex hull is the intersection of all convex sets containing the original
set.

Singular n-simplex in X

n-simplices are images of standard simplices under continuous maps.
They are defined by a continuous map σ : ∆n → X.
We define singular n-chains SnX. These are free abelian groups with Z-basis the
singular n-simplicies in X.
A typical element will be a finite sum:

n1σ1 + · · ·+ nkσk ∈ SnX

Where σi : ∆
n → X.

Note: Davis and Kirk uses SnX, Hatcher uses CnX.
For example, let X be the punctured plane X = R2 − {0}.
σ1 + σ2 − σ3 ∈ S1X.
This is an example of a special 1-chain callled the 1-cycle.
Goal: Define a boundary map ∂n : SnX → Sn−1X [Read Davis Kirk].
Then, Hn is given by the quotient map:

Hn =
ker ∂n
im ∂n+1

=
n-cycles

n-boundaries

Wednesday, 1/15/2025

Goal: We want to define a homomorphism called a boundary map.

∂n : SnX → Sn−1X

We start with the j’th face map.
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δj = δnj : ∆n−1 → ∆n

We have the map of barycentric coordinates:

(t0, · · · , tn−1) 7→ (t0, · · · , tj−1, 0, tj , · · · , tn−1)

The j’th face map of σ is given by precomposing δj :

σ ◦ δj : ∆n−1 → X

Definition. The boundary ∂nσ =
∑n
j=0(−1)jσ ◦ ∂j .

We can extend this definition tp Sn by linearity.

∂n

∑
j

njσj

 =
∑
j

nj∂nσj

Let σ : ∆2 → X.
Then, ∂2σ = σ ◦ δ0 − σ ◦ δ1 + σ ◦ δ2.

Figure 1: Boundary Map

σ : ∆1 → X
∂σ = σ(e1)− σ(e0) = cσ(e1) = cσ(e0), endpoint - starting point.

Lemma 6. ∂n+1 ◦ ∂n = 0.

Sn+1X SnX Sn−1X
∂n+1

0

∂n

This is the reason for − signs.

Then, we have,

im ∂n+1 ⊂ ker ∂n ⊂ SnX
n-boundaries n-cycles n-chains

Definition (Singular Homology).

HnX =
ker ∂n
im ∂n+1

=
cycles

boundaries

Proof. We prove the lemma: ∂n−1 ◦ ∂n = 0.

∂n−1(∂nσ)

= ∂n−1

∑
j

(−1)jσ(t0, · · · , 0, · · · , tn−1)


=
∑
k<j

(−1)k(−1)jσ(t0, · · · , 0, · · · , 0, · · · , tn) 0 s in k’th and j’th slots
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+
∑
k>j

(−1)k−1(−1)jσ(t0, · · · , 0, · · · , 0, · · · , tn) 0 s in k’th and j’th slots

= 0

Remark. 1) HnX is defined for any topological space X and n ≥ 0.

2) X ∼= Y =⇒ HnX ∼= HnY .

3) Big and Formula Construction.

4) Unclear how to compute.

Answer to the question: What is HnX:

H∗X = {H0X,H1X,H2X, · · · }

is a graded abelian group. HkX individually are abelian groups.

Lemma 7 (Lemma 1).

Hn(pt) ∼=

{
Z, if n = 0;

0, otherwise.

Lemma 8 (Lemma 2). If X has path-components {Xα}α∈I , then,

HnX =
⊕
α∈I

Hn(Xα)

Lemma 9 (Lemma 3). a) H0X ∼=
⊕

I Z = Z# of path component

b) X is path-connected, then H0X ∼= Z.

Recall:

Definition. X is path-connected if ∀a, b ∈ X,∃γ : [0, 1] → X such that γ(0) =
a, γ(1) = b

Definition. A maximal path-connected subset of X is path-component.

Corollary 10. Homology of rational numbers is isomorphic to the homology of in-
tegers:

H∗Q ∼= H∗Z = (Z∞, 0, 0, · · · )

But Q ̸∼= Z.

Friday, 1/17/2025

Recall:
HnX = ker(∂n)

im(∂n+1)
= cycles

boundary ∈ homology class.

We are looking for two cycles that belong to the same homology class.
So, we want cycles z1 ̸= z2 which are homologous so that z1 − z2 is a boundary. This
implies their homology classes are equal: [z1] = [z2].
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Algebra

Definition (Chain Complex). A chain complex C• is a sequence:

C∗ = {C0, C1, C2, · · · }

of abelian groups with ∂n : Cn → Cn−1 such that ∂n ◦ ∂n+1 = 0.
It looks like the following:

· · · C3 C2 C1 C0
∂3 ∂2 ∂1

so that the composition of any two consecutive maps is 0. By conventions, ∂0 = 0 :
C0 → 0.

Then, C• = {C∗, ∂∗}.

Definition (Homology).

HnC• =
ker ∂n
im ∂n+1

=
Zn
Bn

Here, Cn = n-chain.
Zn = ker ∂n, n-cycles
Bn = im ∂n+1, n-boundaries.
eg. S•X = {S∗X, ∂∗} is a singular chain complex of X.

L1:

Hnpt =

{
Z, if n = 0;

0, otherwise.

H∗(pt) = {Z, 0, 0, · · · }

Proof. ∀n,∃!σn : ∆n → pt.
Then, ∂1σ1 = σ1 ◦ δ0 − σ1 ◦ δ1.
δ0(t0) = (0, t0), δ1(t0) = (t0, 1).
Thus, ∂1σ1 = σ1 ◦ δ0 − σ1 ◦ δ1 = (1− 1)σ0 = 0
∂2σ2 = σ2 ◦ δ0 − σ2 ◦ δ1 + σ2 ◦ δ2 = (1− 1 + 1)σ1 = σ1.

∂nσn =

{
0, if n odd;

1, if n even.

S∗X :

Zσ2 Zσ1 Zσ0

σ2 σ1 0

∼= Z Z Z Z1 0 1 0

H0pt = Z/00 = Z.
H1pt = Z/Z = 0
H2pt = 0/0 = 0.

L2: If {Xα}α∈I are path components of X then,

HnX =
⊕
I

HnXα

Proof. σ : ∆n → X
∆np.c.
=⇒ σ(∆n) p.c.

=⇒ ∃!α such that σ(∆n) ⊂ Xα.
Also (σ ◦ δj)(∆n−1) ⊂ Xα

S∗X =
⊕

I S∗Xα
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Augmentation
ε : S0X → Z
ε(
∑
i niσi) :=

∑
i ni

ε ◦ ∂1(σ) = ε(σ ◦ δ0 − σ ◦ δ1) = 1− 1 = 0
Thus im ∂1 ⊂ kerE
Thus, ∃ε : H0X → Z
ε [
∑
i niσi] = ε (

∑
i niσi) =

∑
i ni.

L3:

1) If X is path connected then,

ε : H0X
∼=−→ Z

2) If {Xα}α∈I are path components of X then,

H0X =
⊕
I

H0Xα = Z# of p.c. of X

Proof. 1) Need to show ker ε ⊂ im ∂1.

Choose base point x0 ∈ X.

Suppose ε (
∑
i niσi) = 0.

Choose path γi : ∆
1 → X such that γi(e1) = σi(e0), γ0(e0) = x0.

∂1 (
∑
i niγi) =

∑
i niσi −

∑
i niconsX0 =

∑
i niσi

∆-complex (p.102-104 of Hatcher)

eg torus

1 = # of vertices
3 = # of edges
2 = # of faces
∆2T → ∆1T → ∆0T
∼= Z2 → Z3 → Z1

Wednesday, 1/22/2025

Definition (Simplex). Let v0, · · · , vn ∈ Rn.

[v0, · · · , vn] =

{∑
i

tivi |
∑
i

ti = 1, 1 ≤ ti ≤ 0

}
If v0 − v1, · · · , v0 − vn are linearily independent, then [v0, · · · , vn] is a geometric
n-simplex.

If vertices are ordered,

σ[v0,··· ,vn] : ∆
n → [v0, · · · , vn]

∑
i

tiei 7→
∑
i

tivi

Note that,

δnσ[v0,··· ,vn] ≡
∑
j

(−1)jσ[v0,··· ,v̂j ,··· ,vn]
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∆n breaks up into boundary and interior.

∆n = ∂∆n ∪ ∆̊n

∂∆n =

{∑
i

tiei | some ti = 0

}

∆̊n =

{∑
i

tiei | ti ̸= 0 for all i

}
Definition. A ∆-complex is a space X with:

{σα : ∆n → X} simplices

such that:

i) σα
∣∣
∆̊n is injective.

∀x ∈ X, ∃! s.t. x ∈ σα(∆̊n). Images of interiors partition X.

ii) ∀α,∀j, ∃β such that:

σα ◦ δj = σβ

Faces of simplices are simplices.

iii) A ⊂ X open ⇐⇒ ∀σα, σ−1α A is open in ∆n. “Weak Topolofy”.

Hatcher says, one way to look at this is by taking a quotient of a disjoint union. We
can consider:

∆0 ⊔∆1 ⊔∆1 ⊔∆1 ⊔∆2 ⊔∆2

∼
Definition (Simplicial Chain Complex). ∆nX = free abelian group on n-simplices:

∆n+1X
∂n+1−−−→ ∆nX → ∆n−1X →

Subcompplex ∆∗X ⊂ S∗X

∆nX ∆n−1X

SnX Sn−1X

∂

∂

The diagram commutes.
Simplicial Homology:

H∆
∗ X := H∗(∆∗X)

H∆
∗ X

∼=−→ H∗X

Consider the 2-torus with “ordered” vertices:

∂U = b− c+ a

∂L = a− c+ b

∂a = 0v, ∂b = 0v, ∂c = 0v
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∆2T → ∆1T → ∆0T → 0

Then, ∆2T has basis ZU ⊕ ZL
∆1T has basis Za⊕ Zb⊕ Zc
∆0T has basis Zv
Now, H∆

0 T = Zv
0
∼= Z

H∆
2 T = Z(U−L)

0
∼= Z.

We only have U − L since ∂(n1U + n2L) = 0 =⇒ n1(b − c + a) + n2(a − c + b) =
0 =⇒ n1 = −n2
H∆

1 T = Z(a,b,c)
Z(a−c+b) =

Z(a,b,a−c+b)
Z(a−c+b)

∼= Z2.

We can have a basis for homology since they are free abelian.
Basis for H∆

0 T is [v]
Basis for H∆

1 T is [a], [b].
Basis of H∆

2 T is [U − L].
Matrix POV on H∆

∗ T

∆· ∼= Z2


1 1
1 1
−1 −1


−−−−−−−−→ Z3

[
0 0 0

]
−−−−−−−−→ Z

Integral row and column operations:

• Switch two rows (or columns)

• Add multiples of a row (or column) to another row (or column)

• Multiply row (or column) by ±1

These correspond to basis changes in the domain and codomain.
If matries A and B are equivalent (A ∼ B) it implies:

kerA ∼= kerB

cokerA ∼= cokerB

Every integral matrix is equivalent to:
d1

d2
. . .

dn


With d1 | d2 | d3 | · · ·
It is a smith normal form.
We have:  1 1

1 1
−1 −1

 ∼
 1 0

1 0
−1 0

 ∼
1 0
0 0
0 0


This is ∂2.
H∆

2 T
∼= Z

im ∂2 ∼= Z and summand of ∆1T
H∆

1 T
∼= Z3

Z×0×0
∼= Z2

Exercise: compute kernel and cokernel of:

[
9 3
4 2

]
[
9 3
4 2

]
∼
[
5 1
4 2

]
∼
[
5 1
−1 1

]
∼
[
6 0
−1 1

]
∼
[
6 0
0 1

]
∼
[
1 0
0 6

]
Thus, ker = 0, coker = Z/6Z.
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Friday, 1/24/2025

Goal: if there is continuous f : X → Y then we have homomorphism f∗ : H∗X →
H∗Y .
We think of them in terms of Category Theory.
Setup:
Category C.
Collection of objects Ob C.
∀X,Y ∈ Ob C we have a collection of morphisms C(X,Y ).
∀X,Y, Z ∈ Ob C we have composition law:

C(X,Y )× C(Y, Z)→ C(X,Z)

(g, f) 7→ f ◦ g

Also, ∀X ∈ Ob C, ∃ idX ∈ C(X,X).
We also have associative law:

(f ◦ g) ◦ h = f ◦ (g ◦ h)

∀f ∈ C(X,Y ), f = idY ◦f = f ◦ idX .

For f ∈ C(X,Y ) we can also write it as f : X → Y or X
f−→ Y .

We sometimes call them ‘arrows’ instead of ‘morphisms’ to avoid thinking of them as
functions.

X Y Z
g

f◦g

f

Definition. f : X → Y is an isomorphism if ∃g : Y → X such that:

f ◦ g = idY , g ◦ f = idX

We write it as X ∼= Y and say X and Y are isomorphic.

Example of Categories:
Set is (sets, functions).
Top is (topological spaces, continuous functions)
Ab is (abelian groups, homomorphisms)
Morphisms need not be functions!!
A group can be viewed as a category with one object. Elements of the group is the
set of morphisms, and all morphisms are invertible.
Suppose G = {1, T} of order 2. Then, we have:

TT id

Where T ◦ T = id
We let Ch be the category of chain complexes.
The objects will be chain complexes. What are the morphisms?
Recall that Chain complexes are C• = (C∗, ∂∗) where:

Cn+1 Cn Cn−1
∂n+1 ∂n

Where ∂n+1 ◦ ∂n = 0.
Morphisms are given by chain maps.

Definition (Chain map). f• : C• → C ′• is a sequence of homomorphisms fn : Cn →
C ′n such that:

fn−1 ◦ ∂n = ∂′n ◦ fn
For all n.
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We have the following commutative diagram:

Cn+1 Cn Cn−1

C ′n+1 C ′n C ′n−1

For example, if we have f : X → Y we have the chain map:

f# = S•f : S•X → S•Y

Given by:

(S•f)

(∑
i

niσi

)
:=
∑
i

ni(f ◦ σi)

This gives us:

SnX Sn−1X

SnY Sn−1Y

∂n

Snf

∂n

Lemma 11. A chain map f• : C• → C ′• induces f∗ = Hn(f•) : HnC• → HnC
′
• given

by [x] 7→ [fnx]

Remark. elements in ker ∂n
im ∂n+1

can be [x] [equivalence classes] or x+ im ∂n+1 [cosets].

We use equivalence classes:
x ∼ x′ ⇐⇒ x− x′ ∈ im ∂

Proof. fn(cycles) ⊂ cycles.
fn(boundaries) ⊂ boundaries.
Recall that cycle is ker ∂n.
Consider a cycle X. Then, ∂X = 0 =⇒ f(∂x) = 0 =⇒ ∂′f(x) = 0 =⇒ f(x) ∈
ker ∂′.
Boundary is im ∂n+1.
f(∂y) = ∂′f(y) ∈ im ∂′n+1.
Thus we have:

ker ∂n → ker ∂′n →
ker ∂′n
im ∂′n+1

This induces,

ker ∂n
im ∂n+1

→ ker ∂′n
im ∂′n+1

Now we move on to functors. Functors are an analogy of functions on Categories.
Consider two categories C and D. We want to define a functor between them.

Definition. A functor F : C → D will be an ‘assignment’ of objects and morphisms.
We have F : Ob C → ObD.
∀X,Y ∈ Ob C we have:

F : C(X,Y )→ D(F (X), F (Y ))

Then, F (f ◦ g) = F (f) ◦ F (g).
F (idX) = idF (X)
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So we can F a whole category:

X
f−→ Y

F (X)
F (f)−−−→ F (Y )

We have the singular functor taking topological spaces to chain complexes. We also
have functor taking chain complexes to abelian groups.

Top
S•−→ Ch

Hn−−→ Ab

We also have forgetful functor which forgets:

Ab→ Set

Ab→ Group

We have the category Gr of graded abelian groups.

Gr has objects A∗ = {A0, A1, A2, · · · } set of abelian groups, and morphisms A∗
f0−→

B∗.
Then we can write:

Top Ch Gr Ab
S•

Hn

H∗ Hn

Lemma 12. Consider a functor F : C → D. Then, X ∼= Y =⇒ F (X) ∼= F (Y ).

Corollary: X ∼= Y (homeomorphic) implies HnX ∼= HnY

Proof. X ∼= Y implies we have f, g so that f(X) = Y, g(Y ) = X so that f ◦ g =
idY , g ◦ f = idX .
Then, F (f) ◦ F (g) = F (f ◦ g) = F (idY ) = idF (Y ). Similar for g ◦ f . So, F (f) and
F (g) are isomorphisms and thus F (X) and F (Y ) are isomorphic.

Monday, 1/27/2025

Homotopy Invariance of Homology

Definition (Homotopy). H : X × I → Y I = [0, 1].
Homotpy is a ‘path’ of map Ht : X → Y where t ∈ [0, 1] is ‘time’. Ht(x) = H(x, t).

Definition. f, g : X → Y are homotopic if there exists H : X × I → Y such that
H0 = f,H1 = g.

If they’re homotopic we write f ≃ g.

Theorem 13 (Homotopy Theorem).

f ≃ g =⇒ H∗f = H∗g : H∗X → H∗Y

f∗ = g∗

Fact/Exercise: ≃ is a equivalence relation on TOP(X,Y )
[X,Y ] = TOP(X,Y )/ ≃= homotopy classes of map X → Y .

