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Abstract

Chapter 1: Local Class Field Theory (LCFT).
Chapter 2: p-divisible groups (eg LT formal groups) and associated Galois

representations V and the Hodge-Tate Decomposition of V ⊗Qp Cp and also the
diagonal action of GK .

Tate: p-divisible groups.
Chapter 3: Sen theory, Fontaine’s period rings (φ,Γ)-modules.

1 Local Class Field Theory (LCFT)

1.1 Lubin Tate Theory

[N] Neukirch, Alg. NT
[S] Serre, Local Class Field Theory (Cassels-Frohlich)
[LT] Lubin, Tate Formal complex multiplication
K = non-archimedean local field (locally compact) ⊃ O = OK = valuation ring
⊃ PK = valuation ideal.
Residue Field k = O/PK , char(k) = p > 0, q := |k| = pf .
Normalized Valuation v = vK : K ↠ Z ∪ {∞}, |a| = q−v(a).
UK = O×K .

Definition. e(x) ∈ O[[x]] (a formal power series) is called a Lubin-Tate (LT) series
for the uniformizer π (fixed) if the following conditions are fulfilled:

• e(x) ≡ πx mod deg 2.

• e(x) ≡ xq mod π.

Set Eπ = set of LT series for the uniformizer π.
Recall: Let R be any O-algebra (i : O → R ring homomorphism).
A formal O-module over R is a 1-dimensional commutative formal group F (x, y) ∈
R[[x, y]] over R (some people call it a formal group law) together with a unital (sending
1 to 1) ring homomorphism:

[·]F : O → EndR(F ) = {f(x) ∈ R[[x]] | f(0) = 0, f(F (x, y)) = F (f(x), f(y))}

such that ∀a ∈ O : [a]F (x) = i(a)x mod deg 2.
We have the following properties:
F (x, y) = x+ y + higher order terms
Associativity: F (x, F (y, z)) = F (F (x, y), z)
Commutativity: F (x, y) = F (y, x).
=⇒ ∃!ι(x) ∈ R[[x]] : F (x, ι(x)) = 0. Also, ι(x) = −x+ higher order terms.
If R is a local O-algebra with maximal ideal M (i−1(M) = PK , k = O/PK → R/M)
then a formal O-module F over R is callled a LT O-module over R if in addition it is
a formal O-module and for any uniformizer π of K: [π]F (x) ≡ xq mod M .

Remark. If F is a LT O-module over O [i : O id−→ O] then [π]F (x) ∈ Eπ [meaning it
is a Lubin Tate series] for any uniformizer π.
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Example. 1) K = Qp, F = Ĝm, Ĝm(x, y) = x+ y + xy = (1 + x)(1 + y)− 1.

Then, [·] : Zp → EndZp(Ĝm), [a](x) = (1 + x)a − 1 :=
∑∞
n=1

(
a
n

)
xn,
(
a
n

)
=

a(a−1)···(a−n+1)
n! ∈ Zp for any a ∈ Zp, n ≥ 1.

Exercise. 1) ∀a ∈ Zp∀n ≥ 0,
(
a
n

)
as defined above is in Zp.

2) If K is a proper extension of Qp then
(
a
n

)
/∈ OK for infinitely many a ∈ OK .

2) K = Fq((t)), F = Ĝa, Ĝa(x, y) ≡ x+ y. Set [t](x) = tx+ xq. Then,
∞∑
ν=0

ανt
ν

︸ ︷︷ ︸
a

 (x) :=

∞∑
ν=0

αν [t]
◦ν(x) =

∞∑
n=1

anx
n where a1 = a

gives F = Ĝa the structure of a LT O-module over O.

Theorem 1.1.1. i) For all uniformizer π of K and any e ∈ Eπ there exists unique
LT O-module Fe over O such that:

[π]Fe(x) = e(x)

ii) ∀e, e′ ∈ Eπ there is an isomorphism of formal O-modules f : Fe → Fe′ (f ∈
xO[[x]], f(Fe(x, y)) = Fe′(f(x), f(y)).

∀a ∈ O : f([a]Fe(x)) = [a]Fe′ (f(x)).

f ′(0) ∈ O×.

iii) Let Knr be the maximal unramified extension of K (inside some fixed algebraic

closure K) and let Knr := K̂nr be the completion of Knr and let OKnr be its
valuation ring. Then for any two uniformizers π, π′ of K and LT series e ∈ Eπ
and e′ ∈ Eπ′ , ∃ an isomorphism of formal O-modules Fe → Fe′ over OKnr .

Formal Complex Multiplication

Let K be the fixed algebraic closure of K ⊃ OK ⊃ PK . Let π = the fixed uniformizer,
e ∈ Eπ, Fe = LT O-module over O.

Set F [πm] =

α ∈ PK | [πm]Fe︸ ︷︷ ︸
e◦m(x)

(α) = 0

. This can be shown to be finite from Theo-

rem 1.1.1.ii by setting e′(x) = πx+xq. Then the isomorphism will provide a bijection
to Fe′ [π

m, e′ ∈ Eπ]. Then the zeros of the power series are the zeros of the iteration
of the polynomial. Hence the set is finite.
Lπ,m := K(Fe(π

m)) called the field of πm-torsion points of Fe. It doesn’t depend on
e, though it does depend on π.

Example. if K = Qp and e(x) = (1 + x)p − 1 then, Lp,m = Qp(ζ − 1 | ζpm = 1) =
Qp(µpm).
If we take e′(x) = px+xp, the power series and the torsion points Fe[p

m] and Fe′ [p
m]

are different but the fields Qp(Fe[pm]) and Qp(Fe′ [pm]) has to be the same!

Theorem 1.1.2. i) Fe[π
m] is a free O/(πm) module of rank 1 [note that [πm]

annihilates [a](x) since [πm]Fe(α) = 0].

ii) ∀m ≥ 1 the maps O/(πm)→ EndO(Fe[π
m]), a mod πm 7→ [α 7→ [a](α)].

Also, O×/(1+(πm))→ AutO(Fe[π
m]), same formula are isomorphism (of finite

groups).

iii) Lπ,m does not depend on e ∈ Eπ but depends on π. In particular, if e′(x) =
πx+ xq then Lπ,m = K(Fe′ [π

m]).
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iv) Lπ,m is a finite purely ramified Galois extension (so it does not contain a proper
unramified extension) of K of degree (q − 1)qm−1.

The map G(Lπ,m/K) → AutO(Fe[π
m])

ii, canonical∼= O×/(1 + (πm)) given by
σ 7→ a mod (1 + (πm)).

If ∀α ∈ Fe[πm] : σ(α) = [a]Fe(α), is an isomorphism.

v) If Lπ =
⋃
m≥1 Lπ,m, then the maps in iv induce an isomorphism:

G(Lπ/K) = lim←−
m

G(Lπ,m/K)
∼=−→ lim
←
O×/(1 + (πm)) ∼= O×

Thursday, 1/16/2025

Recall: we fixed an algebraic closure K. Residue field of K = k = algebraic closure
of k = Fq.

Theorem 1.1.3. If L/K is abelian, Lπ ⊂ L, and L/Lπ is purely rammified, then
Lπ = L.

Proof. Proof uses the Hasse-Arf theorem, which says that the jumps (or breaks) of
the upper ramification filtration (G(L/K)t, t ≥ −1) are integers.

Remark. G(Lπ/K)m = Gal(Lπ/Lπ,m),m ≥ 0.
Lπ,0 := K.

Let Kab ⊂ K be the maximal abelian subextension.

Theorem 1.1.4. For any uniformizer π one has Kab = Knr.
Knr = maximal unramified extension = K(µn | p ∤ n).

Proof. Set Lnrπ := Knr.Lπ ⊂ Kab. This gives us an exact sequence:

1 G(Kab/Lnrπ ) G(Kab/Lπ) G(Lnrπ /Lπ) 1

G(Lnrπ /Lπ) G(k | k) = ⟨φ⟩top
∼=

Where φ(α) = αq, α ∈ k.

⟨φ⟩top := lim
←
φZ/φnZ ∼= lim

←
Z/nZ =: Ẑ

Choose φ̃ ∈ G(Kab/Lπ) such that φ̃
∣∣
Knr = φ

Lπ ⊂ L := (Kab)⟨φ̃⟩.
⟨φ̃⟩ is the closed subgroup of G(Kab/Lπ) generated by φ̃.

Tuesday, 1/21/2025

Recall: K = local nonarch.. field, π = uniformizer, e ∈ Eπ a LT seriess for π, Fe
a LT formal O-module, Lπ =

⋃
K(Fe[π

m]) ⊂ Kab with topological isomorphism

Gal(Lπ/K)
∼=−→
ιπ

UK = O×K .

1.1.6 =⇒

K× UK × πZ G(Kab/K)

(a, πn) ι−1π (a)︸ ︷︷ ︸
acts trivially on Knr

φ̃n
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φ̃ = Frobenius element of G(Kab/K).
The map:

UK G(Lπ/K) G(LπK
nr/Knr) G(Kab/K)∼=

can
∼=
can

is canoncial. Here, Kab = LπK
nr.

Definition. The Weil group WK is defined by:

WK =

{
σ ∈ G(K/K) | σ

∣∣∣∣
Knr

∈ φZ
Knr

}
Here φKnr = the arithmetic Frobenius of Knr.
We equip WK with the coarsest topology which makes the inertia subgroup:

IK =

{
σ ∈ G(K/K) | σ

∣∣∣∣
Knr

= idKnr

}
an open subgroup, and IK is equipped witth its profinite topology. Then,

WK = ⊔n∈ZILφ̃Z

(disjoint union of open cosets) with φ̃ as in 1.1.6.

Proposition 1.1.5. The abelianization W ab
K =WK/[WK ,WK ] is isomorphic to:{

σ ∈ G(Kab | K) | σ
∣∣∣∣
Knr

∈ φZ
}

The image of the homomorphism:

K× → G(Kab/K)

of 1..1.6 is W ab
K .

UK ⊃ 1 + (pm) is open.

Definition. Let Γ be a topological group and ρ : Γ→ Aut(V ) be a representation of
Γ as an E-vector space (E = any field). ρ is called smooth if ∀v ∈ V we have:

Stabρ(v) = {γ ∈ Γ | ρ(γ)(v) = v}

is open.

Proposition 1.1.6 (ℓ-adic local Langlands correspondence for GL1). Let ℓ ̸= p be a
prime. Then the isomorphism K× →W ab

K from 1.1.7 induces a bijection:

{
continuous homomorphisms

WK → GL1(Qℓ) = Qℓ
×

}
→


smooth irreducible

rep’s of GL1(K) = K×

on Qℓ-vector space

 / ∼=

χ 7→
[
K×

∼=−→W ab
K

χ
99K Qℓ

×]
χ [K× W ab

K Q×ℓ ]

WK

∼= χ

χ

Proof. Main point: a smooth irreducible representation of K× on a Q×ℓ vector space
is 1-dimensional.

Remark. Proposition 1.1.8 is also true when Qℓ is replaced by C and with the
appropriate modifications, when Qℓ is replaced by Qp.
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1.2 1-dim formal groups: the functional equation lemma

Cf. Hazewinkel, Formal groups and Applications = [H1 Formal]
Here we let:

• K = any commutative ring

• A ⊂ K subring

• p prime

• q power of p

• σ : K → K ring homomorphism

• I ⊂ A ideal

• s1, s2, s3, · · · ∈ K

We assume:

• σ(A) ⊂ A

• ∀a ∈ A : σ(a) ∼= aq mod I

• p ∈ I so A/I is an Fp-algebra

• ∀i ≥ 1 : siI ⊂ A

• ∀b ∈ K∀r ≥ 0 : bIr ⊂ A =⇒ σ(b)Ir ⊂ A.

Lemma 1.2.1. Let g(x) =
∑∞
i=1 bix

i ∈ xA[[x]].
By HW1, ∃!fg(x) =

∑∞
i=1 dix

i ∈ xK[[x]] so that,

f(x) = g(x) +

∞∑
i=1

si(σ
i
∗f)(x

qi) (1.2.1)

where σi∗fg is power series obtained from fg obtained by applying σi to all coefficients.

Indeed, dn =

{
bn, if q ∤ n;
bn + s1σ(dn/q) + · · ·+ srσ(dn/qr ), if n = qrm, q ∤ m.

Lemma 1.2.2 (The functional equation lemma (FEL)). Let the data be as above.
Let g(x) =

∑∞
i=1 bix

i and g(x) =
∑∞
i=1 bix

i be in xA[[x]] and assume b1 ∈ A×. Then,
fg(x) = b1x+ higher order terms =⇒ fg has inverse f−1g w.r.t. composition. Then,

i) Fg(x, y) := f−1g (fg(x) + fg(y)) is a formal group over A.

ii) f−1g (fg(x)) ∈ xA[[x]].

iii) Given h(x) =
∑∞
i=1 cnx

n ∈ xA[[x]],∃ĥ(x) =
∑∞
n=1 ĉnx

n s.t. fg(h(x)) = fĥ(x).

iv) If α(x) ∈ xA[[x]], β(x) ∈ K[[X]], then ∀r ≥ 0 : α(x) ≡ β(x) mod IrA[[x]] ⇐⇒
fg(α(x)) ≡ fg(β(x)) mod IrA[[x]]

Lemma 1.2.3 (HW1). Write fg(x) =
∑∞
i=1 dix

i and write n = qrm, q ∤ m. Then
dnI

r ⊂ A.

Lemma 1.2.4. Let G(x, y) ∈ A[[x, y]] and n = qrm, and ℓ > 0. Then,

G(x, y)q
ℓn ∼=

(
(σℓ∗G)(x

qℓ,yq
ℓ

)

)n
mod Ir+1

(σ(a) ≡ aq mod I)
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Proof of (i) of FEL. Note that f−1g (x) = b−11 x+ h.o.t. Then,

Fg(x, y) = b−11 (b1x+ b1y + h.o.t) = x+ y + h.o.t (1)

and associativity follows from the definition.
Write F (x, y) = F1(x, y)+F2(x, y)+F3(x, y)+· · · with Fd(x, y) ∈ K[x, y] homogeneous
of degree d.
We want to show, ∀d ≥ 1, Fd(x, y) ∈ A[x, y].
We prove this by induction. Case d = 1 already done.
Assume d ≥ 2 and the statement is true for F1, · · · , Fd−1.
Note:

∀r ≥ 2 : (F1(x, y) + · · ·+ Fd−1(x, y))
r ≡ F (x, y)r mod deg d+ 1 (2)

(2) and 1.2.4 together imply that ∀i ≥ 1, n = qrm, q ∤ m (n = 1, r = 0 are ok).

