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Singular Homology and CW Complexes

We want to talk about the Homology of a space X.

Definition (Homology). Let X be a topological space. Consider the sequence of
abelian groups:

HoX, Hi X, H X, -+
These are the homemorphism invariants.

For example, consider the 2-torus T2 and the 2-sphere S2. They are not homeomor-
phic, we can see that from their fundamental groups.

HT?=7Z&7.
H1S2 = 0
82T

Do note that, even if all elements from the sequence are isomorphic the spaces might
not be isomorphic!

Some application: see Davis and Kirk “Homology Greatest Hits”.

Knot theory seems very intuitive but proving statements is very troublesome. For
example, how do you prove that the trefoil and the unknot are not the same?

Theorem 1 (Brouwer’s Fixed Point Theorem). Every f : D™ — D™ has a fixed
point.

Theorem 2 (Euler’s Formula). For every ‘triangulation’ of S? we have:

v—etf=2=x(5

x denotes the Euler Characteristic.
eg pyramid 4 — 6 4+ 4 = 2, triangulated bipyramid 5 —9+6 = 2, cube 8 — 1246 = 2.

Theorem 3 (Hairy Ball Theorem). Af: S? — S? s.t. Vo € S%,z - f(z) = 0.
So you can’t comb the hairy ball.

Theorem 4 (Jordan Curve Theorem). The complement of a closed curve in plane
has two components.

Theorem 5 (Brouwer’s Theorem on Invariance of Domain). m #n = R™ % R".
Consider open U C R” [a domain] and let f be a continuous injection f: U — R™.
Then f(U) is open in R™.



Variants of Homology

‘ defined for ‘

Singular Homology Top Spaces Easy to define but
hard to compute

Simplicial homology | simplicial complexes and | Easy to define and compute

A-complexes but difficult to show
homeo inv.
Cellular homology CW-complexes hard to define,

easy to compute, flexible.

Table 1: Variants of Homology

Definition of Singular Homology

Definition (Standard n-simplex).

An:{(to,...’tn)|Zti:1712ti20}CRn—H
[

ey

= convex hull of {eg, - ,en}

Recall that convex hull is the intersection of all convex sets containing the original
set.

Singular n-simplex in X

n-simplices are images of standard simplices under continuous maps.

They are defined by a continuous map o : A™ — X.

We define singular n-chains S, X. These are free abelian groups with Z-basis the
singular n-simplicies in X.

A typical element will be a finite sum:

no1+ - +ngor € S, X

Where o; : A™ — X.
Note: Davis and Kirk uses S,, X, Hatcher uses C,, X.
For example, let X be the punctured plane X = R? — {0}.
o1 +09—03 € 5 X.
This is an example of a special 1-chain callled the 1-cycle.
Goal: Define a boundary map 9, : S, X — S,,_1 X [Read Davis Kirk].
Then, H, is given by the quotient map:
ker 0, n-cycles

imd,y1  n-boundaries

Wednesday, 1/15/2025

Goal: We want to define a homomorphism called a boundary map.

On: SpX = S 1 X
We start with the j’th face map.



d; =05 : APl AT
We have the map of barycentric coordinates:
(t07 e 7tn—1) = (t07 e atj—l,oatja e 7tn—1)
The j’th face map of ¢ is given by precomposing ¢;:
cod; A"t 5 X

Definition. The boundary 8,0 = >-7_(~1)/0 0 9;.
We can extend this definition tp S, by linearity.

an E n;oy = E njanaj
J J

Let 0 : A2 — X.
Then, 0,0 =00y — o 0y + 00 ds.

A A

Figure 1: Boundary Map
o: At = X
0o = o(e1) — 0(€0) = Co(e,) = Co(ey), €ndpoint - starting point.
Lemma 6. 0,41 00, =0.

SpnX 2 6 x 2y 5 x

\i/
This is the reason for — signs.

Then, we have,

im Oy 41 C kerd, C Sp X
n-boundaries n-cycles n-chains

Definition (Singular Homology).

kerd,  cycles

im0d,+1  boundaries

Proof. We prove the lemma: 0,_1 09, = 0.

On—1(0n0)

=0n—1 | Y (=1 o(to, -+ ,0,++ ,tn1)

= Z(—l)k(—l)ja(to, -++,0,---,0,--- ,t,) 0 s in k’th and j’th slots



+ Z(—l)k_l(—l)ja(to, <o ,0,-+-,0,---,t,)0 s in k’th and j’th slots
k>j

=0

Remark. 1) H,X is defined for any topological space X and n > 0.
2) X¥Y — H,X%~H,Y.
3) Big and Formula Construction.
4) Unclear how to compute.
Answer to the question: What is H,, X:
H.X ={HoX,H,X,HX,---}
is a graded abelian group. H; X individually are abelian groups.

Lemma 7 (Lemma 1).
Z, if n=0;

0, otherwise.

H,(pt) = {
Lemma 8 (Lemma 2). If X has path-components {X, },cr, then,

H,X =P H,(Xa)
ael
Lemma 9 (Lemma 3).  a) HoX = @), Z = Z# of path component
b) X is path-connected, then HyX = Z.
Recall:

Definition. X is path-connected if Va,b € X,3vy : [0,1] — X such that v(0) =
a,7(1) =b

Definition. A maximal path-connected subset of X is path-component.

Corollary 10. Homology of rational numbers is isomorphic to the homology of in-
tegers:

H.Q> H.Z = (Z*,0,0,---)
But Q 2 Z.

Friday, 1/17/2025

Recall: :
_ ker(9n) _  cycles
H, X = im(dy,+1) ~ boundary

We are looking for two cycles that belong to the same homology class.
So, we want cycles z; # zo which are homologous so that z; — z5 is a boundary. This
implies their homology classes are equal: [z1] = [22].

€ homology class.



Algebra

Definition (Chain Complex). A chain complex C, is a sequence:

Cy ={Co,C1,Cs,- -}

of abelian groups with 9, : C,, — C,,_1 such that 9,, 0 9,41 = 0.
It looks like the following;:
03

02 01

Cs Cs Cy Co

so that the composition of any two consecutive maps is 0. By conventions, dy = 0 :
CO — 0.

Then, Cy = {C\, 0i}.

Definition (Homology).
ker 0,  Z,

H,C, =

im an+1 - Bn
Here, C,, = n-chain.

Z,, = ker 0, n-cycles

B, = im J,,41, n-boundaries.

eg. SeX = {5, X, 0.} is a singular chain complex of X.

L1:

Z, ifn=0;
ant = .
0, otherwise.

H,(pt) = {Z,0,0,---}

Proof. Vn,3lo, : A™ — pt.

Then, 0101 = 01089 — 01 0 d7.

do(to) = (0,t0), 01(to) = (to,1).

ThllS7 810’1 =01 050 — 01 0(51 = (1 — 1)0’0 =0

0209 = 09009 — 09001 + 09009 = (1—1+1)01 =0].
{0, if n odd;

6n0n =

1, if n even.

S X :
ZO‘Q ZO’l ZO’O
09 t o1 ¢t 0
o A A e/
Hopt = 7Z,/00 = Z.
Hipt =Z/Z =0
Haypt =0/0 = 0. O

L2: If {X,}aer are path components of X then,

H,X = @ H,X,
I

Proof. o: A™ — X AR o(A™) p.c.

= Jla such that o(A") C X,.

Also (0 06;)(A™ 1) C X,

5. X =@; S Xa O



Augmentation

g S()X —7Z

e(X;mioi) =2 ;i
6081(0')26(0'0(50—0'0(51):1—120
Thus im 97 C ker &

Thus, 32 : HyX — Z

EDC i nioi] = e (X2 nios) = 32 na
L3:

1) If X is path connected then,

FH X 57

2) If {X,}aer are path components of X then,

H(]X:®HQXO(:Z#Ofp'C' of X
I

Proof. 1) Need to show kere C im ;.
Choose base point xg € X.
Suppose € (D, nio;) = 0.
Choose path 7; : A — X such that v;(e;) = 0i(eg),Y0(e0) = zo-
01 (3o, mivi) =D, nioy — »_, niconsx, = y_.Ni0;

O
A-complex (p.102-104 of Hatcher)
eg torus
_—
1 = # of vertices
3 = # of edges
2 = # of faces
AQT — AlT — A()T
>72 573 -7}
Wednesday, 1/22/2025
Definition (Simplex). Let vg,- - ,v, € R™.
[vo, -+ va] = {Ztm 1Y ti=1,1<t< 0}
If vg — vy, -+ ,v0 — v, are linearily independent, then [vg,--- ,v,] is a geometric

n-simplex.

If vertices are ordered,

Olvg, e yon] * A" = [vo, -+ s Un)

Z t;e; — Z t;v;
[ i
Note that,

5710[1,07... on] = Z(_1>ja[vo,~- R TRERI|



A™ breaks up into boundary and interior.

A" = 0A™ U A"
OA™ = {Ztiei | some t; = 0}
An = {Ztiei | t; # 0 for all z}

Definition. A A-complex is a space X with:

{04 : A" — X} simplices
such that:
i) O’a|A~n is injective.
Ve € X,3 s.t. z € 0,(A™). Images of interiors partition X.

ii) Yo, V74,36 such that:

0n00; =0p
Faces of simplices are simplices.
iii) A C X open <= Vo,,0,'A is open in A™. “Weak Topolofy”.

Hatcher says, one way to look at this is by taking a quotient of a disjoint union. We
can consider:

ACUATUATUATUAZUA?

~

Definition (Simplicial Chain Complex). A, X = free abelian group on n-simplices:

Apr X 2 ALK S Ay X

Subcompplex A, X C S, X

AX —2 5 A, X

l [

S, X —248. X

The diagram commutes.
Simplicial Homology:

HAX = H,(A.X)

HAX 5 H,.X

Consider the 2-torus with “ordered” vertices:

OU=b—-c+a
OL=a—c+b

da = 0v,0b = Ov, 0c = Qv



AQT—> AlT—) A()T—> 0

Then, AsT has basis ZU @& ZL

A1T has basis Za ® Zb ® Zc

AoT has basis Zv

Now, HOT = & >~ 7,

HMT = W01 o~ 7,

We only have U — L since (niU +naLl) =0 = ni(b—c+a) +nz(a—c+b) =
0 = n1Z: b—ng .

HPT = gty = “diaeiny =2

We can have a basis for homology since they are free abelian.
Basis for HST is [v]

Basis for HAT is [a], [b].

Basis of HST is [U — L.

Matrix POV on HAT

1 1
1 1

~1 1] 75 0 0 0 .

A =77
Integral row and column operations:
e Switch two rows (or columns)
e Add multiples of a row (or column) to another row (or column)

e Multiply row (or column) by +1

These correspond to basis changes in the domain and codomain.
If matries A and B are equivalent (A ~ B) it implies:

ker A = ker B

coker A = coker B

Every integral matrix is equivalent to:

dy
ds
dy

With dy |dy | ds |-
It is a smith normal form.
We have:

1 1 1 0 1 0

1 1|~]1 0|~ |0 O

-1 -1 -1 0 0 0
This is 9s.
H)T =27,

~

imdy, 27 agld summand of AT

HlAT = ZXZOXO = Z2

Exercise: compute kernel and cokernel of: Z
93N51N51~60N60N10
4 2 4 2 -1 1 -1 1 0 1 0 6

Thus, ker = 0, coker = Z/6Z.

3
2
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Goal: if there is continuous f : X — Y then we have homomorphism f, : H. X —
H.Y.

We think of them in terms of Category Theory.

Setup:

Category C.

Collection of objects ObC.

VX,Y € ObC we have a collection of morphisms C(X,Y).

VX,Y,Z € ObC we have composition law:

C(X,Y) xC(Y,Z) = C(X, Z)

(9, f) = fog

Also, VX € Ob(,3idx € C(X, X).
We also have associative law:

(feg)oh=fol(goh)
VielC(X,Y), f=idyof = foidx.
For f € C(X,Y) we can also write it as f: X - Y or X Ly,
We sometimes call them ‘arrows’ instead of ‘morphisms’ to avoid thinking of them as
functions.

) QLN VR B

fog

Definition. f: X — Y is an isomorphism if g : Y — X such that:

feg=idy,gof=idx
We write it as X 2 Y and say X and Y are isomorphic.

Example of Categories:

Set is (sets, functions).

Top is (topological spaces, continuous functions)

Ab is (abelian groups, homomorphisms)

Morphisms need not be functions!!

A group can be viewed as a category with one object. Elements of the group is the
set of morphisms, and all morphisms are invertible.

Suppose G = {1, T} of order 2. Then, we have:

TC T Did

Where T o T = id

We let Ch be the category of chain complexes.

The objects will be chain complexes. What are the morphisms?
Recall that Chain complexes are Cy = (Cy, 0i) where:

On

8nJrl
Cn+1 Cn On—l —

Where 0,41 0 0, = 0.
Morphisms are given by chain maps.

Definition (Chain map). fe : Co — C. is a sequence of homomorphisms f,, : C,, —
C! such that:

fn—l Oan = 8; Ofn

For all n.



We have the following commutative diagram:

Chi1 Cn, Chog —
| | |
Chia &4 1 —

For example, if we have f : X — Y we have the chain map:

for =Sef : SeX = SY
Given by:

(Sef) (Z niUz‘) = Zni(fooi)
This gives us:

D QR e

b

Sy 2,95 |y

Lemma 11. A chain map f, : Co — C. induces f. = H,(fo) : H,Coe — H,C\, given
by [2] = [fnz]

Remark. elements in L%

imOnq1
We use equivalence classes:

r~z & x—12 €imd

can be [z] [equivalence classes] or 4+ im J,, 41 [cosets].

Proof. f,(cycles) C cycles.

fn(boundaries) C boundaries.

Recall that cycle is ker 9,,.

Consider a cycle X. Then, 0X =0 = f(0z) =0 = 0 f(x) =0 = f(z) €
ker 0'.

Boundary is im 0y, 41.

F(0y) = O f(y) € m By

Thus we have:

ker 0y,

3 /
ima,,

ker 8,, — ker 9, —

This induces,

ker 0, ker 0],
imd,y1  ima,

O

Now we move on to functors. Functors are an analogy of functions on Categories.
Consider two categories C and D. We want to define a functor between them.

Definition. A functor F': C — D will be an ‘assignment’ of objects and morphisms.
We have F': ObC — ObD.
VX,Y € ObC we have:

F:C(X,Y)—=DF(X),F(Y))

Then, F(fog) = F(f)o F(g).
Flidy) = idpx)

10



So we can F' a whole category:

xLy

F(f)

F(X) FY)

We have the singular functor taking topological spaces to chain complexes. We also
have functor taking chain complexes to abelian groups.