Suppose for X,Y , X
f←→
g
Y we have f ◦ g ≃ idX , X ∼= H∗Y .

For example, R2 − 0 ≃ S1. by x
f7−→ x
|x| and g = inclusion.

Straight line homotopy tx+ (1− t) x|x|
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Definition. X contractible if X ≃ pt.
eg R2 ≃ ∗

Definition. Homotopy Category hTOP.
Objects: Topological Spaces [NOT HOMOTOPY EQUIVALENCE CLASSES]
Morphisms: hTOP(X,Y ) = [X,Y ]. [These are Equivalence Classes]
Exercise: Composition is well defined. So, f ≃ f ′, g ≃ g′ =⇒ f ◦ g ≃ f ◦ g′. Then,
[f ] ◦ [g] := [f ◦ g]

Isomorphisms in hTOP

X,Y Isomorphic in hTOP ⇐⇒ X ≃ Y [homotopy equivalence].
So, homotopy theorem says homology factors through homotopy:

hTop Gr

TOP

H∗

H∗

Thus, X ≃ Y ⇐⇒ H∗X =⇒ H∗Y is really just a consequence of homotopy
theorem.

Definition. A ⊂ X, then A is a deformation retract of X ‘if we can deform all of X
into A’. Formally,
if ∃H : X × I → X such that:
∀x ∈ X,H(x, 0) = x,H(x, 1) ∈ A and H(a, 1) = a∀a ∈ A.
Suppose A ≃ X, A

i
↪−→ X,A

H1←−− X.
idA = H1 ◦ i, idX ≃

H
i ◦H1

eg Möbius strip (X) is homotopy equivalent to the cure circle A.

Definition. X ⊂ Rn is start shaped at p0 ∈ X if ∀p ∈ X, pp0 ⊂ X.

convex =⇒ star-shaped =⇒ contractable (by the straight line homotopy)
We can take (1− t)p0+⊤ = H(p, t).
eg the n-simplex ∆n and the prism ∆n × I are star-shaped.

Theorem 14. X start shaped =⇒ H∗(X) = Z or 0.

Corollary 15. H∗(∆
n) ∼= H∗(pt)

H∗(∆
n × I) ∼= H∗(pt).

Proof. Wlog σ : ∆n → X.
Syspension sσ : ∆n=1 → X:

sσ(t0, · · · , tn+1) =

(1− t0)σ
(

t1
1− t0

, · · · , tn+1

1− t0

)
, if t0 ̸= 1;

0, if t0 = 1.

We will show that if z is a n-cycle with n > 0 then z = ∂(sz) =⇒ z is a boundary.
Define: 0th face of sσ is σ.
(sσ) ◦ δ0 = σ
(sσ) ◦ δj+1 = s(σ ◦ δj) =⇒ s∂ + ∂s = idSnX ∀n > 0.
Thus if z ∈ SnX then ,
s∂z + ∂sz = z =⇒ ∂(sz) = z =⇒ z is a boundary.
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Algebra

Definition. Chain map f•, g• : C• → C ′• are chian homotopic if ∃ homomorphisms
hn : Cn → C ′n+1 ‘degree one’ such that:

∂′h+ hn−1∂n = fn − gn

Cn+1 Cn Cn−1

C ′n+1 C ′n C ′n−1

h
f−g

h

Wednesday, 1/29/2025

We write it as f• ≃
h
g if ∂′n+1hn + hn−1∂n = fn − gn. Then f• and g• are chain

homotopic.
Homotopy theorem: f ≃ g : X → Y =⇒ f∗ = g∗ : H∗X → H∗Y
⋆ Exercise: f• ≃ g• =⇒ Hn(f•) = Hn(g•) : Hn(C•)→ Hn(C

′
•).

Hint: (fn − gn)(cycle) =∈ boundary
⋆⋆ Hn(∆

n × I) = 0 for all n > 0.
∆n × I ⊂ Rn+1

convex =⇒ star shaped.
Homotopy: id : X × I → X × I
Let η1 ≃ η0 : X → X × I
η0(x) = (x, 0)
η1(x) = (x, 1)
What we want to show that our theorem is true in this case.

Lemma 16. ∃ homomorphism PXn : SnX → Sn+1(X × I), natural in X, such that
∂P + P∂ = S(η1)− S(η0).

Proof. Recall that Sn : TOP→ Ab, η0 : X → X×I =⇒ Sn(η0) : SnX → SnX×I =:
η0# is given by composition:

η0#

(∑
i

niσi

)
=
∑
i

ni(η0 ◦ σi)

We prove by induction on n.

Nn by ‘naturality’: X
f−→ Y and we have commutative diagram:

SnX SnY

Sn+1(X × I) Sn+1(Y × I)

(Hn) : ∂n+1P
X
n + PXn−1∂n = Sn(η1)− Sn(η0).

n = 0: 0 = P−1 : 0→ S0(X × I).
P0(σ)(t0, t1) = (σ(0), t1)
boundary of 1 chain is subtraction of midpoint.
∂P0(σ) = η1 ◦ σ − η0 ◦ σ
Assume PX0 , · · · , PX0 , · · · , PXn−1 are defined satisfying Hs and Ks.

Let ι = ιn = id∆n . Goal is to define P∆n

n (ι) ∈ Sn+1(∆
n × I).

We want Hn to hold.
So we want ∂P (ι) = η1#ι− η0#ι− P∂ι.
So we basically want to know whether η1#ι− η0#ι− P∂ι is a cycle.
We see ∂(η1#ι−η0#ι−Pδι). Since ηi# are chain maps they commute with ∂ therefore:
= η1#∂ι− η0#∂ι− ∂P∂ι
= η1#∂ι− η0#∂ι− (η1# − η0# − P∂)(∂i) = 0
⋆⋆ =⇒ cycles = boundaries.
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Choose Pnι such that:
∂Pnι = η1# − η0# − P∂ι.
Now, (Nn):
σ : ∆n → X,σ# : ι 7→ σ

Sn∆
n SnX

Sn+1(∆
n × I) Sn+1(X × I)

P

σ#

(σ×id)#

Define Pσ = (σ × id)#Pι

Theorem 17 (Homotopy Theorem). f ≃ g : X → Y =⇒ f∗ = g∗ : H∗X → H∗Y .

Proof. H : X × I → Y . We want hn : SnX → Sn+1Y such that:

∂h+ h∂ = H1# −H0#

Note: Hi = H ◦ ηi
We define hnσ := H#(Pnσ)
(∂h+ h∂)σ = ∂H#Pσ+H#Pn∂σ = H#(∂Pσ+P∂σ) = H#(η1# − η0#)σ = H1#σ−
H0#σ

Friday, 1/31/2025

Exact sequences
Long Exact Sequences (LES)
Short Exact Sequences (SES)
Mayer-Vietoris Exact Sequences (MVES)

A
α−→ B

β−→ C is exact if imα = kerβ
⇐⇒ imα ⊂ kerβ and imα ⊃ kerβ
Note that imα ⊂ kerβ ⇐⇒ β ◦ α = 0
A sequence Cn → Cn−1 → · · ·C1 → 0 if it is exact at Cn−1, · · · , C1.
Sequence,

· · · → Cn+1 → Cn → Cn−1 → · · ·

is exact if it is exact at Ci for all i. LES.
· · · → Cn+1 → Cn → Cn−1 → · · · is exact ⇐⇒ C• is a chain complex and H∗C• = 0.

0→ A
α−→ B is exact ⇐⇒ kerα = 0 ⇐⇒ α is injective / 1-1.

Dual: A
α−→ B → 0 is exact ⇐⇒ imα = B ⇐⇒ α is surjective / onto.

0→ A
α−→ B → 0 exact ⇐⇒ α is 1-1 and onto ⇐⇒ α is an isomorphism.

If A ↪→ B then 0→ A→ B → B/A→ 0 is exact.

If A
f−→ B then 0→ ker f → A

f−→ B → coker f → 0.
Short Exact Sequence:

Suppose 0→ A
α−→ B

β−→ C → 0

⇐⇒ α 1-1, β onto, imα = kerβ ⇐⇒ α 1-1, β : B/ imα
∼=−→ C → 0

0 A B C 0

0 α(A) B 0

∼=

α

=

β

∼= (β)−1

Canonical Example:
0→ Z/2→ Z/4→ Z/2→ 0 and 0→ Z/2→ Z/2⊕ Z/2→ Z/2→ 0.
Spaces A,B ⊂ X

14



A ∩B A

B X

i

j k

ℓ

Theorem 18 (Mayer-Vietoris Exact Sequence). If X = intA ∪ intB [eg X = A ∪
B,A,B open]
Then ∃ LES:

· · · → HnA ∩B
i∗⊕j∗−−−−→ HnA⊕HnB

k∗−ℓ∗−−−−→ HnX
∂−→ Hn−1A ∩B

· · · → H0X → 0

We need ∂[α]. If α is a cycle in X we have,

α ∼
homologous

αA + αB

Meaning α− (αA + αB) is a boundary.
Furthermore, ∂[α] = ∂[αA].
Homology of a circle S1.
Circle can be written as union of A = ∪ and B = ∩.
Then A ≃ pt,B ≃ pt, A ∩B ≃ 2pts which is S0.

H1S
1 ∂−→ H0A ∩B → H0A⊕H0B → H0S

1 → 0

0→ H1S
1 → Z2

1 1
1 1


−−−−−→ Z2 → H0S

1 → 0

Thus, H1S
1 = ker

[
1 1
1 1

]
= Z

[
1
−1

]
∼= Z

H0S
1 = coker

[
1 1
1 1

]
∼= Z.

0→ HnS
1 → 0→ =⇒ HnS

1 = 0.
For n > 0, the homology of Sn can be done similarly with 2 Dn.

HiS
n ∼=

{
Z, if i = 0, n;

0, otherwise.

Can be proven via MVES and induction on n.

Monday, 2/3/2025

Theorem 19. For n > 0, we have:

HiS
n ∼=

{
Z, if i = 0, n;

0, otherwise.

Proof. MVES + induction on n.
For n = 1:
Homology of a circle S1.
Circle can be written as union of A = ∪ and B = ∩.
Then A ≃ pt,B ≃ pt, A ∩B ≃ 2pts which is S0.

H1S
1 ∂−→ H0A ∩B → H0A⊕H0B → H0S

1 → 0

0→ H1S
1 → Z2

1 1
1 1


−−−−−→ Z2 → H0S

1 → 0

Thus, H1S
1 = ker

[
1 1
1 1

]
= Z

[
1
−1

]
∼= Z

H0S
1 = coker

[
1 1
1 1

]
∼= Z.

Thus it is indeed true for S1.

15



For Sn divide Let N =

0...
1

 and S ≡

 0
...
−1

. Write A = Sn − {S}, B = Sn − {B}.

Then, A ≃ {N}, B ≃ {S}, A ∩B ≃ Sn−1.
These are deformation retracts: One way it’s an inclusion, other way it is a retract.
i. A ≃ N : Use normalized straight line homotopy.

H : A× I → A, x 7→ (1− t)x+ tN

∥(1− t)x+ tN∥
We avoid the south pole to avoid division by 0.
Same for ii.
A ∩B: We don’t have north and south pole.
Idea: project and normalize.
Suppose x = (x0, · · · , xn) ∈ A ∩B.

Let r(x) := (x0,··· ,xn−1,0)
∥x0,··· ,xn−1,0∥

Then H(x, t) = (1−t)+tr(x)
∥∥ .

We’re essentially going along an arc to minimize our journey throuth the sphere.

i HiA ∩B HiA⊕HiB HiS
n

∼= Hi(S
n−1) ∼= Hi(pt)⊕Hi(pt)

0 Z Z⊕ Z Z
1 0 0 ?
...

n− 1 Z 0 ?
n 0 0 ?

Table 2: MVES for Sn

All question marks should be 0 except for the last one since it maps to Z.
Application for H∗S

n : Sn ≃ Sm =⇒ n = m.

Definition. A ⊂ X is a retract if ∃ continuous r : X → A such that r(a) = a∀a ∈ A.
A is a retract. r is a retraction.
Thus, retract means r is a left inverse of the inclusion map i : A→ X.
By functoriality, the same thing is true once we pass to homology.
r∗ ◦ i∗ = idH∗A =⇒ H∗X = i∗H∗A⊕ ker r∗.

Theorem 20 (Brouwer No Retraction Theorem). Sn−1 is not a retract of Dn.

Proof. We use contradiction. Assume ∃r : Dn → Sn−1 such that r
∣∣
Sn−1 = id.

Sn−1 Dn Sn−1i

id

r

Applying the functor Hn,

HnS
n−1 HnD

n HnS
n−1i∗

id

r∗

Dn is retractible. When n > 1 we have Hn−1D
n = Z.

Z 0 Z
id

Which cannot happen.
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Theorem 21 (Brower Fixed Point Theorem). Every f : Dn → Dn has a fixed point.

Proof. Assume there doesn’t exist a fixed point.
Then we can construct a retraction map r : Dn → Sn by drawing a line from f(x) to
x and intersecting it with boundary.

Relative Homology

Goal: exact of a pair A ⊂ X.

· · · → HnA→ HnX → Hn(X,A)
∂−→ Hn−1 → · · ·

Hn(X,A): “relative homology”. We extract ‘relative cycles’.
Chain is a formal linear combination. We require the boundary be in A.

Definition (Category of Pairs). Top2.
Objects: (X,A) where A ⊂ X open.
Morphism: (X,A)→ (Y,B) is a continuous map f : X → Y so that f(A) ⊂ B.

We have a functor Hn : Top2 → Ab.

SnA Sn−1A

SnX Sn−1X

∂

∂

This means we have SnX/SnA
∂−→ Sn−1X/Sn−1A

Relative Chain complex:

S•(X,A) =

{
S∗X

S∗A
, ∂

}

Wednesday, 2/5/2025

Suppose we have a Mayer-Vietoris Exact sequence.

· · · → Hn(A ∩B)
Hn(i)⊕Hn(j)−−−−−−−−−→ Hn(A)⊕Hn(B)→ HnX → Hn−1(A ∩B)→ · · ·

Then we have the following short exact sequence:

0→ coker(Hni⊕Hnj)→ HnX → ker(Hni⊕Hnj)→ 0

Then, HnX is determined upto an extension.
If coker = Z/2, ker = Z/2 then HnX can be Z/4 or Z/2⊕ Z/2.
If all of them are free [so maps are matrix maps] then we can use smith normal form.
This gives us: HnS

n ∼= Hn−1S
n−1.

Remark. Generator of HnS
n is represented by:

∆n → ∆n/∂∆n ∼= Sn

or,

∂n+1(∆
n+1 → ∆n+1)

aka sum of top simplicies of ∂∆n.
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Relative Homology

Consider the pair (X,A) with A ⊂ X.

Definition (Singular Relative Chain Complex).

S•(X,A) =
{
S∗(X,A), ∂

}
· · · → Sn+1(X,A)

∂n+1−−−→ Sn(X,A)
∂n−−→ Sn−1(X,A)→ · · ·

Sn(X,A) := SnX/SnA

[Quotient of free abelian group, basis is a subset. So quotient basis is the complement,
quotient is free abelian]
Then it is a free abelian group with basis:{

σ : ∆n → X

∣∣∣∣σ(∆n) ⊈ A

}
∂ : Sn(X,A)→ Sn−1(X,A)

induced by ∂ : SnX → Sn−1X.
or ∂(c+ SnA) = ∂c+ Sn−1A

Definition (Relative Homology). Relative homology is the homology of the chain
complex:

Hn(X,A) = Hn(S•(X,A)) =
ker ∂n

im ∂n
=
Zn(X,A)

Bn(X,A)

∼=←− π−1(Zn(X,A))

π−1(Bn(X,A))
=

{c ∈ SnX | ∂c ∈ Sn−1A}
{c ∈ SnX | ∃d ∈ Sn+1X, s.t.∂d− c ∈ SnA}

Example: Hn(D
n, Sn−1) ∼= Z

For all n we have Hn : Top2 → Ab or we can consider H∗ : Top
2 → Gr.

We have maps induced by morphisms: f(X,A)→ (Y,B) s.t. f(A) ⊂ B.
We have a corresponding map of chain compplexes:

S•f := f# := S•(X,A)→ S•(y,B)

H∗f = f∗ : H∗(X,A)→ H∗(Y,B)

It is a chain map [aka it commutes with the boundary] [see above].

Homotopy Invariance

Suppsoe we have a homotopy H : X × I → Y so that H(A× I) ⊂ B.
Let f = H0, g = H1.
We write f ≃ g.

Theorem 22. f∗ = g∗ : Hn(X,A)→ Hn(Y,B)

Proof. Same as absolute case.

If we want to be fancy we can say:

H∗ : hTop
2 → Gr

Objects are pairs of topolocial spaces, morphisms are homotopy classes of morphisms.

Remark. (X,∅)→ (X,A) is a map of pairs.
Clear from defiinion that Hn(X,∅) = HnX so we have a map HnX → Hn(X,A).
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Theorem 23 (LES of a pair). ∃ LES like this:

· · · → HnA
inc−−→ HnX

induced−−−−−→ Hn(X,A)
∂−→ Hn−1A→ · · ·

Example:

HnD
n︸ ︷︷ ︸

=0

→ Hn(D
n, Sn−1)→ Hn−1S

n−1 → Hn−1D
n︸ ︷︷ ︸

=0

=⇒ Hn(D
n, Sn−1) ∼= Z

Hi(D
n, Sn−1) ∼=

{
Z, if i = n;

0, otherwise.