F (x, y)q
in ∼=

(
(σi∗F )(x

qi , yq
i

)
)n

mod deg d+ 1, In+1 (3)

By definition,

f(F (x, y)) = f(x) + f(y) (4)

(4) =⇒ (5):

(σ∗f)((σ
i
∗F )(x, y)) = (σi∗f)(x) + (σi∗f)(y) (5)

(1.1.2) = (6)

f(x) = g(x) +

∞∑
i=1

si(σ
i
∗f)(x

qi) (6)

Substitute F (x, y) for x in (6). We get (7):

f(F (x, y)) = g(F (x, y)) +

∞∑
i=1

si

∞∑
n=1

σi(dn)F (x, y)
qin (7)

Then we use the 12.4 congruence and our knowledge about the integrality of si.
Eventually it turns out that Fd(x, y) ≡ 0 mod A[[x, y]]. Thus Fd has coefficients in
A.

Thursday, 1/23/2025

Write n = qrm, q ∤ m.

F (x, y)q
in in (7) satisfies (3).

1.2.3 dnI
r ⊂ A =⇒ σ(dn)I

r ⊂ A. Iterating, σi(dn)Ir ⊂ A.
Also, siI ⊂ A. Multiplying both sides,

siσ
i(dn)I

r+1 ⊂ A

Multiply (3) by siσ
i(dn),

siσ
i(dn)F (x, y)

qin ≡ siσi(dn)((σi∗F )(xq
i

, yq
i

))n mod A, deg d+ 1 (8)

(7) and (8) together imply that,

�����f(F (x, y)) ≡ g(F (x, y)) +
∞∑
i=1

si(σ
i
∗f)((σ

i
∗F )(x

qi , yq
i

)) mod A, deg d+ 1

(5)
≡ g(F (x, y)) +

∞∑
i=1

si((σ
i
∗f)(x

qi) + (σi∗f)(y
qi))
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(6)
= g(F (x, y)) +���f(x)− g(x) +���f(y)− g(y)

Upshot:

g(F (x, y)) ≡ g(x) + g(y)
by assoc. on g

≡ 0 mod A, deg d+ 1 (9)

=⇒ 0
mod A,deg d+1
≡ g(F (x, y)) = b1F (x, y) + b2F (x, y)

2 + · · ·

b2F
2 + · · · ≡ b2( F1 + · · ·+ Fd−1︸ ︷︷ ︸

∈A[x,y] by ind. hyp.

)2 + b3(F1 + · · ·+ Fd−1)
3 + · · · mod deg d+ 1

=⇒ 0 ≡ b1(F1 + · · ·+ Fd−1︸ ︷︷ ︸
∈A[x,y]

+Fd) ≡ b1Fd(x, y)

Since b1 ∈ A× we have, Fd(x, y) ∈ A[x, y].
Statement ii (f−1g (fg(x)) ∈ A[[x]] ) is proved in the same way.

Satetement iii: ∀h(x) =
∑∞
n=1 cnx

n ∈ xA[[x]], suppose ∃ĥ(x) =
∑∞
n=1 ĉnx

n ∈ A[[x]]
such that fg(h(x)) = fĥ(x) which is defined by the Functional Equation of same type
(i.e. all the other data are the same).

Set f̂(x) = f(h(x)) by assoc. h(x) ∈ xA[[x]].
Recall:

f(x) = g(x) +

∞∑
i=1

si(σ
i
∗f)(x

qi)

Then,

f̂(x)−
∞∑
i=1

si(σ
i
∗f̂)(x

qi) = f(h(x))−
∞∑
i=1

si(σ
i
∗f)((σ

i
∗h)(x

qi))

When n = qrm, q ∤ m,

= f(h(x))−
∞∑
i=1

si

∞∑
n=1

σi(dn)
(
(σi∗h)(x

qi)
)n

︸ ︷︷ ︸
≡

1.2.4
h(x,y)qin mod Ir+1

Use 1.2.3 and siI ⊂ A to deduce that,

≡
mod A

f(h(x))−
∞∑
i=1

si(σ
i
∗f)(h(x)) ≡ g(h(x)) ≡ 0 mod A

Set ĥ(x) := f̂(x)−
∑∞
i=1 si(σ

i
∗f̂)(x

qi) ∈ xA[[x]].
Construction =⇒ f̂(x) = fĥ(x) [unique solution to the functional equation].

For statement iv: [H, Formal, ch 1, sec. 2.4.]
So, we can write many formal group laws of the form F (x, y) = f−1(f(x) + f(y)).
where f is invertible. f is logarithm for this formal group law.
Applications:

1) If K/Qp is a finite extension, ∃ polynomials p1(x), p2(x), · · · ∈ K[x] such that:

[a]Fe(x) =

∞∑
n=1

pn(a)x
n

with ∀n ≥ 1∀a ∈ OK , pn(a) ∈ OK .
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Where Fe is a LT OK-module.

eg when K = Qp, e(x) = (1 + x)p − 1 =⇒ pn(x) =
(
x
n

)
.

pn(a) ∈ Zp if a ∈ Zp but if K ̸= Qp then ∃a ∈ OK such that
(
a
n

)
/∈ OK .

2) Formal groups over Fp or Fp.
Fix n ≥ 1. Set A = Z, p a prime, I = pZ,K = Q, σ = id, q = p.

Define s
(n)
i =


0, if i ̸= n;

1

p
, if i = n.

Let g(x) = x, fn(x) ∈ Z
[
1
p

]
[[x]] be the unique power series satisfying the func-

tional equation:

fn(x) = x+ p−1fn(x
pn)

Then,

fn(x) = x+
xp

n

p
+
xp

2n

p2
+ · · · =

∞∑
i=1

xp
ni

i
(∗)

FEL =⇒ Fn(x, y) = f−1n (fn(x) + fn(y)) ∈ Z[[x]] by FEL.

Exercise: if ℓ is a prime ̸= p then Fn(x, y) mod ℓ is isomorphic to Ĝa,Fℓ .

Set Fn(x, y) = Fn(x, y) mod pZ ∈ Fp[x, y] a formal group over Fp.

Proposition 1.2.5. i) [p]Fn ≡ xp
n

mod p.

ii) If n ̸= m ∈ Z>0, then for any field k of characteristic p, we have:

Homformal grp /K

(
Fn ⊗ k, Fm ⊗ k

)
= {0}

In particular, Fn and Fm are not isomorphic over any k.

Proof. i) Set α(x) = [p]Fn(x) ∈ Z[[x]] and β(x) = xq
n

.

Recall that [p]Fn(x) = f−1n (pfn(x)).

fn(α(x)) = p · fn(x), fn(β(x)) = fn(x
pn).

(∗) =⇒ fn([p](x))− fn(xp
n

) = px ≡ 0 mod p.

FEL iv =⇒ α(x) ≡ β(x) mod p.

ii) Let h(x) ∈ xk[[x]] be a non-zero homomorphism Fn ⊗ k → Fm ⊗ k.
Let h(x) = uxt + h.o.t, u ∈ k×, t ≥ 1. Then,

=⇒ h
(
[p]Fn(x)

)
= [p]Fm(h(x))

=⇒ uxp
nt + h.o.t = upmxp

mt + h.o.t.

=⇒ pnt = pmt =⇒ pn = pm

Which is a contradiction.
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Remark. 1) One can show [H, Formal, 18.5.1] that a 1-dimensional (commuta-
tive) formal group over a separably closed field k of char p is isomorphic to

exactly one of Fn ⊗ k for a unique n ≥ 1 or Ĝa,k.
We define the height of F to be:

ht(F ) :=

{
n, if F ∼= Fn ⊗ k;

∞, if F ∼= Ĝa,k.

2) LetK = Qp(ζpn−1) unramified extension of degree n overQp. Let q = pn, e(x) =
f−1n (pfn(x)) which we know is a Lubin-Tate series for the uniformizer π = p of
K.

Clearly, e(x) = px + h.o.t, e(x) ≡ xp
n

= xq mod p. These are exactly the
conditions for LT series.

=⇒ Fn = f−1n (fn(x) + fn(y)) = Fe is the LT OK-module for e(x) by LT
theory.

One can show the canonical map:

OK End(Fn ⊗Z OK) End(Fn ⊗Fp Fq)

End(Fe,OK)

=

is injective but not surjective.

ϕ(x) = xp is an endomorphism of Fn

=⇒ End(Fn ⊗ Fq) = OK [ϕ] where [a]Fn ◦ ϕ = ϕ ◦ [ϕ(a)]Fn
and OK [ϕ]⊗Zp Qp is a divisional algebra over Qp.

End(Fn ⊗Fq Fq)⊗Qp Qp =: Dn

We have: dimQp(Dn) = n2

Furthermore, center(Dn) = Qp. Dn also contains K but it is not in the center.

1.3 LCFT following Hazewinkel

[H] = ‘Local Class Field Theory is easy’
In this section, a local field is, by convention, a field K which is complete for a
discrete non-trivial non-archimedean absolute value | · |. i.e., |K×| is a non-trivial
discrete subgroup of R>0.
Examples:

1) Qp,Fq((t))

2) (Qp)nr = Q̂nrp ,Fq((t)) = (Fq((t))⊗Fq Fq︸ ︷︷ ︸
Fq((t))nr

)∧ [the t-adic completion]

3) C((t)) or k((t)) [they are complete w.r.t. a t-adic absolute value].

Outline:

1) Assume K has algebraically closed residue field k, and L/K is finite abelian
extension. [Note that abelian here automatically means Galois]. Set U(K) =
O×K , units of the valuation ring, and V (L/K) = ⟨σ(u)u−1 | σ ∈ G(L/K), u ∈
U(L)⟩ [subgroup generated by these elements].

Fix a uniformizer πL of L and define:

9



i : G(L/K)→ U(L)/V (L/K)

i(σ) =
σ(πL)

πL
mod V (L/K)

Note: i does not depend on the choice of πL. Indeed, if ω is another uniformizer

of L then ω = vπL =⇒ σ(ω)
ω = σ(πL)

πL

σ(v)
v ≡

σ(πL)
πL

mod V (L/K).

Theorem 1.3.1. The seqeunce:

1→ G(L/K)→ U(L)/V (L/K)
NL/K−−−−→ U(K)→ 1

is exact.

2) Now assume that K has finite residue field (equivalently, K is locally compact).

Also assume that L/K is a finite abelian extension. Set Knr = K̂nr, Lnr =

L̂nr = L̂.Knr = L.Knr.

Let φK ∈ Gal(Knr/K), φL ∈ Gal(Lnr/L) be the arithmetic Frobenius.

Let G(L/K)0 be the 0th ramification group. Then, we have an exeact sequence:

1→ G(L/K)0 → G(L/K)→ G(kL/k)→ 0

Here kL is the residue field of L.

Note: G(L/K)0
∼=←−−
res

G(Lnr(= L.Knr)/Knr) ∼= G(L/L ∩ Knr). L ∩ Knr is

the maximal unramified subfield of L over K. Furthermore, G(Lnr/Knr) is
isomorphic to the Galois group of the completion. Then we have,

1

U(K)

1 G(L/K)0 G(Lnr/Knr)
U(Lnr)

V (Lnr/Knr)
U(Knr) 1

1 G(L/K)0 G(Lnr/Knr)
U(Lnr)

V (Lnr/Knr)
U(Knr) 1

G(L/K)0

σ 7→1

∼=

ψL ψK

∼=

by snake lemma.

Here, ψK(v) = φK(v)v−1, ψL(v) = φL(v)v
−1.

Hence we get a canonical homomorphism:

U(K)
iL/K−−−→ G(L/K)0

Theorem 1.3.2. iL/K is surjective and ker(iL/K) = NL/K(U(L)).

Hence we have a canonical basis:

U(K)

NL/K
(V (L))

∼=−−−→
iL/K

G(L/K)0

If L/K is a subextension of a finite abelian exztension L′/K one has a commu-
tative diagram:
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U(K)

NL′/K(U(L′))
G(L′/K)0

U(K)

NL/K(U(L))
G(L/K)0

iL′/K

iL/K

[Use NL′/K(UL′) = NL/K(NL′/L(U(L′))) ⊂ NL/K(U(L))].

Taking the limit over all finite abelian extensions of K inside a fixed maximal
abelian extension Kab gives:

Proposition 1.3.3. The homomorphisms iL/K for varying finit eabelian L/K
induce canonicall isomorphism:

U(K) ∼= lim←−−−
L/K

U(K)

NL/K(U(L))
∼= lim←−−−

L/K

G(L/K)0 = G(Kab/Knr)

Preliminaries Let K be a local field with perfect residue field k. Given a finite Galois
extension L/K, we set KL = maximal unramified subextension of L/K, = L ∩Knr.
We have an exact sequence:

1→ G(L/KL)
=G(L/K)0

→ G(L/K)→ G(kL/k)→ 1

Set Knr = K̂nr, Lnr = L̂nr = L.Knr. The maps:

G(Lnr/Knr)
∼=−−→
res

G(Lnr/Knr)
=G(L/L∩Knr)

∼=−−→
res

G(L/KL)

Proposition 1.3.4. i) LetK be a local field with algebraically closed residue field
k and L/K a finite extension. Then, NL/K : L× → K× and NL/K : U(L) →
U(K) are both surjective.

ii) Let K be a local field with finite residue field and L/K a finite unramified
extension. Then, NL/K : U(L)→ U(K) is surjective.

Proof. HW3

The Decomposition Theorem

Fix an algebraically closed field Ω containing Knr = K̂nr. All composite fields are
taken in Ω.

Theorem 1.3.5. Let K be a local field with finite residue field and L/K a finite
Galois extension. Then ∃ a totally ramified extension L′/K inside L/K such that,

L′Knr = LKnr = Lnr

(L′)nr = L′.Knr = L.Knr = Lnr

If G(L/K)0 is contained in the center Z(G(L/K)) then G(L/K) is abelian and L′/K
is abelian

We have, Kab = (totally ramified extension).Knr

11
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Proof. Let KL/K ⊂ L/K be maximal unramified subextension.