Top 2% Ch 2= Ab

We also have forgetful functor which forgets:

Ab — Set

Ab — Group

We have the category Gr of graded abelian groups.

Gr has objects A, = {Ag, A1, Aa,- -+ } set of abelian groups, and morphisms A, f—°>
B,.
Then we can write:

Lemma 12. Consider a functor F : C — D. Then, X Y — F(X) = F(Y).
Corollary: X =Y (homeomorphic) implies H, X = H,Y

Proof. X =Y implies we have f,g so that f(X) = Y,g(Y) = X so that fog =
idy,g o f = ldX

Then, F(f) o F(g) = F(fog) = F(idy) = idp(y). Similar for go f. So, F(f) and
F(g) are isomorphisms and thus F(X) and F(Y) are isomorphic. O

Monday, 1/27/2025

Homotopy Invariance of Homology

Definition (Homotopy). H: X xI - Y I =10,1].
Homotpy is a ‘path’ of map H; : X — Y where ¢ € [0, 1] is ‘time’. Hy(z) = H(x,t).

Definition. f,g: X — Y are homotopic if there exists H : X x I — Y such that
Ho=f,Hi=g.

If they’re homotopic we write f ~ g.

Theorem 13 (Homotopy Theorem).

f~9g = H,f=H.,g: HX — H.Y

f* = g«
Fact/Exercise: ~ is a equivalence relation on TOP(X,Y)
[X,Y] = TOP(X,Y)/ ~= homotopy classes of map X — Y.
Suppose for X, Y, X <i> Y we have fog~idx, X & H,Y.
g

For example, R? — 0 ~ S!. by x ER i and g = inclusion.

Straight line homotopy tx + (1 — ¢)%

B

11



Definition. X contractible if X ~ pt.
eg R? ~ x

Definition. Homotopy Category h'TOP.

Objects: Topological Spaces [NOT HOMOTOPY EQUIVALENCE CLASSES]
Morphisms: hTOP(X,Y) = [X,Y]. [These are Equivalence Classes]

Exercise: Composition is well defined. So, f ~ f',g~¢g = fog=~ fog'. Then,
[flolg)=[fod]

Isomorphisms in hTOP

X, Y Isomorphic in hyTOP <= X ~Y [homotopy equivalence].
So, homotopy theorem says homology factors through homotopy:

hTop s ar

[

TOP

Thus, X ~Y <« H,X =— H.,Y is really just a consequence of homotopy
theorem.

Definition. A C X, then A is a deformation retract of X ‘if we can deform all of X
into A’. Formally,

if 3H : X x I — X such that:

Ve e X, H(z,0) =x,H(z,1) € Aand H(a,1) = aVa € A.

Suppose A ~ X, A < X, A oy

idA :Hloi,idx %iOHl

eg Mobius strip (X) is homotopy equivalent to the cure circle A.
Definition. X C R" is start shaped at pg € X if Vp € X, ppg C X.

convex = star-shaped = contractable (by the straight line homotopy)
We can take (1 —t)po+' = H(p,1).
eg the n-simplex A™ and the prism A™ x [ are star-shaped.

Theorem 14. X start shaped = H,(X) =7Z or 0.

Corollary 15. H,.(A") = H,(pt)
H,(A™ x I) = H,(pt).

Proof. Wlog o : A™ — X.
Syspension so : A= — X

t tn, .
(1t0)(7<1_1t0,...’1_+;0>’ lft()?él;

0, if tg = 1.

SU(th T 7tn+1) -

We will show that if z is a n-cycle with n > 0 then z = 9(sz) = z is a boundary.
Define: 0th face of so is o.

(so)odyg =0

(s0)0djt1 =8(c0d;) = s0+0s=ids,x Vn > 0.

Thus if z € 5, X then |

80z + 0sz =z = J(sz) =z = z is a boundary. O

12



Algebra

Definition. Chain map f,, g. Ce — C) are chian homotopic if 3 homomorphisms
hy : Cy — C), 1 ‘degree one’ such that:

I+ hp—10n = fn — gn

7L+1 >C >Cn1

A e

! /
n+1 Cn Cnf 1

Wednesday, 1/29/2025

We write it as f, ~ g if 9, 1hn + hn_10n = fn — gn. Then f, and g, are chain

homotopic.
Homotopy theorem: f~g: X —Y :> fe=9g« : H, X - H,Y
* Exercise: fo =~ go => H,(fo) = Hp(ge) : Ho(Co) — Hyp(CY).

Hint: (f, — gn)(cycle) =€ boundary
*x H, (A" x I) =0 for all n > 0.
A" x [ C R*H!

convex = star shaped.
Homotopy: id : X x I — X x [T

Let mp ~mo: X - X x1

nolx) = (x,0)

m(z) = (z,1)

What we want to show that our theorem is true in this case.

Lemma 16. 3 homomorphism P.X : S, X — S,.1(X x I), natural in X, such that
OP 4+ PO = S(n1) — S(no)-

Proof. Recall that S, : TOP — Ab, 7o : X — X xI = S,(n0) : SpX — S, X xI =
No# is given by composition:

No# <Z nﬂz‘) = Zni(ﬁo 0 0;)

We prove by induction on n.

N, by ‘naturality’: X 7, ¥ and we have commutative diagram:

SpX —— S Y

| |

Sn+1(X X I) e S7L+1(Y X I)

(H,) : On1 PX + PX 10, = Sn(n1) — Sn(no).

n=0:0=P_1: O—)So(XXI)

Po(o)(to, t1) = (0(0), 1)

boundary of 1 chain is subtraction of midpoint.

(9P0(a) =1N100 —T1po0

Assume PgS, .-+ Ps%, ... | PX | are defined satisfying Hs and Ks.
Let ¢ = t,, = idan. Goal is to define P2" (1) € S,q1(A™ x I).

We want H,, to hold.

So we want OP(t) = nypt — nogt — PoL.

So we basically want to know whether 7;4¢ — noxt — POu is a cycle.
We see O(n14t—noxt—Pdt). Since ;4 are chain maps they commute with 0 therefore:
=m0t — N0t — OPOL

= Mmy0L — nogdL — (Mg — oy — PO)(0i) =

*x = cycles = boundaries.

13



Choose P, such that:
0Pt = my — oy — POL.
Now, (N,):

0: A" 5 X, 04t 0

S AT — T L5 x

|? |

Spn (A" x 1)\ Y 5 (X % T

Define Po = (o x id) Pt
O

Theorem 17 (Homotopy Theorem). f~¢g: X - Y = f,=g.: H. X — H.Y.
Proof. H: X x 1 —Y. We want h,, : 5, X — S,,;1Y such that:

Oh + hd = Hyy — Hoy

Note: Ht =Ho i

We define h,,0 = Hy(P,0)

(8h + ha)O' = aH#PO' + H#Pnad = H#(@PO’-F PaO') = H#(T]l# — 770#)0 = Hl#a —
Ho#a' O

Friday, 1/31/2025

Exact sequences

Long Exact Sequences (LES)

Short Exact Sequences (SES)
Mayer-Vietoris Exact Sequences (MVES)

A% B i C is exact if ima = ker 3

< ima C ker § and im«a D ker

Note that ima C kerf <= Boa =0

A sequence C,, - Cp,_1 — ---Cy — 0 if it is exact at Cp,_1, -+, C1.
Sequence,

o> Chp1 —Cp > Crmg — -+
is exact if it is exact at C; for all i. LES.
oo > Chy1 = C, = Cpoq — -+ - isexact <= C, is a chain complex and H,C, = 0.
0+ A Bisexact <= kera =0 <= a is injective / 1-1.
Dual: A% B — 0 is exact <= ima = B <= « is surjective / onto.
0+ A5 B—0exact <= «ais1-1and onto <= « is an isomorphism.
If A<~ Bthen 0 - A — B — B/A — 0 is exact.
IfALBthen0—>kerf—>AL>B—>cokerf—>0.
Short Exact Sequence:
Suppose0—>A1>B£>0—>O
<= a1-1, Bonto, ima=ker3 <= a1-1,3: B/ima — C — 0

0 A—>,p_P,¢ 0
= l: {(6)1
0 —— a(4) B 0

Canonical Example:
0—>2/2—7/4—7Z/2—0and0—Z/2—>Z/2®7Z/2— Z/2 — 0.
Spaces A,B C X

14



ANB ' A
b
B—t X
Theorem 18 (Mayer-Vietoris Exact Sequence). If X = int AUIntB [eg X = AU

B, A, B open]
Then 3 LES:

S HANB 2 g Ao H,B> " H,x % H, \ANB

- = HpX =0

We need J]a]. If a is a cycle in X we have,

~ aa+ ap
homologous

Meaning « — (a4 + ap) is a boundary.
Furthermore, d[a] = O]a].
Homology of a circle S*.
Circle can be written as union of A =U and B =nN.
Then A ~ pt, B ~ pt, AN B ~ 2pts which is S°.
H S % HyAN B — HyA® HyB — HyS' — 0

1 1

1 1
0— HS' 72 ——=57%2 5 HyS' >0
Thus, H,S! = ker {1 1} =7 { 1 ] ~7

11 -1
1 1
1 ~
HyS* = coker [1 J = 7.

0— H,S' 50— = H,S'=0.
For n > 0, the homology of S™ can be done similarly with 2 D™.

Z, ifi=0,n;
H, 5" = .
0, otherwise.

Can be proven via MVES and induction on n.

Monday, 2/3/2025

Theorem 19. For n > 0, we have:

Z, ifi=0,n;
H;S5™ = .
0, otherwise.

Proof. MVES + induction on n.
For n = 1:
Homology of a circle S*.
Circle can be written as union of A =U and B = N.
Then A ~ pt, B ~ pt, AN B ~ 2pts which is S°.
H18' % HyAN B — HyA® HoB — HoS' — 0
i
1 1
0— H,S' -7 ———= 7% - HyS' =0

11 1
1 ~
Thus, H1S" = ker L 1} =7 [1] =7

HyS' = coker E 1 ~7.
Thus it is indeed true for S;.

15



For S™ divide Let N = |:| and S = | ! |. Write A = 5" — {S},B = S" — {B}.
1 -1

Then, A~ {N},B~{S},AnB~ 8"~ 1.

These are deformation retracts: One way it’s an inclusion, other way it is a retract.

i. A~ N: Use normalized straight line homotopy.

H - A X [ — A’ T — H—$+UV
(1 —t)z+tN||
We avoid the south pole to avoid division by 0.

Same for ii.

AN B: We don’t have north and south pole.
Idea: project and normalize.

Suppose = (xg, -+ ,x,) € AN B.

-— (1’-07”‘71’-717170)
Let (@) = o mor

Then H(x,t) = w

We’re essentially going along an arc to minimize our journey throuth the sphere.

i H,ANB H;,A® H,B H,;S"
=~ H,(S"1) | = H,(pt) ® H;(pt)
0 7 YASY/ 7
1 0 0 ?
n—1 7 0
n 0 0

Table 2: MVES for S™

All question marks should be 0 except for the last one since it maps to Z.
Application for H,S" : S" ~ S™ — n=m.
O

Definition. A C X is a retract if 3 continuous r : X — A such that r(a) = aVa € A.
A is a retract. r is a retraction.

Thus, retract means r is a left inverse of the inclusion map 7 : A — X.

By functoriality, the same thing is true once we pass to homology.

o0l =1dg, 4 = H. X =i.H.A®kerr,.

Theorem 20 (Brouwer No Retraction Theorem). S™~! is not a retract of D".
=id.

Proof. We use contradiction. Assume 3r : D™ — S™! such that r gn-1

9

Snfl D" T Snfl
W
Applying the functor H,,

T T

H,s" ! > H,D" —— H,5"1
S~ w7
D™ is retractible. When n > 1 we have H,_{D" = Z.

7Z —— 0 —— 7Z
id

Which cannot happen.
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Theorem 21 (Brower Fixed Point Theorem). Every f: D™ — D™ has a fixed point.

Proof. Assume there doesn’t exist a fixed point.

Then we can construct a retraction map r : D™ — S™ by drawing a line from f(x) to
x and intersecting it with boundary. O
Relative Homology

Goal: exact of a pair A C X.

oo HoA = Ho X — Hy (X, A) S Hy oy — -

H, (X, A): “relative homology”. We extract ‘relative cycles’.
Chain is a formal linear combination. We require the boundary be in A.

Definition (Category of Pairs). Top®.
Objects: (X, A) where A C X open.
Morphism: (X, A) — (Y, B) is a continuous map f : X — Y so that f(A) C B.

We have a functor H,, : Top? — Ab.

S,A—92 58, A

/ [

S, X 2458 X

This means we have S, X/S, A i Sp-1X/Sn-14
Relative Chain complex:

Se(X,A) = {‘;*‘)Afﬂ}

Wednesday, 2/5/2025

Suppose we have a Mayer-Vietoris Exact sequence.

) Hyp (i) Hn (5)

= H,(ANB H,(A)®H,(B)—» H,X - H,_ 1(ANB) — ---

Then we have the following short exact sequence:

0 — coker(H,:® H,j) —» H,X — ker(H,i ® H,j) — 0

Then, H, X is determined upto an extension.

If coker = Z/2,ker = Z/2 then H, X can be Z/4 or Z/2 ® Z/2.

If all of them are free [so maps are matrix maps] then we can use smith normal form.
This gives us: H,S™ = H,,_1S" .

Remark. Generator of H,S™ is represented by:
A" — AT /AT = ST
or,

D1 (AT 5 ATHLY

aka sum of top simplicies of 0A™.

17



Relative Homology
Consider the pair (X, A) with A C X.

Definition (Singular Relative Chain Complex).

So(X, A) = {S.(X, A), 3}

o S (X, A) D s (X, A) 2 S, (X A)

Sn(X,A) == S, X/S, A

[Quotient of free abelian group, basis is a subset. So quotient basis is the complement,
quotient is free abelian]
Then it is a free abelian group with basis:

{J:A”—>X

o(A") ¢ A}

0:9,(X,A) = S,_1(X, A)

induced by 9 : S, X — Sp—1X.
or (c+ SpA) =0c+ Sp_1A

Definition (Relative Homology). Relative homology is the homology of the chain
complex:

kerd,  Zn(X,A)
imd, Bn(X,A)

HrL(Xv A) = Hn(SO(Xv A)) =

N2 (X, A) {ce S, X |0ce S,_1A}
7 UB,(X,A) {c€S,X|3de€S,.1X,st.0d—ceS,A}

Example: H, (D", S"1)~7

For all n we have H,, : Top> — Ab or we can consider H, : Top®> — Gr.
We have maps induced by morphisms: f(X,A4) — (Y, B) s.t. f(4) C B.
We have a corresponding map of chain compplexes:

Tie

Sef = fy = S¢(X,A) = S¢(y, B)

H.f =f,: H(X,A) — H,(Y,B)

It is a chain map [aka it commutes with the boundary] [see above].