Generator ∆n → ∆n.

Proof. We have a short exact sequence of chain complexes:

0→ S•A→ S•X → S•(X,A)→ 0

So, all maps are chain maps.
It is levelwise a SES of abelian groups.

∀n, 0→ SnA→ SnX → Sn(X,A)→ 0

Lemma 24 (Zig-Zag Lemma). (Theorem 2.16 of Hatcher) Slogan: SES of chain
complexes gives a long exact sequence in homology.

0→ A•
i−→ B•

j−→ C• → 0

· · · → HnA•
i∗−→ HnB•

j∗−→ HnC•
∂−→ Hn−1A• → Hn−1B•

Zig-Zag lemma =⇒ LES of pair.
Proof of Zig-Zag lemma: diagram chasing.
We need to define the boundary map ∂. Also, we need to prove exactness at the
following: HnA,HnB,HnC.
We have 6 inclusions ⊂⊃. Look at Hatcher!
∂ : HnC → Hn−1A, ∂[c].

0 An Bn Cn 0

0 An−1 Bn−1 Cn−1 0

b7→c cycle

b7→∂b

a7→∂b
i

∂[c] = [i−1∂j−1c] ∈ Hn−1A

∂zz = i−1∂j−1
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Friday, 2/7/2025

Theorem 25 (Zig-Zag Lemma). A SES:

0→ A•
i−→ B•

j−→ C• → 0

Induces a LES on homology:

· · · → HnA•
i∗−→ HnB•

j∗−→ HnC•
∂−→ Hn−1A0• → · · ·

Proof. First we explicitly define the boundary map ∂ : HnC• → Hn−1A• given by
∂ = i−1∂Bj−1.
Suppose c ∈ ker ∂c. From surjectivity of j we can choosee b ∈ Bn such that jb = c.
j∂Bb = ∂cjb = ∂cc = 0.
Thus, c ∈ ker ∂c. Then we can find a such that i(a) = ∂Bb.
We define ∂[c] = [a].
Details:
a is a cycle. i∂Aa = ∂Bia = ∂B∂BB = 0. i is injective =⇒ ∂Aa = 0.
[a] is independent of the choice of b. Suppose jb = c = jb′. Then there exists a′′ such
that ia′′ = b− b′.
We choose a, a′ such that ia = ∂Bb, ia′ = ∂Bb′. Then a− a′ = ∂Aa′′ =⇒ [a] = [a′] ∈
Hn−1A
[a] is independent of the choice of c. Suppose c− c′ = ∂c′′. We can find b′′ such that
j(b′′) = c′′. Then ∂b′′ 7→ c− c′. Thus, ∂[c− c′] = [0]. Thus, ∂[c] = ∂[c′]

Monday, 2/10/2025

Reduced Homology, Excision

Preview of Redued Homology: suppose X is path connected. Then,

H̃nX =

{
HnX, if n > 0;

0, if n = 0 and X is path-connected.

Definition (Augmentation). ε : S0X → Z,
∑
i niσi 7→

∑
i ni

Note: ε ◦ ∂1 = 0
ε(∂1(σ : ∆1 → X)) = ε(σ(1)− σ(0)) = 1− 1 = 0

Definition. H̃nX is the homplogy of the agumented chain complex:

· · · → S2X → S1X → S0X
ε−→ Z→ 0

n > 0 H̃nX = HnX
SES 0→ ker ε

im ∂1
→ S0X

im ∂1

ε−→ Z→ 0

0→ H̃0X → H0X
ε−→ Z→ 0

H̃0X = Z(# of p.c.)−1

X0 ∈ X
H̃0X → H0X → H0(X,x0)

H̃0X is subgroup, H0(X,x0) is quotient. They’re isomorphic.
Why bother?

i) H̃∗(pt) = 0

ii) Mayer Vietoris works with H̃.

· · · → H̃nA ∩B → H̃nA⊕ H̃nB → H̃nX
∂−→

eg consider the X − S1 case.
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0→ H̃1(S
1)→ H̃0(S

1 −N − S)︸ ︷︷ ︸
∼=Z

→ · · ·

Thus H̃1(S
1) ∼= Z

iii) H̃nS
n ∼= Z ∀n ≥ 0. In particular, H̃0(∅) ∼= Z.

iv) H̃nS
n ∼= H̃n+1(S

n+1). Suspension isomorphism.

v) Define H̃i(X,A) = H̃i(X,A). Then we have SES:

→ H̃iA→ H̃iX → H̃i(X,A)→ · · ·

vi) For “good pairs” (X,A),

Hi(X,A)→ Hi(X/A,A/A)

Hi(X,A)
∼=−→ H̃i(X/A)

vii) There exists a cofibration exact sequence for good pairs:

→ H̃iA→ H̃iX → H̃i(X/A)→ H̃i−1A

Excision

Definition (Triad). A triad (X;A,B) means we have a topological space X and
A,B ⊂ X. Then,

S
{A,B}
• := S•A+ S•B ⊂ S•X

generated by σ : ∆n → A or ∆n → B.

Lemma 26. Let (X;A,B) be a triad. Then TFAE:

1) H∗(B,A ∩B)
∼=−→ H∗(X,A) is an isomorphism

2) H∗(S•A+ S•B)
∼=−→ H∗X

Definition. (X;A,B) is a excisive triad if i or/and ii holds.

Theorem 27 (Excision Theorem). X = intA∪ intB =⇒ (X;A,B) is excisive triad.

Proof of Lemma. Sublemma (∗): There exists SES:

0→ S•B

S•A ∩B
→ S•X

S•A
→ S•X

S•A+ S•B
→ 0

Sublemma (∗∗): for all SES

0→ C ′• → C• → C ′′• → 0

H∗(C
′)
∼=−→ H∗(C

′′) ⇐⇒ H∗(C
′′
• ) = 0

Sublemma ∗ proof: We use Noether’s isomorphism theorems. We have the following
SES:

0→ S•A+ S•B → S•X →
S•X

S•A+ S•B
→ 0

Mod out by S•A:
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0→ S•A+ S•B

S•A
→ S•X

S•A
→ S•X

S•A+ S•B
→ 0

Note that S•A+S•B
S•A

∼= S•B
S•A∩B so we’re done.

Sublemma (∗∗) follows from the zigzag lemma.
Now onto the main proof:

(1)
(∗),(∗∗)⇐⇒ H∗

(
S•X

S•A+S•B

)
= 0

(∗∗)⇐⇒ (2)

Proposition 28. If (X;A,B) is excisive then there exists Mayer Vietoris Exact
sequence:

Proof. First Proof:

0→ S•(A ∩B)
(ij)−−→ S•A⊕ S•B

k−l−−→ S•A+ S•B → 0

Apply zigzag lemma and 2 =⇒ Mayer Vietoris.
Second Proof:

Hn(A ∩B) HnB Hn(B,A ∩B) Hn−1A ∩B

HnA HnX Hn(X,A) Hn−1A

∼=(2)

∂

Wednesday, 2/12/2025

We give examples of excisive triads.

(Sn;Sn − S, Sn −N)

(Sn;Sn+, S
n
−)

(I; {0},∅)

Goal is to discuss a proof of the Excision Theorem: If X = intA∪intB then (X;A,B)
is an excisive triad. This implies Mayer Vietoris.

Proof of Excision Theorem. We have H∗(S•A+ S•B)→ H∗X.
Is it onto? We want to check if γ ∈ SnX is homologous to α + β ∈ SnA+ SnB. So,
we want to find η such that ∂η = γ − (α + β). Idea: subdivide γ to α and β so the
tiny pieces all lie on A or B. We can do this by Lebesgue numbers.

We’re going to gack to simplices in v0, · · · , vp ∈ RN .
A geometric n-simplex ∆ = ⟨v0, · · · , vp⟩ = the convex hull.∑
i tivi ∈ ∆, 0 ≤ ti ≤ 1,

∑
ti = 1.

The center is called the barycenter b = b∆ =
∑

i vi
p+1 , the center of mass.

We have the barycentric subdivision ∆′. This will be a collection of p-simplices whose
union will be the whole thing.

∆′ =

{
⟨b, w0, · · · , wp−1⟩

∣∣∣∣⟨w0, · · · , wp−1⟩ ∈ barycentric subdivision of a facet of ∆

}
A facet of ∆ is given by ⟨v0, · · · , v̂i, · · · , vp⟩
We need the following theorem to prove excision theorem.
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Theorem 29 (Subdivision Theorem). See tom dieck, hatcher.
∃ chain β• = βX• : S• → S•, natural in X such that:

1) βX• ≃ idS•X chain homotopy natural in X. Reason: we want to make sure
homologically it doesn’t change things. As a consequence of this, image of cycle
is cycle.

2) βp(σ : ∆p → X) is supported in (∆p)′.

If βp(σ) =
∑
i niσi then σi(∆

p) ⊂ σ(τ) for some τ ∈ (∆p)′.

Note: natural inX means if we have f : X → Y then we have a commutative diagram:

S•X S•U

S•X S•Y

f#

βX
• βY

•
f#

For a chain homotopy hXp : SpX → Sp+1X to be natural means ∂h+h∂ = β− id and
we have the following commutative diagram:

SpX SpY

Sp+1X Sp+1Y

Proof. Construction of β.
Suppose we have convex D ⊂ RN and vertices v0, · · · , vp ∈ D. We have:

[v0, · · · , vp] : ∆p → ⟨v0, · · · , vp⟩∑
i

tiei 7→
∑
i

tivi

For v ∈ D define suspension map:

v· : SpD → Sp+1D

v · [v0, · · · , vp] = [v, v0, · · · , vp]
Let ιp : ∆

p → ∆p be the identity.
We define βXp by induction on p.
For p = 0 we have β0(σ) = σ [we cannot subdivide point].
We want [by naturality] βp(σ) = σ#βp(ιp)
βp(ιp) = b · βp−1(διp) ∈ Sp∆p

Proof of i, ii ommitted.
β1(σ) is given by formal difference between paths from b to each endpoint for example.

Suppose we have a metric space A. Recall that diamA = supa,a′ d(a, a
′).

Lemma 30. v0, · · · , vp ∈ RN . Then diam⟨v0, · · · , vp⟩ = maxi,j∥vi − vj∥.

Proof. Suppose a, a′ ∈ ⟨v0, · · · , vp⟩. Write down barycentric coordinates:
a =

∑
i tivi, a

′ =
∑
i t
′
ivi.

∥a− a′∥ =

∥∥∥∥∥∑
i

ti(vi)− a′
∥∥∥∥∥ =

∥∥∥∥∥∑
i

ti(vi − a′)

∥∥∥∥∥ ≤∑
i

ti∥vi − a′∥

≤

(∑
i

ti

)
max
i
∥vi − a′∥ ≤ max

i,j
∥vi − vj∥

Corollary 31. ∆ = ⟨v0, · · · , vp⟩ we have τ ∈ ∆′ and diam τ ≤ p
p+1 diam∆.
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Friday, 2/14/2025

Theorem 32 (Classical Excision Theorem). If Z ⊂ A ⊂ X,Z ⊂ intA, then,

H∗(X − Z,A− Z)
∼=−→ H∗(X,A)

Basically we can cut out (excise) Z.

Proof. Let Z = X −B. Then, B and Z are complements.
Z ⊂ intA ⊂ X ⇐⇒ X = intA ∪ intB.

Slogan: you can excise closed sets from open sets.
Suppose we have a knot S1 ∼= K ⊂ S3. Suppose we have the trefoil.
We can prove that the trefoil is not a circle by the fundamental group π1(S

3 − K)
but not homology!
One can use Seifert-Van Kampen theorem to show that π1(S

3 − K) = ⟨a, b | a3 =
b2⟩↠ ⟨a, b | a3 = b2 = 1, bab = a−1⟩
S3 non-abelian. Then, π1(S

3 −K) ≁= Z = π1(S
3 − S1) ∼= S1 × D̊2.

N(K) = tubuler neighborhood of K ∼= S1 ×D2 solid torus.

H∗(N(K), N(K)− S1)
∼=−→ H∗(S

3, S3 −K).
Also, H∗(N(K), N(K)−S1) = H∗(N(S1), N(S1)−S1) so S3−K is a homology circle
[H∗(S

3 −K) = H∗(S
1)].

[See: Massey Algebraic Topology]
Let v0, · · · , vp ∈ Rn. let ∆ = ⟨v0, · · · , vp⟩ = {

∑
i tivi|0 ≤ ti ≤ 1,

∑
i ti = 1}.

Lemma 33. Suppose x ∈ ∆. Then, supy∈∆∥x− y∥ = maxj∥x− vj∥

Proof.

∥x− y∥ =

∥∥∥∥∥x−∑
i

tiyi

∥∥∥∥∥ =

∥∥∥∥∥∑
i

ti(x− yi)

∥∥∥∥∥
≤
∑
i

ti∥x− yi∥ ≤

{∑
i

ti

}{
max
j
∥x− yj∥

}
= max

j
∥x− yj∥

Applying this twice, ∥x− y∥ ≤ maxi,j∥xi − xj∥
The j-th face of ∆ is δj∆ = ⟨vi, · · · , v̂j , · · · , vp⟩.
The barycenter b =

v0+···+vp
p+1 . Like the centroid.

Barycentric subdivision of ∆: It is going to be a collection of p-simplices that cover
∆.

∆′ =
{
⟨b, w0, · · · , wp−1⟩ | {w0, · · · , wp−1} ∈ (∂j∆)

′}
Corollary 34. τ ∈ ∆′ =⇒ diam(τ) ≤ p

p+1 diam∆.

Proof. We use induction on p. Suppose τ = ⟨b, w0, · · · , wp−1⟩.
Case 1: diam τ = ∥wi−wj∥. ⟨w0, · · · , wp−1⟩ ∈ (∂j∆)′ =⇒ ∥wi−wj∥ ≤ p−1

p diam ∂j∆

by inductive hypothesis and < p
p+1 diam∆.

Case 2: Suppose diam τ = ∥b− wi∥.
∥b− wi∥ ≤ ∥b− vj∥ for some j by the lemma.

∥b− vj∥ =

∥∥∥∥∥ 1

p+ 1

∑
k

vk − vj

∥∥∥∥∥ =

∥∥∥∥∥ 1

p+ 1

(∑
k

vk − vj

)∥∥∥∥∥
≤ 1

p+ 1

∑
k

∥vk − vj∥ ≤
1

p+ 1

∑
k ̸=j

max
l
∥vl − vj∥ =

p

p+ 1
diam∆

As we subdivide we have limk→∞

(
p
p+1

)k
= 0 which is the point.
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Proposition 35. If X = intA∪ intB and c ∈ SpX is some chain then ∃k such that,

βk ⊂ SpA+ SpB

k is the subdivision operator.

This uses the Lebesgue Number Theorem [a fact about comapct metric spaces]:

Theorem 36. Let U be an open cover of a compact metric space (A, d) then, ∃ϵ > 0
[called the Lebesgue number] such that if we have B ⊂ A such that diamB < ϵ then
∃O ∈ U such that B ⊂ O.

Using the theorem we can prove the proposition.

Proof of Proposition. It suffices to prove this when c = σ : ∆p → X. We choose a
Lebesgue number ϵ for the open cover

{
σ−1 intA, σ−1 intB

}
.

Choose k such that
(

p
p+1

)k
< ϵ.

Part ii of the subdivision theorem implies supp(βkσ) is contained in (∆p)k.
i.e. βkσ =

∑
i niσi.

σi(∆
p) ⊂ σ(τ) for some τ ∈ (∆p)k.

diam τ ≤
(

p
p+1

)k
ϵ

Therefoore, τ ⊂ σ−1 intA or σ−1 intB.
Therefore, σ(τ) ⊂ intA or σ(τ) ⊂ intB.

Monday, 2/17/2025

Recall subdivisin theorem.

Theorem 37 (Subdivision Theorem). There exists chain map βX• ≃ id : S•X → S•X
natural in X and supported in barycentric subdivision.

Proposition 38. Let X = intA ∪ intB. For chain c ∈ SpX, ∃k such that if we
subdivide k times aka take βkc, we have:

βkc ∈ SpA+ SpB

We want to prove the following theorem.

Theorem 39 (Excision Theorem). Suppose X = intA ∪ intB. Then,

H∗(S•A+ S•B)
∼=−→ H∗X

Chain homotopic implies we have equation:

βX• − id = ∂hX + hX∂

Natural means if we hafe f : X → Y we have the following commutative square:
f# ◦ βX = βY ◦ f#, f∗ ◦ hX = hY ◦ f#.
Claim: βk• ≃ id.
Proof: β ≃ id, f ≃ g =⇒ f ◦h ≃ g ◦h( =⇒ βi ≃ βi+1). ≃ is an equivalence relation.

Proof of Excision Theorem. Onto: Let [γ] ∈ HpX be a cycle. Then ∃k such that
βkγ ∈ SpA+ SpB.
βk − id = ∂h+ h∂.
βkγ − γ = ∂hγ +��h∂γ =⇒ γ = βkγ + ∂(hγ) =⇒ [γ] = [βkγ] ∈ HpX.
[βkγ] ∈ imHp(S•A+ S•B).
1-1: Suppose [γ] ∈ ker(Hp(S•A+ S•B)→ HpX). Then we can write γ = ∂η. There
exists k such that βkη ∈ Sp+1A+ Sp+1B.
βkη − η = ∂hη + h∂η. Apply ∂.
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∂βkη − ∂η = ∂h∂η

∂βkη − γ = ∂hγ

Similarly, γ = ∂(βkη − hγ) ∈ ∂(Sp+1A+ Sp+1B)
SInce h is natural, γ = α + β, hγ = hα + hβ ∈ Sp+1A+ Sp+1B, [γ] = 0 ∈ Hp(S•A+
S•B).