1 G(L/K)0 G(L/K) G(kL/k) 1

G(L/KL) G(KL/K)

φ̃ φKL/K

= ∼=

∈

s = [KL : K] = [kL : k] = ord(φKL/K). r = ord(φ̃) thus s | r.
Note: KL is the unique unramified extension of K in Ω of degree s.
Let Kr = unique unramified extension of K in Ω of degree r.
KL ⊆ Kr since s | r.
Claim: The canonical homomorphism,

G(L.Kr/K)
(res,res)−−−−−−→ G(L/K)×G(Kr/K)

G(L∩Kr/K)

= {(σ, τ) | σ
∣∣∣∣
L∩Kr

= τ

∣∣∣∣
L∩Kr

}

is an isomorphism.
The proof of claimm is Exercise (HW3).
Claim =⇒ ∃!ψ ∈ G(LKr/K) such that ψ

∣∣
L
= φ̃ and ψ

∣∣
Kr

= φKr/K .

Set L′ := (L.Kr)
⟨ψ⟩

Note: the maximal unramified subextension of L.Kr/K:
L′ ∩Kr = K =⇒ L′/K is totally ramified.
Note: ord(ψ) = r = |⟨ψ⟩| =⇒ [L′ : K]r = [L′ : K][LKr : L

′] = [LKr : K].
Since this has the right degree, we deduce that L′.Kr = LKr.
=⇒ L′Knr = (L′Kr)K

nr = (LKr)K
nr = L.Knr = Lnr.

Same argument goes for the completion.
Note that G(L/K) is generated by φ̃ and G(L/K)0. The last point follows from
this.

Corollary 1.3.6. LetKab be the maximal abelian extension ofK . Then, ∃ a totallly
ramified extension L/K such that Kab = L.Knr.

Proof. Choose a splitting of G(Kab/K) ↠ G(Knr/K) ∼= Ẑ. We have σ : G(Knr) →
G(Kab/K).
Set H = imσ, L ≡ (Kab)H . Then L is totally ramified.
Because of the restriction, G(Kab/K)→ G(L/K) has H as kernel.
Thus G(Kab/L) ∼= H. This concludes the proof.

Corollary 1.3.7. G(Kab/Knr) = lim←−M/Knr, finite, M/K abelian
G(M/Knr)

= lim←−L/K finite abelian
G(L.Knr/Knr)

= lim←−L/K finite abelian
G(L/KL)

= lim←−L/K finite
G(L/K)0

Local Fields with Algebraically Closed Residue Field

For example, K = Knr,K = C((t)).

Proposition 1.3.8. Let K have algebraically closed residue field k and L/K finite
abelian. Then we have,

1→ G(L/K)
i−→ U(L)

V (L/K)

NL/K−−−−→ U(K)→ 1 (∗)

12



Goal is to show that (∗) is exact.
Recall: V (L/K) = {σ(u)/u : u ∈ U(L), σ ∈ G(L/K)}.

Lemma 1.3.9. i is well-defined and a group homomorphism.

Proof. Let π be a uniformizer of L. Then, i(σ) = σ(π)
π mod V (L/K), clearly well

defined.
(στ)(π)

π = σ(τ(π))
τ(π)

τ(π)
π ≡ σ(π)

π
τ(π)
π mod V (L/K).

Lemma 1.3.10. Let G be a finite abelian group and g ∈ G an element. Then,
∃H ≤ G (subgroup) such that:

i) G/H is cyclic.

ii) ord(gH) = ord(g)

Proposition 1.3.11. i: G(L/K)→ U(L)/V (L/K) is injective.

Proof. Set G = G(L/K).g ∈ G \ {1}. Let H ≤ G be as 1.3.10.
∃f ∈ G : G/H = ⟨f⟩, f = fH =⇒ g = fr · h0, h0 ∈ H. 0 < r < s := ord(f).
Suppose i(g) ∈ V (L/K).
Write π = πL.

=⇒ g(π)
π =

fr(π)

π︸ ︷︷ ︸
=i(fr)=i(f)r

h0(π)
π ≡

1.3.9

f(π)···f(π)
π···π

h0(π)
π = f(πr)

πr
h0(π)
π mod V (L/K).

By assumption, this is an element of the subgroup.
So, it can be written as: ∏

0≤i<s

(f ihj)(uij)

uij
(1)

For some hjinH, vij ∈ U(L).
Next: let h ∈ H be any element.

(f ih)(v)

u
=

(f ih)(u)

(f i−1h)(u)

(f i−1h)(u)

(f i−2h)(u)
· · · (fh)(u)

h(u)

h(u)

u

=
f((f i−1h)(u))

(f i−1h)(u)︸ ︷︷ ︸
=v1

f((f i−2h)(u))

(f i−2h)(u)︸ ︷︷ ︸
=v2

· · · f(h(u))
h(u)︸ ︷︷ ︸
=vi

h(u)

u
(2)

=
f(v1 · · · vi)
v1 · · · vi

h(u)

u
=
f(u′)

u′
h(u)

u

1 and 2 =⇒ f(πr)
πr

h0(π)
π =

(3)

f(w)
w

∏
h∈H

h(uh)
uh

Let M = LH and apply N = NL/M to both sides of 3.

=⇒ f(πrM )
πrM

= f(w̃)
w̃ , πM = NL/M (π), w̃ = nNL/M (w) ∈ U(M).

=⇒ f(πrmw̃
−1) = πrM w̃

−1 ∈M and fixed by f .
⟨f,H⟩ = G so πrM w̃

−1 ∈ K.
=⇒ [M : K] | r. But [M : K] = |G(M/K)| = |G/H| = s.
We have chosen r < s

Theorem 1.3.12 (Hilbert 90). Let E/F be any finite cyclic Galois extension, σ ∈
G = G(E/F ). Then, if NE/F (x) = 1 for x ∈ E× =⇒ ∃y ∈ E× : x = σ(y)y−1.

Proof. Let n = [E : F ]. For any a ∈ E set:

y = y(a) = a+ σ(a)x−1 + σ2(a)σ(x−1)x−1 + · · ·+ σn−1(a)σn−2(x−1) · · ·σ(x−1)x−1
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=⇒ σ(y) = σ(a) + σ2(a)σ(x−1) + · · ·+ σn(a)︸ ︷︷ ︸
=a

σn−1(x−1) · · ·σ(x−1)x−1︸ ︷︷ ︸
=1

x

= (σ(a)x−1 + σ2(a)σ(x−1)x−1 + · · ·+ a)x = yx.
Let (a1, · · · , an) be a K-basis of L.

y(a1)
y(a2)

...

...
y(an)

 =


a1 σ(a1) · · · σn−1(a1)
a2 σ(a2) · · · σn−1(a2)

an σ(an) · · · σn−1(an)




1
x−1

σ(x−1)x−1

...
σn−2(x−1) · · ·σ(x−1)x−1


0 ̸= disc(a1, · · · , an) = det(mat)

2
since E/F is separable.

=⇒ ∃1 ≤ i ≤ n such that y(ai) ̸= 0.
Then, x = σ(y(ai))y(ai)

−1.

Remark. Hilbert 90 is equivalent to H1(G(E/F ), E×) = {1}.
If E/F is any finite Galois extension and n any positive integer,

H1(G(E/F ),GLn(E)) = {1}.

Tuesday, 2/4/2025

ker(ψK) = U(K)

1 G(L/K)0
U(Lnr)

V (Lnr/Knr)
U(Knr) 1

1 G(L/K)0
U(Lnr)

V (Lnr/Knr)
U(Knr) 1

G(L/K)

σ 7→1

i

ψL

N

ψK

i N

Connecting homomorphism: ηL/K : U(K)→ G(L/K)0
Then theorem 1.3.2 is: ηL/K is surjective and ker ηL/K = N(U(L)).

Proposition 1.3.13. Suppose k = k and L/K is finite cyclic. Then,

1→ G(L/K)
iL/K−−−→ U(L)

V (L/K)

NL/K−−−−→ U(K)→ 1 (∗)

is exact.

Proof. Exactness on left: 1.3.11.
Exactness on right: 1.3.4(i) [Haven’t seen yet, HW4].
For exactness on the middle,
Set N = NL/K .

(N ◦ iL/K)(σ) = N

(
σ(πL)

πL

)
=

∏
τ∈G(L/K)

τ

(
σ(πL)

πL

)
= 1

Now suppose N(x) = 1, x ∈ U(L).
Hilbert 90 (1.3.12) implies ∃y ∈ L× : x = σ(y)y−1, ⟨σ⟩ = G(L/K).
Write y = vπrL, v ∈ U(L).

Then, x = σ(y)
y = σ(v)

v

(
σ(π)
π

)r
≡
(
σ(π)
π

)r
mod V (L/K) = iL/K(σ)r

1.3.9
= iL/K(σr)

Thus, xV (L/K) ∈ im(iL/K).
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Lemma 1.3.14. Suppose k = k and L/K finite Galois extension (not necessarily
abelian).
Let M/K ⊆ L/K [Galois] be such that L/M is cyclic. Then,

NL/M : V (L/K)→ V (M/K)

is cyclic.

Proof. Let G = G(L/K) and H = G(L/M) and consider γ(v)v−1 ∈ V (M/K).
v ∈ U(M), γ = γH ∈ G(M/K).
1.3.4i =⇒ NL/M : U(L)→ U(M) is surjective.
Thus, ∃w ∈ U(L) such that u = NL/M (w).

=⇒ NL/M

(
γ(w)

w

)
=
γ(NL/M (w))

NL/M (w)
=
γ(v)

v

Lemma 1.3.15. Assume k = k. Let L/K be finite abelian and M/K ⊆ L/K such
that H := G(L/M) is cyclic. Then the sequence:

1→ G(L/M)
j−→ U(L)

V (L/K)
→ U(K)→ 1

is exact.
Here j is given by the composition canonically:

G(L/M) ↪→ G(L/K)
iL/K−−−→ U(L)

V (L/K)

NL/M−−−−→ U(M)

V (M/K)
→ 1

Proof. 1.3.11 implies:

G(L/K)
iL/K−−−→ U(L)

V (L/K)

is injective. Then trivially j is injective from definition.
Also, NL/M ◦ j is the trivial homomorphism (trivially).
1.3.4i =⇒ NL/M is surjective.
Only nontrivial part is exactness in the middle.
Supose NL/M (v) = 1U(M)/V (M/K) =⇒ NL/M (v) = w ∈ V (M/K).
1.3.14 =⇒ ∃w̃ ∈ (VL/K) such that NL/M (w̃) = w.

Thus, NL/M (vw̃−1) = 1U(M) =⇒ 1.3.13−−−−−−−→
L/M cyclic

=⇒ vw̃−1 mod V (L/M) = iL/M (σ).

=⇒ j(σ) = iL/K(σ)︸ ︷︷ ︸
∈U(L)/V (L/K)

= iL/M (σ)︸ ︷︷ ︸
∈U(L)/V (L/M)

V (L/K) == vw̃−1V (L/K) = uV (L/K).

=⇒ uV (L/K) ∈ im j.

Theorem 1.3.16. Assume k = k and L/K is finite abelian. Then,

1→ G(L/K)
iL/K−−−→ U(L)/V (L/K)→ U(K)→ 1

is exact.

Proof. Induction on [L : K]. Case L = K is trivial. Assume [L : K] > 1.
L/K cyclic =⇒ by 1.3.13 we’re done. Assume L/K not cyclic.
Choose subextension M/K ⊊ L/K a subextension such that L/M is cyclic.
Consider the following commutative diagram:
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(1)

1 1

G(L/M) G(L/M)

(2) 1 G(L/K) U(L)/V (L/K) U(K) 1

(3) 1 G(M/K) U(M)/V (M/K) U(K) 1

1 1

id

iL/K NL/K

NL/M id

iM/K NM/K

(1) is exact by 1.3.15, (3) is exact by induction, (2) is exact on the left [1.3.11] and
on the right [1.3.4i]. Diagram chase implies exactness of 2 in the middl.

Remark. If L/K is any totally ramified Galois extension one still has an exact
sequence:

1 G(L/K)ab U(L)
V (L/K) U(K) 1

G(L/K)

iL/K

Almost the Reciprocity Homomorphism

Suppose now that K has finite residue field k and |k| = q.
Let L/K be a totally ramified finite abelian extension.
Then the map:

G( Lnr︸︷︷︸
=LπKnr

/Knr)
res−−→∼= G(Lnr/Knr)︸ ︷︷ ︸

=G(L/(L∩Knr=K))

res−−→∼= G(L/K)

Define ψK : U(Knr) → U(Knr) by ψK(a) = φKnr/K(a)a−1 and similarly ψL :
U(Lnr)→ U(Lnr). Consider the commutative diagram:

ker(ψL) ker(ψK)

1 G(L/K) ∼= G(Lnr/Knr)
U(Lnr)

V (Lnr/Knr)
U(Knr) 1

1 G(L/K) U(Lnr)
V (Lnr/Knr)

U(Kn) 1

G(L/K) coker(ψL)

1

σ 7→1

iLnr/Knr

ψL ψK

∼=

iLnr/Knr

ψL is the induced map on U(Lnr)/V (Lnr/Knr)

Note: 1. ψL
(
iLnr/Knr (σ)

)
= ψL

(
σ(πL)
πL

)
= 1

2. φLnr/L
∣∣
Knr

= φKnr/K , hence:
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NLnr/Knr ◦ ψL = ψK ◦NLnr/Knr
These two points show the commutativity of this diagram.

Lemma 1.3.17. i) ψK : U(Knr) → U(Knr) is surjective and ψaK : OKnr →
OKnr , ψaK(a) = φKnr/K(a)− a.

ii) ψL : V (Lnr/Knr)→ V (Lnr/Knr) is surjective.

iii) kerψK = U(K)

Proof. Set Un = 1 + πnKOKnr ≤ U(Knr)

i) One has ψK(a) ∼=
(1)

aq−1 mod U1 =⇒ ψK mod U1 is surjective since kKnr =

kKnr . Also,
ψK : Un/Un+1 → Un/Un+1

1 + aπn mod Un+1 7→ 1 + (aq − a)πn mod Un+1

(1 + aqπn)(1 + aπn)−1 = 1 + (aq − a)πn
1

1+x = 1− x+ · · ·
And since a 7→ aq − a is surjective on kKnr this map is surjective.

By HW3/1 ψK : U(Knr) → U(Knr) is surjective. Same reasoning gives that
ψaK : OKnr → OKnr is surjective.

ii) For σ ∈ G(L/K) = G(Lnr/Knr), x ∈ U(Lnr) consider σ(x)x
−1 ∈ V (Lnr/Knr).

By i we can choose y ∈ U(Lnr) such that x = ψL(y). L
nr/K = L.Knr/K is

abelian.