Homotopy Invariance

Suppsoe we have a homotopy H : X x I — Y so that H(A x I) C B.
Let f = H(),g = Hl.
We write f ~ g.

Theorem 22. f, =g.: H,(X,A) —» H,(Y,B)
Proof. Same as absolute case. O
If we want to be fancy we can say:
H, : hTop® — Gr
Objects are pairs of topolocial spaces, morphisms are homotopy classes of morphisms.

Remark. (X,2) — (X, A) is a map of pairs.
Clear from defiinion that H, (X, o) = H,X so we have a map H, X — H,(X, A).

18



Theorem 23 (LES of a pair). 3 LES like this:

inc induced

oo Ho A e g, x dveeds v A) S H, A
Example:
H,D"™ — H,(D",S8" 'Y - H, "' - H, D"
=0 =0

= H,(D",S" =7

Hi(D", 571 = Z, ifi=mn;
' ’ 10, otherwise.

Generator A™ — A",

Proof. We have a short exact sequence of chain complexes:

0= SeA = SeX — Se(X,A) =0

So, all maps are chain maps.
It is levelwise a SES of abelian groups.

Vn,0 = Sp A — Sp X — S (X,4) =0

Lemma 24 (Zig-Zag Lemma). (Theorem 2.16 of Hatcher) Slogan: SES of chain
complexes gives a long exact sequence in homology.

0—>A.i>B.i>C.—>0

o Hy Ay s H,B. 2 H,Co % H, Ay — H,_ 1B,

Zig-Zag lemma — LES of pair.

Proof of Zig-Zag lemma: diagram chasing.

We need to define the boundary map 0. Also, we need to prove exactness at the
following: H, A, H,B, H,C.

We have 6 inclusions CD. Look at Hatcher!

0:H,C — H, 1A,0[].

0 An Bn b—c cycle Cn 0
| [
0 An—l at—l;(')b B, 1 —— Cn—l — 0

olc] =[i7'0j ] € H,_1A

0., =i 195}
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Friday, 2/7/2025
Theorem 25 (Zig-Zag Lemma). A SES:

0—>A.i>B.i>C.—>0

Induces a LES on homology:

o HyAe 2 HoBe 25 H,Co 2 Hy1 Age — -

Proof. First we explicitly define the boundary map 0 : H,Ce — H,_1A, given by
0=i"19B;~ L
Suppose ¢ € ker 9°. From surjectivity of j we can choosee b € B,, such that jb = c.
jOBb = 0%jb = 0% = 0.
Thus, ¢ € ker 3°. Then we can find a such that i(a) = 97b.
We define 9[c] = [a].
Details:
a is a cycle. i0%a = 0Pia = 0P0PB = 0. i is injective = 9%a = 0.
[a] is independent of the choice of b. Suppose jb = ¢ = jb'. Then there exists a” such
that ia” =b—1'.
We choose a,a’ such that ia = 9Pb,ia’ = 9. Then a —a’ = 04a" = [a] = [d] €
H, 1A
[a] is independent of the choice of ¢. Suppose ¢ — ¢/ = d¢”. We can find b” such that
J(") =¢". Then 0b” — ¢ — . Thus, d[c — '] = [0]. Thus, 9[c] = J[]

[

Monday, 2/10/2025
Reduced Homology, Excision
Preview of Redued Homology: suppose X is path connected. Then,

—~ H,X, ifn>0;
0, if n =0 and X is path-connected.

Definition (Augmentation). € : So X — Z,>, nijo; — Y . n;

Note: €007 =0

g(O(o: Al 5 X)) =¢(o(1) —0(0))=1—-1=0

Definition. IA{;X is the homplogy of the agumented chain complex:

35X 5 X 5 S X SZ =0

n>0H,X=H,X

SES 0 — ;e — 20 5750

0— HoX = HyX 570

HoX = 7,(# of p.c.)—1

XoeX

HyX — HyX — HQ(X, .To)

HoX is subgroup, Ho(X,zo) is quotient. They’re isomorphic.
Why bother?

i) H.(pt)=0
il) Mayer Vietoris works with H.
—>]TI,LADB—>I§"A@I?,LB—>?I”X 9,

eg consider the X — S case.
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0— Hy(S') = Ho(S' =N —8) — ---
N——
7

Thus Hy(SY) = Z
iii) H,S™ = 7 ¥n > 0. In particular, Hy(2) = Z.
iv) H,S" = ?I_,;:(S"H). Suspension isomorphism.
v) Define I‘IVZ-(X, A) = E(X, A). Then we have SES:
—>EA—>EX—>E(X,A)—>--~
vi) For “good pairs” (X, A),

o~

Hy(X, A) = Hy(X/A)

vii) There exists a cofibration exact sequence for good pairs:
— H;A — H;X — Hj(X/A) = H,_1A

Excision

Definition (Triad). A triad (X; A, B) means we have a topological space X and
A, B C X. Then,

SEAPY = S,A+ S.B C S X
generated by o : A" - A or A™ — B.
Lemma 26. Let (X; A, B) be a triad. Then TFAE:

1) H.(B,ANB) = H,(X, A) is an isomorphism
2) H.(SeA+S,B) = H.X

Definition. (X; A, B) is a excisive triad if i or/and ii holds.

Theorem 27 (Excision Theorem). X = int AUInt B = (X; A, B) is excisive triad.
Proof of Lemma. Sublemma (*): There exists SES:

. SeB . SeX . SeX .
SeANB  S.A  S,A+S.B
Sublemma (xx): for all SES

0 0

0—=C,—-Co—Cl =0

H.(C") S H,(C") < H.(C!)=0

Sublemma * proof: We use Noether’s isomorphism theorems. We have the following
SES:

SeX

WA B X > ————
0— SeA+S.B — S, _>S.A+S.B_>

0

Mod out by S, A:
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O_>S.A+S.B _>S.X_> SeX S0
S.A SeA  SeA+ S.B
Note that S"ngS'B &~ SS;\OB so we’re done.
Sublemma (**) follows from the zigzag lemma.
Now onto the main proof:

(é’* (SA+SB)7O§:;

O

Proposition 28. If (X; A, B) is excisive then there exists Mayer Vietoris Exact
sequence:

Proof. First Proof:

O%S.(AQB)%S.A@S.B@S.AJrS.BHO

Apply zigzag lemma and 2 = Mayer Vietoris.
Second Proof:

— H,(ANB) H,B H,(B,ANB) — H, ANB

R

H,A H,X H,(X,A)

H, 1A

Wednesday, 2/12/2025

We give examples of excisive triads.
(8™; 8" —S5,8"—N)
(5" 5%, 5%)
(1;{0},2)

Goal is to discuss a proof of the Excision Theorem: If X = int AUint B then (X; A, B)
is an excisive triad. This implies Mayer Vietoris.

Proof of Excision Theorem. We have H,(S¢A + S¢B) — H,X.

Is it onto? We want to check if v € S, X is homologous to aw + g € S, A+ S, B. So,
we want to find 7 such that On = v — (a + (). Idea: subdivide v to « and /3 so the
tiny pieces all lie on A or B. We can do this by Lebesgue numbers. O

We're going to gack to simplices in vg,--- , v, € RV,

A geometric n-simplex A = (vg, - - - ,v,) = the convex hull.

Zitivi € A,O <t; < 1,th =1.

The center is called the barycenter b = ba = E+1 ,

We have the barycentric subdivision A’. This will be a collection of p-simplices whose
union will be the whole thing.

the center of mass.

A = {(b, Wo, -+ ,Wp—1) |{wo, -+ ,wp—1) € barycentric subdivision of a facet of A}

A facet of A is given by (vo, -+ , 03, -, Up)
We need the following theorem to prove excision theorem.
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Theorem 29 (Subdivision Theorem). See tom dieck, hatcher.
3 chain 8, = ﬂff : Se — S., natural in X such that:

1) B¥ ~ idg,x chain homotopy natural in X. Reason: we want to make sure
homologically it doesn’t change things. As a consequence of this, image of cycle
is cycle.

2) By(o: AP — X) is supported in (AP)’.
If B,(0) = 3, nio; then o;(AP) C o(7) for some 7 € (AP)’.

Note: natural in X means if we have f : X — Y then we have a commutative diagram:

S.X Tt s.u

Lﬁf‘ lﬁf’

S.X *, sy

For a chain homotopy hg( : SpX — Sp41X to be natural means Oh + hd = 8 —id and
we have the following commutative diagram:

5,X — S,Y

l |

Sp+1X Emd Sp+1Y

Proof. Construction of (.
Suppose we have convex D C RY and vertices vp, - -+ ,v, € D. We have:

[vo, -+, Up) : AP — (v, -+, vp)

Z tie; — Z t;v;
i i
For v € D define suspension map:

V- SpD — Sp+1D

v - [UO,"' avp} = [’U,’Uo,'~' 7’017]
Let ¢, : AP — AP be the identity.
We define 3, by induction on p.
For p = 0 we have fy(c) = o [we cannot subdivide point].
We want [by naturality] 8,(0) = o458, (tp)
Bp(tp) = b+ Bp-1(01p) € SpAP
Proof of i, ii ommitted.

B1(0o) is given by formal difference between paths from b to each endpoint for example.
O

Suppose we have a metric space A. Recall that diam A = sup, ,/ d(a,a’).
Lemma 30. vp,---,v, € RY. Then diam(vg, - ,v,) = max; ;|jv; — v;]|.

Proof. Suppose a,a’ € (vg,--- ,vp). Write down barycentric coordinates:
a=Y,tv,a =) th.

> ti(vi) —d D tivi—d)|| <> tillvi = d|
< (Z tz-) maxfo; — o' < maxjv; — )|

3

la —a'l| = ‘

Corollary 31. A = (vg,---,vp) we have 7 € A" and diam7 < % diam A.
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Friday, 2/14/2025
Theorem 32 (Classical Excision Theorem). If Z C A C X,Z C int A, then,

H, (X —Z,A—7Z) > H,(X,A)
Basically we can cut out (excise) Z.

Proof. Let Z = X — B. Then, B and Z are complements.
ZCintAC X < X =intAUintB. O

Slogan: you can excise closed sets from open sets.

Suppose we have a knot S* = K C S3. Suppose we have the trefoil.

We can prove that the trefoil is not a circle by the fundamental group m;(S® — K)
but not homology!

One can use Seifert-Van Kampen theorem to show that m1(S® — K) = {(a,b | a® =
b?) — (a,b | a® =b* = 1,bab = a™ 1)

S5 non-abelian. Then, m,(S% — K) % Z = m (S3 — S1) = §! x D2.

N(K) = tubuler neighborhood of K 2 S! x D? solid torus.

H.(N(K),N(K) - 58Y) = H,(53,5% - K).

Also, H,(N(K),N(K)—S') = H,(N(S!), N(S§*)—S1) so S3 — K is a homology circle
[H.(S? — K) = H,.(SY)].

[See: Massey Algebraic Topology]

Let Vo, ", Up ER" let A = <U07"' avp> = {Zztzvzm S t; < ]-aziti - 1}

Lemma 33. Suppose x € A. Then, sup,¢ca ||z — y|| = max; |z — vj]|

Proof.

Iz —yll =

T — Ztiyi
7
<Y tillr— il < {th} {mjaxnx - yjn} = max|z — |
[ 7

Zti(iﬂ — i)

Applying this twice, ||z — y|| < rnauX”Hzz — x|
The j-th face of A is §;A = (v;, -+, 05, ,vp).
The barycenter b = U“J;% Like the centroid.
Barycentric subdivision of A: It is going to be a collection of p-simplices that cover

A.

A= {<b7 Wo, * -+ ’wp—1> | {w07 e 7w1?—1} € (ajA)/}
Corollary 34. 7 € A" = diam(7) < F; diam A.

Proof. We use induction on p. Suppose 7 = (b, wp, -+ , Wp—1).

Case 1: diam 7 = ||w; —wj]]. (wo,--~ wp—1) € (0} )’ = |lwi—w;| < 21 diam 9;A
by inductive hypothesis and < o 7 diam A.

Case 2: Suppose diam 7 = ||b — wZH

|b — w;|| < ||b —vj|| for some j by the lemma.

1 1
pHvak ull £ —5 S maxfu - vy =

k#]

16—l =

diam A
1

k
As we subdivide we have limj,_, oo (ﬁ) = 0 which is the point.
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Proposition 35. If X =int AUint B and ¢ € S, X is some chain then 3% such that,

gt cS,A+S,B
k is the subdivision operator.
This uses the Lebesgue Number Theorem [a fact about comapct metric spaces]:

Theorem 36. Let U be an open cover of a compact metric space (A, d) then, de > 0
[called the Lebesgue number| such that if we have B C A such that diam B < € then
30 € U such that B C O.

Using the theorem we can prove the proposition.

Proof of Proposition. It suffices to prove this when ¢ = o : AP — X. We choose a
Lebesgue number € for the open cover {0_1 int A, 0! int B}.

k
Choose k such that (p’ﬁ) < e.

Part ii of the subdivision theorem implies supp(3¥c) is contained in (AP)*.
iLe. o =3, nio;.
oi(AP) C o(7) for some T € (AP)K.
k
diamt < (p%) €
Therefoore, 7 C o~ 'int A or o~ !int B.
Therefore, o(7) C int A or o(7) C int B.

Monday, 2/17/2025

Recall subdivisin theorem.

Theorem 37 (Subdivision Theorem). There exists chain map 83X ~id : S¢ X — S¢ X
natural in X and supported in barycentric subdivision.

Proposition 38. Let X = int AU int B. For chain ¢ € S,X, 3k such that if we
subdivide k times aka take 5*¢c, we have:

Bkce S,A+S,B
We want to prove the following theorem.

Theorem 39 (Excision Theorem). Suppose X = int A U int B. Then,

o

H.(SeA+ S,B) — H.X

Chain homotopic implies we have equation:

BX —id = or* + X0

Natural means if we hafe f : X — Y we have the following commutative square:
fuoBX =p8Yofy feohX =hY ofy.

Claim: B ~id.