Remark. Let U be a family of subsets from X such that X =
⋃
Ai∈U intAi and let

SUX =
∑
S•Ai

Proof of excision theorem shows that:

H∗(S
U
• X)

∼=−→ H∗X

Lemma 40 (Five Lemma). If we have a commutative diagram with exact rows [like
the following:]

A B C D E

A′ B′ C ′ D′ E′

α β γ δ ϵ

If α, β, δ and ϵ are isomorphisms, then so is γ.

Proof. γ injective: Suppose γ(c) = 0.
a 7→ b, b 7→ c. a′ 7→ b′, b′ 7→ 0. Thus, c = 0.
γ surjective: Suppose c′ ∈ D′ so that c′ 7→ d′ 7→ 0 then we have d 7→ 0, preimage
gives us c 7→ d 7→ 0. Since b′ 7→ c′ − im c 7→ 0, we are going to adjust c by the image
of b.
c+ im b 7→ im c+ c′ − im c = c′.

Typical application (2/3): let isomorphisms f : (X,A) → (Y,B) with f∗ : H∗X →
H∗Y and f∗ : H∗A→ H∗B. Then, f∗ : H∗(X,A)→ H∗(Y,B).
Proof:

· · · HnA HnX Hn(X,A) Hn−1A Hn−1X · · ·

· · · HnB HnY Hn(Y,B) Hn−1B Hn−1Y · · ·

∼= ∼= ∼= ∼=

Quotient Topology

Let X be topological space, ∼ an equivalence relation. Then X/ ∼ is the set of
equivalence classes with π : X → X/ ∼.

Definition. U ⊂ X/ ∼ is open in X/ ∼ ⇐⇒ π−1(U) is open in X.

Wednesday, 2/19/2025

We can rephrase this.

Definition (Saturated). V ⊂ X is saturated if V is a union of equivalence classes,
i.e. if we have v ∈ V, v′ ∼ v =⇒ v′ ∈ V .

Then, open sets in X/ ∼ are the image of saturated open sets in X.

Definition. q : X → Y is a quotient map if q is continuous, q is onto and U is open

in Y ⇐⇒ q−1U is open in X.

Idea: Quotient Topology = Quuotient Map. X → X/ ∼ is a quotient map! Further,
if q : X → Y is a quotient map we can define an equivalence relation on X: x ∼ x′ if
q(x) = q(x′). Then, Y ∼= X/ ∼q. So the equivalence classes are q−1y.
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Universal Property of Quotient Topology

Suppose we have a continuous f : X → Z that is constant on equivalence class. Then
it factors through the quotient:

X Z

X/ ∼

f

f

Theorem 41 (Universal Property of Quotient Map). Given the following Commu-
tative Diagram:

X Z

Y

f

q h

such that f is continuous and q is quotient map, then h is continuous.

Recognition of Quotient Map

q : X → Y is continuous, onto.
q open map =⇒ q quotient map.
q(open) are open.
q closed map =⇒ q qm.
q(closed) are closed.

Jim’s Favorite Trick

If f : X → Y is continuous, X compact and Y Haussdorff then if X is

{
onto

bijective

}
then f is a

{
quotient map

homeomrophism

}
Proof. Idea: Closed subsets of compact spaces are compact.
Idea: A compact subset of a Hausdorff space is closed.
Then f : X → Y is closed.

Idea: if we have A ⊂ X then we can create X/A := X/ ∼A:
a ∼A a′ ⇐⇒ a, a′ ∈ A.
This isn’t an equivalence relation, this is just a relation. There is an equivalence
relation: we need to add the condition x ∼A x.
Then, open sets in X/A are unions of open sets on X disjoint from A and open sets
in X containing A.
Claim: Dn/Sn−1 ∼= Sn.

Consider the map Dn → Rn ∪ {∞} t−→∼= Sn by stereographic projection, x 7→ 1
1−|x|x

Dn Sn

Dn/Sn−1

is a quotient map by JFT, continuous bijection, hence homeomorphism by JFT.

Definition. (X,A) is a good pair if:

H∗(X,A)
≈−→ H∗(X/A,A/A)
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Note: H∗(X/A,A/A)
≈−→ H̃∗(X/A).

Then this is the same as:

H∗(X,A)
≈−→ H̃∗(X/A)

eg (Dn, Sn−1) is a good pair.
(X,A) is a good pair =⇒ there is a long exact sequence:

H̃nA→ H̃nX → H̃n(X/A)→ H̃n−1A→ H̃n−1X

Theorem 42. If A ⊂ V ⊂ X, A closed, A ⊂ intV and A → V is a deformation
retract then (X,A) is a good pair.

eg (Dn, Sn−1) is a good pair.
The proof requires exicision and homotopy invariance and the five lemma.

Friday, 2/21/2025

Note: the previous theorem is Hatcher’s definition of a good pair. These concepts are
not equivalent!

Proof. Consider the following diagram:

H∗(X,A) H∗(X,V ) H∗(X −A, V −A)

H∗(X/A,A/A) H∗(X/A, V/A) H∗(X/A−A/A, V/A−A/A)

1 2

3

5 4

We want to prove that each of them is an isomorphism.
2 is isomorphism by excision.
3 is isomorphism since we removed A and then modded out A, so they’re in fact the
same spaces.
4 is isomorphism by excision.
1 and 5 are isomorphisms by homotopy invariance of homology and five lemma (cf
HW ex 2). We have something like this:

HnA HnX Hn(X,A) Hn−1A Hn−1X

HnV HnX Hn(X,V ) Hn−1V n Hn−1X

∼= ∼= ∼= ∼=

Degree

We can talk about the degree of a map f : Sn → Sn. The degree is an integer. Think
about winding number.
f : Sn → Sn induces HnS

n → HnS
n. Easier to consider H̃nS

n → H̃nS
n. These are

infinite cyclic groups so the map is a multiplication, thet number is deg f .

H̃nS
n ·(deg f)−−−−−→ H̃nS

n

We have the following property:

1) deg id = 1.

2) deg(f ◦ g) = (deg f)(deg g).

3) Due to Hopf: deg f = ±1 ⇐⇒ f is homotopy equivalence.

4) f not onto =⇒ deg f = 0.
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5) deg(f : H̃0(S
0)→ H̃0(S

0)) ∈ {−1, 0, 1}.

6) Consider the antipodal map A = − id : Sn → Sn given by A(x) = −x.
deg(− id) = (−1)n+1 = det(−In+1)

7) f : Sn → Sn with no fixed point then deg f = (−1)n+1 [HW]

8) f : Sn → Sn, f(x) ̸= −x∀x =⇒ deg f = 1.

9) global degree = local degree, deg f = #f−1(x).

10) deg(z → zn) = n, S1 → S1.

11) M ∈ O(n) =⇒ degM = detM .

Proof. 1 and 2 follow from functoriality: H̃n : Top→ Ab is a functor.
3: ⇐= : if f is homomotpy equivalence then there is a homotopy inverse g, then
(deg f)(deg g) = 1 =⇒ deg f = ±1. =⇒ is a deep theorem of Hopf. We will not
prove it in this class.
4: We need lemma.

Lemma 43. If f : Sn → Sn, x0 /∈ f(Sn) then f ≃ const−x0
: we’ll take the straight

line homotopy:

tf(x) + (1− t)(−x0)
∥tf(x) + (1− t)(−x0)∥

Thus deg f = deg(c−x0
).

Sn Sn

{−x0}

c−x0

H̃nS
n H̃nS

n

H̃n(pt) = 0

Recall H0S
0 has basis

[
σ1 : ∆0

e0
−→
7→

S0

1

]
,

[
σ−1 : ∆0

e0
−→
7→

S0

−1

]
H̃0S

0 then has basis the kernel, which is [σ1]− [σ−1].
deg(id : S0 → S0) = 1,deg(const : S0 → S0) = 0.
degA =?A∗([σ1]− [σ−1]) = [σ−1]− [σ1], degA = −1.

Lemma 44. If f : Sn → Sn has no fixed points then f ≃ − id = A.
Once again consider the normalized straight line homotopy:

tf(x) + (1− t)(−x)
∥tf(x) + (1− t)(−x)∥

Monday, 2/24/2025

Recall Antipodal Map A = − id : Sn → Sn.

Proposition 45. deg(A) = (−1)n+1.
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Proof. We can write A as a composition of reflection through hyperspheres:

A = R0 ◦ · · · ◦Rn
Where Ri flips the i’th coordinate:

Ri(x1, · · · , xi, · · · , xn) = (x0, · · · ,−xi, · · · , xn)

It is a reflection throuh hypersphere.
These reflections have the same degree since they’re conjugates. Let hi be the swap
of x0 and xi. Then, Ri = hi ◦R0 ◦ h−1i .
Then deg(Ri) = deg(hi) deg(R0) deg(h

−1
i ) = deg(R0).

It is enough to prove deg(R0) = −1.
We use induction to prove this.
n = 0 there’s nothing to prove. Assume true for n− 1.
MVES is natural, ie if we have f : (X;A,B) → (X ′, A′, B′), f(A) ⊂ A′ of excisive
triads, then:
Thus there exists a commutative ladder of MVES:

· · · HiX Hi−1(A ∩B) · · ·

· · · HiX
′ Hi(A

′ ∩B′) · · ·

∂

∂′

Consider:

R0 : (Sn;Sn − {e0}, Sn − {−e0})→ (Sn;Sn − {−e0}, Sn − {e0})

Thus we get:

H̃n(S
n) H̃n−1(S

n − {e0,−e0}) H̃n−1(S
n−1)

H̃n(S
n) H̃n−1(S

n−1 − {e0,−e0}) H̃n−1(S
n−1)

∼=

R0∗=−1

∼=

R0∗=−1 R0∗=−1

∼= ∼=

Remark. Suppose M ∈ O(n) ie MT = M−1. Then, M is also a composite of
reflection through hyperplanes thus degM = detM .

Hairy Ball Theorem

Slogans: Can’t comb the hairy ball
Every tangent vector field on S2 has a zero
Every vector field on S2 has a normal direction.
We make them precise.
Last one: suppose we have smooth v : S2 → R3. Then ∃p ∈ S2 such that v(p) ∈ Rp.
We call this a ‘cowlick’.

Definition. A tangent vector field on S2 is v : S2 → R3 such that v(x)·x = 0 ∀x ∈ S2.

Euler Characteristic χ(X) =
∑
i(−1)i rank(HiX).

If M is a closed manifold, can comb hairy M ⇐⇒ χ(M) = 0.
Will not prove this now.

Proof of Hairy Ball Theorem. First Proof: We use contradiction.
Let v : S2 → R3 be a tangent vector field. Then x ⊥ v(x) for all x ∈ S2. FTSOC
assume v(x) ̸= 0. Then we can normalize:

f(x) =
v(x)

∥v(x)∥

Then f : S2 → S2 with x · f(x) = 0∀x.
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Thus, ∀x ∈ S2, f(x) ̸= x, f(x) ̸= −x.
Thus we have straight line homotopies: f ≃ A, f ≃ id.
Thus, A ≃ id =⇒ 1 = −1.
Second Proof: We flow along the tangent vector. That gives us id ≃ A.

Wednesday, 2/26/2025

We compute the degree of fn : S1 → S1 where fn : z 7→ zn.
Then, f−1n (1) =

{
e2πik/n

}
, the n-th roots of 1.

Theorem 46. deg fn = n.

Local degree is counting the number of inverse images. So, this is essentially saying:
local degree is global degree, kinda.
H1S

1 is generated by a σ : ∆1 → S1. Then σ(t0, t1) = e2πit0 .

Proof. First Proof: We ‘chop up’ the circle into pieces, σ1, σ2, · · · , σn. Then, f(σj) =
σ.
σj(t0, t1) = e

2πi(j+t0)
n .

Claim: σ is homologous to σ1 + · · ·+ σn.
ie ∃γ such that ∂γ = σ − (σ1 + · · ·+ σn).
[Not gonna prove this]
Then, (fn)∗[σ] = (fn)∗[σ1 + · · ·+ σn] = [fn#

σ1 + · · ·+ fn#
σn] = [σ] + · · ·+ [σ] = n[σ]

Second Proof: recall that π1(S
1, 1) = [(I, {0, 1}), (S1, {1})].

π1(S
1, 1) ∼= Z.

For any I
α−→ S1 we have a lift I

α̃−→ R where R→ S1 is e2πit, then,

π1(S
1, 1)

∼=−→ Z is given by [α] 7→ α̃(1)− α̃(0).
Then, f̃n ◦ α(1)− f̃n ◦ α(0) = n(α̃(1)− α̃(0)) =⇒ π1(fn) = ·n
We have something called a Hurewicz Map π1(S

1, 1) → H1(S
1) given by [α : I →

S1] 7→ [α : ∆1 → S1].

π1(S
1, 1) π1(S

1, 1)

H1S
1 H1S

1

·n

∼= ∼=

=⇒ ·n

We recall suspension. Recall: Σ : Top→ Top is a functor.
ΣX = X×I

(x,0)∼(x′,0),(x,1)∼(x′,1) .

It is a functor, so if we have map f : X → Y we have suspension of a map Σf : ΣX →
ΣY
Given by [x, t] 7→ [f(x), t].
MVES shows:

H̃i(ΣX) H̃i−1(X)

H̃i(ΣY ) H̃i−1(Y )

∼=

(Σf)∗ f∗

∼=

Application: we have maps of arbitrary degrees. fn : S1 → S1 has deg fn = n.
Suspension =⇒ Σfn : S2 → S2 has degree n, repeated suspension implies we can
find map f : Sk → Sk with degree n.
Third Proof: global degree = local degree:

deg fn =
∑

x∈f−1(1)

deg fn

∣∣∣∣
x

= 1 + · · ·+ 1 = n

Suppose we have f : Sn → Sn, y in the image. We want to define degree of y.
y ∈ Sn is finite value of f if |f−1(y)| <∞.
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Suppose f−1y = {x1, · · · , xm}.
∃ open V ∋ y and open U1, · · · , Um containing x1, · · · , xm respectively, each open
disjoint such that f(Ui) ⊂ V .
In this situation, we define the local degree at xi:

Hn(Ui, Ui − xi)
f∗−→ Hn(V, V − y).

By hw, this is Z f∗−→ Z and we define deg f such that this map is · deg f .
Theorem: if y ∈ Sn is finite valued then deg f =

∑
deg f

∣∣
xi

Friday, 2/28/2025

Deviating from Hatcher, we ‘redefine’ local degree.
Consider f : Sn → Sn. Let x ∈ Sn, y = f(x) such that x is an isolated point of

f−1(y). Meaning, there exists a neighborhood of U of x such that U ∩f−1y = x. This
is equivalento to saying there exists a neighborhood V of y = f(x) and a neighborhood
U of x such that f(U) ⊂ V .
This is a generalization of a finite point.
If x is an isolated point of f , will local degree of f at x: deg f

∣∣
x
∈ Z.

Idea:

Hn(U,U − x) Hn(V, V − y)

Z Z

f∗

≈ ≈
deg f |

x

Issue: we want the Z to be the ‘same’.
Choose generator [Sn] ∈ HnS

n ⇐⇒ choose isomorphism HnS
n ∼= Z: Orientation.

Hn(U,U − x) Hn(V, V − y)

Hn(S
n, Sn − x) Hn(S

n, Sn − y)

HnS
n Hn(S

n)

Z Z

∼=

f∗

∼=

∼=

≈

∼=

≈
·deg f |

x

Remark: this is independent of choice of U and V .
Also: f : V → V is homeomorphism, then deg f

∣∣
X

= ±1.

Theorem 47 (Global Degree = Local Degree). Le f : Sn → Sn. If y ∈ Sn such that
f−1y is a finite set, then the global degree is sum of local degree:

deg f =
∑

x∈f−1y

deg f

∣∣∣∣
x

Proof. Suppose f−1y = {x1, · · · , xm}. Choose an open neighborhood V ∋ y and
disjoint open Uiνxi.
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Zm Z

⊕
iHn(Ui, Ui −X) Hn(V, V − y)

Zm =
⊕

iHn(S
n, Sn − xi) Hn(S

n, Sn − f−1y) Hn(S
n, Sn − y)

HnS
n HnS

n

Z Z

∼= ∼=

∼=∼=
∼=

∼=

f∗

∼=

∼=

· deg f

In the bottom Z we have 1 7→ deg f . But we can go all the way around the commu-

tative diagram, 1 7→

1...
1

 7→∑
i deg f

∣∣
xi
, thus they are indeed the same.

Example of map where local degree is 2: deg Σ(z → z2)
∣∣
N

= 2.

Definition. y ∈ Sn is a regular value of f : Sn → Sn if ‘f is a local homeomorphism

near f−1y’, ie Ui
≈−→ V ∀i.

Fact: If f : Sn → Sn is smooth and if f−1y = {x1, · · · , xm} and dfxiTxiS
n → TyS

n

is onto, then y is a regular value at f .