Thus, φLnr/L ◦ σ = σ ◦ φLnr/L

=⇒ ψL

(
σ(y)
y

)
= σ(x)x−1 ∈ V (Lnr/Knr). This shows ii.

iii) u ∈ kerψK . Write u =
∑∞
i=0 aiπ

i, ai ∈ µ(Knr) ∪ {0}, a0 ̸= 0.

=⇒ ψK(u) = φKnr/K(u)u−1 = 1 mod π.aq−10 ≡ 1 mod π. a0 is a root of

unity =⇒ aq−10 = 1. =⇒ a0 ∈ µq−1(Knr). By Hensel’s lemma, a0 ∈ µq−1(K).

By induction, assume a0, · · · , an−1 ∈ µ(K) ∪ {0}, n ≥ 1. ∃w ∈ U(K) : uw−1 =
1 + aπn where a ∈ OKnr .
u = a0 + a1π + · · ·+ an−1π

n + bπn

= (a0 + · · ·+ an−1π
n−1)︸ ︷︷ ︸

=w

(
1 + bπn

a0+a1π+···+an−1πn−1

)
.

=⇒ 1 = ψK(u) = ψK(uw−1) =
1+φKnr|K(a)πn

1+aπn ≡ 1 + (aq − a)πn mod πn+1

Therefore, aq ≡ a mod π =⇒ a = cn + bnπ with cn ∈ µq−1(K) ∪ {0}, bn ∈
OKnr .
Thefefore, an ∈ µq−1(K) ∪ {0}.
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Theorem 1.3.18. Suppose k = kK is finite. For any abelian totally ramified extten-
sion L/K, there is a canonical homomorphism:

ηL/L : U(K)→ G(L/K)

Which is surjective and has kernel NL/K(U(L)).
Hence ηL/K induces an isomorphism:

U(K)

NL/K(U(L))

ηL/K−−−→ G(L/K)

ηL/K is functorial in the sense that if M/K ⊆ L/K is a subextension then there is a
commutative diagram:

1 NL/K(U(L)) U(K) G(L/K) 1

1 NM/K(U(M)) U(K) G(M/K) 1

ηL/K

id res

ηM/K

Proof. From the diagram we considered before the snake lemma gives us an exact
sequence:

U(L) ∩ V (Lnr/Knr) U(L) ker(ψL) ker(ψK)

1 G(L/K) ∼= G(Lnr/Knr)
U(Lnr)

V (Lnr/Knr)
U(Knr) 1

1 G(L/K) U(Lnr)
V (Lnr/Knr)

U(Kn) 1

G(L/K) coker(ψL)

1

⊂

N

σ 7→1

iLnr/Knr

ψL

N

ψK

∼=

iLnr/Knr

ker(ψL)→ ker(ψK)
1.3.17ii
= U(K)

ηL/K−−−→ G(L/K)→ coker(ψL)
1.3.17i
= 1

Let u = uV (Lnr/Knr) ∈ ker(ψL) =⇒ ψL(u) ∈ V (Lnr/Knr).
1.3.17ii =⇒ ∃w ∈ V (Lnr/Knr) such that ψL(w) = ψL(u).
Thus, ψL(uw

−1) = 1.
1.3.17iii =⇒ uw−1 ∈ U(L).
Therefore we can deduce that ker(ψL) = U(L)V (Lnr/Knr).

=⇒ im(ker(ψL)
N−→ ker(ψK) = U(K)) = NL/K(U(L)).

Hence, U(K)
N(U(L))

∼=−−−→
ηL/K

G(L/K)

The functoriality of ηL/K follows from the functoriality of the connecting homomor-
phism of the snake lemma.

Theorem 1.3.19. For every finite abelian extension L/K (not necessarily totally
ramified), there is a canonical isomorphism

ηL/K :
U(K)

NL/K(U(L))
→ G(L/K)0

which is functorial w.r.t. subextensions M/K as in the previous theorem.
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Proof. We use the decomposition theorem [1.3.5].
∃L′ ⊂ Lnr such that L′/K is finite abelian [since Lnr = L.Knr the compositum of
two abelian extensions] such that (L′)nr = L′.Knr = L.Knr = Lnr.
Then, Gal(L′/K) ∼= G((L′)nr/Knr) ∼= G(Lnr/Knr) ∼= G(L/K)0.

1.3.18 =⇒ U(K)
NL′/K(U(L′))

∼= G(L′/K) = G(L/K)0.

We can pass to the completion.

Since L′Kr
(1)
= L.Kr for some unramified Kr/K (prooof of 1.3.5).

and NL′Kr/L′(U(L′Kr))
(2)
= U(L′) by 1.3.4i

NLKr/L(U(LKr))
(3)
= U(L) by 1.3.4i.

=⇒ NL′/K(U(L′))
(2)
= NL′/K(NL′Kr/L′(U(L′Kr)))

= NL′Kr/K(U)L′Kr

(1)
= NLKr/K(U(LKr))
= NL/K(NLKr/L(U(LKr)))
(3)
= NL/K(U(L))
=⇒ we get an isomorphism:

U(K)

NL/K(U(L))

ηL/K−−−→∼= G(L/K)0

Goal: we want to prove that there is a canonical isomorphism:

K×/NL/K(L×)
∼=−→ G(L/K)

for any finite abelian extension L/K.
We want to do something with uniformizers, and uniformizers should roughly corre-
spond to frobenius elements.

Norm Groups of Lubin-Tate Extensions

Let π be a uniformizer of K, |kK | = q = pf ,O = OK , e ∈ Eπ aka a LT series for π.
Let Fe be an LT O-module for e, and Lm = Lπ,m = K(Fe[π

m]) aka the series
generated by πm torsion points. This is independent of the choice of e but does
depend on π.
We know that Lm/K is totally ramified abelian Galois extension of degree (q−1)qm−1
where m ≥ 1. Recall that L0 = K.
Set Um(K) = 1 + πm(K) ≤ U(K), U0(K) = U(K).
We now have two description of G(Lm/K).

1) Via LT theory: the map U(K)/Um(K)
∼=−→ G(Lm/K) defined by aUm(K)←[ σ

if for all α ∈ Fe[πm], σ(α) = [a]Fe(α)

2) Via ηL/K : U(K)/NLm/K(U(Lm))
∼=−→ G(Lm/K) [we don’t need to put ramifi-

cation since it is totally ramified].

Natural questions:

i) Is NLm/K(U(Lm)) = Um(K)? Answer is yes, but not obviously so.

ii) If the answer to i is yes [which it is] then are these two maps the same? [Answer
is no, but kind of close! ∀a ∈ U(K), ∀α ∈ Fe[πm], ηLm/K(a)(α) = [a−1](α)]

Lemma 1.3.20. Given a monic polynomial f(x) ∈ O[x] \ {0} with degree n with
p ∤ n, there exists s ∈ Z>0 and r(x) ∈ O[x] with r(0) = 1, deg r < s such that the
mod π reduction of h(x) := xsf(x) + r(x) is separable.

Proof. HW4
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Theorem 1.3.21. NLm/K(U(Lm)) = Um(K)

Proof. We show first N(U(L)) ⊂ Um(K)
Set Lm = L and write w ∈ U(L) as w = ζu with u ∈ U ′(L) and ζ ∈ µ(L)L totally ramified

=
=

µ(K) = µq−1(K).

=⇒ N(w) = N(ζu) = ζ [L:K]N(u) = ζ(q−1)q
m−1

N(u) = N(u).
Suffices to show that NL/K(U ′(L)) ⊂ Um(K).
Case m = 1 is easy.
Assume m ≥ 2, set n = m(q − 1)qm−1 − 1 =⇒ p ∤ n. Let λ be a uniformizer of L.
Write U ′(L) ∋ u = 1 + a1λ+ · · ·+ anλ

n + x, v(x) ≥ n+ 1 = v(πm).
v = vL = normalized valuation on L, vL(λ) = 1( =⇒ v(π) = (q − 1)qm−1).
Consider f(x) = xn+a1x

n−1+· · ·+an ∈ O[x]. Since p ∤ n we can apply 1.3.20 and get
h(x) = xsf(x) + r(x), h mod π separable. Then h has s+ n := t = deg(h) = deg(h)
distinct roots in k = Fq. Hensel’s lemma implies roots of h in K are actually in Knr.
Let z1, · · · , zt be the roots of h(x) in Knr.
Since h is monic, they actually lie on OKnr . zi ∈ OKnr .
Recall that h(0) = r(0) = 1 so

∏
zi = ±1.

Thus, zi ∈ O×Knr = U(Knr).

Tuesday, 2/11/2025

Moreover:

(1− z1λ)(1− z2λ) · · · (1− ztλ) = 1−

(∑
i

zi

)
λ

= 1 + a1λ+ a2λ
2 + · · ·+ anλ

n + x′, vL(x
′) ≥ n+ 1

= 1 + a1λ+ · · ·+ anλ
n + x+ (x′ − x) = v

(
1 +

x′ − x
v

)
Let y := x′−x

v . So vL(y) ≥ n+ 1.
Therefore,

N(1 + y) = 1 +
∑

σ∈G(L/K)

σ(y) + · · · = 1 + y′, vL(y
′) ≥ n+ 1 = vL(π

m)

Thus, y′ ∈ OK =⇒ y′ ∈ πmOK .
Therefore, N(1 + y) ≡ 1 mod πm.

Therefore, N(u) ∈ Um(K) ⇐⇒ N
(∏t

i=1(1− ziλ)
)
∈ Um(K) (2)

NOTE: UNUSED: Then, STS: ∀1 ≤ i ≤ t : NLm/K(1− ziλ) ∈ Um(K).

Since Lm/K is totally ramified, G(Lnr/Knr)
∼=−−→
res

G(L/K).

Therefore, NL/K(1− ziλ) = NLnr/Knr (1− ziλ) = NLnr/Knr (zi(z
−1
i − λ))

= zdiNLnr/Knr (z
−1
i − λ)

Setting ζi = z−1i , em(x) = [πm]Fe ,
NLnr/Knr (ζi − λ) =

∏
σ∈G(L/K)(ζi − σ(λ)) = min. poly of λ(ζi).

From here WLOG assume that e(x) = πx+xq. We can further assume that em(λ) = 0
but em−1(λ) ̸= 0.

Then, the minimal polynomial of λ is em(x)
em−1(x)

.

Thus, NLnr/Knr (ζi − λ) =
(

em
em−1

)
(ζi). Since ζi is not a root of these, = em(ζi)

em−1(ζi)
.

Hence,

N

(∏
i

(1− ziλ)

)
=
∏

N(1− ziλ) =
(∏

zdi

)∏
i

N(ζi−λ) =
(∏

zi

)d∏
i

N(ζi−λ)
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Since d is even,

=
∏

N(ζi − λ) =
∏
i

em(ζi)

em−1(ζ)i
= 1 +

∏
i em(ζi)−

∏
i em−1(ζi)∏

i em−1(ζi)

Note that
∏
i em−1(ζi),

∏
i em(ζi) have vL = 0.

Then it suffices to show that
∏
i em(ζi)−

∏
i em−1(ζi) ≡ 0 mod πm (3).

Note: e(ζi) ≡ ζqi mod π. It is the same as applying the frobenius. Note that the
frobenius must permute the roots.
Thus, e(ζi) ≡ ζτ(i) where τ is some permutation of {1, · · · , t}.
Lifting the Expontent? =⇒ e(ζi)

q = ζτ(i) mod π2

=⇒ e2(ζi) = e1(ζτ(i)) mod π2.
Inducting, em(ζi) ≡ em−1(ζτ(i)) mod πm

Product =⇒
∏
i em(ζi) ≡

∏
i em−1(ζτ(i)) mod πm

This shows (3) =⇒ (2) =⇒ (1).
This ends Step 1.
Step 2: NL/K(U(L)) = Um(K).
Proof of Step 2 |G(Lm/K)| =

1.3.18
|U(K)/N(U(L))| ≥ |U(K)/Um(K)|

inequality since N(U(Lm)) ⊂ Um(K) from step 1.
However, |U(K)/Um| = |G(L/K)| from LT Theory theorem 1.1.2 [as discussed in
Fall].

Local Class Field Theory

Let K be a field. Then we have a correspondence:{
N ⊂ K×

∣∣∣∣N open , [K× : N ] <∞
}
↔
{
L/K ⊂ Kab/K finite exts

}
N 7→ LN = class field assoc. to N

Here NLN /K(L×N ) = N and K×/N
∼=−→ G(LN /K).

NL/K(L×)←[ L

LN is called the class field corresponding to N .

Let K be as above, |k| <∞. Let Kab ⊂ K be the maximal abelian extension of K.

G(Kab/K)0 := ker(G(Kab/K)→ G(kKab/k) = G(k/k))

Recall if we have M/K ⊆ L/K we indeed have G(L/K)0
res−−→ G(M/K)0. This is not

true for lower numbering for larger numbers!!!

Theorem 1.3.22. i) The isomorphisms ηL/K : U(K)/N(U(L))
∼=−→ G(L/K)0

from 1.3.19 for L/K finite abelian induce an isomorphism:

U(K)
∼=−−→
ηK

G(Kab/K)0

ii) The exact sequence:

1→ G(Kab/K)0 → G(Kab/K)→ G(k/k)→ 1

splits continuous (but not canonically).

Proof. i) Let A be the set of all finite subestensions L/K ⊂ Kab/K. Set N 0
L =

NL/K(U(L)). Then (ηL/K)L∈A induces an isomorphism:

lim←−
L∈A

U(K)/N 0
L

∼=−→ lim←−
L∈A

G(L/K)0 =
exercise

G(Kab/K)0
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Given L ∈ A , U(L) is compact. Since NL/K is continuous, NL/K(U(L)) is
compact. A compact subset in a Hausdorff space is closed. Thus, N 0

L is closed.
N 0
L has finite index in U(K). It is also complement of union of finitely many

cosets thus it is also open..

Thus, ∃m ≥ 0 : Um(K) ⊆ N 0
L.

1.3.21 =⇒ NLm/K(U(Lm)) = Um(K) =⇒ the system (N 0
L)L∈A is equivalent

to the system (Um(K))m≥0 but the profinite completion

lim←−
m

U(K)/Um(K)
∼=←− U(K)

lim←−
L∈A

U(K)/N 0
L

∼=←− U(K)

This proves i.

ii) HW 3

Theorem 1.3.23. With Lπ =
⋃
m Lπ,m as in section 1.1 we have Kab = Lπ.K

nr.