Proof: f~id,f~g = foh=~goh(= f'~ B*!). ~is an equivalence relation.

Proof of Excision Theorem. Onto: Let [y] € H,X be a cycle. Then 3k such that
BFy € S,A+ S,B.

B* —id = Oh + ho.

BFy =y =0hy + ho7 = v =By +9(hy) = ] =[] € HpX.

[8%4] € im H,(Se A + SeB).

1-1: Suppose [y] € ker(Hp(SeA + SeB) — HpX). Then we can write v = 9n. There
exists k such that 8%y € S, 1A+ S,11B.

B*n —n = Ohn + hon. Apply 0.
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dB*n — on = dhon

0B n — = 0hy
Similarly, v = 9(8%n — hy) € 0(Sp+1A + Spy1B)
SInce h is natural, vy = o+ B, hy = ha+hB € S, 1A+ Sp11B,[7] =0 € Hy(Se A+
SeB). O
Remark. Let U be a family of subsets from X such that X = J, o, int A; and let
SUX =S, A;

Proof of excision theorem shows that:

H,(SYX) 5 H.X

Lemma 40 (Five Lemma). If we have a commutative diagram with exact rows [like
the following:]

A B C D E
N
A B ' D’ E

If «, 8,6 and € are isomorphisms, then so is 7.

Proof. v injective: Suppose (c) = 0.

ar—bbr—c a — b, — 0. Thus, c=0.

~ surjective: Suppose ¢ € D’ so that ¢ — d’ — 0 then we have d — 0, preimage
gives us ¢ — d +— 0. Since b’ — ¢’ —imc > 0, we are going to adjust ¢ by the image
of b.

c+imbr— imc+c¢ —ime=¢. O

Typical application (2/3): let isomorphisms f : (X, A4) — (Y, B) with f, : H. X —
H.Y and f.: H.A — H.B. Then, f.: H.(X,A) —» H.(Y, B).

Proof:
H,A H,X — H,(X,A) —— H, 1A —— H, 1 X —— -
H,B H,Y — H,(Y,B) — Hp 1B — H,_1Y — -

Quotient Topology
Let X be topological space, ~ an equivalence relation. Then X/ ~ is the set of
equivalence classes with 7 : X — X/ ~.

Definition. U C X/ ~ is open in X/ ~ <= 7~ 1(U) is open in X.

Wednesday, 2/19/2025

We can rephrase this.

Definition (Saturated). V C X is saturated if V' is a union of equivalence classes,
ie. if wehavev e Vo' ~v = v € V.

Then, open sets in X/ ~ are the image of saturated open sets in X.

Definition. ¢: X — Y is a quotient map if ¢ is continuous, ¢ is onto and U is open
inY <= ¢ 'U is open in X.

Idea: Quotient Topology = Quuotient Map. X — X/ ~ is a quotient map! Further,
if ¢: X — Y is a quotient map we can define an equivalence relation on X: x ~ z’ if
q(x) = q(a’). Then, Y = X/ ~,. So the equivalence classes are ¢~ 'y.
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Universal Property of Quotient Topology

Suppose we have a continuous f : X — Z that is constant on equivalence class. Then
it factors through the quotient:

[
X/~ |

Theorem 41 (Universal Property of Quotient Map). Given the following Commu-
tative Diagram:

x -1,z

5%

such that f is continuous and ¢ is quotient map, then A is continuous.

Recognition of Quotient Map

q : X — Y is continuous, onto.

q open map = ¢ quotient map.
g(open) are open.

q closed map = ¢ qm.
q(closed) are closed.

Jim’s Favorite Trick

If f: X =Y is continuous, X compact and Y Haussdorff then if X is { nontc') }
bijective
then f is a { quotient map }

homeomrophism

Proof. Idea: Closed subsets of compact spaces are compact.
Idea: A compact subset of a Hausdorff space is closed.
Then f: X — Y is closed. O

Idea: if we have A C X then we can create X/A := X/ ~4:

a~ya < a,d € A.

This isn’t an equivalence relation, this is just a relation. There is an equivalence
relation: we need to add the condition x ~4 x.

Then, open sets in X/A are unions of open sets on X disjoint from A and open sets
in X containing A.

Claim: D"/S"~1 = gn,

Consider the map D™ — R™ U {oo} %) S™ by stereographic projection, x — %m:v

DY — 5"

|

Dn/snfl

is a quotient map by JFT, continuous bijection, hence homeomorphism by JFT.

Definition. (X, A) is a good pair if:

H,(X,A) = H.(X/A,AJA)



Note: H,(X/A,AJA) =5 H,(X/A).
Then this is the same as:
H.(X,A) 5 H.(X/A)

eg (D™, 5" 1) is a good pair.
(X, A) is a good pair = there is a long exact sequence:

H,A— H,X — fIn(X/A) S H, A—H, X
Theorem 42. If A CV C X, A closed, A C intV and A — V is a deformation
retract then (X, A) is a good pair.

eg (D™, 8"~ 1) is a good pair.
The proof requires exicision and homotopy invariance and the five lemma.

Friday, 2/21/2025

Note: the previous theorem is Hatcher’s definition of a good pair. These concepts are
not equivalent!

Proof. Consider the following diagram:

H. (X, A) ——— H.(X,V) «—2—— H.(X - AV - A)

| [

H,(X/A,AJA) —— H.(X/A,V/A) «2— H,(X/A—AJA,V/A— AJA)

We want to prove that each of them is an isomorphism.

2 is isomorphism by excision.

3 is isomorphism since we removed A and then modded out A, so they’re in fact the
same spaces.

4 is isomorphism by excision.

1 and 5 are isomorphisms by homotopy invariance of homology and five lemma (cf
HW ex 2). We have something like this:

H,A H,X Hy(X,A) — Hyp 1A —— Hy 1 X
H,V H,X Hy(X,V) — Hy_\Vn —— H, 1 X
O
Degree

We can talk about the degree of a map f : S™ — S™. The degree is an integer. Think
about winding number. B B

f:8"— 8™ induces H,S™ — H,S™. Easier to consider H,S™ — H,S™. These are
infinite cyclic groups so the map is a multiplication, thet number is deg f.

a,sm &80, ogn
We have the following property:

1) degid = 1.

2) deg(fog) = (deg f)(degyg).

3) Due to Hopf: deg f = +1 <= f is homotopy equivalence.
)

4) f not onto = deg f = 0.
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5) deg(f : Ho(S°) — Ho(8°)) € {~1,0,1}.

6) Consider the antipodal map A = —id : S™ — S™ given by A(z) = —x.
deg(—id) = (—1)™1 = det(—L41)

7) f:S™ — S™ with no fixed point then deg f = (—1)"*! [HW]

8) f:8" = 8" f(zx) # —aVe = degf=1.

)
)
9) global degree = local degree, deg f = #f~(z).
10) deg(z — z") =n, St — SL.

)

11) M € O(n) = degM = det M.

Proof. 1 and 2 follow from functoriality: H, : Top — Ab is a functor.

3: <= : if f is homomotpy equivalence then there is a homotopy inverse g, then
(deg f)(degg) =1 = degf =+1. = is a deep theorem of Hopf. We will not
prove it in this class.

4: We need lemma.

Lemma 43. If f: S™ — S™ x ¢ f(S™) then f ~ const_,,: we’ll take the straight
line homotopy:

tf(z) + (1 —t)(=z0)
[f () + (1 =) (=zo) |

Thus deg f = deg(c_4,)-

sn o S
\ /

{=z0}

\/

H,(pt) =

n

Recall HyS° has basis [01 A0 — 510] , {01 A0 — SO}

— eg +— —1
HS° then has basis the kernel, which is [oy] — [o_1].
deg(id : S© — SY) = 1, deg(const : S® — S9) = 0.
deg A =?A,([o1] — [0-1]) = [0-1] — [01],deg A = —1.
Lemma 44. If f: S™ — S™ has no fixed points then f ~ —id = A.
Once again consider the normalized straight line homotopy:

tf(z) + (1 —t)(==)
1tf(z) + (1 =) (=)

Monday, 2/24/2025
Recall Antipodal Map A = —id : S — S™.

Proposition 45. deg(A4) = (—1)"*.
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Proof. We can write A as a composition of reflection through hyperspheres:

A=Ryo---oR,
Where R; flips the i’th coordinate:

Ri(xla"' s Lyt 7$n) = (I’07"' sy T Lgy 7:CTL)

It is a reflection throuh hypersphere.

These reflections have the same degree since they’re conjugates. Let h; be the swap
of zg and x;. Then, R; = h; o Ry o h;l.

Then deg(R;) = deg(h;) deg(Ro) deg(h; ') = deg(R).

It is enough to prove deg(Rp) = —1.

We use induction to prove this.

n = 0 there’s nothing to prove. Assume true for n — 1.

MVES is natural, ie if we have f : (X;A,B) — (X', A", B’), f(A) C A’ of excisive
triads, then:

Thus there exists a commutative ladder of MVES:

— s H:X —2% 5 H, {(ANB) —— -
s X -2 H(ANB) —— -

Consider:

Ry : (S"; S” — {60}, S — {—60}) — (Sn, S" — {—60}, S — {60})
Thus we get:

H,(58") —=— H,_1(5" — {eg, —e0}) ——— H,_1(S™1)

J{RU*:—I J{Ro*:—l J{Ro*:—l

H,(5™) —=— H,_1(S" ' — {ep, —eo}) —— H,_1(S™1)
O

Remark. Suppose M € O(n) ie MT = M~'. Then, M is also a composite of
reflection through hyperplanes thus deg M = det M.

Hairy Ball Theorem

Slogans: Can’t comb the hairy ball

Every tangent vector field on S? has a zero

Every vector field on S? has a normal direction.

We make them precise.

Last one: suppose we have smooth v : §? — R3. Then Jp € S? such that v(p) € Rp.
We call this a ‘cowlick’.

Definition. A tangent vector field on S? is v : % — R3 such that v(x)-x = 0V € S%.

Euler Characteristic x(X) = ,(—1)* rank(H,; X).
If M is a closed manifold, can comb hairy M <= x(M) = 0.
Will not prove this now.

Proof of Hairy Ball Theorem. First Proof: We use contradiction.
Let v : S? — R3 be a tangent vector field. Then z 1 v(z) for all z € S2. FTSOC
assume v(z) # 0. Then we can normalize:

Then f:5? — S? with x - f(z) = 0Va.
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Thus, Vr € S?, f(x) # =z, f(z) # —=.

Thus we have straight line homotopies: f ~ A, f ~ id.

Thus, A~id = 1=-1.

Second Proof: We flow along the tangent vector. That gives us id ~ A.

Wednesday, 2/26 /2025

We compute the degree of f,, : St — S where f,, : z — 2™,
Then, f, (1) = {e?"**/"}, the n-th roots of 1.

Theorem 46. deg f,, = n.

Local degree is counting the number of inverse images. So, this is essentially saying:
local degree is global degree, kinda.

H1S' is generated by a o : Al — S1. Then o(tg,t;) = e2™.

Proof. First Proof: We ‘chop up’ the circle into pieces, 01,09, -+ ,0,. Then, f(g;) =
O—. - +

Uj<t0,t1) = ew

Claim: ¢ is homologous to o1 + - -+ + 0.

ie 3y such that Oy =0 — (o1 + -+ + o4).

[Not gonna prove this|

Then, (f,)-10] = (f)+o1 4+ 0] = [fuy 01+ + fuyoul = [o] 4+ o] = nlo]
Second Proof: recall that m(S*, 1) = [(1,{0,1}), (S, {1})].

Ue! (Sl, 1) =7.

For any I = S' we have a lift I = R where R — S is €27 then,

m1(S1,1) = Z is given by [a] — &(1) — &(0).

Then, fnoa(l) = fnoa(0) =n(a(l) —a(0)) = m(fn) =n
We have something called a Hurewicz Map m1(S*,1) — Hy(S') given by [a : [ —

S Ja: AT — S1].

71(51,1) *n> 7T1(Sl,1)

bk

8t —, g, 8!

We recall suspension. Recall: ¥ : Top — Top is a functor.
©X — XxI
; (@,0)~(27,0),(z,1)~(a",1) "
It is a functor, so if we have map f : X — Y we have suspension of a map X f : ¥X —
XY
Given by [z,t] — [f(x),t].
MVES shows:

bw» y*

Application: we have maps of arbitrary degrees. f, : S' — S! has degf, = n.
Suspension = Xf, : $2 — S2 has degree n, repeated suspension implies we can
find map f: S* — S* with degree n.

Third Proof: global degree = local degree:

=1+--+1=n

x

deg fo= Y degfn
zef~1(1)

Suppose we have f :S™ — S™ y in the image. We want to define degree of y.
y € S™ is finite value of f if |f~1(y)| < co.
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Suppose f~ly = {T1, - o}

J open V 3 y and open Uy,--- ,U,, containing z,---,x,, respectively, each open
disjoint such that f(U;) C V.

In this situation, we define the local degree at x;:

Hy (U, Us = i) £ Ho(V,V = ).

By hw, this is Z I+, 7 and we define deg f such that this map is - deg f.

Theorem: if y € S™ is finite valued then deg f =5 degf’w

Friday, 2/28/2025

Deviating from Hatcher, we ‘redefine’ local degree.

Consider f : S™ — S™. Let € S™,y = f(x) such that z is an isolated point of
f~1(y). Meaning, there exists a neighborhood of U of z such that UN f~'y = x. This
is equivalento to saying there exists a neighborhood V of y = f(z) and a neighborhood
U of x such that f(U) C V.

This is a generalization of a finite point.

If z is an isolated point of f, will local degree of f at x: degf’w €.

Idea:

Ho (U, U —z) L H(V,V —y)

5 i

de,
7 g fl, 7

Issue: we want the Z to be the ‘same’.
Choose generator [S™] € H,,S™ <= choose isomorphism H,S™ = Z: Orientation.

Ho(U,U — ) —2— H,(V,V —y)

F F

H,(S8™ S" —x) H,(5™, 85" —vy)
4 4
H,S5" H,(5™)
ﬁz -deg f|, Zz

Remark: this is independent of choice of U and V.
Also: f:V — V is homeomorphism, then degf’X =+1.

Theorem 47 (Global Degree = Local Degree). Le f : S™ — S™. If y € S™ such that
f~'y is a finite set, then the global degree is sum of local degree:

degf= Y degf

zef~1ly x

Proof. Suppose f~'y = {x1,--- ,2,,}. Choose an open neighborhood V > y and
disjoint open U;vx;.
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H,S" H,S"
£ g deg f i

In the bottom Z we have 1 — deg f. But we can go all the way around the commu-

1
tative diagram, 1+ |:| — >, deg f|m_, thus they are indeed the same.