Theorem 48 (Sard’s Theorem). If f : Sn → Sn is smooth then almost all y ∈ Sn
are regular values.

Suppose we have a category C, objects X ∈ C and morphisms C(X,Y ).

Definition. A product of two objects X1, X2 ∈ C is a triple (X,X
π1−→ X1, X

π2−→ X2)
such that it is final in the class of triples. Meaning:

X

Y X

Y

∃!

π1

π2

i.e given fi : Y → Xi for all i, there exists unique f : Y → X such that πi ◦ f = fi.
In this case we write f = f1 × f2.
Note that the product is unique upto isomorphism by initial object argument.
Often we abuse notation and just call X the product.

Products exsit in Set, Top, Ring, Group (take X = X1 ×X2 the cartesian product)
but not in Field.

Monday, 3/3/2025

Functions into a product are easy since they’re determined by components.
Example: curve γ : R→ R2 given by γ(t) = (γ1(t), γ2(t)).

Definition (Infinite Product). Suppose we have {Xj}j∈J , ie we have J → Ob C, we
call J an index set. Then, the product of {Xj}j∈J is defined similarly:(

X, {πj : X → Xj}j∈J
)

Such that,
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Xj

Y X∃!

When C = Top we use the product topology.
Reversing all arrows give us coproducts also known as direct sum:

Definition. Coproduct of two objects X1, X2 is given by a triple:(
X,X1

i1−→ X,X2
i2−→
)
such that X is final.

X1

Y X

X2

i1

∃!

i2

We write f = f1 + f2.
Coproducts exist in Set, Top, Ab, Grp, Ring, CRing.
Coproducts are unique upto isomorphism.0

In Ab, the coproduct is given by the direct product, X = X1×X2, X1 → X,X2 → X
by a→ (a, 0) and b→ (0, b).
A1 ⊕A2 = A1 ×A2.
In Set and Top coproducts are called disjoint union.
X1

∐
X2, i1, i2

In Set, if X1, X2 are disjoint then let X1

∐
X2 = X1 ∪X2.

In general, let X1

∐
X2 = X1 × {1} ∪X2 × {2} ⊂ X1 ∪ x2 × {1, 2}

In Top, if X1, X2 are disjoint then we can deinfe X1

∐
X2 = X1 ∪X2.

In general, consider set theoretic disjoint unionX1

∐
X2, i1, i2 and define U ⊂ X1

∐
X2

open if and only if by definition i−11 U, i−12 U open.
Coproducts allow us to have an abstract definition of a Delta commplex.

X =

∐
(Jn ×∆n−1)

∼
In Grp, coproduct is the so calle free product.
In CRing, X1 ⊗Z X2

In Ring, free product.
Now we talk about ‘based spaces’ in Top∗.
Objects (X,x0)x0 ∈ X.

Morphisms (X,x0)→ (Y, y0) with X
cont−−−→ Y, x0 7→ y0.

Fund group functor π1 Top∗ → Grp. We often write X for (X,x0).

Coproduct in Top∗ is the wedge sum (one point union) given by X ∨ Y = X
∐
Y

x0∼y0 .

Example: Figure 8 is S1 ∨ S1.

Definition. To apply excision, we want (X,x0) to be well pointed.
If x0 is closed and ⊂ open U and x0 is a deformation retract of U then (X,x0) is well
pointed.

Lemma 49. a) HiX ⊕HiY
Hi(i1

∐
i2)−−−−−−−→

≈
Hi(X

∐
Y ).

b) If (X,x0) and (Y, y0) are well pointed then,

H̃i(X)⊕ H̃i(Y )
≈−→ H̃i(X ∨ Y )

c) If (X,x0) and (Y, y0) are welll pointed then πiX ∗ πiY
≈−→ πiX ∨ Y
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Wednesday, 3/5/2025

Today we do Pushouts and Adjunction Spaces.
Suppose we have a category C.

Definition. A Span is two morphisms with the same domain.

X

X1 X2

A Cospan is two morphisms with the same Codomain.

X1 X2

P

Definition (Pushout). A pushout of Span:

X

X1 X2

Is a Cospan:

X1 X2

P

which is ‘initial’: we have the following commutative square:

X X1

X2 P

Initial in the sense that:

X X1

X1 P

Y

∃!

Sometimes we write a pushout square as follows:

X X1

X2 P

⌜

Definition. We obtain the pullback by reverting the arrows:

P X1

X1 X
⌟
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Pushouts existt in Set, Top, Ab, Grp, Ring, CRing. It is ‘quotient of coproducts’
eg in Set and Top,

X X1

X2 P

g1

g2

P =
X1

∐
X2

g1(x) ∼ g2(x)∀x ∈ X
We write P = X1 ∪X X2.
In Ab:
P = X1⊕X2

⟨g1(x)−g2(x)|x∈X⟩
Grp: X1 ∗X X2

TOP:

ϕ X1

X2 P = X1

∐
X2

⌜

∗ X1

X2 P = X1 ∨X2

X ∗

X1 P = X1/X

Now, suppose U, V are open subsets of X or U, V are closed subsets of X.

U ∩ V U

V P = U ∪ V

The universal property follows from ‘pasting lemma’.

Theorem 50 (Seifert-van Kampen Theorem). If X = U ∪ V , both open and x0 ∈
U ∩ V , U ∩ V,U, V all path-connected then, the following is a pushout square

π1(U ∩ V ) π1(U, x0)

π1(V, x0) π1(X,x0) π1U ∗π1U∩V π1V

⌜

=

Slogan: π1 preserves pushouts.

Definition. f : X → Y is an embedding if f : X → f(X) is a homeomorphism. We
write X ↪→ Y .
If X ⊂ Y we have an induced embedding.

Definition (Adjunction Spaces). (See DK). h : A → B where A ⊂ C, we can look
at:

A B

C B ∪h C B
∐
C

h(a)∼a∀a∈A

h

=
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B ∪h C is called the adjunction space.
Slogan: Attach C to B along A.

Figure 2: Adjunction Space

Exercise from DK:
If A is closed in C,
B ↪→ B ∪h C
C −A ↪→ B ∪h C
Underlying set of B ∪h C is B

∐
(C −A).

Consider the following examples:

∗ B

C B ∨ C B ∪h:∗→B C=

A ∗

C C/A ∗ ∪h:A→∗ C=

Definition. n-cell is space homeomorphic to D̊n

Definition. X ∪ϕ:Sn−1→X Dn attaches n-cell to X.

Write X ∪ en = X ∪ϕ Dn

en open disk ⊂ X ∪ en
B = I2 square, n = 2, ϕ : S1 → I2.

Figure 3: Gluing n-cell on square

Definition (CW Complex). (Not complete definition) Built from ∅ by attaching
0-cells, 1-cells, 2-cells etc.

Monday, 3/10/2025

Recall: pushout:

A B

C P

f

g
⌜
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P is supposed to be initial. In the Top categry we can have the following construction:

P =
B
∐
C

f(a) ∼ g(a)∀a ∈ A

Definition (Adjunction Space).

Sn−1 X

Dn X ∪ϕ Dn X ∩ en

ϕ

χ
=

Definition (CW Complex). Definition A: Constructive, Start with 0-cells, 1-cells,
2-cells etc.
CW complex is a pair (X, {Xn}n=0,1,2,···) where X is a topological space and X0 ⊂
X1 ⊂ X2 ⊂ · · · ⊂ X is an increasing sequence of subspaces of X with the following
properties:

1) X0 discrete

2) ∃ a pushout diagram of the following form:

∐
Sn−1 Xn−1

∐
Dn Xn

⌜

3) X =
⋃
n≥1X

n

4) ‘Weak topology’ A ⊂ X open iff A ∩Xn ⊂ Xn open ∀n.

In this definition, Xn is called the n-skeleton of X.

Remark. Axiom 4 is unnecessary if dimX is finite, which means we stop adding on
sets after a while thusX = Xn for some n. ϕ are called attaching map, χ characteristic
map.

Examples: dimX = 1 ⇐⇒ X is a graph.
If X is a torus, then X0 is a point, X1 is the figure ∞ and X2 is the whole torus.

Figure 4: Torus CW Complex

Here ϕ = b−1a−1ba. Then,

S1 ∞

D2 torus

ϕ

There’s a more elegant way of expressing 4, which is:
X − colimn→∞Xn.
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X0 X1 X2 · · ·

X

Y

∃!

=⇒ function X → Y such that Xn → Y is continuous then X → Y is continuous.
Sn has two natural CW structures.
X0 = pt = X1 = X2 = · · · = Xn−1 ⊂ Xn = Sn = Xn+1.
Sn = e0 ∪ en. We can also write:
Sn = e0+ ∪ e0− ∪ e1+ ∪ e1− ∪ · · · ∪ en+ ∪ en−.
Dn = e0 + en−1 ∪ en

Sn−1 Sn−1

Dn Dn

ID=ϕ

⌜

S∞ = ∪Sn = {(x0, · · · ) ∈ R∞},
∣∣∑

i x
2
i

∣∣ = 1.

∨S1 =
∐
S1

∼

Definition. Definition B: Union of disjoint cells
(NOT DISJOINT UNION OF CELLS!!!).
CW complex is a pair (X, {enα}) is a Hausdorff space X with cells enα ⊂ X such that:

1) ∀x ∈ X, ∃!enα ∋ x [i.e. X is union of disjoint cells]

2) ∀enα, ∃χnα : Dn → enα such that χnα
∣∣ : D̊n ≈−→ enα homeomorphism.

3) Closure finite. enα → enα is contained in a finite union of cells of dim < n.

4) Weak topology: A ⊂ X closed ⇐⇒ A ∩ enα ⊂ enα [closed food sells]

This is by JHC Whiteheead.
Def A =⇒ Def B: Xn −Xn−1 is disjoint set of n-cells.
Def B =⇒ Def A: Xn = ∪ cells of dim ≤ n.

Wednesday, 3/12/2025

Proposition 51. A finite CW complex is compact

Proof. X = ∪χ(Dn
α) then X is finite union of compact spaces =⇒ X is compact.

Proposition 52. Converse: A compact CW complex is finite.

Idea: Let K ⊂ X consist of a point in each cell then K is discrete =⇒ K is closed
=⇒ K is compact =⇒ K is finite.
ėn = en − en boundary.
ėn ⊂ finite union of cells of dim ≤ n− 1.
Example of CW comple is delta complex.(
X,
{
σα : ∆̊n → X cells

})
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Figure 5: CW Complex, Delta Complex

S1 S1

D2 X

awful cont. map

⌜

X CW complex, not ∆-complex.

Definition. A subcomplex of a CW complex is a subset A ⊂ X such that (A, {A ∩
Xn}) CW complex or

(
A, {enα}enα⊂A

)
CW complex.

Proposition 53. Suppose K ⊂ X, (X, {Xn}) a CW complex.
Then, K is compact ⇐⇒ K closed, K ⊂ A ⊂ X finite subcomplex.

Cellular Homology

Suppose we have a CW complex (X, {Xn}).
Cellular chain complex C•X = · · · → Cn+1X → CnX → Cn−1X → · · ·.
Here, cellular chain CnX := Hn(X

n, Xn−1) ∼=
!
Z# of n-cells. CnX is called the relative

singular homology.

We also need boundary map. C.T.2 = Ze2 0−→ Ze1a + Ze1b → Ze0
We have the following LES:

CnX = Hn(X
n, Xn−1)

∂−→ Hn−1X
n−1 j−→ Hn−1(X

n−1, Xn−2)
∂cw(z) = [∂z].
Claim: C•X = (C∗X, ∂

cw) is a chain complex.
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Hn−1X
n−1

Hn+1(X
n+1, Xn) Hn(X

n, Xn−1) Hn−1(X
n−1, Xn−2)

HnX
n

∂ j

=0

Claim: (Xn, Xn−1) is a good pair.
Proof: Xn−1 ⊂ Xn−1 ∪∐χ

∐
Dn − {0} ⊂ Xn

CnX = Hn(X
n, Xn−1) ∼= H̃n(X

n/Xn−1) ∼= H̃n(∨Sn) ∼= ⊕n-cellsZ

Friday, 3/14/2025

We talk about why Hn(D
n, Sn−1) ∼= Z

Recall: good pair =⇒ H∗(D
n, Sn−1) ∼= H̃∗(D

n/Sn−1) ∼= H̃∗(S
n) ∼= (0, · · · ,Z, 0, · · · )

What are the generators?
id : ∆n → ∆n ∈ Hn(∆

n, ∂∆n) = Hn(D
n, Sn)

We have the notion of the boundary of a cell, ėn = en − en

Theorem 54 (Isomorphism Theorem). The following maps are isomorphisms.

i) Hn(D
n, Sn−1)

χ∗−→ Hn(en, ė
n)

q∗−→ H̃n(en/ė
n)→ H̃n(D

n/Sn−1) ∼= H̃n(S
n) ∼= Z

ii)
⊕

In
Hn(D

n, Sn−1)→ Hn

(∐
Dn,

∐
Sn−1

) χ∗+q−−−→ Hn(X
n, Xn−1)

q∗−→ H̃n(X
n/Xn−1) =

H̃n(∨Sn) ∼=
⊕

In
H̃n(S

n) ∼=
⊕

In
Z

iii)
⊕

α∈In Hn (e
n
α, ė

n
α)
∼=−→ Hn(X

n, Xn−1) = CnX

Proof. i and ii: q∗ arre isomorphism because good pairs.
Similarly, q∗ ◦ χ∗ is an isomorphism.
iii follows from i and ii.

We also have basis for CnX, it is the image of Hn(e
n
α, ė

n
α)s.

Definition. Oreintation for enα is a choice of generator [enα] ∈ Hn(e
n
α, ė

n
α).

{[enα]}α∈In give a basis for CnX
‘oriented n-cells’
It’s ok (???) to be sloppy and write enα ∈ CnX.

We have basis for CnX and Cn−1X given by [enα] and [en−1β ].

∂[enα] =
∑
β δβα[e

n−1
β ]

We want to find the matrix of ∂ where CnX
∂−→ Cn−1X. We essentially want to find

∂βα.
‘Degree of attaching maps’

Sn−1α
ϕα−−→ Xn−1 → Xn−1/Xn−2 = ∨In−1S

n−1 → Sn−1β

This is a map of sphere! Then we have degree, so we set deg = ∂βα.
Example: Torus T 2 has CW structure e0 ∪ e1a ∪ e1b ∪ e2.
We choose orientation on e2.

C2T
2 = Z[e2]

0
0


−−−→ Z[e1a]⊕ Z[e1b ]→ Z[e0].

∂[e2] = [e1a] + [e1b ]− [e1a]− [e1b ] = 0.
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Figure 6:

Figure 7:

Figure 8:

So, S1 ϕ−→ X1 proj−−−→ S1
a, since X

1 = S1
a∪S1

b , the projection goes around S1
a, then waits

at S1
b since that’s collapsed to a point, and then it goes back. This map has deg 0.
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Projective Space

RPn = space of lines through 0 in Rn+1

CPn = space of C-lines through 0 in Cn+1

This is difficult so we take quotient space.

RPn ∼= Rn+1−{0}
x∼λx

∼= Sn

x∼−x
∼= Dn

x∼−x when x is on the boundary .

Then the simplest way to look at RP 2 is the disk D2 where we identify opposite
points.
Same logic gives us RP 1 ∼= S1.
So, we have Sn → RPn double cover.

Monday, 3/24/2025

Was absent

Wednesday, 3/26/2025

Cellular Maps

HCW
∗
∼= Hsing

∗ X
Morphisms are people too:
Suppose we have CW (X, {Xn}), (Y, {Y n})

Definition. Continuous f : X → Y is cellular if:

f(Xn) ⊂ Y n

Example: id : S1 → S1 but with two different CW decomposition:

Thus, ̸ ⇐⇒ f(n-cell) ⊂ n-cell.
Then chain map f# = C•f : C•X → C•Y

CnX = Hn(X
n, Xn−1)→ Hn(Y

n, Y n−1) = CnY

=⇒ f∗ = H∗f : HCW
∗ → HCW

∗ Y
Thus we have the Category CW
Object: CW complexes.
Morphism: Cellular map
We have functors:

CW Ch GrZ
C•

HCW
∗

H∗

Theorem 55 (Cellular Approximation Theorem, CAT). Every continuous map f :
X → Y is homotopic to a cellular map.
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There is a relative version of it:
If A is a subcomplex of X and f

∣∣
A

is cellular then f ≃ cellular (rel A). Relative to
A meaning the homotopy map is identity on A, meaning H(a, t) = H(a, 0).
Proof ommitted.
Examples:

This is not cellular. But we can squeeze the bottom part into the point. So homotopic
to a cellular map.
id ≃ f cellular.
f((S1)0) ⊂ (S1)0.
f((S1)1) ⊂ (S1)1

Suppose k < l. Every g : Sk = e0 ∪ ek → sle0 ∪ el is homotopic to a cellular map, i.e.
constant map.
i.e. πkS

l = 0, π1S2 = 0.

Theorem 56. Suppose we have CW (X, {Xn}).
HCW
∗ X ∼= H∗X.

We need three lemmas.
L1: Hi(X

n, Xn−1) ≡ 0 for i ̸= n.

Proof. Slogan: Good pair. H∗(X
n, Xn−1) ∼= H̃∗(X

n/Xn−1) = H̃∗(∨Sn).

Corollary: HiX
n−1 ∼= HiX

n when i ̸= n− 1, n.