Proof. Consider the commutative diagram with exact rows:

U(K)

1 G(Kab/K)0 G(Kab/K) G(k/k) 1

1 G(LπK
nr/K)0 G(LπK

nr/K) G(k/k) 1

lim←−G(LmK
nr/K)0

lim←−mG(Lm/K)

lim←−m U(K)/Um(K)

U(K)

∼=ηK1.3.22

α=res β=res γ=res=id

=

=

=

=

Note: α = id =⇒ β is an isomorphism, thus G(Kab/LπK
nr) = {1} =⇒ LπK

nr =
Kab

Thursday, 2/13/2025

Lemma 1.3.24. Let π be a uniformizer of K, e ∈ Eπ a LT series, Lπ,m = Lubin
tate extension associated to Fe [which is independent of choice of e]. Then, π ∈
NLπ,m/K(L×π,m =).

Proof. WLOG we may assume e(x) = πx+ xq. Set em(x) = (e ◦ · · · ◦ e︸ ︷︷ ︸
m

)(x).

We’ve seen em(x)
em−1(x)

∈ OK [x] is irreducible polynomial over K of degree (q − 1)qm−1.

This is not only irreducible, but also Eisenstein. Since we’re adjoining root λm of an
Eisenstein polynomial, λm must be a uuniformizer.
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em(x)

em−1(x)
=

∏
σ∈GLπ,m

(x− σ(λm))

Now note that,

π =

(
em(x)

em−1(x)

)
(0) =

∏
σ

(−σ(λm)) =
∏
σ

σ(−λm) = NLπ,m/K(λm)

Definition of the norm residue symbol

Let L′/K be a totally ramified finite abelian extension. Let λ ∈ L′ be a uniformizer
and set π = NL′/K(λ). Since it is totally ramified, π must be a uniformizer of K. Let
Kn/K be the unramified extension of degree n. Set L := L′.Kn. This is abelian over
K. Then the exact sequence:

1 G(L/K)0 G(L/K) G(Kn/K)
∼=G(kL/k)

1

The exact sequence splits since the canonical map G(L/K)→ G(L′/K)×G(Kn/K)
is an isomorphism.
Hence, there exists a unique φL/L′ ∈ G(L/K) such that φL/L′

∣∣
L′ = idL′ and φL/L′

∣∣
Kn

=
φKn/K .
Then we define rL/K : K× → G(L/K) such that,

rL/K(a) = ηL/K

a−1πv(a)︸ ︷︷ ︸
∈U(K)

φ
v(a)
L/L′

Where v : K× → Z given by π 7→ 1 is the normalized valuation and ηL/K : U(K)→
G(L/K) is the surjective homomorphism in 1.3.19 with kker(ηL/K) = NL/K(U(L)).
Note: rL/K is a homomorphism.
Set NL = NL/K(L×),N 0

L = NL/K(U(L)).
rL/K(a) is also written as (a, L/K) and is alled the norm residue symbol.

Proposition 1.3.25. Let L′/K and L = L′.Kn, λ ∈ L′ a uniformizer and π =
NL′/L(λ) be as above. Then, rL/K is surjective and its kernel is NL. Hence, rL/K
induces an isomorphism which by abuse of notation we can also denote as rL/K .

K×

NL
∼=−−−→

rL/K
G(L/K)

Proof. We have L× = U(L) · λZ since L/L′ is unramified. Applying the norm, NL =
N 0
L ·NL/K(λ)Z = N 0

LNL′/K(NL/L′(λ))Z = N 0
L ·NL′/K(λn)Z = N 0

L · πnZ.
Write a ∈ K× as a = uπm so that u ∈ U(K),m ∈ Z.
Thus, rL/K(a) = ηL/K(u−1)φmL/L′

!
= id ⇐⇒ ηL/K(u) = id and φmL/L′ = id

1.3.19⇐===⇒ u ∈ N 0
L, n | m (ord(φL/L′) = ord(φKn/K) = n) ⇐⇒ a ∈ NL.

1.3.19: ηL/K : U(K)→ G(L/K)0 is surjective, and since G(L/K) = G(L/K)0 ·φZ
L/L′

we deduce that rL/K is surjective.

Next goals:

1) Show that rL/K is independent of the choice L′ ⊂ L.

2) To show that for any subextension M/K ⊂ L/K,

ker(K× → G(L/K)→ G(M/K)) = NM

Lemma 1.3.26. If L/K is an arbitrary finite abelian extension, then [K× : NL] =
[L : K].
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Proof. Let KL ⊂ L be the maximal unramified subextension. Then L/KL is totally
ramified and if λ is a uniformizer of L, then π := NL/KL(λ) is a unfiromizer of KL.

Hence, upto an element of U(KL) also a unfirmozer of K =⇒ |K×L | = |K×| = |π|Z.

=⇒
∣∣∣∣K×NL

∣∣∣∣ = ∣∣∣∣U(K)

N 0
L

∣∣∣∣ ∣∣∣∣ |K×|
|NL/K(λ)|Z

∣∣∣∣
1.3.19
= |G(L/K)0|

∣∣∣∣ |π|Z

|NKL/K(π)|Z

∣∣∣∣ = |G(L/K)0|
∣∣∣∣ |π|Z

|π|[KL:K]Z

∣∣∣∣
= |G(L/K)0|[KL : K] = e(L/K)f(L/K) = [L : K]

Proposition 1.3.27. Let L′, L, λ ∈ L′ be as in the beginning of this section. Let
L′2 ⊂ L be another totally ramified extension of K such that L′2.Kn = L. Then,

ker(K×
rL/K−−−→ G(L/K)→ G(L′2/K)) = NL′

2
⊂ K×

Proof. Set r = rL/K : K× → G(L/K). Recall r(a) = ηL/K(a−1πv(a))φ
v(a)
L/L′ . Let r2

be the composite homomorphism:

K× G(L/K) G(L′2/K)

r2

r

r2 is surjective by 1.3.25. r2 induces an isomorphism:

K×/ ker(r2)→ G(L′2/K)

If we show that NL′
2
⊂ ker(r2) =⇒ surjection K×/NL′

2︸ ︷︷ ︸
order [L′

2:K]

→ K×/ ker(r2)
∼=−→

G(L′2/K)
Hence NL′

2
= ker r2.

STS: NL′
2
⊂ ker(r2).

NL′
2
= N 0

L′
2
NL′

2/K
(λ2)

Z for any uniformizer λ2 of L′2.

Since U(L′2) =
{
λ2(λ̃2)

−1 | λ2, λ̃2 uniformizer of L′2

}
, it suffices to showNL′

2/K
(λ2) ∈

ker(r2) for any unformizer λ2 of L′2.
Note: L/L′2 is unramified sicne L = L′2.Kn. Therefore, G(L/L′2) is cycic and if we
restrict this to G(Kn/K) we get an isomorphism. Since G(Kn/K) is generated by
the frobenius ⟨φKn/K⟩ and φL/L′

∣∣
Kn

= φKn/K :

Let φL/L′
2
be the unique element with

∣∣
φL/L′

2

= id. Then, φL/L′
2
◦ φ−1L/L′

∣∣∣
Kn

= id and

φL/L′
2

∣∣
Kn

= φKn/K

=⇒ φL/L′
2
◦ φ−1L/L′ ∈ G(L/K)0

1.3.19
= ηL/K(U(K))

Thus φL/L′
2
= r(u)φL/L′ for some u ∈ U(K).

Then, G(L/L′2) = ⟨φL/L′
2
⟩

Fix a uniformizer λ2 of L′2 which is a uniformizer of L. Then λ2 = xλ where λ ∈
L′, x ∈ U(L). Therefore,

π = NL′/K(λ) = NL/Kn(λ) = NL/Kn(x
−1)NL/Kn(λ2) = NL/Kn(x

−1)NL′/K(λ2) ∈ K

Therefore, NL/Kn(x) ∈ U(K).
Further, (r(u)φL/L′)(λ2) = φL/L′

2
(λ2) = λ2.

Now we compute in U(Lnr) = U((L′)nr) = U((L′2)nr).
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ηL/K(u−1)(λ)

λ
=
r(u)(λ)

λ
=

(r(u)φL/L′)(λ)

λ
=

φL/L′
2︷ ︸︸ ︷

(r(u)φL/L′)(x−1λ2)

x−1λ2

=
(r(u)φL/L′)(x−1)(r(v)φL/L′)(λ2)

x−1λ2
=

(r(v)φL/L′)(x−1)λ

x−1λ
=

(r(v)φL/L′)(x−1)

x−1

=
r(v)(φL/L′(x−1))

φL/L′(x−1)

φL/L′(x−1)

x−1
≡
φL/L′(x−1)

x−1
mod V (L′nr/Knr)

Corollary 1.3.28. The definition of rL/K is independent of the choice of L′ ⊂ L and
he uniformizer λ of L′.

Theorem 1.3.29. For any finite abelian extension Ln/K choose an unramified ex-
tension Kn/K such that LKn = L′Kn for L′/K totally ramified. Then,

ker(rLKn/K : K× → G(LKn/K)→ G(L/K)) = NL
and induces an isomorphism:

K×

NL
∼=−−−→

rL/K
G(L/K)
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2 Tate’s Article: p-divisible Groups

Let R be a complete discrete valuation ring (CDVR) with m = maximal ideal, k =
R/m,K = Frac(R).
Convention: R is not a field (⇐⇒ m ̸= 0).
Futher Assumption: k is perfect of char(k) = p > 0 and char(K) = 0 (this is applicable
in most settings we want to use this in).
Example: R = Zp or the ring of integers in a finite extension K/Qp =. Then K = Qp
or a finite extension of Qp.
Example: K = Q̂nrp p ⊃ OQ̂nrp

, k = Fp.
Example: k any perfect fielld of char(k) = p and R = W (k) [Witt Vectors]. Then
m = pR.
Goal: To study certain continuous representation of GK = Gal(K/K) on finite dimen-
sional Qp-vector spaces. Here we (implicitly) mean continuity by the Krull Topology
Krull Topology on Gal(K/F ) is defined as follows:
Let F = {L | L finite galois subextension of K over F} and N = {Gal(K/L) | L ∈
F}. Then a subset X of Gal(K/F ) is open if X = ∅ or X =

⋃
i giNi with gi ∈

G,Ni ∈ N . This makes Gal(K/F ) a topological group.
The Prototypical Example is the p-adic cyclotomic character given by:

χcyc : GK → Z×p ↷ Qq = V

χcyc(σ) = a ∈ Z×p ⇐⇒ ∀ζ ∈ µp∞(K) : σ(ζ) = ζa

This is meant as follow: if ζp
n

= 1 and a ≡ b mod pn for some b ∈ Z then ζa := ζb.
Equivalently, χcyc is obtained as the composition of:

GK lim←−nG(K(µpn)/K) lim←−n(Z/p
nZ)× Z×p

χcyc =

Note: ifK = Qp (or Q̂nrp ) then χcyc is surjective by the irreducibility of the cyclotomic
polynomials. If K/Qp is finite then χcyc(GK) is open.
Note: E/K elliptic curve, E[pn](K) =

{
x ∈ E(K) | [pn]E(x) = OE

} ∼= (Z/pn) ⊕
(Z/pn) ↶ GK . Therefore,
GK → lim←−nAut(E[pn](K)) = Aut(lim←−E[pn](K)) ∼= Aut(lim←−(Z/p

n)⊕2) = Aut(Z⊕2p ) =

GL2(Zp) ↷ Q2
p.

This gives us a Zp-linear action of GK on TpE = lim←−E[pn](K) called the p-adic Tate
module of E, and also on VpE = TpE ⊗Zp Qp which is a 2-dimensional Qp vector
space.
Final: Let K/Qp finite and π = uniformizer. Then, e = Eπ a LT series for π, Fe =
LT OK module.
GK ↷ TpFe = lim←−n Fe[π

n](K)︸ ︷︷ ︸
∼=OK(πn)

∼=
non-canonically

OK as OK-module.

Thus, im(GK → TpFe) ∼= O×K = AutOK (OK).
Thus, GK ↷ VpFe = TpFe ⊗Zp Qp is a vector space of dimension [K : Qp].
LCFT tells us this factors through the abelianization: GK → G ab

K ↷ VpFe.
Question: Why p-adic representatons? Why not continuous representations GK →
GLn(C)? Why not GK → GL(Ql), l ̸= p? Why not GK → GLn(AQ) =

∏′
l≤∞GLn(Ql)

where Q∞ = R?
Answer: We can study them, but the p-adic representations are especially interesting
for the following reason: Continuous representations GK → GLn(C) have finite image!
The topologies are incompatible.
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For GK → GLn(Ql), l ̸= p have finite image when restricted to the wild inertial
subgroup PK = G>0

K =
⋃
s>0 G s

K [upper numbering of ramification groups].
GK → GLn(AQ) are put together from representations into GLn(Ql), l ≤ ∞.
About GK : There are two fundamental exact sequence:

1→ IK → GK → Gal(k/k)→ 1

IK is the inertia subgroup. It is closed, and we can write IK = G 0
K .

Let π ∈ K be a uniformizer. Then ∀n ∈ Z>0 \ pZ, ∀σ ∈ IK ,

σ( n
√
π)

n
√
π
∈ µn(K)

is independent of the choince of n
√
π and also independent of the choice of π. Hence

one obtains a homomorphism t : IK → lim←−n>0,p∤n µn(K) =: Ẑ(p)(1).

superscript (p) since we’re not taking the p divisible powers. ‘Twist’ by (1) since we’re
taking the roots of unity.
It is non-canonically isomorphic to lim←−p∤n Z/nZ =

∏
l ̸=p Zl.

Then, PK = ker(t). We have the following exact sequence:

1→PK → IK → Ẑ(p)(1)→ 1

Theorem 2.0.1. PK is a pro-p group, is maximal with this property, and is normal
in GK . One has PK = G(K/Knr( n

√
π | n > 0, p ∤ n)).

Knr( n
√
π | n > 0, p ∤ n) is the maximal tamely ramified extension Ktame. We have

the following exact sequence:

1→ Ẑ(p)(1)→ G(Ktame/K)→ G(Knr/K) ∼= G(k/k)→ 1

We can be more precise: it is in fact a semidirect product.
Motto: p-adic vector spaces are the natural environment for representations of GK
(which is ‘close to being a pro-p group’, meaning it has a very large pro-p subgroup).
Plan: 2.1: Finite Group Schemes.
2.2: p-divisible groups.

2.3: C = K̂. In case of Qp we denote this by Cp.
2.4: Theorems on Galois Representations attached to p-divisible groups.