1

O

Example of map where local degree is 2: deg¥(z — 22)|N =2.

Definition. y € S™ is a regular value of f : S™ — S™ if ‘ f is a local homeomorphism
near f~ly, ie U; = VVi.

Fact: If f: S™ — S™ is smooth and if f~'y = {1, -+ , 2} and df,,T,,S" — T,S"
is onto, then y is a regular value at f.

Theorem 48 (Sard’s Theorem). If f : S™ — S™ is smooth then almost all y € S™
are regular values.

Suppose we have a category C, objects X € C and morphisms C(X,Y).

Definition. A product of two objects X1, X € C is a triple (X, X =5 X1, X =2 X5)
such that it is final in the class of triples. Meaning:

i.e given f; : Y — X, for all 7, there exists unique f :Y — X such that m; o f = f;.
In this case we write f = f1 x fs.

Note that the product is unique upto isomorphism by initial object argument.
Often we abuse notation and just call X the product.

Products exsit in Set, Top, Ring, Group (take X = X; x X5 the cartesian product)
but not in Field.

Monday, 3/3/2025

Functions into a product are easy since they’re determined by components.
Example: curve v : R — R? given by (t) = (y1(t), y2(t)).

Definition (Infinite Product). Suppose we have {X,},cs, ie we have J — Ob(C, we
call J an index set. Then, the product of {X;};c s is defined similarly:

(X 4m X > X5)e,)
Such that,
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N

y X

When C = Top we use the product topology.
Reversing all arrows give us coproducts also known as direct sum:

Definition. Coproduct of two objects X1, X5 is given by a triple:
(X, X, %X, X, —>) such that X is final.

X1

.

Y < X

12

)

Xo

We write f = f1 + f2.
Coproducts exist in Set, Top, Ab, Grp, Ring, CRing.
Coproducts are unique upto isomorphism.0

In Ab, the coproduct is given by the direct product, X = X7 x X9, X7 — X, Xo = X
by a — (a,0) and b — (0,b).

A1 @AQ :Al X AQ.

In Set and Top coproducts are called disjoint union.

Xl H X27 ila 7:2

In Set, if X3, X5 are disjoint then let X; [ Xo = X1 U Xs.

In general, let X7 [[ X2 = X1 x {1} U X x {2} C X3 Uxs x {1,2}

In Top, if X7, X5 are disjoint then we can deinfe X; [[ X2 = X7 U Xo.

In general, consider set theoretic disjoint union X; [[ X2,41, 2 and define U C X7 [] X2
open if and only if by definition il_lU, i;lU open.

Coproducts allow us to have an abstract definition of a Delta commplex.

- [1(J x A™71)

~

In Grp, coproduct is the so calle free product.

In CRing, X7 ®z7 X5

In Ring, free product.

Now we talk about ‘based spaces’ in Top,.

Objects (X, z0) 2o € X.

Morphisms (X, zq) — (Y, yo) with X RSN RN Y0-

Fund group functor m; Top, — Grp. We often write X for (X, zo).
Coproduct in Top, is the wedge sum (one point union) given by X VY =
Example: Figure 8 is S v S1.

XY
To~Yo

Definition. To apply excision, we want (X, zo) to be well pointed.
If ¢ is closed and C open U and xzg is a deformation retract of U then (X, x¢) is well
pointed.
H;(i1 [T 42)
Lemma 49. a) H;X © H;Y ———— H;(X[[Y).

b) If (X, z0) and (Y, yo) are well pointed then,

Hy(X)® H;(Y) S Hi(X VY)

c) If (X, x0) and (Y, yo) are welll pointed then m; X * m;Y 2 mXVY
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Wednesday, 3/5/2025

Today we do Pushouts and Adjunction Spaces.
Suppose we have a category C.

Definition. A Span is two morphisms with the same domain.

X
X1 X2
A Cospan is two morphisms with the same Codomain.

X3 X5

NS

P
Definition (Pushout). A pushout of Span:

X

7N

X1 X2

Is a Cospan:

X1 Xo
P
which is ‘initial’: we have the following commutative square:

X%Xl

]

Xy — > P

Initial in the sense that:

X4>X1

Sometimes we write a pushout square as follows:
X — X3
|
Xy —— P

Definition. We obtain the pullback by reverting the arrows:

P— X,

I

X14>X
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Pushouts existt in Set, Top, Ab, Grp, Ring, CRing. It is ‘quotient of coproducts’
eg in Set and Top,

X X
=l
X2*>P

X; ] X2

P =
g1(x) ~ ga(x)Ve € X

We write P = X1 Ux XQ.

In Ab:

_ X16X
P = i @mexy
Grp: X1 *xx X5

TOP:

¢r—>X1

| |

X2 HP:XlL[XQ

¥ —— X

! |

Xo — P=X1VX,

X —— %

| |

X — P=X; /X
Now, suppose U,V are open subsets of X or U,V are closed subsets of X.

unyV ——— U

| |

V— P=UUV
The universal property follows from ‘pasting lemma’.

Theorem 50 (Seifert-van Kampen Theorem). If X = U UV, both open and zg €
UnV,UNV,U,V all path-connected then, the following is a pushout square

7r1(UﬂV) e 7T1(U,l‘0)
| |
7I'1(V,IL'0) —_— 7T1(X,$0) = 7T1U *r UNV 7T1V

Slogan: m; preserves pushouts.

Definition. f: X — Y is an embedding if f : X — f(X) is a homeomorphism. We
write X — Y.
If X C Y we have an induced embedding.

Definition (Adjunction Spaces). (See DK). h: A — B where A C C, we can look
at:

A—" 4B
c »BU O = h(a)B~]¢_zlvcz;eA
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B Uy, C is called the adjunction space.
Slogan: Attach C to B along A.

YUfX

Figure 2: Adjunction Space

Exercise from DK:

If A is closed in C,

B— BuU,C

C—-—A—=Buy,C

Underlying set of BU, C'is B]J(C — A).
Consider the following examples:

C —— BVvC = BUpw,(C
A— %
C—CJA = %Upas.C

Definition. n-cell is space homeomorphic to D
Definition. X Ug.gn-1_,x D" attaches n-cell to X.

Write X Ue”™ = X Uy D"
e” open disk C X Ue"
B =1?square,n=2,¢: S* — I

Figure 3: Gluing n-cell on square

Definition (CW Complex). (Not complete definition) Built from @& by attaching
0-cells, 1-cells, 2-cells etc.

Monday, 3/10/2025

Recall: pushout:

N W



P is supposed to be initial. In the Top categry we can have the following construction:

BI[C

P @ ~glavaca

gt L x
Definition (Adjunction Space). \[

D" —X 5 XUgsD" = Xne
Definition (CW Complex). Definition A: Constructive, Start with O-cells, 1-cells,
2-cells etc.
CW complex is a pair (X, {X"},—0.1,2...) where X is a topological space and X° C
X' C X? C--- C X is an increasing sequence of subspaces of X with the following
properties:

1) XY discrete

2) 3 a pushout diagram of the following form:

H Sn—l Xn—l
L]
4) ‘Weak topology’ A C X open iff AN X™ C X™ open Vn.
In this definition, X™ is called the n-skeleton of X.

Remark. Axiom 4 is unnecessary if dim X is finite, which means we stop adding on
sets after a while thus X = X" for some n. ¢ are called attaching map, x characteristic
map.

Examples: dim X =1 <= X is a graph.
If X is a torus, then X© is a point, X! is the figure oo and X?2 is the whole torus.

b
'
iy | Wi ‘-‘
. f
b

Figure 4: Torus CW Complex
Here ¢ = b~ 'a"'ba. Then,

st 0

L

D? — torus

There’s a more elegant way of expressing 4, which is:
X — colim,,_,oc X™.
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— function X — Y such that X™ — Y is continuous then X — Y is continuous.
S™ has two natural CW structures.

X0=pt=X'=X?=...= X"l c X" =8"=X"t]

S =% Ue™. We can also write:

S":e(_)s_Ue(iUe}FUel_U-uUeiUe’l.

Dm=et+erluyen

Snfl ID=4¢ gn— 1
|
D D

S =US™ = {(zg, ) ERW},}Zixﬂ =1.
vst = s

~

Definition. Definition B: Union of disjoint cells
(NOT DISJOINT UNION OF CELLS!!).
CW complex is a pair (X, {e}) is a Hausdorfl space X with cells e C X such that:

1) Vz € X,3lel > x [i.e. X is union of disjoint cells]
2) Ve, Ix" : D™ — e such that Xg] . D™ =5 ¢ homeomorphism.
3) Closure finite. €2 — €l is contained in a finite union of cells of dim < n.

4) Weak topology: A C X closed <= Ane) C ey [closed food sells]

This is by JHC Whiteheead.
Def A = Def B: X — X" ! is disjoint set of n-cells.
Def B = Def A: X™ = U cells of dim < n.

Wednesday, 3/12/2025

Proposition 51. A finite CW complex is compact
Proof. X = Ux(D?) then X is finite union of compact spaces = X is compact. [
Proposition 52. Converse: A compact CW complex is finite.

Idea: Let K C X consist of a point in each cell then K is discrete —> K is closed
= K is compact = K is finite.

" = e™ — e" boundary.

é" C finite union of cells of dim <n — 1.

Example of CW comple is delta complex.

(X, {aa CAn 5 X cells})
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Figure 5: CW Complex, Delta Complex

qsﬂful cont. nrgy
r

L

D? —— X
X CW complex, not A-complex.

Definition. A subcomplex of a CW complex is a subset A C X such that (A4,{AN
X"}) CW complex or (A4, {e2}enca) CW complex.

Proposition 53. Suppose K C X, (X,{X"}) a CW complex.
Then, K is compact <= K closed, K C A C X finite subcomplex.

Cellular Homology

Suppose we have a CW complex (X, {X"}).
Cellular chain complex CeX =+ = Cp 1 X - C, X - Cp1 X — - -
Here, cellular chain C,, X = H, (X", X"71) = Z# of n-cells 0 X is called the relative

singular homology.

We also need boundary map. C.T.2 = Ze? 2 Zel + Zel — Ze°
We have the following LES:

CoX = Hy( X", X» Y 2 |, X7t 4 |, (X1, X72)
0 (z) = [0z].

Claim: CoX = (C.X,0) is a chain complex.
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Claim: (X", X" 1) is a good pair.
Proof: X"t c X" tu, [I D" — {0} c X"
OnX = Hn(Xnvxn_l) = ﬁn(Xn/Xn_l) = ﬁn(\/sn) = ng—cellsZ

Friday, 3/14/2025

We talk about why H, (D", S""1) =7

Recall: good pair = H, (D", S$"') = H,(D"/S"1) = H,(5") = (0,--- ,Z,0,---)
What are the generators?

id: A™ — A™ € H, (A", 0A™) = H, (D", S™)

We have the notion of the boundary of a cell, é® = e — "

Theorem 54 (Isomorphism Theorem). The following maps are isomorphisms.
i) H,(D", 5" 1) X5 H,(e7,em) L5 H,(e7/é") — H,(D"/S" 1) = H,(S") = Z

>ea1 W(D", 51— H (HD’L,HS”‘I)X*—W>H(X”,X”‘l)q—”ﬁn(X”/X”‘l):
Hy(vS") = @, Ha(S") = @, Z

lll) @aeln Hn (EZ’ a) _> H (Xn)Xn—1> = CTLX
Proof. i and ii: ¢, arre isomorphism because good pairs.
Similarly, g. o x. is an isomorphism.
iii follows from i and ii. O

We also have basis for C,, X, it is the image of H,, (e}, é")s.

Oé7 Ot

Definition. Oreintation for e? is a choice of generator [e] € H, (e, é").
{leal}aer, give a basis for Cp, X

‘oriented n-cells’

It’s ok (?77) to be sloppy and write e € C, X.

We have basis for C,, X and C,,_1 X given by [eg] and [e;™ .

Olen] = Y5 pales ]

We want to find the matrix of 0 where C,, X 3> Cr_1X. We essentially want to find
Oga-

‘Degree of attaching maps’

R G D e T L o

n—1

This is a map of sphere! Then we have degree, so we set deg = Jgq.
Example: Torus T? has CW structure e® Uel Ue} U €.

We choose orientation on e2.

CQT2 = Z[eg] — Z[
]

eq) © Zley] — Z[e").
0le?] = [eq] + [e] — [eal

—[e;] =0.
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Figure 6:

Figure 7:

Figure 8:

So, S* 2y x1 Prod, Sl since X' = S1US}, the projection goes around S!, then waits
at S,} since that’s collapsed to a point, and then it goes back. This map has degO.
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Projective Space

RP"™ = space of lines through 0 in R**+!
CP™ = space of C-lines through 0 in C**+!

This is difficult so we take quotient space.
RP"™ = R"™ {0} o _S™ ~ D"

T AT T~—T x~—x when z is on the boundary *
Then the simplest way to look at RP? is the disk D? where we identify opposite
points.
Same logic gives us RP! = ST,
So, we have S™ — RP™ double cover.

Monday, 3/24/2025

Was absent

Wednesday, 3/26/2025
Cellular Maps

HCW o~ HiingX

Morphisms are people too:

Suppose we have CW (X, {X"}), (Y, {Y"})

Definition. Continuous f : X — Y is cellular if:
fXMcyn

Example: id : S* — S! but with two different CW decomposition:

Thus, A= f(n-cell) C n-cell.
Then chain map fu = Cof : CeX = CY

CpoX = H,(X", X" 1) > H,Y",Y" 1) =C,Y

— f,=H.f: H°W - HWVY
Thus we have the Category CW
Object: CW complexes.
Morphism: Cellular map

We have functors:

ow - on 2 Gry
\/

cw
H*

Theorem 55 (Cellular Approximation Theorem, CAT). Every continuous map f :
X — Y is homotopic to a cellular map.
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There is a relative version of it:

If A is a subcomplex of X and f | 4 1s cellular then f ~ cellular (rel A). Relative to
A meaning the homotopy map is identity on A, meaning H(a,t) = H(a,O0).

Proof ommitted.

Examples:

This is not cellular. But we can squeeze the bottom part into the point. So homotopic
to a cellular map.

id ~ f cellular.

F((S1)%) < (81)°.

FSHH c (sH)!

Suppose k < I. Every g: S¥ = e®Ue¥ — s'e® Ue! is homotopic to a cellular map, i.e.

constant map.
ie mS'=0,715%=0.