Proof. LES of pairs

L2: HnX
n−1 = 0

Proof. HnX
0 ≈−→ · · · ≈−→ HnX

n−2 ≈−→ HnX
n−1

L3: HnX
n+1 ≈−→ HnX

Proof. Compactness. If we have σ : ∆k → X then σ(∆k) ⊂ XN for some N , compact.
Any compact set intersects only a finite number of cells.
=⇒ S•X =

⋃
N S•X

N .
We check HnX

n+1 → HnX onto.
Take [α] ∈ HnX =⇒ ∃N s.t. α ∈ SnXN

Thus, Hn(X
n+1) ≃ Hn(X

N )→ HnX where the map is given by [α] 7→ [α].
Injectivity: suppose [α] 7→ 0 then α ∈ ∂β =⇒ β ∈ Sn+1X

N for some N .
HnX

n+1 → HnX
N is an isomorphism, but here [α] 7→ 0. Contradiction.

We prove the original theorem by combining L1, L2, L3.

Proof. Diagram Chase!
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Hn(X
n+1, Xn)
L1
=0

0 =
L2
HnX

n−1 Hn(X
n+1)

L3
= HnX

Hn(X
n)

Hn+1(X
n+1, Xn)

=Cn+1X

Hn(X
n, Xn−1)

=CnX

Hn−1(X
n−1, Xn−2)

=Cn−1X

Hn−1(X
n−1)

0 =
L2
Hn−1X

n−2

j

∂CW
n+1

∂

∂nCW

We have commutative, exact diagonals. Thus,
j : HnX

n ↣ ker ∂CW
n

j : im δ ↣ im ∂CW
n+1

Then,

HCW
n X =

ker ∂CW

im ∂CW
=
HnX

n

im ∂
= cok ∂ ∼= HnX

Friday, 3/28/2025

Euler Characteristic

χ(S2k) = 2, χ(S2k+1) = 0
χ(RP 2) = 1, χ(T 2) = 0
If we have an abelian group A:

Definition. {v1, · · · , vk} ⊂ A are linearly independent if:

n1v1 + · · ·nkvk = 0 =⇒ n1 = n2 = · · · = nk = 0

Definition. rankA = sup{k | ∃lin. ind.{v1, · · · , vk}}
= sup{k | ∃Zk ↪→ A}

Example: rankZ = 1
rankZk = k
rankZk ⊕ torsion = k
rankQ = 1
rankR =∞
rankQ/Z = 0
rankR/Z =∞
If we have subgroup s.t. [A : B] <∞ then rankA = rankB.

Definition (Euler Characteristic). For a space X,

χ(X) =

∞∑
i=0

(−1)i rankHiX

Defined if rankHiX <∞∀i, rankHiX = 0 for i≫ 0.
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χ(S2) = 1− 0 + 1 = 2
χ(figure 8) = 1− 2 = −1

Definition (Betti Numbers).

βi(X) := rankHiX

Lemma 57 (Additivity Lemma). If we have a SES:

0→ A→ B → C → 0

Then rankB = rankA+ rankC.

Proof. Special Case: suppose C is finitely generated. Then C = Zk ⊕ finite. Let
B

π−→ C. From the SES, we can restrict so that:

0→ A→ π−1Zk → Zk → 0

Thus, π−1Zk ∼= A⊕ Zk.
Also: finite index =⇒ rankB = rankπ−1Zk = rankA+ rankZk = rankA+ rankC.
General case: Use two things: rankA = dimQA⊗Q.
Q is a flat Z-module.
We have the following SES:

0→ A⊗Q→ B ⊗Q→ C ⊗Q→ 0

Thus, rankB = dimB ⊗Q = dimA⊗Q+ dimC ⊗Q = rankA+ rankC.

Theorem 58. If C• = {0 → Cn → · · · → C0 → 0} is a chain complex [so δ ◦ δ = 0]
and rankCi <∞∀i, then,

χ(H∗C) = χ(C∗)

Meaning: ∑
i

(−1)i rankHiC =
∑
i

(−1)i rankCi

Proof. Let Zi = cycles = ker(∂i : Ci → Ci−1)
Bi = boundaries = n im(∂i+1 : Ci+1 → Ci)
Hi = homology = Zi/Bi
We have SES:

0→ Bi → Zi → Hi → 0

0→ Zi → Ci → Bi−1 → 0

Additivity lemma =⇒ :∑
i(−1)i rankHi =

∑
i(−1)i(rankZi−rankBi) =

∑
i(−1)i rankZi−

∑
i(−1)i rankBi =∑

i rankZi +
∑
i(−1)i rankBi−1 =

∑
i(−1)i rankCi

Corollary 59. Corollary 1: Suppose X is a finite CW complex. Then,∑
i

(−1)i rankHiX =
∑
i

(−1)i# of i-cells

eg χ(S2) = v − e+ f

Corollary 60. Suppose we have an exact sequence:

0→ Cn → · · · → C1 → C0 → 0

Then, χ(C∗) = 0. ∑
i even

rankHiC =
∑
i odd

rankHiC
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Corollary 61. If 0→ C• → D• → E• → 0 is a chain complex then,

χ(H∗D•) = χ(H∗C•) + χ(H∗E•)

Proof. Zig-Zag lemma and the theorem.

Corollary 62. If (X,A) is a pair, then χ(X) = χ(A) + χ(H∗(X,A))

Corollary 63. If (X,A) is a good pair, then,

χ(X) = χ(A) + χ(X/A)− 1

Theorem 64 (Poincaré-Hopf). Let M be a closed n-manifold.

χ(M) = 0 ⇐⇒ can comb the hairy manifold

i.e. ∃ a nowhere 0 tangent vector field.

Monday, 3/31/2025

More Euler Characteristic

Let Σ be a surface which is a closed 2-manifold.

i) Orientable surfaces are classified by χ.

χ(S2) = 2, χ(T 2) = 0, χ(T 2#T 2) = −2, χ(T 2#T 2#T 2) = −4.
# is the connected sum.

Thus χ classifies orientable surfaces upto homeomorphism.

ii) Non-orientable surfaces are classified by Euler characcteristic.

χ(RP 2) = 1, χ(K = RP 2#RP 2) = 0, χ(RP 2#RP 2#RP 2) = −1, · · ·.

Surfaces are classified by Euler characteristic and orentiability.
Under connected sum #, the surfaces form a commutative monoid. The generators
of this monoid are: RP 2, T 2.
Relation: RP 2#T 2 = RP 2#RP 2#RP 2.
Let Σ be a Riemannian surface now [meaning we have a metric and can measure
lengths].
Classical way: embed Σ2 ⊂ R3.
Then we have curvature K : Σ→ R.

Theorem 65 (Gauss-Bonnet Theorem).∫
Σ

K dS = 2πχ(Σ)

Let p ∈ Σ be a point. K > 0 at p means the surface lies on one side of tangent plane
[think a sphere]. K < 0 means the surface lies on both sides of a tangent plane [think
hyperboloid].
If K ≡ 1 that is a sphere. Then S2 = 4π.
In a torus,

∫
T 2 K dS = 2πχ(T 2) = 0. On the ‘outer ring’ K > 0 and on the inner

ring K < 0.
Even in weirdo embeddings in R3 there must be one point with positive curvature.
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Hatcher 2B (or not 2 B?)

Goal: Prove Jordan separation theorem.

Theorem 66. Let h : Sn−1 ↪→ Sn [or Rn].
Then Sn − h(Sn−1) has two components.

Another Goal: Prove Alexander duality.

Theorem 67. Let h : S1 ↪→ S3 be a knot. Then H1(S
3 − S1) ∼= Z ∼= Z.

Also: meridian

Also: invariance of domain: open U ⊂ Rn, h : U → Rn 1-1, then U
≈−→ h(U).

Also one point compactification: Sn − ∂ ∼= Rn ⇐⇒ Sn = Rn ∪ {∞}.

Theorem 68 (Boring Theorem). ∀h : Dk ↪→ Sn embedding, then,

H̃∗(S
n − h(Dk)) = 0
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Also: Alexander horned spphere.
H ∼= D3, π1(R3 −H) ̸= 1, H1(R3 −H) = 0. Recursively:
The meridians of horn bound a surface????

Proof. (Proof of Boring Theorem) We induct on k. k = 0 : Sn − pt ∼= Rn
Assume true for k − 1.
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Replace Dk by the ‘cube’ Ik = [0, 1]k.
Assume, for the sake of contradiction: there exists a nonzero homology class 0 ̸= [α] ∈
Hi(S

n − h(Ik)).
Claim 1: we ‘chop’ into pieces until dimension is k − 1. Formally: in the k = 1 case,
∃ interval I = I0 ⊃ I1 ⊃ I2 ⊃ · · · satisfying length of Ij = 1

2j and 0 ̸= [α] ∈
H̃i(S

n − h(Ij)).

Claim 2L ∀ filtration of spaceX by open sets [ieX0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ X,X = ∪Xj ],

If [α] ∈ ker(H̃1(X0)→ HiX) then ∃j such that [α] ∈ ker H̃i(X0)− H̃i(Xj).
Idea: Claim 1 involves MVES, claim 2 involves compactness.
Proof of claim 2: [α] ∈ ker H̃i(X0)→ H̃iX
Then α = ∂β, β =

∑
k nkσk, β ∈ Si+1X,σk : ∆k+1 → X.

supp(β) = ∪σk(∆i+1) compact.
Xj ∩ supp(β) is open cover of supp(β).

Thus ∃j such that supp(β) ⊂ Xj =⇒ [α] ≡ 0 ∈ H̃i(Xj) which is the claim.

Wednesday, 4/2/2025

We rename some stuff from yesterday. We proved:
Lemma 1: if X0 ⊂ X1 ⊂ · · · ⊂ X is a filtration of X by open sets, and if [α] ∈
ker(H̃iX0 → H̃iX) then ∃j such that [α] ∈ ker(H̃iX0 → H̃iXj).

Proof. If α = ∂β, supp(β) compact then supp(β) ⊂ Xj for some j.

Main Proof: Replace Dk by the cube Ik = [0, 1]k. We induct on k.
True for k = 0 since Sn − pt is homeomorphic to Rn.
Assume true for k − 1 for induction.
Assume homology is nontrivial for contradiction.
∃[α] ∈ H̃i(S

n − h(Ik)).
Lemma 2: ∃ nested intervals I0 = [0, 1] ⊃ I1 ⊃ I2 ⊃ · · · such that:

i) length Ij =
1
2j

ii) 0 ̸= [α] ∈ H̃i(S
n − h(Ik−1 × Ij))
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Proof. MVES.
Let A = Sn − h(Ik−1 × [0, 12 ]).
B = Sn − h(Uk−1 × [ 12 , 1])

A ∪B = Sn − h(Ik−1 × 1
2 ). H̃∗(A ∪B) is trivial by induction.

A ∩B = Sn − h(Ik).

0→ H̃i(A ∩B)
≈−→ H̃i(A)⊕ H̃i(B)→ 0

[α] is nontrivial on one so it is nontrivial in at least one of the others.

0 ̸= [α] ∈ H̃i(A) =⇒ choose I1 = [0, 12 ]

0 ̸= [α] ∈ H̃i(B) =⇒ choose I1 = [ 12 , 1].
Repeat to get I2, I3, · · ·

⋂
Ij = {p}

Let X = Sn − h(Ik−1 × p), Xj = Sn − h(Ik−1 × Ij). [α] ̸= 0 ∈ H̃iX by L2. This
contradicts L1.

Theorem 69 (Alexander Duality, Prop 2B1). ∀h : Sk ↪→ Sn,

H̃∗(S
n − h(Sk)) ∼= H̃∗(S

n−k−1)

‘Represented by linking Sn−k−1’.

Definition of Linking Sphere: Take a disk that intersects the space at one point and
take the boundary.
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Figure 9: linking sphere

Proof. Induct on k.
k = 0, Sn − 2 pts ∼= Sn−1 × R, true.

Figure 10:

excisive triad:

Sn − h(Sk) Sn − h(Dk
+)

Sn − h(Dk
−) Sn − h(Sk−1)

Sn − h(Dk
±) are acyclic by Boring theorem [homology of a point]

MVES says:

0⊕ 0→ H̃∗(S
n − h(Sk−1)) ≈−→

∂
H̃∗−1(S

n − h(Sk))→ 0⊕ 0

Special case: If h : Sn−1 ↪→ Sn then Sn − h(Sn−1) has two path components, both

have homology of point. So H̃0 = Z.
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This is Jordan-Brouwer Separation Theorem.

Remark. Both components are open. Boundary of each components is Sn−1.

If n = 2 all embeddings are standard: ∃ homeo H : (S2, S1)→ (S2, h(S1)).
We have non-standard embeddings:
D3 ↪→ S3, S2 ↪→ S3, D2 ↪→ S3.
S1 ↪→ S3 knots: H∗(S

3 − knot) = H∗(S
1) but homotopy group might not be same.

We also have nonstandard D1 ↪→ S3, wild arc.

Figure 11: Wild Arc

Friday, 4/4/2025

Syllabus:
Homology with Coefficients Borsuk-Ulam Ham Sandwich Invariance of Domains Di-
vision Algebras Axioms Cohomology

Homology with Coefficients

Let M be an abelian group (Z-module).
Sn(X;M) singular n-chains with coefficients in M .
m1σ1 + · · ·+mkσk ∈ Sn(X;M),mi ∈M,σi : ∆

n → X.
i.e. Sn(X;M) =

⊕
σ:∆n→XM abelian group

Davis-Kirk: Sn(X;M) = SnX ⊗Z M . ∂Mn = ∂n ⊗ idM
Define ∂Mn : Sn(X;M)→ Sn−1(X;M):

∂Mn (mσ) = m

 n∑
j=0

(−1)jσ ◦ δjn


As before. The alternating sign implies the double composite is zero, so we have a
chain complex S•(X;M) = (S•(X,M), ∂M∗ ).

Hn(X;M) := Hn(S•(X;M)) =
ker ∂M

n

im ∂M
n+1

.

Example:
Hn(X;Z) = HnX.
Hn(X;M ⊕N) = Hn(X;M)⊕Hn(X;N).
Hn(X;Zk) = (HnX)k.
We actually get the whole package: pair, excision, MV, homotopy invariance, reduced,
cellular.
When X is CW, Cn(X;M) = Hn(X

n, Xn−1;M) ∼= H̃n(X
n/Xn−1,M) ∼=M#of n-cells

So Cn(X;M) =
⊕

jMeij .

∂CW ;M
n has same matrix as ∂CWn :

∂CW,Mn = ∂CWn ⊗ idM

Proof: Suppose X is CW. When dαβ denotes degree:
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∂CWn eβ =
∑
α

dαβeα

Then we have:

Sn−1 Xn Xn/Xn−1 Sn−1

dαβ=degree

ϕB prα

In order to prove that ∂CW ;M
n has same matrix as ∂CWn we need lemma 2.49:

Lemma 2.49: If f : Sk → Sk has degree d then,

f∗ : Hk(S
k;M)→ Hk(S

k;M)

is multiplication by d.
To prove this we need the claim: ∂Mn (meB) = m

∑
α dαβeα.

Proof. Note that Hn : Top×Ab→ Ab given by (X,M) 7→ Hn(X;M) is a functor.
Let m ∈M . Let ∆m : Z→M given by 1 7→ m.
We can consider (id,∆m) ◦ (f, id) = (f,∆m) = (f, id) ◦ (id,∆m) which gives a com-
mutative square. So we have:

Hk(S
k;Z) Hk(S

k;Z)

Hk(S
k;M) Hk(S

k;M)

We have the maps:

a da

ma dma = mda

So the bottom map is indeed multiplciation by d.

Let X = RPn = e0 ∪ e1 ∪ · · · ∪ en.
e2 = {[− : − : − : 0 : · · · : 0]}.
C•RPn = Z→ Z→ · · · 0−→ Z 2−→ Z 0−→ Z.
Then, reducing mod 2 matrices remain the same:

Z/2 0−→ Z/2 0−→ · · · 0−→ Z/2.

Hi(RPn;Z/2) =

{
Z/2, if i = 0, · · · , n;
0, otherwise.

We can go from Z to any abelian group. Can we do this for arbitrary abelian groups?

Theorem 70 (Universal Coefficient Theorem). You can computeH∗(X;M) forH∗X,
which is universal.

Question: Why bother?
M = Z/2: no fuss with signs, orentatio.
∀ closed manifold, Hn(M ;Z) = Z/2.
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Also, βn(X × Y ) =
∑
i+j=n βiXβjY

Kunneth formula.
M field eg Zp or Q then,

Hn(X × Y ;M) ∼=
⊕
i+j=n

Hi(X;M)⊗M Hj(Y ;M)

Not true for M = Z!!!

Borsuk-Ulam

Theorem 71 (Borsuk-Ulam). If g : Sn → Rn is continuous, ∃x ∈ Sn such that
g(x) = g(−x).

Figure 12: Here x is the pole

When n = 1 it says ∃ antipodal points on equator with same temparature.
Alternate proof:

Proof. f(x) = g(x)− g(−x) so f(−x) = −f(x).
USE IVT: If x(x) > 0, f(−x) < 0 then ∃x0 such that f(x0) = 0.

When n = 2 it says ∃ antipodal points with same temprature and humidity.

Proposition 72 (2B6, Borsuk). An odd map f : Sn → Sn has odd degree.