2.1 Finite Group Schemes

2.1.1

Let R be a commutative ring. An affine group scheme over R is an affine scheme

G = Spec(A)
↑s−→ S := Spec(R) equipped with:

• a multiplication m : G×
S
G→ G,S = Spec(A⊗R A).

• A unit section e : S → G

• An inversion i : G→ G

These are required to be morphisms over S.

Thursday, 2/20/2025

We redo:
Let R be a commutative ring. An affine group scheme over R is an affine scheme

G = SpecA
PG−−→ S = SpecR, equipped with morphisms over S:

m = mG : G×
S
G = Spec(A⊗

R
A)→ G

i = iG : G→ G [inverse]
e = eG unit section so that:
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S G

S

id

PG

such that the following diagrams are commutative:

1) Associativity:

(G×
S
G)×

S
G ∼=

can
G×

S
(G×

S
G) G×G

G×
S
G G

m×id

id×m m

m

2)

G = S ×
S
G = G×

S
G×G

G×G G

e×id

idid×e m

m

3)

G G×G

S

G×G G

i×id

id×i

PG

m

e

m

1-3 can be reformulated in terms of A.

• PS makes A into an R-algebra.

• m corresponds to a morphism of R-algebras µ : A→ A⊗R A, co-multiplication

• i corresponds to the morphism ι : A→ A inverson.

• e corresponds to ε : A→ R called the co-unit

(A,µ, ι, ε) has the property that the diagrams:

1’)

(A⊗R A)⊗R A = A⊗R (A⊗R A) A⊗R A

A⊗R A A

µ⊗id

id⊗µ

µ

µ

2’)

R⊗R A = A⊗R R A⊗R A

A⊗R A A

ε⊗id
id⊗ε

µ

id

µ

3’)

A A⊗R A A⊗R A

A⊗A

A⊗A A

δ ι⊗id
δ

id⊗ι

µ

µ

Here δ : A⊗R A→ A is multiplication, G −→
∆

G×
S
S
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This means that (A,µ, ι, ε) is a Commutative Hopf Algebra.
The group scheme G = Spec(A) is called commutative if:

G⊗G
(g,h)

G

(h,g)

G⊗G G

m

id

m

commutes. Equivalently,

A⊗R A
b⊗a

A

a⊗b
A⊗R A A

µ

µ

id

commutes. In this case A is called co-commutative.
Examples:

1) The additive group (scheme) Ga,R over R : Ga,R = Spec(A), A = R[x], µ :
R[x]→ R[x]⊗R R[x] by x 7→ 1⊗ x+ x⊗ 1.

ε : R[x]→ R by ε(x) = 0, ι : R[x]→ R[x] by x 7→ −x.

2) The multiplicative group (scheme)Gm,R overR: Gm,R = Spec(A), A = R[x, x−1] =
R[x, t]/(tx− 1).

µ : A→ A⊗R A,µ(x) = x⊗ x, µ(x−1) = x−1 ⊗ x−1.
ε : A→ R, ε(x) = ε(x−1) = 1, ι(x) = x−1, ι(x−1) = x.

3) The group scheme of n’th roots of unity µ
n,R

= Spec(A), A = R[x]/(xn − 1).

Then µ(x) = x⊗ x, ε(x) = 1, ι(x) = x−1 = xn−1.

The quotient map R[x, x−1] → R[x]/(xn − 1) = R[x, x−1]/(xn − 1) given by
x 7→ x is a morphism of Hopf algebras over R.

This induces a closed immertion µ
n,R
→ Gm,R.

4) Let Γ be any finite group of order m. Set A = RΓ (set of maps f : Γ → R)
equipped with pointwise addition and multiplication. Then,

A = R× · · · ×R product of rings,

Comultiplication µ : A→ A⊗R A ∼= RΓ×Γ, f ⊗ g 7→ [(γ, δ) 7→ f(γ)g(δ)]

µ(f)(γ, δ) = f(γδ).

ε : A→ R, ε(f) = f(1Γ).

ι : A→ A, ι(f)(γ) = f(γ−1).

Exercise: This makes (A,µ, ι, ε) a commutative Hopf algebra, which is co-
commutative if and only of Γ is commutatie.

We set ΓR = Spec(RΓ) and call it the constant group scheme associated to Γ.

One can think of ΓR as m copies of S labeled by the elements of Γ.

5) GLn,R = Spec(A), A− R[xij | 1 ≤ i, j ≤ n][t]/(t det−1). SLn,R is closed inside
GLn,R. SLn,R = Spec(A/I), A as above, det = det((xij)), I = (t−1) = (det−1).

Caution: If G is a group scheme over S then |G| = underlying set (topological space)
is in general not a group.
For example, G = Ga,C = Spec(C[x]) which is bijective with C ∪ {η} where η is a
generic point associated to (0), the zero ideal.
Note: |G ×

Spec(C)
G| = | Spec(C[x, y])| ̸= |Spec(C[x])| × |Spec(C[y])|
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Points If T
f−→ S is a scheme over S = Spec(R) eg T = Spec(R′) and G → S is a

group scheme, then G(T ) := MorScheme /S(T,G). In the affine scheme it is the same
as HomR-alg(A,R

′) if G = Spec(A), T = Spec(R′).
G(T ) is naturally a group, called the group of T -valued points of G.

Given x, y :

T G

S
There is a commutative diagram:

G×S G

T G

G S

p2

p1

∃!xy

x

y

x# − y#(b)←[ a⊗ b

A⊗R A

R′ A

A R

(x y)#

x#

y#

Then define x · y := m ◦ (x, y) : T → G.

R′
(x,y)#←−−−− A′ ⊗R A

µ←− A.
This gives G(T ) the structure of a group with unique element eG ◦ f where T

f−→ S is
the structure map.
For example,

1) Ga,R(R′) = (R′,+).

HomR-alg(R[x], R
′)

bij←→ R′ with φ 7→ φ(x).

2) Gm,R(R
′) = ((R′)×, ·),HomR-alg(R[x, x

−1], R′) with φ 7→ φ(x) ∈ (R′)×.

µ
n,R

(R′) = {a ∈ R′ | an = 1} is not necessarily finite if R′ is not an integral

domain. Sometimes we also have very few roots of unity.

For example, if n = pm, p prime and R = Fp and R′ an integral domain (and
also Fp algebra), then,

µ
pm,Fp

(R′). This is because (xp
m − 1) = (x− 1)p

m

.

Definition. Let S = Spec(R). Let G = Spec(A), H = Spec(B) two (affine) group
schemes over S. A homomorphism f : H → G over S is a morphism of schemes over
S such that the following diagram commutes:

H ×H H

G×G G

f×f

mH

f

mG

If G and H are affine (as indicated) then f corresponds to f# : A → B a morphism
of R algebras and f is a homomorphism if and only if f# is a homomorphism of Hopf
Algebras.
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Example Suppose p prime, R = Fp algebra, αp,R = Spec(A), A = R[x]/(xp) with
co-multiplication µ(x) = 1⊗ x+ x⊗ 1 and inversion ι(x) = −x and ε(x) = 0.
Then R[x]→ A gives a morphism:

αp,R → Ga,R
Question: Is αp,R isomorphic to µp,R?
Example 2: Suppose R is a k-algebra and k is a field containing a primitive n’th root
of unity. Then char k ∤ n. In this case, µ

n,R
∼= Z/nZ

R
.

Tuesday, 2/25/2025

Note that, in the previous question, even though as schemes αp,R
∼= µ

p,R
, they are

not isomorphic as group schemes over R.

Definition. A group scheme G
pG−−→ S = Spec(R) is called finite, if pG is a finite

morphism (G = Spec(A) is affine and p#G : R → A makes A into a finitely generated
R-module).
A finite group scheme G/R [here G = Spec(A)] is called flat (resp. locally free) if A
is flat (resp. projective) R-module.

We denote by GpsR the category of (affine) group schemes /R and Gpsfin/proj category
of finite locally free free group schemes /R and GpsfinR category of finite group schemes
/R.

Example from LT Theory: Let K/Qp be finite, Fe = LT OK module attached to the
LT series e ∈ Eπ, Fe[πm] := Spec(OK [[x]]/([πm]Fe(x))).
Fact (HW7): Am := OK [[x]]/([πm]Fe(x)) is a free OK-module of rank qm where
q = |kK |.
Hence, the co-multiplication Am → Am⊗OK Am is given by the formal module struc-
ture: x 7→ Fe(x1, x2) ∈ OK [[x1, x2]]/([π

m](x1), [π
m](x2)) ∼= OK [x1]/([π

m](x1)) ⊗OK
OK [[x2]]/([π

m](x2)).
Inversion map is given by inversion on Fe.
Augmentation (↔ unit section) Am → OK , x 7→ 0.

Remark. If M is a finitely generated projective R-module then ∀P ∈ Spec(R) the
localization MP is a finitely generated free RP -module. This is a consequence of
Nakayama’s Lemma.
The function Spec(R)→ Z≥0, rk(M)(P ) := rankRP (MP ) is locally constant.

If G is in Gpsfin,projR then we let rk(G) := rk(A) where G = Spec(A). We call it the
rank or order of G.

2.1.2 Carter Duality

From now on all group schemes are assumed to be commutative. Given an affine
group scheme G = Spec(A) over R we set O(G) = A. So, O(G) is the corresponding
affine algebra of G.
Let µ : A→ A⊗RA be the co-multiplication, and δA : A⊗RA→ A the multiplication.
Then, δA(a⊗ b) = ab.
Let A∨ = HomR-mod(A,R). Now assume that A is f.g. projective ( ⇐⇒ G is finite,
locally free).
Then we have the following:
(A⊗R A)∨ = HomR-mod(A⊗R A,R) = HomR-mod(A,HomR-mod(A,R))
= HomR-mod(A,R)⊗R HomR-mod(A,R) = A∨ ⊗R A∨.
Consider the maps: δA∨ := δ∨A : A∨ → (A⊗R A)∨ ∼=

can
A∨ ⊗R A∨

µA∨

Proposition/Definition 2.1.2.1. Let G ∈ Gpsfin, projR , A = O(G). Then A∨

equipped with the multiplication is given by δA∨ = µ∨A is a commutative ring with
unit εA : A→ R(εA ∈ A∨).
If we define:
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εA∨ : A∨ → R, εA∨(f) = f(0)
ιA∨ := ι∨A : A∨ → A∨, ιA∨(f) = f ◦ ιA
Then A∨, µA∨ , ιA∨ , εA∨ is a co-commutative Hopf algbra of the same rank as fcs on
Spec(R).
Furthermore, the map A → (A∨)∨ given by a 7→ (f 7→ f(a)) is an isomorphism
of Hopf Algebras. We set G∨ : Spec(A∨) and call it the Carter Dual of G. Then,
(G∨)∨ ∼=

can
G.

Example: let G = µ
n,R

, A = R[x]/(xn − 1), µA(x) = x⊗ x.

A∨ =
⊕n−1

i=0 Rfi, fi

(∑n−1
j=0 ajx

j
)
= ai ∈ R.

Then, (fi · fj)(xk) can be evaluated as follows:
Recall A∨ ⊗R A∨ → A∨ is given by f ⊗ g 7→ [a 7→ (f ⊗ g)(µA(a))]. Then,

(fi · fj)(xk) = (fi ⊗ fj)(µA(xk)) = (fi ⊗ fj)(xk ⊗ xk) = fi(x
k)fj(x

k)

Therefore, (fi · fj)(xk) =

{
1, if i = j = k;

0, otherwise.

Therefore, fifj = δi,jfi.
Thus, f0, · · · , fn−1 are pairwise orthogonal idempotents. Furthermore, f0 + · · · +
fn−1 = 1A∨ .
Therefore, as an R-algebra,

A∨ =

n−1∏
i=0

Rfi ∼= R× · · · ×R !
= RZ/nZ

Then, the co-multiplication on A∨ ∼= RZ/(n) is given by:

RZ/(n) → RZ/(n) ×RZ/(n) = RZ/(n)×Z/(n)

f 7→ [(i mod n, j mod n) 7→ f(i+ j mod n)]

f ∈ RZ/nZ ↔
[∑n−1

i=0 aix
i 7→

∑n−1
i=0 aif(i)

]
Therefore, (µ

n,R
)∨ ∼= Z/nZ

R

Example: Assume p is prime and R an Fp algebra. Then, (αp,R)
∨ ∼= αp,R.

Note that this proves that αp,R ̸∼= µ
p,R

for any ring R ̸= 0.

Sketch of proof of 2.1.2.1. Check Associativity of multiplication δA∨ . It comes from
the associativity of the comultiplication.
Let a ∈ A. Write µA(a) =

∑
i ai ⊗ bi.

µA(bi) =
∑
j bij⊗dij , µA(ai) =

∑
k aik⊗cik =⇒

∑
i,k aik⊗cik⊗bi =

∑
i,j ai⊗bij⊗dij .

For all f, g, h ∈ A∨ : ((f · g) · h)(a) = ((f · g) ⊗ h)(µA(a)) =
∑
i(f · g)(ai)h(bi) =∑

f(aik)g(cik)h(bi) = (f⊗g⊗h) (
∑
aik ⊗ cik ⊗ bi) = (f⊗g⊗h) (

∑
ai ⊗ bij ⊗ dij) =∑

f(ai)(gh)(bi) = (f · (g · h))(a).
Similarly one proves the associativity of co-multiplicatin µA∨ and verify the other
axioms.

Functorial Description of the Carter Dual

Let G = Spec(A) ∈ Gpsfin,projR for R′ ∈ R-alg (= cattegory of comm. R-algebras) we
define:

Hom(G,Gm)(R′) := HomGpsR′ (GR′ ,Gm,R′)

= HomR′-Hopfalg(O(Gm,R′),O(GR′)) = HomR′-Hopfalg

(
R′[x, x−1], A⊗R R′

)
This is a functor: R-alg → (Groups) into the category of abstract groups.
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If we have α, β : GR′ → Gm,R′ we can multiply them, α · β : GR′ → Gm,R is a
homomorphism.
Proposition 2.1.2.2 If G ∈ Gpsfin,projR , then G∨ ∼=

can
Hom(G,Gm).

Thursday, 2/27/2025

Notation: Given a ring R we denote by AbR the category of affine commutative group
schemes over R, and AbfinR (Abfin, projR ) the categoory of objects which are finite (resp.
finite and locally free (⇐⇒ O(G) is projective)) over R.
For R′ ∈ R-alg we defined Hom(G,Gm)(R′) = HomAbR′ (GR′ ,Gm,R′).