Theorem 56. Suppose we have CW (X, {X"}).
HWX >~ H,X.

We need three lemmas.
L1: Hy (X", X" 1) =0 for i #n.

Proof. Slogan: Good pair. H, (X", X"1) = IA-L(X"/X"*) = ﬁ*(\/S”). O
Corollary: H; X" ! >~ H; X™ when i #n — 1,n.

Proof. LES of pairs O
L2: H, X" 1 =0

Proof. H,X° = ... = g, X2 =, g, X1 O
L3: H, X" = H, X

Proof. Compactness. If we have o : A¥ — X then o(AF) € XV for some N, compact.
Any compact set intersects only a finite number of cells.

= SeX =y SeXV.

We check H,X"t! — H,X onto.

Take [a] € H,X = 3N s.t. a € S, XV

Thus, H,(X"*!) ~ H,(X") — H,X where the map is given by [a] — [a].
Injectivity: suppose [a] — 0 then a € 98 = S € S, 11 X for some N.

H,X"*1 — H,X" is an isomorphism, but here [a] — 0. Contradiction. O

We prove the original theorem by combining L1, L2, L3.

Proof. Diagram Chase!
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Hn(Xn+1, Xn)

/ )

0 = H,X""! Hy(Xx) 2 H,X

Hn(X'rL)
oW
Hn+1(Xn+1’Xn) ntl Hn(Xannfl) W Hnil(anlen72)
:Cn+1X =C,X =C,h_1X
anl(Xn_l)
0=H, X" ?

We have commutative, exact diagonals. Thus,
j: HyX™ — ker 9SW

jrimé — im gy

Then,

HWYX = = =cokd X H, X
n im OCW imo €0 '

Friday, 3/28/2025

Euler Characteristic

X(5%) = 2, x(8%41) =0
X(RP?) =1,x(T%) =0
If we have an abelian group A:

Definition. {vy, -+ ,v;p} C A are linearly independent if:

nvi+-npvp =0 = ny=ng=---=n, =0

Definition. rank A = sup{k | Jlin. ind.{vy, - ,vp}}
=sup{k | IZF — A}

Example: rankZ =1

rank Z*F = k

rank Z* @ torsion = k

rankQ =1

rank R = oo

rank Q/Z =0

rank R/7Z = oo

If we have subgroup s.t. [A: B] < co then rank A = rank B.

Definition (Euler Characteristic). For a space X,

(oo}

X(X) = (~1)"rank H; X
=0

Defined if rank H; X < ooVi,rank H; X = 0 for i > 0.
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X(8?)=1-0+1=2
x(figure 8) =1—-2=—1

Definition (Betti Numbers).
Bi(X) :=rank H; X

Lemma 57 (Additivity Lemma). If we have a SES:

0>A—-B—-C—0
Then rank B = rank A + rank C.

Proof. Special Case: suppose C is finitely generated. Then C' = ZF @ finite. Let
B 5 C. From the SES, we can restrict so that:

05 A—=sazF 57F >0

Thus, 7~ 1ZF = A & 7*.

Also: finite index == rank B = rank 7~ 'Z* = rank A + rank Z* = rank A + rank C.
General case: Use two things: rank A = dimg A ® Q.

Q is a flat Z-module.

We have the following SES:

0-A4AQ—-BQ—-C®Q—=0
Thus, rank B=dimB®Q =dimA® Q + dimC ® Q = rank A + rank C. O

Theorem 58. If C, = {0 — C,, — --- — Cy — 0} is a chain complex [so d 0 § = 0]
and rank C; < ooV, then,

X(H.C) = x(Cy)
Meaning;:
Z(—l)irank H,C = Z(—l)i rank C;
Proof. Let Z; = cycles = ker(9; : C; — Ci—1)
B; = boundaries = nim(9;4+1 : Ciy1 — C;)

H; = homology = Z;/B;
We have SES:

0—B,—Z;,—H;—0

O—>Zi—>Ci—>Bi,1—>O

Additivity lemma = :
> (=1)irank H; = 3, (—1)*(rank Z;—rank B;) = >_,(—1)"rank Z;—>_,(—1)"rank B; =
Sorank Z; + > (—1) rank B;_1 = Y_,(—1)'rank C; O

Corollary 59. Corollary 1: Suppose X is a finite CW complex. Then,

Z(*l)i rank H; X = Z(*l)i# of i-cells

eg x(SH) =v—e+f

Corollary 60. Suppose we have an exact sequence:

0=+Cp—--—=Cr—=Cy—0
Then, x(C,) =0.

Z rank H;C = Z rank H;C

i even i odd
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Corollary 61. If 0 » Cy — Dy — E4 — 0 is a chain complex then,

X(H.Ds) = x(H.C,) + x(H.E,)
Proof. Zig-Zag lemma and the theorem. O
Corollary 62. If (X, A) is a pair, then x(X) = x(4) + x(H.(X, A))
Corollary 63. If (X, A) is a good pair, then,

X(X) = x(A) + x(X/A) -1

Theorem 64 (Poincaré-Hopf). Let M be a closed n-manifold.

X(M)=0 <= can comb the hairy manifold

i.e. 3 a nowhere 0 tangent vector field.

Monday, 3/31/2025

More Euler Characteristic
Let ¥ be a surface which is a closed 2-manifold.

i) Orientable surfaces are classified by x.
X(8%) = 2,x(T?) = 0, x(T?#T?) = =2, x\(T*#T*#71?) = —4.
# is the connected sum.

Thus x classifies orientable surfaces upto homeomorphism.

ii) Non-orientable surfaces are classified by Euler characcteristic.
X(RP?) =1, x(K = RP?#RP?) = 0, x(RP?*#RP?*#RP?) = -1, - -

Surfaces are classified by Euler characteristic and orentiability.

Under connected sum #, the surfaces form a commutative monoid. The generators
of this monoid are: RPZ, T2.

Relation: RP2#T? = RP?#RP2#RP2.

Let ¥ be a Riemannian surface now [meaning we have a metric and can measure
lengths].

Classical way: embed X2 C R3.

Then we have curvature K : ¥ — R.

Theorem 65 (Gauss-Bonnet Theorem).

/ K dS =2mx(%)
)

Let p € ¥ be a point. K > 0 at p means the surface lies on one side of tangent plane
[think a sphere]. K < 0 means the surface lies on both sides of a tangent plane [think
hyperboloid].

If K =1 that is a sphere. Then S? = 4r.

In a torus, [, KdS = 27x(T?) = 0. On the ‘outer ring’ K > 0 and on the inner
ring K < 0.

Even in weirdo embeddings in R? there must be one point with positive curvature.
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Hatcher 2B (or not 2 B?)

Goal: Prove Jordan separation theorem.

Theorem 66. Let h: S 1 < S™ [or R"].
Then S™ — h(S™~1) has two components.

Another Goal: Prove Alexander duality.

Theorem 67. Let h: S* < S3 be a knot. Then Hy(S® — S1) =2 Z = Z.
Also: meridian

Also: invariance of domain: open U C R™, h: U — R" 1-1, then U =5 h(U).
Also one point compactification: S™ — 9 2 R" <= S" = R" U {co}.

Theorem 68 (Boring Theorem). Vh : D¥ < S™ embedding, then,

H.(S™ —h(D*) =0
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Also: Alexander horned spphere.
H=D3m(R?—H)#1,H (R®— H) = 0. Recursively:
The meridians of horn bound a surface????

Proof. (Proof of Boring Theorem) We induct on k. k=0: 5" —pt 2 R"
Assume true for k — 1.
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Replace DF by the ‘cube’ I* = [0, 1]*.

Assume, for the sake of contradiction: there exists a nonzero homology class 0 # [a] €
H;(S™ — h(I%)).

Claim 1: we ‘chop’ into pieces until dimension is k£ — 1. Formally: in the k = 1 case,

Jinterval I = Iy D I; D I, D --- satisfying length of I; = & and 0 # [a] €

Hy(S™ — W(I)).

Claim 2L V filtration of space X by open sets [ie Xo C X1 C Xp C --- C X, X = UX]],
If [a] € ker(H,(Xo) — H,;X) then 3j such that [a] € ker H;(X,) — PNIZ(X])

Idea: Claim 1 involves MVES, claim 2 involves compactness.

Proof of claim 2: [a] € ker H;(Xo) — H; X

Then o = 9B, 8 =Y, nkox, B € Siy1X, 0 : AFFL = X

supp(B) = Uoy (A1) compact.

X; Nsupp(p) is open cover of supp(p).

Thus 35 such that supp(8) C X; = [¢] =0¢€ f[i(Xj) which is the claim.

Wednesday, 4/2/2025

We rename some stuff from yesterday. We proved:
Lemma 1: if Xo C X; C --- C X is a filtration of X by open sets, and if [a] €
ker(H; Xo — H;X) then 3j such that [o] € ker(H; Xo — H; X;).

Proof. If o = 08, supp(3) compact then supp(f) C X; for some j. O

Main Proof: Replace D* by the cube I* = [0,1]%. We induct on k.
True for k = 0 since S™ — pt is homeomorphic to R™.

Assume true for k£ — 1 for induction.

Assume homology is nontrivial for contradiction.

3[a] € H;(S™ — h(I¥)).

Lemma 2: 3 nested intervals Iy = [0,1] D Iy D I D - - - such that:

i) length I; = 5

ii) 0 [a] € Hy(S" — h(I* 1 x I)))
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Proof. MVES.

Let A= 8" — h(I*~! x [0, %])
B =8"—hU1 x [%,1])
AUB=8"— h(I* ! x %)
AN B =8"— h(I*).

. H,(AU B) is trivial by induction.

0— H;(ANB) % H;(A) & Hy(B) — 0
[] is nontrivial on one so it is nontrivial in at least one of the others.
0# [o] € Hi(A) = choose I; = [0, 1]
0# [o] € Hi(B) => choose I; = [1,1].
Repeat to get Iy, I3, - - |

N1 ={r} N
Let X = S™ — h(I’“_1 xp),X; =8"— h(I’“_1 x I;). [a] # 0 € H;X by L2. This
contradicts L1.

OJ
Theorem 69 (Alexander Duality, Prop 2B1). Vh : S* < S"
H,(S™ — h(S%)) = H.(S"7*1)
‘Represented by linking S"~+~1",

Definition of Linking Sphere: Take a disk that intersects the space at one point and
take the boundary.
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Figure 9: linking sphere

Proof. Induct on k.
k=0,5"—2pts = 5" ! xR, true.

Figure 10:

excisive triad:
Sm — h(S*) —— S™ — h(Dk)

| l

S" — h(DY) —— 8" —h(S*1)

S™ — h(D%) are acyclic by Boring theorem [homology of a point]
MVES says:

080 = H(S" — h(S*) =5 Hioa(S" — h(S™) = 060
O

Special case: If h : S"~! < S™ then S™ — h(S™~!) has two path components, both
have homology of point. So Hy = Z.
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This is Jordan-Brouwer Separation Theorem.
Remark. Both components are open. Boundary of each components is S™ 1.

If n = 2 all embeddings are standard: 3 homeo H : (52, S1) — (5%, h(S1)).

We have non-standard embeddings:

D3 — 83,52 — §3 D? — S8,

St < 83 knots: H.(S® — knot) = H,(S') but homotopy group might not be same.
We also have nonstandard D' < S3, wild arc.

Figure 11: Wild Arc

Friday, 4/4/2025

Syllabus:
Homology with Coefficients Borsuk-Ulam Ham Sandwich Invariance of Domains Di-
vision Algebras Axioms Cohomology

Homology with Coefficients

Let M be an abelian group (Z-module).

Sn(X; M) singular n-chains with coefficients in M.
mioy + -+ mpog € Sn(X;M),mi eM,o; : A™ — X.
ie. Sp(X;M) =@, An_,x M abelian group
Davis-Kirk: S,(X; M) = S,X ®z M. 0M = 0, ®@idy
Define OM : S, (X; M) — Sp—1(X; M):

n

o (mo)=m > (1Yo od)

j=0
As before. The alternating sign implies the double composite is zero, so we have a
chain complex S (X; M) = (S.(X, M), 0M).
M
Hp(X: M) = Hy(So(X; M)) = 220

B M
im 6”_*_1

Example:

H,(X;Z)=H,X.

Ho(X;M @©N) = H,(X; M) ® Hp(X;N).

H,(X; Zk) = (HnX)k

We actually get the whole package: pair, excision, MV, homotopy invariance, reduced,
cellular. B

When X is CW, C,,(X; M) = H, (X", X"}, M) = H,(X"/ X"~ M) = py#of n-cells
So Cn(X; M) = @, Me}.
OSWiM has same matrix as 95"

CW,M _ ACW . :
o, =0," ®idy

Proof: Suppose X is CW. When d,g denotes degree:



agweg = Z dagea
a

Then we have:

gn—1 ¢5 X" Xn/anl Pro gn—1

W

In order to prove that S has same matrix as 95" we need lemma 2.49:
Lemma 2.49: If f : S¥ — S* has degree d then,

fo s Hp(S*; M) — Hy(S*; M)

is multiplication by d.
To prove this we need the claim: 9 (meg) =mY_, dagea-

Proof. Note that H,, : Top x Ab — Ab given by (X, M) — H,(X;M) is a functor.
Let m € M. Let A, : Z — M given by 1 — m.

We can consider (id, A,,) o (f,id) = (f, An) = (f,id) o (id, A,;,) which gives a com-
mutative square. So we have:

Hk(Sk;Z) —_— Hk(Sk;Z)

l l

Hk<Sk;M) Emd Hk(S’“; M)
We have the maps:

a—— da

| !

ma —— dma = mda

So the bottom map is indeed multiplciation by d.

Let X =RP"=¢cUel U---Uem.

e={[-:—:—:0:---:0]}.

CRP"=Z 57— 257257257

Then, reducing mod 2 matrices remain the same:

z/2%7/2% ... %7/

z/2, ifi=0,---,n;

0, otherwise.

We can go from Z to any abelian group. Can we do this for arbitrary abelian groups?

H(RP™Z/2) =

Theorem 70 (Universal Coefficient Theorem). You can compute H,(X; M) for H, X,
which is universal.

Question: Why bother?
M = 7Z/2: no fuss with signs, orentatio.
V closed manifold, H,(M;Z) = 7Z/2.
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AISO, ﬁn(X X Y) = Zi+j:n ﬁZXﬁ]Y
Kunneth formula.
M field eg Zj or Q then,

Hy(X xY;M)= @@ Hi(X; M) @y Hy(Y; M)
i+j=n
Not true for M = Z!!!