2B6 =⇒ Borsuk Ulam Theorem.

Proof. By contradiction. Let f(x) = g(x)−g(−x)
∥g(x)−g(−x)∥ .

Then f : Sn → Sn−1 ↪→ Sn is an odd map with zero degree.
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Monday, 4/7/2025

Proof of 2B6 needs

{
Smith

Transfer

}
exact sequence.

Suppose X̃
p−→ X is a double cover. Then we have SES of abelian groups:

0→ Z2

1
1


−−−→ Z2 ⊕ Z2

[
1 1

]
−−−−−→ Z2 → 0

We have SES of chain complexes:

0→ S•(X;Z2)
τ−→ S•(X̃;Z2)

p#−−→ S•(X;Z2)→ 0

X̃

∆n X

σ̃1,σ̃2

σ

, τ(σ) = σ̃1 + σ̃2

(X,x0)

(Y, y0) (X,x0)

∃ ⇐⇒
π1(X,x0)

π1(Y, y0) π1(X,x0)

∃

Zig-Zag lemma =⇒ LES:

· · · → Hi(X;Z2)
τ∗−→ Hi(X̃;Z2)→ Hi(X;Z2)

∂−→ Hi−1(X;Z2)→ · · ·

Natural w.r.t. maps of double covers, so commutative diagram:

X̃ X

Ỹ Y

Smith ES for X̃ → X → Smith ES for Ỹ → Y .
Recall 2B6: Odd f : Sn → Sn has odd degree.

Proof of 2B6. Let P := RPn then odd f : Sn → Sn gives us f : P → P given by
f [±x] = [f(x)]. This is well defined since [f(x)] = [f(−x)].
We have Smith Exact Sequence:

0→ Hn(P ;Z2)
≈−→ Hn(S

n;Z2)
0−→ Hn(P ;Z2)

≈−→ Hn−1(P ;Z2)→ · · ·

· · · → Hi(P ;Z2)
∂,≈−−→ Hi−1(P ;Z2)→ · · ·

· · · → H1(P ;Z2)
≈−→ H0(P ;Z2)

0−→ H0(S
n;Z2)

≈−→ H0(P ;Z2)→ 0

So, Hn(P ;Z2)
≈−→ Hn(S

n,Z2).
Inductively, f∗ isomorphism =⇒ f∗ isomorphism, lemma 249 =⇒ deg f ̸≡ 0
mod 2 =⇒ deg f odd.

Theorem 73 (Ham Sandwich Theorem). You can cut a sandwich with three items
(ham, cheese and bread) in half.
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Proof. Let b ∈ Sn and define pb : Rn → R by:

pb(x1, · · · , xn) = b0 + b1x1 + · · ·+ bnxn

Then pb = 0 denotes an affine hyperplane [the knife].
HST: let F1, · · · , Fn ⊂ Rn have finite volume. Then ∃a ∈ Sn such that ∀i,

Vol(Fi ∩ (Pa < 0)) = Vol(Fi ∩ (Pa > 0))

Where (Pa < 0) = P−1a (−∞, 0).
We start the proof now.
f : (f1, · · · , fn) : Sn → Rn.
fi(b) = Vol(Fi ∩ Pb < 0)−Vol(Fi ∩ Pb > 0).
Finite volume =⇒ f(−b) = −f(b) so f is odd. Thus ∃a ∈ Sn such that f(a) =
f(−a).
Then Pa = 0 cuts sandwich in half.

Wednesday, 4/9/2025

Proposition 74 (2B1). a) If D ⊂ Sn and ∃h : D → B(1,Rk) homeomorphism
implies,

H̃i(S
n −D) = 0∀i

b) If S ⊂ Sn and ∃h : S → Sk ⊂ Rn homeomorphism implies,

H̃i(S
n − S) ∼=

{
Z, if i = n− k − 1;

0, otherwise.

Manifolds

Definition. A manifold of dimension n is a topological space X so that,

1) Hausdorff

2) ‘Locally Euclidean’ i.e. every point x ∈ X has a neighborhood U , x ∈ U and ∃
homeomorphism h : U →W ⊂

open
Rn.

eg sphere, torus, klein bottle.
Lets go back to 2B1. We want to prove Jordan Curve Theorem, which is: f : S1 → R2

has two path connected commponents.
We want n− k− 1 = 0 in 2B1b. Recall rank(H̃0(X)) = # path components of X − 1
which gives us the result.
Rn is locally path connected =⇒ path component = component.

Definition. X is disconnected if X = U1 ∪ U2, Ui open, U1 ∩ U2 = ∅.

Invariance of Domain

Theorem 75 (2B3). Let X ⊂ Rn. Suppose ∃ homeomorphism X
h−→∼= U where

U ⊂ Rn is open. Then X ⊂ Rn is open.

Proof. Since Rn ⊂
open

Sn we can replace Rn with Sn.

Let B(h(x), ϵ) be a closed ball of radius ϵ small enough so that B(h(x), ϵ) ⊂ U .
Let D be the preimage. D := h−1(B). D is closed in X.
Let S = h−1(∂B) = h−1(S(h(x), ϵ)).

Now we use 2B1. h
∣∣
D

: D → B implies H̃0(S
n − D) = 0. Thus Sn − D is path

connected.
Similarly, replacing D with S,
H̃0(S

n − S) = Z =⇒ H0(S
n − S) = Z⊕ Z.
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Thus, Sn − S has exactly two path components. One of them is Sn −D.
Therefore, D \ S is connected.
Thus, Sn \ S = (Sn −D) ⊔ (D − S).
Sn − S = C1 ⊔ C2, S

n −D ⊂ C1, D − S ⊂ C2.
Sn −D and D − S are open components of Sn − S.
Thus x ∈ D − S ⊂

open
Sn.

Corollary 76. IfM is a compact n-dimensional manifold and N is any n-dimensional
manifold and e : M → N is an embedding (1-1 continuous), then e is a homeomor-
phism.

Proof. e(M) is closed [M,N hausdorff, M compact]. Enough to show e(M) open.
e(M) being open follows from Invariance of Domain. We can replace N with Rn since
N is locally Rn and openness is a local property.

For example we can say T 2 ̸∼= S2.
We have another application.

Theorem 77. R and C are the only commutative unital finite dimensional division
algebras over R.
Equivalently, R and C are the only fields F such that F ⊃ R, [F : R] <∞.

This is a special case of a more famous theorem [Hopf invariant 1 problem].

Theorem 78 (Hopf Invariant 1). R,C,H,O are the only finite dimensional division
algebras over R.

Proof. We prove the easy case.
Suppose we have a division algebra (Rn,+, ·) where n > 2.

Define f : Sn−1 → Sn−1 by f(x) = x2

|x2| . Being division algebra gurantees we don’t

divide by 0.
f(x) = f(−x) =⇒ we have a map f : RPn− = Sn−1/± 1→ Sn−1.
Calculation shows that f : RPn−1 → Sn−1 is injective.
Not possible for n > 2.

Thursday, 4/11/2025

Skipped

Monday, 4/14/2025

Cohomology

Cohomology is H∗X

Topop
S•−→ Chop

∗−→ CoCh
H∗

−−→ Gr

The Category of cochain complexes CoCh
In this category, objects C = {C∗, δ∗}. Then,

C0 δ0−→ C1 δ1−→ C2 δ2−→ C3 → · · ·

δn+1 ◦ δn = 0∀n.
Main difference: CoChain complex is increasing.
Morphisms: f : C• → D• And all the squares commute in the following:

· · · Cn Cn+1 · · ·

· · · Dn Dn+1 · · ·

fn fn+1
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Cohomology:
Hn(C•) = ker δn

im δδn−1 = cocycles
cobooundaries

Hn : CoCh→ Ab
H∗ : CoCh→ Gr
We have dual ∗ : Abop → Ab
A∗ = Hom(A,Z)
f : A→ B gives us f∗ : B∗ → A∗.
eg we have:
(Zn)∗ ∼= Zn
Q∗ = 0
(Z/p)∗ = 0
(
⊕
∞ Z)∗ =

∏
∞ Z

We extend to ∗ : Chop → CoCh
We get CoChain complex from chain complex. So we want to talk about the dual of
a chain complex (C•)

∗. What happens in degree n?
(C•)

n = (Cn)
∗.

∂∗ = δ. Since we always index by domain,
∂∗n+1 = δn.
Double boundary and double coboundary are zero

0 = 0∗ = (∂ ◦ ∂)∗ = δ ◦ δ

We can write C•, C∗, C−∗.
H∗X := H∗(S•X)
S•X := (S•X)∗.
f : X → Y
Hn(f) : Hn(Y )→ Hn(X).

Cohomology with Coefficients in Abelian Group M

We have functor Chop → Ch. Instead of taking hom to Z we take hom to M . Then,

Hom(−,M) : Chop → CoCh

C• 7→ Hom(C•,M)

Thus, H∗(X;M) = H∗(S•(X;M), δ∗)
Sn(X;M) = Hom(SnX,M)
HnX = Hn(X;Z).
If X is a CW complex we can compute H∗X by using cellular methods.
H∗X = H∗CW (X). Consider X = S1 ∪z 7→z3 D2. We get:

Moore space M(Z/3, 1)
We have X = e0 ∪ e1 ∪ e2 with ∂e2 = 3e1.
C•X = Z[e2]→ Z[e1]→ Z[e0]
∼= Z 3−→ Z 0−→ Z.
H∗X = {Z,Z/3, 0, 0, · · · }
C•X = Zê2 δ1←− Zê1 δ0←− Zê0
Where ê2 etc are linear functionals. Calculating, we have:

Z 3←− Z 0←− Z

HnX =


Z, if n = 0;

0, if n ̸= 0, 2;

Z/3, if n = 2.
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We get the ‘whole package’ from homology.
H∗(pt)
H∗(

∐
Xα)

H0

H̃∗

H̃∗(∨Xα)
LES of pair
homotopy invariance
excision
good pair
Mayer Vietoris
Cellular Cohomology
H∗(pt) = {Z, 0, 0, · · · }.
H∗(

∐
Xα) ∼=

∏
H∗(Xα) [dual of direct sum is direct product]

H0X =
∏

path components of X Z
Suppose we have:

· · · → S2X → S1X → S0X
ϵ−→ Z→ 0

Taking dual,

· · · ← S2X ← S1X ← S0X ← Z← 0

Cohomology is H̃∗X.
Then H̃∗(∨Xα) =

∏
H̃∗Xα

Good pair: H∗(X,A) = H∗(X/A,A/A) = H̃∗(X/A).
LES of pair:
Recall in a pair A ⊂ X.
Similar to homology, Sn(X,A) = SnX

SnA
We need work to make sense of this.
Punchline: There is going to be a cohomology exact sequence:

· · · → Hn(X,A)→ HnA→ HnX → Hn+1(X,A)→ Hn+1A

Wednesday, 4/16/2025

Today:
LES of pair in H∗

Cellular cohomology
De Rham cohomology
Kronecker Pairing
UCT (Universal Coefficient Theorem).
First we talk about S•(X;M). The singular M -cochains are duals of chains:

Sn(X;M) = Hom(SnX,M) = func(set of singular n-simplices σ : ∆n → X,M)

We can now define:

Sn(X,A;M) = Hom(Sn(X,A),M)

Sn(X,A) = SnX/SnA

We have this SES by definition of chain complexes:

0→ S•A→ S•X → S•(X,A)→ 0

We can use zigzag lemma to obtain a LES of homology.
Problem: Dual of SES of groups is not necessarily exact. We avoid that:
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Notice that, SnA is free, therefore the SES splits. This implies, if we apply Hom(−,M),
the SES splits. Thus, we have SES:

0← S•(A;M)← S•(X;M)← S•(X,A;M)← 0

Applying zig-zag lemma, we have LES:

· · · → Hn(X,A;M)
j∗−→ Hn(X;M)

i∗−→ Hn(A;M)
δ−→ Hn+1(X,A;M)→ · · ·

Recall: definition of splitting: Suppose we have:

0→ A→ B
s←−→
π

C → 0

So that there is a one sided inverse s such that π ◦ s = idC .
⇐⇒ 0→ A→ A⊕ C → C → 0 and maps are what we want.

Cellular Cohomology

Consider CW complex (X, {Xn}). Then, cellular cochains Cn(X;M) := Hn(Xn, Xn−1;M).
Coboundary map:

Hn(Xn, Xn−1;M) Hn+1(Xn+1, Xn;M)

Hn(Xn;M)

δn

j∗ δ

Then H∗CWX = H∗(C•(X;M)).
Facts:

i) C•X = (C•X)∗

ii) H∗(X;M) = H∗CW (X;M)

DeRham Cohomology

Let X be a manifold. Consider cochain complex Ω•X.
ΩnX differential n-forms on X.
Exterior derivative d : ΩnX → Ωn+1X.
Then Ω•X = (Ω∗X, d).
Then the DeRham Cohomology is:

Hn
DR(X;R) = Hn(Ω•X) =

closed n-forms

exact n-forms

Theorem 79 (DeRham’s Theorem).

Hn
DR(X) ∼= Hn(X;R)

eg, we expect H1
DR(R2 − 0) ∼= R.

Map: w 7→
∫
S1 w.

Thus the generator is: w = ydx+xdy
x2+y2 . Formally this is known as dθ.∫

S1 w = 2π.
Difference between closed and exact?
Let γ1 and γ2 be homotopic paths then

∫
γ1
w =

∫
γ2
w. But my not be true globally!

We now have:

Hn
DR(X,A)→ Hn

DR(X)→ Hn
DR(A)→ Hn+1

DR (X,A)
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Kronecker Pairing

Slogan: Cohomology eats Homology
Kronecker Pairing: For any space X [not necessarily manifold anymore] there is a
bilinear pairing:

⟨−,−⟩ : HnX → HnX → Z

This is exactly the same as saying we have a map HnX → (HnX)∗.
This is always surjective. It is a consequence of UCT.
We develop the bilinear pairing. We take cochain-chain bilinear map:
⟨−,−⟩ : SnX × SnX → Z 〈

α,
∑
i

niσi

〉
=
∑
i

niα(σi)

Thus, in order to pass to cohomology, homology, we want to show:

⟨cocycle, boundary⟩ = 0

⟨coboundary, cycle⟩ = 0

We have the property [from the definition of δ(= ∂∗)]

⟨δα, c⟩ = ⟨α, ∂c⟩

This is trivial here but in DeRham theory it is analogous to Stoke’s Theorem:
∫
X
dw =∫

∂X
w.

Then we have:
⟨cocycle, boundary⟩ = ⟨ α

∈ker δ
, ∂c⟩ = ⟨δα, c⟩ = 0

⟨coboundary, cycle⟩ = ⟨δα, c
∈ker ∂

⟩ = ⟨α, ∂c⟩ = 0

Therefore, we naturally have:

⟨−,−⟩ : HnX ×HnX → Z

⟨[α], [c]⟩ = ⟨α, c⟩.

UCT, Universal Coefficient Theorem

This gives us formula of HnX in terms of HnX,Hn−1X.

Theorem 80 (UCT). If HnX is finitely generated ∀n then there exists (split) SES:

0→ (torsion Hn−1X)→ HnX → (HnX)∗ → 0

ie HnX ∼= (HnX)∗ ⊕ torsion Hn−1X.

Corollary 81. If a space has no torsion in its homology (for example CPn) then
HnX ∼= (HnX)∗. In particular, for CPn,

H∗(CPn) = Z for 0 ≤ ∗ ≤ 2n, ∗ even

Thus, H∗CPn ∼= H∗CPn

Example: Consider X = S1 ∪z 7→z3 D2 = e0 ∪ e1 ∪ e2.
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C•X = Z 3−→ Z 0−→ Z
C•X = Z 3−→ Z 0−→ Z
H∗X = (Z,Z/3, 0, · · · )
H∗X = (Z, 0,Z/3)
Thus, the torsion H1X ∼= torsion H2X.
We use this to prove UCT.
We can have other coefficients. Interestingly, if our coefficients form a field, we don’t
have to worry about torsion. As a result,

H∗(X;F )
∼=−→ H∗(X,F )

∗

Friday, 4/18/2025

Why Cohomology is bad? Why Cohomology is good?

UCT: If HnX is f.g. ∀n then,

HnX ∼= (HnX)∗ ⊕ torsionHn−1X

Furthermore, the map given by the Kronecker pairing HnX
kp−→ (HnX)∗ given by

α 7→ ⟨α,−⟩ is onto.
The ontoness is true for any X but the theorem is not.
Since dual of finite group is 0, and dual of free group is free,

HnX ∼= Free(HnX)⊕ torsion(Hn−1X)

But this is not canonical: it depends on a choice of basis.
We will prove this when X is a finite CW complex.

Definition. A chain complex C• is finite free if ∀nCn is free and
⊕

n Cn is f.g.
eg C• = C•(X) where X is a fintie CW complex.

Definition. An elementary chain complex is a chain complex of one of the forms:

0→ 0→ Z
n
→ 0→ 0

0→ 0→ Z
n

d−→ Z
n−1
→ 0

For example, recall the triangle C•X = Z 3−→ Z 0−→ Z. This is the direct sum of:

0→ 0→ Z

⊕

Z 3−→ Z→ 0

Lemma 82. Any finite free chain complex C• is isomorphic to direct sum of elemen-
tary chain complexes.

Proof. Consider C2 → C1
∂1−→ C0.