Proposition 2.1.2.2. ForG ∈ Abfin,projR we haveG∨ (=Carter dual)∼= Hom(G,Gm).

Sketch. R′ ∈ R-alg. Then,
G(R′) = HomR-alg( A

O(G)
, R′) ↪→ HomR-mod( A

proj
, R′) ∼= HomR-mod(A,R) ⊗R R′ =

A∨ ⊗R R′.
Where A∨︸︷︷︸

A∨
R′

= HomR-mod(A,R). Consider φ : A → R′ ∈ G(R′), an R-algebra homo-

morphism. We can then make φ into R′-linear in the obvious way: A ⊗R R′
φ−→ R′

with a⊗ r 7→ φ(a)⊗ r.
µA∨

R′

µA∨
R′

: A∨R′ → A∨R′ → A∨R′ ⊗R′ A∨R′
∼= (AR′ ⊗R′ AR′)∨

Therefore, (µA∨
R′
(φ))(a⊗ b) = φ(a⊗ b)φ ring hom

=
φ(a)φ(b) = (φ⊗ φ)(a⊗ b).

Therefore, µA∨
R′
(φ) = φ⊗ φ.

Remark. An element φ of a Hopf algebra H over R′ is called group-like if the
comultiplication µH(φ) = φ⊗ φ.

So, φ is group-like.
On the other hand, any element Φ of Hom(G∨,Gm)(R′) = Hom(G∨R′ ,Gm,R′) =
HomR′-alg(R

′[x, x′], A∨ ⊗R R′) is completely determined by Φ(x) ∈ A∨R′ . Let this be
Ψ.
Then we have Ψ(ab) = µA∨

R′
(Ψ)(a ⊗ b) = (Φ ⊗ Φ)(µGm,R′ (x))(a ⊗ b) = (Φ ⊗ Φ)(x ⊗

x)(a⊗ b) = Ψ(x)⊗Ψ(x)(a⊗ b) = Ψ(a)Ψ(b).
Moreover Ψ · Φ(x−1) = Φ(x)Φ(x−1) = Φ(1) = 1.
Therefore, Ψ ∈ (A∨R′)×.
Check: the element φ from before is a unit in A∨R′ .
Therefore, Hom(G∨,Gm)(R′) = Hom(Hopf algs/R′)(R

′[x, x−1], A∨R′)
= {φ ∈ (A∨R′)× | φ(ab) = φ(a)φ(b)}
= HomR′-alg(A,R

′) = G(R′).
=⇒ Hom(G∨,Gm) ∼= G
Replace G by G∨ and use the fact that G∨∨ ∼=

can
G.

Therefore, G∨ ∼= Hom(G,Gm).

Example: (αp,R)
∨ ∼= αp,R [from HW7]

(µn,R)
∨ ∼= Z/nZ

R
.

2.1.3 Short Exact Sequences

Let G,G′, G′′ ∈ Abfin,projR .

Definition. A sequence 0→ G′
f−→ G

g−→ G′′ → 0 is called exact if:

i) f is a closed immersion (⇐⇒ f# : O(G)→ O(G′) is surjective) which identifies
(G′, f) with the categorical kernel of g in AbR.
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(If H ∈ AbR and h : H↘ −−−−−−−→
S=Spec(R)

↙G has the property that g ◦h = eG′′ ◦pH
[here pH is the map H → S] then there is a unique h′ : H → G′ such that
h = f ◦ h′).

ii) g is faithfully flat (⇐⇒ g# : O(G′′)→ O(G) is faithfully flat).

Propositon 2.1.3.1. Let 0 → G′ → G → G → G′′ → 0 be an exact sequence in
Abfin,projR . Then,

i) rk(G) = rk(G′) rk(G′′) as functions on Spec(R).

ii) The dual sequence 0→ (G′′)∨ → G∨ → (G′)∨ → 0 is exact.

Reference: Demazure, Gabriel Groupes Algebriques, SGA 3

Remark. 1) If 0 → H → G → Q → 0 is exact sequence of affine commutative
group schemes /R, then the sequence of R′ valued points:

0→ H(R′)→ G(R′)Q(R′)→ 0

need not be exact for R′ ∈ R-alg. Usually surjectivity is the problem.

Example: We take G = ResCR(Gm,C) = Spec(R[x, y, z]/(z(x2 + y2)− 1)) ⊃ H =
Spec(R[x, y]/(x2 + y2 − 1)).

Fact: The morphism G = Spec(R[x, y]
[

1
x2+y2

]
)

x2+y2

→
←[
Q : Gm,R = Spec(R[t, t−1])

t

is the quotient of G by H := we have an exact sequence of algebraic groups
1→ H = S1 → ResCR(Gm,C)

(x,y)

→
7→

Gm,R
x2+y2

→ 1.

Take R-valued points: 1→ H(R) = S1

⊂C×
→ C×

(x,y)
→
7→

R×
x2+y2

→ 1

Note that (x, y) 7→ x2 + y2 is not surjective!

2) If R = K is a field and G ∈ AbR has the property that ∀ field extensions
L/K : G(L) = {1} then this does not imply that G is the trivial group scheme
over R.

Example: charK = p > 0 and G = µ
p,K

=⇒ ∀L/K field extensions,

µ
p,K

(L) = {1}.
Prototypical Examples of Exact Sequences:

1)

ζ ζ a ap

1 µ
p,R

µ
pn,R

µ
pn−1,R

1

R[t]/(tp − 1) R[x]/(xp
n − 1) R[y]/(yp

n−1 − 1)

t x xp y

2) If F = Fe is a LT OK-module for a uniformizer π then,

a [π](a)

0 F [π] F [πm] F [πm−1] 0
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3) If R = k = k is a field of char p > 0 and E an ordinary elliptic curve over k [so
E[p](k) = E(k)[p] ∼= Z/p] then,

0→ E[p]0 → E[p]→ E[p]ét ∼= Z/p
k
→ 0

E[p]0 is connected component of rank p.

E[p] has rank p2

E[p]ét is the Étale quotient.

2.1.4 Connected and étale groups

In this section (R,m) is a local complete noetherian ring (in particular, R
can−−→ R/mn

is an isomorphism). Let G ∈ Gpsfin,loc free
R = proj, G = Spec(A), A finite projective

R-module.

Remark. In such a case A is a free R-module [since R is local] [HW7].

There is an exact sequence in Gpsfin, loc. free
R

0→ G0 → G→ Gét → 0

where G0 is connected [ie the underlying topological space is connected] and Gét is
étale, O(Gét) is an étale R-algebra.

Definition. Let A
φ−→ B be a finitely generated A-algera. Then B is called étale over

A, if

1) B is a flat A-module, meaning B ⊗A (−) is an exact functor.

2) ∀q ∈ Spec(B) the homomorphism Ap → Bq where p = φ−1(q) is unramified.
i.e:

• φq(pAp) ·Bq = q ·Bq

• κ(q) := Bq/qBq(= Frac(B/q)) is a separable (finite) extension of κ(p) =
Frac(A/p)

Example:

1) |Γ| <∞ =⇒ ΓR = Spec(RΓ) is étale.

2) If A,B/R is étale then A×B is étale over R.

3) Z/nZ
R
is étale over R

4) If n ∈ R× then µnR is étale (HW7)

Proposition. (Milne, Ét. Coh. I, Prop 3.2) Let A be an R-algebra of finite
type. Then A is unramified over R ⇐⇒ ∀p ∈ Spec(R) and any separably

closed extension k̃/κ(p) = Frac(R/p), the k̃-algebra

A⊗R k̃ = (A⊗R κ(p))⊗κ(p) k̃

Is unramified over k̃, ie a finite product of copies of k̃.

For us, étale = flat + unramified. We generally already have flat since we’re
working in the local case.(

µ
n,R
×Spec(R) Spec(κ(p))

)
×Spec(κ(p)) Spec(k̃) = µ

n,k̃

5) R is a field of char p > 0 then µ
pn,R

and αp,R are not étale over R, but they are

connected: |µ
pn,R
| = n{∗} = |αp,R| where | · | denotes the underlying topological

space.
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6) Suppose (R,m) is local and char(R/m) = p > 0 and n = pem, e > 0, p ∤ m.
Then the connected-étale sequence for µ

n,R
is:

0→ µ
pe,R

= (µ
n,R

)0 → µ
n,R

ζ 7→ζp
e

−−−−→ µ
m,R

= (µ
n,R

)ét → 0

This sequence actually splits. µ
n,R

= µ
pe,R
×Spec(R) µm,R.

µ
pe,R

= Spec(R[x]/(xp
e − 1)): show that R[x]/(xp

e − 1) is a local ring. It is

known that spec of local rings are connected.

More facts:
G is connected ⇐⇒ G = G0. Then the order of G is a power of p = char(R/m).
In particular, G is étale if char(R/m) = 0.
G is étale iff G = Gét. One has an equivalence of categories:
The category of finite affine étale commutative and co-commutative Hopf algebras
over R.
The category of finite abelian groups Γ together with a continuous action of the
absolute galois group Gk × Γ→ Γ by group automorphisms [here k = R/m].
Note that if R is local noetherian then f.g. flat ⇐⇒ f.g. proj. ⇐⇒ f.g. free.
The equivalence is given as follows: A 7→ HomR(A, k

sep).
If G = Spec(A) then G 7→ G(ksep).
There is a maximal étale extension Rét, called the strict Henselization, which is local
and whose residue field is ksep (= separable closure of k), an done has an isomorphism
of groups:

Aut(Rét/R)
∼=−→ Gk

And (Rét)
Gk = R

Given (Γ, Gk → Aut(Γ)) one sets AΓ := MapGk(Γ, Rét) [Galois Equivariant Map].
=⇒ AΓ is a finite free R-module, and étale as R-algebra and AΓ has a Hopf-algebra
structure, and then ΓR = Spec(AΓ) is a commutative finite locally free étale group
scheme over R.

Remark. If (Γ, Gk → Aut(Γ)) then ∀σ ∈ Gk, σ(0Γ) = 0Γ. Thus,

MapGk(Γ, Rét) = MapGk({0Γ}, Rét)×MapGk(Γ \ {0}, Rét)

= R× MapGk(Γ \ {0}, Rét)︸ ︷︷ ︸
=ker(εAΓ

), kernel of co-unit

Note that ker(εAΓ
) is itself a ring, so AΓ = R× ker(εAΓ

) is itself a product ring.
Therefore, ΓR = Spec(AΓ) = Spec(R)︸ ︷︷ ︸

image of unit section

∐
Spec(ker(εAΓ

)).

Upshot: If Γ ̸= 0 then ΓR is not connected.
A finite locally free étale group scheme is never connected unless it is the trivial group
scheme (assumption R is local).

2.2 p-divisible groups

p always denotes a prime number.

Definition. An (abstract) abelian group Γ is callled p-divisible if [p]Γ : Γ → Γ, a 7→
pa := a+ · · ·+ a is surjective.
In particular, every element of Γ can be ‘divided’ by p. Note that the result of the
division need not be unique. Meaning, [p]Γ need not be injective.

Example. 1) Γ = Q is uniquely p-divisible: [p]Q is a bijection.

2) Γ = Qp/Zp =
⋃∞
ν=0

1
pν /Z. It is surjective but not injective: [p]Qp/Zp has a

kernel.
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In (arithmetic) algebraic geometry, ‘p-divisible’ has a more specific meaning. These
are also called Barsotti-Tate groups.
Grothendieck, Groupes de Borsotti-Tate et eristaux de Dreudonné (1974)
Messing, The crystal associated to Borsotti-Tate groups
Berthelot-Breen-Messing
Demazure-Gabriel
Zink’s Display Theory

2.2.1 Definitions

Let R be a ring, h ∈ Z≥0. A p-divisible group over R of height h is an inductive
system G = (Gν , iν : Gν → Gν+1)ν≥0 where:

• Gν is a finite loc. free comm. group scheme of order pνh over R.

• for each ν ≥ 0 the sequence:

0→ Gν
iν−→ Gν+1

[pν ]Gν+1−−−−−−→ Gν+1

ie exact. iν : Gν → Gν+1 is the categorical kernel of [pν ] : Gν+1 → Gν+1.

We have the following commutative diagram:

0 Gν Gν+1 Gν+1

H Spec(R)

iν
[pν ]Gν+1

∃!
φ

pH

eGν+1

If Gν would be ordinary abelian groups then Gν would have order pνh and it would
be annihilated by pν .
Thus, G1

∼= (Z/p)h and Gν ∼=
⊕s

i=1 Z/pmi and
∑s
i=1mi = νh.

Thus, Gν [p] =
⊕s

i=1 p
mi−1Z/pmZ =⇒ s = h =⇒ ∀i,mi = ν.

Upshot: Gν = (Z/pν)h.

Thursday, 3/6/2025

If the Gν would be just finite abelia= n groups =⇒ Gν = (Z/pν)h =⇒ G =
(Qp/Zp)h.
Examples of more p-divisible groups:

1) ((Z/pν)h
R
)ν =

((
1
pν Z/Z

)
R

)
ν

is the constant p-divisible group of ht h over R.

2) (µ⊕h
pν ,R

)ν is a p-divisible group over R of ht h.

Question: Are there any other p-divisible groups over Z other than (Qp/Zp)hZ
or µ⊕h

p∞,Z?

We don’t know the answer.

See Fontaine (1980’s) Ji n’ya pas de courbes elliptiques sur Z

3) F = LT Formal OK-module, [K : Qp] <∞, |kK | = q = pf then (F [pν ])ν≥0 is a
p-divisible over OK of height h = [K : Qp].
Question: F [pν ] ∼=

?
(µ
pν ,OK

)⊕h, h = [K : Qp]? Answer is no if h > 1.

Lubin-Tate Theory provides us with p-divisible groups that are not obvious!

A homomorphism of p-divisible groups f : G = (Gν) → H = (Hν) is a system of
morphisms of group schemes fν : Gν → Hν which are compatible with the transition
maps:
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Gν Hν

Gν+1 Hν+1

fν

fν+1

For ν, µ ≥ 0 let iν,µ : Gν
iν−→ Gν+1

iν+1−−−→ · · · → Gν+µ be the composition of ij where
ν ≤ j ≤ ν + µ.