Borsuk-Ulam

Theorem 71 (Borsuk-Ulam). If g : S™ — R"™ is continuous, 3z € S™ such that
g(x) = g(=2).

Figure 12: Here z is the pole

When n =1 it says 3 antipodal points on equator with same temparature.
Alternate proof:

Proof. f(z) = g(z) — g(—x) so f(—x) = —f().
USE IVT: If z(z) > 0, f(—z) < 0 then 3z¢ such that f(zg) = 0. d

When n = 2 it says 3 antipodal points with same temprature and humidity.
Proposition 72 (2B6, Borsuk). An odd map f: S™ — S™ has odd degree.
2B6 = Borsuk Ulam Theorem.

Proof. By contradiction. Let f(x) = %.

Then f: 8" — S"~1 < §" is an odd map with zero degree. O

55



Monday, 4/7/2025

Smith

Proof of 2B6 needs {Transfer

} exact sequence.

Suppose X I X is a double cover. Then we have SES of abelian groups:

0,0

0—>Zy ——Zo®Zly — 7oy —0

We have SES of chain complexes:

0= So(X;Z2) D5 Se(X:Zs) 255 So(X:Zs) — 0

X
51’5% l , T(0) =01+ 02
X

Am —7
(X, 7o) ™1 (X, To)
_3.-“7 l — 37 l
(Y, 50) —— (X, 0) (Y, y0) — m1(X, 70)

Zig-Zag lemma — LES:

o Hy (X3 Z) T Hy(X: Zo) — Hi(X;Z0) S Hi 1(X;Z) — -+

Natural w.r.t. maps of double covers, so commutative diagram:

X —
:
Y —

>

Smith ES for X — X — Smith ES for Y — Y.

Recall 2B6: Odd f : S™ — S™ has odd degree.

Proof of 2B6. Let P := RP™ then odd f : S™ — S" gives us f: P — P given by
flxz] = [f(z)]. This is well defined since [f(z)] = [f(—x)].

We have Smith Exact Sequence:

0 — Hy(P;72) = Ho(S™;72) 2 Hy(PyZ) = Hyy(PyZ) — -+
o Hi(P;Z2) 255 Hy_1(PyZa) — -+

oo Hy(P3Z) S Ho(P;Z2) 2 Ho(S™; Zs) = Ho(P;Zs) — 0
So, Hy(P;Zy) = H, (5™, Zs).

Inductively, f, isomorphism = f, isomorphism, lemma 249 = degf # 0
mod 2 = deg f odd.

O

Theorem 73 (Ham Sandwich Theorem). You can cut a sandwich with three items
(ham, cheese and bread) in half.
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Proof. Let b € S™ and define p, : R™ — R by:

pb(xlv"' axn) =by+bix1 +---+ bz,

Then p, = 0 denotes an affine hyperplane [the knife].
HST: let Fi,---,F, C R" have finite volume. Then Ja € S™ such that Vz,

Vol(F; N (P, < 0)) = Vol(F; N (P, > 0))

Where (P, < 0) = P, 1(—00,0).

We start the proof now.

f :(jla"' 7fh) 18" = R™

£:(b) = Vol(F; N B, < 0) — Vol(F; N P, > 0).

Finite volume = f(=b) = —f(b) so f is odd. Thus Ja € S™ such that f(a) =
f(=a).

Then P, = 0 cuts sandwich in half. O

Wednesday, 4/9/2025

Proposition 74 (2B1). a) If D € S™ and 3h : D — B(1,R*) homeomorphism
implies, _
H;(S"—D)=0Vi

b) If S € S" and 3h : S — S* C R™ homeomorphism implies,

Z, ifi=n—k-—1;

0, otherwise.

Manifolds

Definition. A manifold of dimension n is a topological space X so that,

1) Hausdorff

2) ‘Locally Euclidean’ i.e. every point € X has a neighborhood U, € U and 3
homeomorphism h: U - W C R".
open

eg sphere, torus, klein bottle.
Lets go back to 2B1. We want to prove Jordan Curve Theorem, which is: f : S — R?
has two path connected commponents. B
We want n —k — 1 = 0 in 2B1b. Recall rank(Hy(X)) = # path components of X —1
which gives us the result.
R™ is locally path connected = path component = component.

Definition. X is disconnected if X = U; UUs, U; open, U NU; = @.

Invariance of Domain

Theorem 75 (2B3). Let X C R™. Suppose 3 homeomorphism X % U where
U C R" is open. Then X C R" is open.

Proof. Since R® C S™ we can replace R with S™.

open

Let B(h(x),€) be a closed ball of radius € small enough so that B(h(z),e) C U.

Let D be the preimage. D := h=!(B). D is closed in X.

Let S =h"Y0B) = h=1(S(h(z),¢€)).

Now we use 2B1. h’D : D — B implies Hy(S™ — D) = 0. Thus S™ — D is path
connected.

Similarly, replacing D with S,

Hy(S™"—S)=7Z = Ho(S"-8S)=ZdZ.
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Thus, S™ — S has exactly two path components. One of them is S™ — D.

Therefore, D \ S is connected.

Thus, S"\ S = (S"—-D)uU (D - 9).

S"—SzC’ll_ICQ, S”—DCCl,D—SCC’g.

S™ — D and D — S are open components of S™ — S.

Thusx e D—-S C S™. O
open

Corollary 76. If M is a compact n-dimensional manifold and IV is any n-dimensional

manifold and e : M — N is an embedding (1-1 continuous), then e is a homeomor-

phism.

Proof. e(M) is closed [M, N hausdorff, M compact]. Enough to show e(M) open.
e(M) being open follows from Invariance of Domain. We can replace N with R™ since
N is locally R™ and openness is a local property. O

For example we can say T2 2 S2.
We have another application.

Theorem 77. R and C are the only commutative unital finite dimensional division
algebras over R.
Equivalently, R and C are the only fields F such that F' D R, [F : R] < occ.

This is a special case of a more famous theorem [Hopf invariant 1 problem].

Theorem 78 (Hopf Invariant 1). R, C,H, O are the only finite dimensional division
algebras over R.

Proof. We prove the easy case.

Suppose we have a division algebra (R™, +,-) where n > 2.
2

Define f : S"~1 — S"~1 by f(z) = 727~ Being division algebra gurantees we don’t
divide by 0.

f(z) = f(—x) = we have amap f:RP"" =8""1/+1— Sn L

Calculation shows that f: RP"~1 — S"~1 is injective.

Not possible for n > 2. O

Thursday, 4/11/2025

Skipped

Monday, 4/14/2025

Cohomology
Cohomology is H*X

Top® 225 Ch? % CoCh 25 Gr

The Category of cochain complexes CoCh
In this category, objects C' = {C*,6*}. Then,

50 5t 52
Lot et et

"t o §n = Ovn.
Main difference: CoChain complex is increasing.
Morphisms: f: C® — D® And all the squares commute in the following:

. cn (7n+1 S o

Jfﬁ lfn+1

. D" 1)n+1 ..
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Cohomology:
H" (C.) _ _kero™ _ cocycles

imd§d”—1 T cobooundaries

H"™ : CoCh — Ab
H* : CoCh — Gr
We have dual * : Ab°? — Ab
A* = Hom(A,Z)
f:A— Bgivesus f*: B* — A*.
eg we have:
Q*=0
(Z/p)* =0
(Do 2) =1l Z
We extend to * : Ch®”? — CoCh
We get CoChain complex from chain complex. So we want to talk about the dual of
a chain complex (C,)*. What happens in degree n?
(Ca)" = (Chn)™.
0* = 4. Since we always index by domain,
1 = 0"
Double boundary and double coboundary are zero

0=0"=(000)*=0d06

We can write C®,C*,C~*.
H*X = H*(S*°X)

S*X = (SeX)*.

f: X—=Y

H™(f): HY(Y) - H™(X).

Cohomology with Coefficients in Abelian Group M
We have functor Ch°” — Ch. Instead of taking hom to Z we take hom to M. Then,

Hom(—, M) : Ch?? — CoCh

Ce — Hom(Co, M)

Thus, H*(X; M) = H*(S*(X; M), )

S™(X; M) =Hom(S, X, M)

H"X = H"(X;7Z).

If X is a CW complex we can compute H*X by using cellular methods.
H*X = H}yy (X). Consider X = S'U,,,,s D% We get:

Moore space M(Z/3,1)

We have X = e® U el Ue? with 0e? = 3e;.

CoX = Zlea] — Zler] — Zleo]

~7%72%7.

H.X ={7,7/3,0,0,---}

X =z & zet & gd

Where €2 etc are linear functionals. Calculating, we have:

72787
Z, if n=0;
o x =10, if n 0,2
Z/3, ifn=2.
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We get the ‘whole package’ from homology.
H*(pt)

H([] X.)

HO

i

H*(VX,)

LES of pair

homotopy invariance

excision

good pair

Mayer Vietoris

Cellular Cohomology

H*(pt) ={Z,0,0,---}.

H*(J1 Xo) 21 H*(X,) [dual of direct sum is direct product]

0 —
H°X = ]._.[path components of X
Suppose we have:

i X = $1X = S X SZ—0
Taking dual,

e SPX ST X - SX - Z 0

Cohomology is H*X. B

Then H*(VX,) = [[ H* X,

Good pair: H*(X,A) = H*(X/A, AJA) = H*(X/A).
LES of pair:

Recall in a pair A C X.

Similar to homology, S™(X, A) = ‘ZZ*X

We need work to make sense of this.

Punchline: There is going to be a cohomology exact sequence:

o= HY(X,A) - H"A — H"X — H"" (X, A) - H"" A

Wednesday, 4/16/2025

Today:

LES of pair in H*

Cellular cohomology

De Rham cohomology

Kronecker Pairing

UCT (Universal Coefficient Theorem).

First we talk about S®(X; M). The singular M-cochains are duals of chains:

S™(X; M) =Hom(S, X, M) = func(set of singular n-simplices o : A" — X, M)
We can now define:
S™M(X,A; M) = Hom(S, (X, A), M)
Sp(X,A) = 85,X/S,A
We have this SES by definition of chain complexes:

0= SeA — SeX — Se(X,A) >0

We can use zigzag lemma to obtain a LES of homology.
Problem: Dual of SES of groups is not necessarily exact. We avoid that:
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Notice that, S, A is free, therefore the SES splits. This implies, if we apply Hom(—, M),
the SES splits. Thus, we have SES:

0+ S*(A; M)« S*(X; M)« S*(X,A; M) + 0
Applying zig-zag lemma, we have LES:
e HPY(X, A M) D YOG M) s B (A M) S HOPL(X, A M) <
Recall: definition of splitting: Suppose we have:
05A5BS 050

So that there is a one sided inverse s such that 7o s = id¢.
<~ 0> A— A@C — C — 0 and maps are what we want.

Cellular Cohomology

Consider CW complex (X, {X"}). Then, cellular cochains C™(X; M) == H"(X", X"~ 1; M).
Coboundary map:

H™(X™, X" M) e HH (X X7 M)

Then H}yy X = H*(C*(X; M)).
Facts:

i) C*X = (C.X)*
i) H*(X; M) = Hpy (X; M)

DeRham Cohomology

Let X be a manifold. Consider cochain complex °X.
Q"X differential n-forms on X.
Exterior derivative d : Q"X — Q"1 X.
Then Q*X = (Q* X, d).
Then the DeRham Cohomology is:
H (X R) = H™(Q°X) = closed n-forms

exact n-forms

Theorem 79 (DeRham’s Theorem).
Hpp(X) = H"(X;R)

eg, we expect Hp,p(R? — 0) = R.

Map: w fSl w.

ydx+xdy
12+y2

Thus the generator is: w = . Formally this is known as d#.

S w =27

Difference between closed and exact?

Let v; and 72 be homotopic paths then f'Yl w = fw w. But my not be true globally!
We now have:

HpR(X,A) = Hpp(X) — Hpp(A) — ng_%l(X7 A)
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Kronecker Pairing

Slogan: Cohomology eats Homology
Kronecker Pairing: For any space X [not necessarily manifold anymore] there is a
bilinear pairing:

(=, —):H"'X - H,X - Z

This is exactly the same as saying we have a map H"X — (H,X)*.
This is always surjective. It is a consequence of UCT.

We develop the bilinear pairing. We take cochain-chain bilinear map:
(=, =) "X xS, X = Z

<a, Z niai> = Z n;o(o;)
i i
Thus, in order to pass to cohomology, homology, we want to show:

(cocycle, boundary) = 0

(coboundary, cycle) = 0
We have the property [from the definition of §(= 0%)]

(dcv, ¢) = (e, Oc)

This is trivial here but in DeRham theory it is analogous to Stoke’s Theorem: | v dw =
Jox w-

Then we have:

(cocycle, boundary) = <€koz 5’8C> = (da,c) =0

(coboundary, cycle) = (o, & a) = (o, 0c) =0
cker
Therefore, we naturally have:
(—,—):H"X x H, X = Z
([al, [d]) = (a, ).

UCT, Universal Coefficient Theorem
This gives us formula of H"X in terms of H, X, H,_1X.

Theorem 80 (UCT). If H"X is finitely generated Vn then there exists (split) SES:
0 — (torsion H,,_1X) — H"X — (H,X)* =0
ie H"X = (H, X)* @ torsion H,,_1X.

Corollary 81. If a space has no torsion in its homology (for example CP™) then
H"X = (H,X)*. In particular, for CP",

H*(CP™) =7 for 0 < *x < 2n, % even
Thus, H*CP™ = H.CP"™

Example: Consider X = S' U,,,.s D? = Ue! Ue?.
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cx=2%2%7

cx=2%57%7

H.X =(Z,72/3,0,---)

H*X = (Z,0,Z/3)

Thus, the torsion H; X = torsion H2X.

We use this to prove UCT.

We can have other coefficients. Interestingly, if our coefficients form a field, we don’t
have to worry about torsion. As a result,

H*(X;F) = H,(X,F)*

Friday, 4/18/2025

Why Cohomology is bad? Why Cohomology is good?
UCT: If H, X is f.g. Vn then,
H"X = (H,X)* @ torsion H,,_1 X
Furthermore, the map given by the Kronecker pairing H" X k—p> (H,X)* given by
a — {(a, —) is onto.

The ontoness is true for any X but the theorem is not.
Since dual of finite group is 0, and dual of free group is free,

H"X > Free(H,X) @ torsion(H,,—1 X)

But this is not canonical: it depends on a choice of basis.
We will prove this when X is a finite CW complex.