Put ∂1 in SNF. Choose basis {ei} for C1
∼= Zn and choose basis {fj} for C0

∼= Zm

such that the matrix for ∂1 is


d1

. . .

dk
0

.
Then C• ∼= Cn → · · · → C2 → span{ek+1, · · · , en︸ ︷︷ ︸

ker ∂1

} → 0⊕ other stuff.

What is other stuff?
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⊕(Z di−→ Z)
⊕(0→ Z) for the fj that don’t get hit at all.
We proceed by induction on the ‘length’ of the chain complex.

Note that UCT is true for the elementary chain complexes. Recall:

Theorem 83 (UCT for chanin complex). If C• is a finite free chain complex then,

Hn((C•)
∗) ∼= (HnC•)

∗ ⊕ torsionHn−1(C•)

The Lemma =⇒ UCT for cc =⇒ UCT for finite CW.
Therefore, cohomology is useless: if we know homology we can calculate the cohomol-
ogy.
Now we learn why it is useful.

Cohomology ring H∗X and f : X → Y gives a ring
map f ∗ : H∗Y → H∗X

We can say H∗X =
⊕

nH
nX is a ring. We have addition. We need multiplication.

Warm-up: S∗X or
⊕

n S
nX is a ring.

We need a multiplication. The multiplication is called the cup product.
Suppose we have σ : ∆n → X where n = p + q. We can break σ to two pieces: the
front p face and the back q face.
Front p-face: pσ : ∆p → X: append 0’s at the back.
Back q-face: σq : ∆

q → X : append 0’s at the front.

2σ = σ, σ2 = σ

0σ,1 σ, σ0, σ1.
Then we can define:

Definition (Cup Product).

SpX
α
× SqX

β
→ Sp+qX = Hom(Sp+q, X)

(α ∪ β)(σ) := α(1σ)β(σq)

S∗X is a graded ring with unit.
eg 1 ∈ S0X, 1(σ) = 1, 1 (

∑
i niσi) =

∑
i ni. 1 is ϵ the augmentation map.

(S∗X =
⊕

n S
nX, 0, 1,+,∪) is a ring.

Graded means (SnX, 0,+) is an abelian group.
(SpX) ∪ SqX ⊂ Sp+qX.

Lemma 84 (3.6 Hatcher). δ(α ∪ β) = (δα) ∪ β + (−1)pα ∪ (δβ)

Corollary 85. 1) (coboundary) ∪ (cocycle) is coboundary.

2) (cocycle) ∪ (coboundary) is coboundary.

Proof. 1) (δα) ∪ β = δα ∪ β + (−1)p(α ∪ δβ) = δ(α ∪ β).
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2) Similar.

Corollary 86. We can defineHpX×HqX → Hp+qX by [α]∪[β] 7→ [α∪β]. Corollary
is that this is well defined. This follows from the previous corollary.

Monday, 4/21/2025

We continue cup product.
HpX ×HqX → Hp+qX
[α] ∪ [β] = [α ∪ β]
SpX × SqX → Sp+qX = Hom(Sp+qX,Z)
For σ : ∆p+q → X define:
(α ∪ β)(σ) = α(pσ)β(σq)
Front p-face pσ : ∆p → X

pσ(t0, · · · , tp) = σ(t0, · · · , tp, 0, · · · , 0)
back q-face σq : ∆

q → X
σq(t0, · · · , tq) = σ(0, · · · , 0, t0, · · · , tq)
If R is a commutative ring, then H∗(X;R) and S∗(X;R) is a ring.
To see ∪ is well-defined on H∗ we need to show it is independent of choice in [α], [β].
This follows from lemma 3.6 in Hatcheer: δ(α ∪ β) = δα ∪ β + (−1)pα ∪ δβ.

Proof. Apply 3-terms to σ : ∆p+q+1 → X and compute.
(δ(α ∪ β))(σ) = (α ∪ β)(∂σ) = α(p∂σ)β(∂σq)
(δα ∪ β)(σ) = (δα)(p+1σ)β(σq) = α(∂p+1σ)β(σq)

= α

(
p+1∑
i=0

(−1)i(p+1σ ◦ δi)

)
β(σq)

=

p∑
i=0

(−1)iα(p+1σ ◦ δi)β(σq) + (−1)p+1α(pσ)β(σq)

Calculate everything like this and it cancels out.

Now we talk about how a map of spaces give us a ring map on the cohomology.
If f : X → Y is continuous map of spaces we have a induced ring map H∗(f) =
f∗H∗(Y )→ H∗(X).
To see this, we note first that we have a induced ring map f# : S∗Y → S∗X.
Clearly f#(0) = 0. f#(α+ β) = f#α+ f#β.
f#(1Y ) =?1Y ∈ S0Y, 1Y (point) = 1. Thus (f#1Y )(σ) = 1Y (σ ◦ f) = 1 = 1X(σ)
Thus, f#1Y = 1X .
Now, (f#(α ∪ β))σ = (α ∪ β)(σ ◦ f) = α(p(σ ◦ f))β((σ ◦ f)q) = α(pσ ◦ f)β(σq ◦ f) =
((f#α)(pσ))((f

#β)(σq)) = (f#α ∪ f#β)(σ).
Now we switch to the graded commutative part.
H∗X graded commutative.

Theorem 87. a ∈ HpX, b ∈ HqX =⇒ a ∪ b = (−1)pqb ∪ a.

As a consequence, if p is odd, a ∈ HpX =⇒ a∪a−a∪a =⇒ 2(a∪a). So torsion 2.
eg a ∈ HH1(S1 × S1) =⇒ a ∪ a = 0 since H2(S1 × S1) is torsion free.
DK proves this using acyclic models.
Hatcher proves it using formulas.

Proof. Outline of Hatcher’s Proof.
Step 1: Define a chain map ρ : S•X → S•X.
σ : ∆n → X
ρ(σ) = (−1)

n(n+1)
2 σ

σ(t0, · · · , tn) := σ(tn, · · · , t0)
Step 2: ρ and id are chain homotopic. Meaning, ρ− id = ∂P +P∂ where P : SnX →
Sn+1X.
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Step 3: Compute (α ∪ β)(ρσ)± (β ∪ α)(σ).
Then [(α ∪ β)(cocycle)] = [(α ∪ β)(ρ(cocycle))] = ±[(β ∪ α)(cocycle)]

Question: WHY is H∗X a ring but H∗X isn’t?
Answer: There is no interesting map X × X → X but the diagonal map ∆ : X →
X ×X given by ∆(x) = (x, x) is interesting.

H∗(X ×X) H∗X

H∗X ⊗H∗X

∆∗

∪

Consequently, for topological groups homology have ring structure.

Remark. If X is CW eg X = ∆n then X
∆−→ X×X is not cellular but ≃ to a cellular

map. ‘diagonal approximation’ ↔p σ and σq.

Wednesday, 4/23/2025

Cohomology of Sphere is not interesting.

H∗(Sn) =

{
Z
1
, 0, · · · , 0,Z

µ
, 0, · · ·

}
1 ∪ µ = µ

H∗(Sn) = Z[µ]
µ2

Lets move on to torus.
T 2 = S1 × S1

H∗T = {Z,Z⊕ Z,Z, 0, · · · }
H∗T = {Z,Z⊕ Z,Z, 0, · · · }
a ∪ a = 0 so only mystery is (1, 0) ∪ (0, 1) in a sense.
We take the ∆-complex.
H∗T = {Z, Z

[x]
⊕ Z

[y]
, Z
L−U

, 0, · · · }

H∗T =

{
Z,Z

a
⊕ Z

b
, o

}
a[x] = ⟨a, [x]⟩ = 1
⟨a, [y]⟩ = 0
⟨b, [x]⟩ = 0
⟨b, [y]⟩ = 1
(α ∪ β)(U) = α(1U)β(U1) = α(y)β(x) = 0 · 0 = 0.
(α ∪ β)(L) = α(1L)β(L1) = α(x)β(y) = 1 · 1 ≡ 1

H∗T 2 = Z[a,b]
a2,b2,ab+ba = ΛZ(a, b) exterior algebra.

a ∪ b = [α] ∪ [β] = [γ]
Application 1: T 2 ̸≃ S1 ∨ S1 ∨ S2. Idea: the right one has no natural coop produts.
Application 2: T 2 → S2 induces map on H̃∗, H̃∗
f : H∗(T 2)→ H∗(S2)
f∗(w) = f∗(a ∪ b) = f∗(a)B))
can’t keep up
Lemma:
i: H∗(X

∐
Y ) = H∗X ×H∗Y ring product

ii: H∗(X ∨ Y ) = H∗X×H∗Y
1X−1Y

iii c ∈ HiX ↪→ Hi(X ∨ Y ), d ∈ HjY ↪→ 0. Then c · d = 0
Then c · d = 0

Proof. i: H̃∗(X ∨ Y ) =
group

H̃∗X ⊕ H̃∗Y

Sorry LMAO
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Friday, 4/25/2025

We continue on with the 2-torus.
H∗T 2 = {Z

1
,Z
a
⊕ Z

b
, Z
a∪b=µ

, 0, · · · }

H∗T
2 = {Z

pt
,Z
x
⊕ Z

y
, Z
[T 2]

, 0, · · · }

We want to make sure, that by kronecker pairing, x, y is the dual basis of a, b.
We also have: ⟨µ, [T 2]⟩ = 1 by kronecker pairing. µ[T 2] = 1.
Geometrically: setting the torus as T 2 = S1 × S1 given by (ei2πθ, ei2πλ) and a =
dθ, b = dλ. The cup product is the wedge product of these two.
⟨a, x⟩ =

∫
x
a.

Corollary 88. T 2 ̸≃ S1 ∨ S1 ∨ S2 even though the have same H∗, H
∗
grp.

They have different cohomology rings.

We try to make it a little bit more precise.

Lemma 89. i) H∗(X
∐
Y ) → H∗X × H∗Y is isomorphism. This is in fact a

cohomology ring isomorphism.

ii) If x0 ∈ X and y0 ∈ Y have contractible neighborhoods (non-degenerate base
points) then we have a map induced by the quotient map H∗(X ∨ Y ) →
H∗(X

∐
Y ) is a ring map and a group isomorphism in degrees ∗ > 0.

Proof. i) Clear

ii) Clear from MVES (which we can apply from contractible neighborhood)

X ↔ X ∨ Y ↔ Y , both retracts.
Claim: suppose c ∈ HiX, d ∈ HjY, i, j > 0. Then, i∗Xc ∪ i∗Y d = 0. Thus S1 ∨ S1 ∨ S2

has no nontrivial cup products [we pass to the product, and (c, 0) ∪ (0, d) = (0, 0)].

Corollary 90. Any map f : S2 → T 2 is trivial on H̃∗ [and by UCT on H̃∗]

Proof. f∗µ = f∗(a ∪ b) = f∗(a) ∪ f∗(b) = 0 ∪ 0 = 0 so it is trivial on H2.
Trivial on H1 since it is 0.
UCT =⇒ homology is dual to cohomology. Also true for maps: H2S

2 → H2T
2 and

H2T 2 ← H2T 2 are dual. Dual of 0 map is 0 map.

Note: there exists a nontrivial map T 2 → S2. We quotient by the boundary: T 2 →
(T 2)/(T 2)1 = S2. In fact this is an isomorphism.
This is called the degree one collapse map. Take 2-manifold, take a little disk D2

inside, take D2/∂D2 ∼= S2. This is H2.
Now, let Σg be the closed surface of genus g. In other words:

Σg = T 2# · · ·#T 2︸ ︷︷ ︸
g-torii

Question: H∗(Σg) =?
Note: H∗Σg = {Z,Z2g,Z, 0, · · · }
Thus H∗Σg = {Z,Z2g,Z, 0, · · · } by UCT. We don’t have the ring structure.
H1(Σg) = Z

x1

⊕ Z
y1
⊕ · · · ⊕ Z

xg

⊕ Z
yg
.
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take dual basis: H1(Σg) = Z
a1
⊕ Z
b1
⊕ · · · ⊕ Z

ag
⊕ Z
bg

Corollary 91. a1 ∪ b1 = · · · = ag ∪ bg and the answer is a generator of H2 [say µ]
ai ∪ aj = 0, bi ∪ bj = 0, i ̸= j =⇒ ai ∪ bj = 0

Then the matrix of bilinear product is given by:

0 1
−1 0

0 1
−1 0

. . .

0 1
−1 0


Σg T 2 ∨ · · · ∨ T 2

T2
∐
· · ·
∐
T 2

ψ

ϕ

We collapse the joining ring between torii to get ψ. The result is:
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Figure 13: ψ(Σg)

MV =⇒ ψ, ϕ give hisomorphism on H1, H
1.

MV =⇒ H2(ϕ) isomorphism.
We have the map:

H2(Σg)← H2(T 2 ∨ · · · ∨ T 2)

Z [1···1]←−−− Zg

Suppose basis ofH2(Σg) is ai∪bi, basis ofH2(T 2∨· · ·∨T 2) be a′i∪b′i andH2(T
2
∐
· · ·
∐
T 2)

be a′′i ∪ b′′i .
Basis of Zg is given by a′′i ∪ b′′i .
Then we have: since H2 is contravariant: µ←[ a′i ∪ b′i 7→ a′′i ∪ b′′i

Monday, 4/28/2025

Other computations of H∗T
Künneth Theorem Poincaré duality
If A∗ and B∗ are graded commutative rings, then so is A∗ ⊗B∗.
Also, (A∗ ⊗B∗)n =

⊕
i+j=nA

i ⊗Bj .
(a⊗ b)(a′ ⊗ b′) = (−1)|a′||b|aa′ ⊗ bb′, extended linearly to the whole ring.
We have map of graded commutative ring:

H∗X ⊗H∗Y → H∗(X × Y )

a⊗ b 7→ P ∗X(a) ∪ P ∗Y (b)
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We like to think about this as an isomorphism (even though it’s not).

Theorem 92 (Künneth Theorem). If X and Y are finite CW complexes,

• the above map is injective

• isomorphism if HiX,HjY are free for all i, j.

H∗(S1 × S1) ∼= H∗S1 ⊗H∗S1 = Z[a]
a2 ⊗

Z[b]
b2 = Λ(a, b)

Recall H∗(X;R) is a ring as long as R is a commutative ring. In the case R = Q, the
betty numbers:

βn(X × Y ) =
∑
i+j=n

βi(X)βj(Y )

Where βiX = dimQHi(X;Q) = rankHiX

Poincaré Duality

Definition. M is a (topological) n-manifold if ∀p ∈M,∃ neighborhood U ∼= Rn.
eg T 2 is a 2-manifold.
We assume M is connected and compact. This is sometimes called closed.

Let A,B,C be R-modules.

Definition (Perfect Pairing). A perfect pairing is a bilienar map β : A × B → C
such that the corresponding adjoint maps A → HomR(B,C) and B → HomR(A,C)
are isomorphisms.
Note: obviously, a 7→ β(a,−), b 7→ β(−, b).

In algtop we traditionally write F2 = Z/2. There are two duality theorems: one with
F2 and one with Z.

Theorem 93 (Poincaré Duality). i) Hn(M,F2) = F2. Call generator ‘fundamen-
tal class’ which we write as [M ] = Hn(M ;F2). It is the ‘sum’ of all top dimen-
sional simplices.

ii) ‘Intersection Pairing’ is a perfect pairing: I : Hi(M ;F2) ×Hn−i(M ;F2) → F2

where I(a, b) = ⟨a ∪ b, [M ]⟩.

iii) Hi(M ;F2) ∼= Hn−i(M,F2)

iv) Hi(M,F2) ∼= Hn−i(M,F2).
Note: iii ⇐⇒ iv by UCT since F2 is a field.

Corollary 94. Corollary to ii: H∗(T 2;F2) =
F2[a,b]

(a2=0,b2=0) .

Theorem 95. H∗(RP∞;F2) = F2[a], |a| = 1

H∗(RPn;F2) =
F2[a]
an+1 [truncated polynomial ring]

Recall: RP∞ = e0 ∪ e1 ∪ e2 ∪ · · ·

Proof. Poincaré Duality and induction on n. We use ii.
True for n = 1 since RP 1 = S1.
Assume true for n− 1.
RPn−1 ↪→ RPn.
Thus i∗ : Hj(RPn;F2)→ Hj(RPn−1;F2).
Claim: this is an isomorphism for j < n.

Proof: C•(RPn−1;F2) = F2
0−→ F2

0−→ F2 → · · ·, same for RPn. So, the chain
complexes are the same up to n− 1.

F2 F2 · · · F2

F2 F2 F2 · · · F2

0

∼= ∼= ∼=

0 0
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0 ̸= a ∈ Hi(RPn;F2)
an−1 ̸= 0 by inc∗ and induction.
an ̸= 0 by ii P.D.
I : H1(RPn;F2)×Hn−1(RPn;F2)→ F2 by (a, an−1) ̸= 0

Corollary: ̸ ∃r : RPn → RPn−1 which is isomorphism on π1.

Proof. Assume r exists. Then r is isomorphism on π1.
Then r∗ is isomorphism on H1(;F2), abelianization
Then r∗ is iso on H1(;F2), dual
0 = r∗(0) = r∗(an) = r∗(a)n ̸= 0. Contradiction.

See eimilarity: any S2 → T 2 is trivial on H̃∗.

Friday, 5/2/2025

Exam: Friday May 9
X CW.
A ⊂ X such that A∩ cell is empty or point =⇒ A discrete.
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