Definition. A chain complex C, is finite free if Vn C,, is free and @, C), is f.g.
eg Co = Co(X) where X is a fintie CW complex.

Definition. An elementary chain complex is a chain complex of one of the forms:

O—>0—>Z—>O—>O

()—>O—>Zi> Zl—>0

For example, recall the triangle Co X = 7Z 3.7 % 7. This is the direct sum of:

0—-0—2%
@

737 50

Lemma 82. Any finite free chain complex C, is isomorphic to direct sum of elemen-
tary chain complexes.

Proof. Consider Cy — C4 LN Co.
Put 0; in SNF. Choose basis {e;} for C; = Z" and choose basis {f;} for Co = Z™

dy
such that the matrix for 0, is
dy
0
Then Cy =2 C), — -+ — Cy — span{egi1, - ,en} — 0@ other stuff.
ker O
er Jp

What is other stuff?
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&z L 7)
®(0 — Z) for the f; that don’t get hit at all.
We proceed by induction on the ‘length’ of the chain complex. O

Note that UCT is true for the elementary chain complexes. Recall:

Theorem 83 (UCT for chanin complex). If C, is a finite free chain complex then,

H"((Co)") = (HnCo)* @ torsion Hy,_1(Cl)

The Lemma = UCT for cc = UCT for finite CW.

Therefore, cohomology is useless: if we know homology we can calculate the cohomol-
ogy.

Now we learn why it is useful.

Cohomology ring H*X and f : X — Y gives a ring
map f*: H*Y — H*X

We can say H*X = @, H"X is a ring. We have addition. We need multiplication.
Warm-up: S*X or @, "X is a ring.

We need a multiplication. The multiplication is called the cup product.

Suppose we have o : A™ — X where n = p+ ¢q. We can break o to two pieces: the
front p face and the back ¢ face.

Front p-face: po : AP — X: append 0’s at the back.

Back g-face: 04 : A? — X : append 0’s at the front.

20 = 0,09 =0
00,10,00,01.
Then we can define:

Definition (Cup Product).

SPX x SqﬂX — SPT1X = Hom(Sp1q, X)
«

(@UB)(0) = a10)B(og)

S*X is a graded ring with unit.
eg 1€ S°X,1(0) =1,1(3, nio;) =Y., ni. 1is € the augmentation map.

(S*X =6p,, 5"X,0,1,+,U) is a ring.
Graded means (S"X,0,4) is an abelian group.
(SPX)USIX C SPHIX.

Lemma 84 (3.6 Hatcher). d(aUB) = (da) UB + (—1)Pa U (68)

Corollary 85. 1) (coboundary) U (cocycle) is coboundary.
2) (cocycle) U (coboundary) is coboundary.

Proof. 1) (da)UB=0aUB+ (-1)P(aUdB) =d(aUp).
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2) Similar.
O

Corollary 86. We can define H? X x H4X — HPT1X by [a]U[S] — [a«US]. Corollary
is that this is well defined. This follows from the previous corollary.

Monday, 4/21/2025

We continue cup product.

HPX x H1X — HPTIX

[ U[B] = [aUp]

SPX x SIX — SPHIX = Hom(S,4,X,Z)

For o : APT? — X define:

(aUB)(o) = a(pa)B(oy)

Front p-face ,o : AP =+ X

PO-(th" : 7tp) = O(t()?"' 7tpaoa"' ’0)

back ¢-face o4 : A7 = X

Uq(t07"’ 5tq) = 0(07"' , 0,80, 5tq)

If R is a commutative ring, then H*(X; R) and S*(X; R) is a ring.

To see U is well-defined on H* we need to show it is independent of choice in [a], [8].
This follows from lemma 3.6 in Hatcheer: §(a U B) = daU S+ (—1)Pa U 8.

Proof. Apply 3-terms to o : APT9H1 — X and compute.
(6(aU B))(0) = (@ U B)(00) = a(p00)B(doy)
(b B)(0) = (0a)(p+10)B(0q) = (Op410)B(0q)

p+1
=« (Z(_l)i(erlo— o 5i)> Blog)

=0
=3 (1) alpr1006)B(0g) + ()P al,0)8(0,)
1=0

Calculate everything like this and it cancels out. O

Now we talk about how a map of spaces give us a ring map on the cohomology.

If f:X — Y is continuous map of spaces we have a induced ring map H*(f) =
f*H*(Y)— H*(X).

To see this, we note first that we have a induced ring map f# : S*Y — S*X.
Clearly f#(0) =0. f#(a+B) = ffa+ f#8.

f#(ly) =21y € S°Y, 1y (point) = 1. Thus (f#1y)(c) =ly(co f) =1=1x(0)
Thus, f#ly = lx.

Now, (f#(aUB))o = (aUB)(oo f) =a(y(oo f)B((c0 f)g) = aloo f)B(ogo f) =
(f#) o)) (f#B)(0q)) = (fFa U f#B)(0).

Now we switch to the graded commutative part.

H*X graded commutative.

Theorem 87. a € H’X, b€ H1X = aUb=(—1)""Ua.

As a consequence, if p is odd, a € HPX = aUa—aUa = 2(aUa). So torsion 2.
ega€ HHY(S' x SY) = aUa = 0 since H?(S* x S1) is torsion free.

DK proves this using acyclic models.

Hatcher proves it using formulas.

Proof. Outline of Hatcher’s Proof.

Step 1: Define a chain map p: S*X — S*X.

o: A" = X

plo) = (1) 57

T(to, - tn) =0 (tn, - o)

Step 2: p and id are chain homotopic. Meaning, p —id = P + PO where P : S" X —
Snlx,

n(n+1)
2
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Step 3: Compute (aU B)(po) £ (BU a)(o).

Then [(aU B)(cocycle)] = [(awU B)(p(cocycle))] = £[(8 U «)(cocycle)] -

Question: WHY is H*X a ring but H,X isn’t?

Answer: There is no interesting map X x X — X but the diagonal map A : X —
X x X given by A(z) = (z, z) is interesting.

(X x X) A H*X

T ////)

H*X @ H*X
Consequently, for topological groups homology have ring structure.

Remark. If X is CW eg X = A™ then X2 X x X is not cellular but ~ to a cellular
map. ‘diagonal approximation’ <+, ¢ and o,.

Wednesday, 4/23/2025

Cohomology of Sphere is not interesting.
H*(Sﬂ) = {2707 707Z70a"' }
1 Iz

TUp=p

H*(sm) = 24l

Lets move on to torus.

T? = 81 x St

H.T={2,287,7,0,--}
omT={2,29%7,2,0,---}

aUa = 0 so only mystery is (1,0) U (0,1) in a sense.
We take the A-complex.

HT={Z,Z®7Z, 7 ,0,--}

[z] ~ [y) L-U

H*T = {Z,%@%,o}

afz] = (a, [2]) =1

(a,[y) =0

(b,[z]) =0

(,[yl) =1
(aUB)(U) =a@(U)B(U1) = a(y)p(z) =0-0=0.
(aUB)L)=a(1L)B(L1) = a(x)B(y) =1-1=1
H*T? = % = Az(a,b) exterior algebra.

aUb=[o] U] =]

Application 1: T? o S' v S v §2. Idea: the right one has no natural coop produts.
Application 2: T? — S? induces map on H*, H,

f:H*(T?) — H*(5?%)

[ (w) = f*(aUb) = [*(a)B))

can’t keep up

Lemma:

it H*(X[]Y) = H*X x H*Y ring product

ii: H*(X vY) = 250d0Y

lice HHX — H(XVY),d€ HY — 0. Thenc-d=0

Thenc-d=0

Proof. i: H*(XVY) = H*X ® H*Y O

group

Sorry LMAO
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Friday, 4/25/2025

We continue on with the 2-torus.
H*TQZ{%aZ®Z7 Z 707"'}

b aUb=p

HT?={7,2.67, 7. ,0,---}
pt x

E
We want to make Sl[ll"e], that by kronecker pairing, x,y is the dual basis of a, b.
We also have: (u,[T?]) = 1 by kronecker pairing. u[T?] = 1.
Geometrically: setting the torus as T? = S! x S! given by (e
df,b = dA. The cup product is the wedge product of these two.

(a,z) = [ a.

Corollary 88. T2 % S' v S v 52 even though the have same H.,, H}, .
They have different cohomology rings.

i27r0’ei27r>\) and a =

We try to make it a little bit more precise.

Lemma 89. i) H*(X][]Y) — H*X x H*Y is isomorphism. This is in fact a
cohomology ring isomorphism.

ii) If zp € X and yo € Y have contractible neighborhoods (non-degenerate base
points) then we have a map induced by the quotient map H*(X VY) —
H*(X][Y) is a ring map and a group isomorphism in degrees * > 0.

Proof. i) Clear

ii) Clear from MVES (which we can apply from contractible neighborhood)
O

X XVY oY, bot_h retracts.
Claim: suppose ¢ € H'X,d € H’Y,i,j > 0. Then, i%cUi%d = 0. Thus S*' v S v 2
has no nontrivial cup products [we pass to the product, and (¢,0) U (0,d) = (0, 0)].

Corollary 90. Any map f : S2 — T2 is trivial on H* [and by UCT on H,]

Proof. f*u= f*(aUb) = f*(a) U f*(b) =0U0 =0 so it is trivial on H2.

Trivial on H! since it is 0.

UCT = homology is dual to cohomology. Also true for maps: H2S? — H,T? and
H?T? « H?T? are dual. Dual of 0 map is 0 map. O

Note: there exists a nontrivial map 72 — S2. We quotient by the boundary: T2 —
(T?)/(T?*)* = S%. In fact this is an isomorphism.

This is called the degree one collapse map. Take 2-manifold, take a little disk D?
inside, take D?/90D? = S2. This is Hs.

Now, let ¥, be the closed surface of genus g. In other words:

¥, =T2H .. H#T?
g-torii
Question: H*(X,) =7
Note: H,%, = {Z,729,7,0, -}
Thus H*Y, = {Z,Z%,Z,0,---} by UCT. We don’t have the ring structure.
Hl(zg)zxzi@%ea---@zeaz.

Tg Yg
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take dual basis: H'(X,) = Z @bZEB'H@ ZBL
ai 1

ag 9

Corollary 91. a; Ub; = -+ = a; Ub, and the answer is a generator of H? [say p]
aanj ZO,biUbj :0,27&] - aiUbj =0

Then the matrix of bilinear product is given by:

Sy —2s T2V .V T2

d
T2H"'HT2

We collapse the joining ring between torii to get . The result is:
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Figure 13: ¢(%,)

MV = 1, ¢ give hisomorphism on Hy, H'.
MV = H?(¢) isomorphism.
We have the map:

H*(S,) « H*(T?* Vv --- v T?)

z & 79

Suppose basis of H?(3,) is a;Ub;, basis of H?(T?V---VT?) be ajub} and Ho(T*]--- 1] T?)
be a UD.

Basis of Z9 is given by af Ub!.

Then we have: since H? is contravariant: u < a} Ub; — a/ Ub!

Monday, 4/28/2025

Other computations of H*T'

Kiinneth Theorem Poincaré duality

If A* and B* are graded commutative rings, then so is A* ® B*.

Also, (A* @ B*)" = @iﬂ:n A'® BY.

(a@b)(a @) = (=1 Iblga’ @ b/, extended linearly to the whole ring.
We have map of graded commutative ring:

HX@HY - H (X XY)
a®b— Px(a)U Py (b)
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We like to think about this as an isomorphism (even though it’s not).
Theorem 92 (Kiinneth Theorem). If X and Y are finite CW complexes,
e the above map is injective
e isomorphism if H*X, H7Y are free for all i, j.

H*(S' x §Y) = H*S' @ H*S" = Hal @ 2l — A(q,b)
Recall H*(X; R) is a ring as 1ong as R is a commutative ring. In the case R = Q, the
betty numbers:

Bu(X xY)= Y Bi(X

i+j=n
Where 8, X = dimg H;(X; Q) = rank H; X

Poincaré Duality
Definition. M is a (topological) n-manifold if Vp € M, 3 neighborhood U = R™.

eg T? is a 2-manifold.
We assume M is connected and compact. This is sometimes called closed.

Let A, B,C be R-modules.

Definition (Perfect Pairing). A perfect pairing is a bilienar map f: A x B —» C
such that the corresponding adjoint maps A — Hompg(B,C) and B — Hompg (A, C)
are isomorphisms.

Note: obviously, a — 8(a, —),b+— B(—,b).

In algtop we traditionally write Fo = Z/2. There are two duality theorems: one with
Fo and one with Z.

Theorem 93 (Poincaré Duality). i) H,(M,Fs) = Fy. Call generator ‘fundamen-
tal class’ which we write as [M] = H,,(M; IF o). It is the ‘sum’ of all top dimen-
sional simplices.

ii) ‘Intersection Pairing’ is a perfect pairing: I : H(M;Fy) x H" " {(M;F3) — Fy
where I(a,b) = (aUb, [M]).
i) Hi(M;Fy) = H" (M, F,)
iV) Hl(M, FQ) = Hn,i(M, ]FQ)
Note: iii <= iv by UCT since F is a field.

Corollary 94. Corollary to ii: H*(T?;Fy) = %.

Theorem 95. H*(RP>;Fy) = Fslal, |a| =1

H*(RP"™;F2) = Si[fl] [truncated polynomial ring]
Recall: RP® =P UelUe2U---

Proof. Poincaré Duality and induction on n. We use ii.

True for n = 1 since RP' = S*.

Assume true for n — 1.

RP"~! — RP™.

Thus i* : H/(RP™;Fy) — H(RP" 1 Fy).

Claim: this is an isomorphism for j < n.

Proof: Co(RP""1;Fy) = Ty 2 Fo 2 Fy — ---, same for RP™. So, the chain
complexes are the same up to n — 1.

Fy —2 5 Ty e Fs
0 F O F F
Fy Fs F, e F,
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0+#a€ H(RP";Fy)

a™ ! # 0 by inc* and induction.

am # 0 by ii P.D.

[: HY(RP™;Fy) x H""{(RP";Fy) — F2 by (a,a" 1) #0

Corollary: Ar : RP™ — RP"~! which is isomorphism on ;.

Proof. Assume r exists. Then r is isomorphism on 7.
Then r, is isomorphism on Hj(;Fs), abelianization
Then r* is iso on H'(;Fs), dual

0=r*(0) =r*(a") =r*(a)™ # 0. Contradiction.

See eimilarity: any S? — T2 is trivial on H,.

Friday, 5/2/2025
Exam: Friday May 9

X CW.
A C X such that AN cell is empty or point = A discrete.
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