Then, we have Gν
iν,µ−−→ Gν+µ = ker ([pν ] : Gν+µ → Gν+µ)

=⇒ [pν ] : Gν+µ → Gν+µ has the property that [pν ] ◦ [pµ] = 0. Indeed,

[pν ] Gν+µ Gν+µ

Gν Gν+µ

:

∃!jµ,ν [pν ]
iν,µ

Thus we have an exact sequence:

Gν+µ

0 Gµ Gµ+ν Gν 0
iµ,ν

[pµ]

jµ,ν

iν,µ

eg 0→ p−1Z/Z→ p−2Z/Z p−→ p−1Z/Z→ 0

2.2.2 Relations with Formal Lie Groups

R is assumed to be noetherian, local with maximal m, complete with residue field k
of char p > 0.
An n-dimensional commutative formal Lie group F over R is given by:
F (x, y) = (F1(x, y), · · · , Fn(x, y)) ∈ R[[x, y]]n
Here R[[x, y]] = R[[x1, · · · , xn, y1, · · · , yn]]
Satisfying,

i) F (x, y) = F (y, x)

ii) F (0, y) = y = (y1, · · · , yn)

iii) F (F (x, y), z) = F (x, F (y, z))

We write x+
F
y = F (x, y) then we have [p](x) = x+

F
· · ·+

F
x = ([p]1(x), · · · , [p]n(x)).

F is called p divisible if [p](x) is an isogeny, i.e. the map R[[x]] → R[[x]] sending
xi → [p]i(x), 1 ≤ i ≤ n turns R[[x]] into a module over itself which is finitely generated
and free.
Example: We look at dimension 1.

1) F (x, y) = x + y =⇒ [p](x) = px, then R[[x]] is not a finite R[[x]]-module
via x 7→ px. Recall that k has char p so the mod m reduction of this map is
k[[x]]→ k[[x]] sending x 7→ 0.

2) F (x, y) = x+ y+ xy =⇒ [p](x) = (1+ x)p− 1 = px+
(
p
2

)
x2 + · · ·+ pxp−1 + xp

which is regular of order p in the terminology given in the HW.

HW7 =⇒ R[[x]] a free R[[x]]-module of rank p.

3) If F is a Lubin-Tate OK module, it is p-divisible when K/Qp is finite.

If F is p-divisible, then not only multiplication by p is an isogeny, but iterations [pν ]
is an isogeny.

For any ν ≥ 0, Aν := R[[x]]
([pν ]1(x),··· ,[pν ]n(x))R[[x]] is finite free over R, and the power

series F (x, y) defines a co-multiplication Aν → Aν ⊗R Aν given by xi 7→ Fi(x, y)
mod ([pν ]j)

n
j=1.
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Then Aν becomes a commutative and co-commutative Hopf-algebra /R and thus
Gν = Spec(Aν) is a finite free commutative group scheme /R.
Upshot: G = (Gν , Gν

Aν

→
←

Gν+1)
Aν+1

is p-divisible over R and each Aν is a local ring

=⇒ Gν is connected.
Proposition 2.2.2.1. Let R be a ccomplete noetherian local ring with residue field k
of char p > 0. Then, F ⇝ GF is an equivalence of the categories of p-divisible formal
Lie groups and category of connected p-divisible groups over R.

Remark. A p-divisible group G = (Gν) is called connected if all (Gν) are connected.

Example:

1) F = Ĝm,R (so F (x, y) = x+ y + xy =⇒ GF = µ
p∞,R

)

2) F= LT OK-module, [K : Qp] <∞ =⇒ GF = (F [pν ])ν .

Going from connected p-divisible groups to formal Lie Groups:
Given G = (Gν , iν) where Gν = Spec(Aν) connected p-divisible group over R and iν
corresponds to morphisms of Hopf algebras Aν+1 → Aν .
Theorem. A := lim←−ν Aν is isomorphic to R[[x1, · · · , xn]] and the co-multiplications
Aν → Aν ⊗Aν give a ring homomorphism:
A→ lim←−ν Aν ⊗Aν

∼= R[[x1, · · · , xn, y1, · · · , yn]](∼= A⊗̂RA).
Complete w.r.t. the ideal m⊗A+A⊗m.

Proof. Sending xi to Fi(x, y) and F (x, y) = (F1(x, y), · · · , Fn(x, y)) is a formal lie
group over R as define dbefore.

Proposition - Definition. Given a p-divisible group G = (Gν)ν over R, the systems
G0 = (G0

ν)ν and Gét = n(Gét
ν )ν are p-divisible groups. One has ht(G) = ht(G0) =

ht(Gét). If F is the formal lie group associated to G0 by proposition 2.2.2.1 then we
set dim(G) := dim(G0) := dim(F ).
Example:

1) dim(µ
p∞,R

) = 1 recall that µ
p∞,R

↔ Ĝm

2) dim(Qp/Zp
R
) = 0

3) E /R elliptic curve, E [p∞] = (E [pν ])ν ⇝ 0→ E [p∞]0 → E [p∞] =⇒ E [p∞]ét →
0

Either E [p∞]ét = 0 =⇒ dim(E [p∞]) = 1 and ht(E [p∞]0) = ht(E [p∞]) = 2 supersin-
gular case.
Ordinary: E [p∞]ét ̸= 0 =⇒ ht(E [p∞]ét) = 1 and ht(E [p∞]0) = 1
dim(E [p∞]ét) = 0 and dim(E [p∞]0) = 1
In general ht(A [p∞]0) ∈ [g, · · · , 2g]. Everything can be achieved inbetween. 2g is the
supersingular case, which is extreme in the sense that the étale part is 0.

dim

E a
ord × E b

supersing︸ ︷︷ ︸
connected part

 = a+ b

= (E 0
ord)

a × E b
super

So, ht(E [p∞]0) = a+ 2b.
This shows we can achieve any number between g and 2g.
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Tuesday, 3/11/2025

The Discriminant

Let R be any ring, and A a commutative R-algebra which is f.g. and free as R-module.
Then we have the trace map Tr = TrA/R : A→ R defined as,
Tr(a) = trace(mult. by a : A → A) choose basis ⇝ matrix Xa ∈ Mn(R), n =
rankRA = tr(Xa).

The trace form of A/R is the R-bilinear map A×A
b=bA/R−−−−−→ R, bA/R(a, a

′) = Tr(aa′).

Definition (Discriminant). 1) The discriminant of A/R, called disc(A/R), is the
discriminant of the trace form, which is the ideal generated by the discriminant
of any basis (e1, · · · , en) of A as an R-module. The latter is defined to be:

det
(
(bA/R(ei, ej))1≤i,j≤n

)
= det 0

(
(TrA/R(eiej))1≤i,j≤n

)
This ideal is independent of the choice of a basis.

2) If G = Spec(A) is a finite group scheme over R with a free R-module, we set
disc(G) := disc(A/R) ⊂ R.

Examples:

1) Suppose G = µ
p,R

= Spec (R[x]/(xp − 1)) , ei = xi, 0 ≤ i ≤ p − 1, then eiej =

xi+j = xi+j mod p.

Then, TrA/R(x
0) = TrA/R(1) = p,TrA/R(x

̸=0) = 0.

Thus, if i+ j ≡ 0 mod p,TrA/R(eiej) = p, otherwise 0. Then, the discriminant
is generated by (example: p = 5)

p
p

p
p

p


Therefore, disc

(
µ
p,R

)
= pp ·R.

2) If G is étale then disc(G) = 1 ·R.

Proposition 2.2.2.2. If G = (Gν)ν is a p-divisible group over R, R complete local

noetherian of height h and dimension n, then disc(Gν) = pnνp
hν ·R.

Proof is involved.

2.2.3 Duality for p-divisible groups

Let G = (Gν)ν be a p-divisible group over R,R not necessarily local.
Then we have an exact sequence:

0 G1 Gν+1 Gν 0
[p]

j1,ν

Applying Cartier Duality we get:

0 G∨ν G∨ν+1 G∨1 0
j∨1,ν
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Check: (G∨ν , j
∨
1,ν) form a p-divisible group over R, called the Cartier dual of G.

Note: Since ord(G∨ν ) = ord(Gν) = pνh, h = ht(G) hence ht(G∨) = ht(G).

Standard Example:
(
µ
p∞,R

)∨
=

((
µ
pν ,R

)∨)
ν

=
(

1
pν Z/Z

)
ν
= Qp/Zp

R

Proposition 2.2.3.1. Suppose R is a complete local noetherian ring with residue
vield k of char p. Then, dim(G) + dim(G∨) = ht(G).
Example: Let [K : Qp] = d, F = LT OK module, then we know F [p∞] = (F [pν ])ν
has height d and dimension 1.
Then, 2.2.3.1 =⇒ dim (F [p∞]∨) = d− 1

2.3 Frobenius and Verschiebung

Let k be a field of char p > 0. (This should also work for any Fp algebra).
Let φ : k → k, λ 7→ λp be the (absolute) Frobenius.
If G = Spec(A) is a group scheme /k then we can form A(p) = k⊗φ,kA which we con-
sider as a k-algebra via the left ⊗-factor and G(p) := Spec(A(p)) = Spec(k)×φa,Spec(k)
Spec(A) = Spec(k)×φ6a,Spec(k) G
Which is again a group scheme over k via

pr1 : G(p) = Spec(k)×φa,Spec(k) G→ Spec(k)

The morphism of k-algebras A(p) = k ⊗φ,k A
F#
G−−→ A

λ⊗ a 7→ λap is well defined:
λ⊗ µa 7→ λµpap

= λµp.⊗ a 7→ λµpap

and is a morphism of Hopf algebras over k (check) and corresponds to a morphism
FG : G→ G(p) of group schemes over k, called the Frobenius of G.
Question: How do we think about A(p)?
We write A = k[x1, · · · , xn]/(f1, · · · , fr).
Then, Claim: k ⊗φ,k A

∼=−→ k[x]/(fφ1 , · · · , fφr ) where fφ is the polynomial obtained
from f by applying φ to all coefficients.
This map sends λ⊗ xm1

1 · · ·xmnn 7→ λxm1
1 · · ·xmnn .

Well defined: Using multi index: suppose fj(x) =
∑
m amx

m, am ∈ k =⇒ 1⊗fj(x) =∑
m a

p
m ⊗ xm 7→

∑
m a

p
mx

m = fφj (x)

Hence G(p) = Spec(A(p)) is obtained by applying the Frobenius to the coefficients of
the defining equations of G.
Question: How do we think of FG? Again write A = k[x]/(f1, · · · , fr).

A(p) k ⊗
φ,k

A k[x]
(fφ1 ,··· ,f

φ
r )

fφj

λ⊗ a 1⊗ xi xi

λ⊗ ap 1⊗ xpi xpi

A k[x]
(f1,··· ,fr)

fφj (xp)

= (fj(x))
p

=

F#
G

∼=

∋

idA

Example:

1) G = µ
n,k

[any n], (µ
n,k

)(p) = Spec
(
(k[x]/(xn − 1))

(p)
)
∼= Spec (k[x]/(xn − 1)) =

µn,k

FG : µ
n,k
→ (µ

n,k
)(p) = µ

n,k
hence Fµ

n,k
= [p]µ

n,k
is multiplication by p, with

xp ←[ x. This is multiplication by p. If p ∤ n then FG is invertible.
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2) If G is finite étale then FG : G→ G(p) is an isomorphism.

Verschiebung G/K finite group scheme, k field of char p or Fp-algebra.
FG∨ : G∨ → (G∨)(p) ∼=

can
(G(p))∨ [check], dualize again and get:

VG : G(p) ∼=
can

((G(p))∨)∨ → (G∨)∨ = G which is a morphism of group schemes over k.

Proposition. VG ◦ FG = [p]G, FG ◦ VG = [p]G(p) .

Thursday, 3/13/2025

Recall: Forbenius and Verschiebung: R = k = field of char p > 0.
G(p) = G ×

Spec(k),φa
Spec(k), φ : k → k, λ 7→ λp.

= Spec(A(p)), A(p) = A ⊗
k,φ

k

G G(p)

Spec(k)

, VG = (FG∨)∨ : ((G∨)(p))∨ ∼=
check

G(p) → (G∨)∨ ∼= G

Lemma: FG ◦ VG = [p]G(p) and VG ◦ FG = [p]G.
Sketch of Proof of 2.2.3.1. [dim(G)+dim(G∨) = ht(G)] Note: If I ⊂ R is an ideal and
G mod I = G ×

SpecR
Spec(R/I), then FG mod I = FG mod I ∈ (R/I)[[x1, · · · , xn]] =⇒

dim(G mod I) = dimG where FG mod I and FG are the associated formal groups.
Hence we may take I = mR ⇝ reduced to the statement for R = k is a field of char p.
We have universal property:

G(p) ker

(
G

(p)
1

VG1−−→ G1

)

G1

FG1
‘FG1

’

Previous lemma =⇒ ∃ exact sequence:

0 ker(FG1
) G1 ker (VG1

) 0

G
(p)
1

‘FG1
’

FG1

VG1

VG1 ◦ FG1 = [p]G1 .
Similarly,

0 ker(VG1
) G

(p)
1 ker(FG1

) 0
‘VG1

’

2.1.4 implies,

0 G0
1 G1 Gét

1 0

F ét
G1

is an isomorphism (HW9) =⇒ ker(FG1) ↪→ G0
1 = Spec

(
k[[x1,··· ,xn]]

([p]1(x),··· ,[p]n(x))

)
Explcit description =⇒ ker(FG1) = Spec

(
k[[x1,··· ,xn]]
(xp1 ,··· ,x

p
n)

)
=⇒ ord(ker(FG1

)) = pn, ord(G1) = ph =⇒ ord(ker(VG1
)) = ph−n.

One has: ker(VG1
)∨ ∼= ker(FG∨

1
).

Therefore, dim(G∨) = logp ord(ker(FG∨
1
)) = logp(ord(ker(VG1)

∨)) =

logp(ord(ker(VG1
))) = logp p

h−n = h− n.
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2.4 S-valued points and the Galois modules Φ(G) and T (G)

(R,m) = CDVR (complete discrete valuation ring) with uniformizer ϖ and residue
field k of char p > 0,K = Frac(R), L = completion of a Galois extension inside K =

fixed alg. closure =⇒ L ⊂ K∧.
S = OL is a valuation ring, not necessarily noetherian, not necessarily PID.
Example:

1) L = K̂nr =⇒ S is noetherian and its maximal ideal is generated by ϖ.

2) L = completion of K(µp∞) if char(K) = 0 =⇒ L is not discretely valued, S is
not PID.

3) L = K
∧

=⇒ S is not a PID.

Definition. Let G be a p-divisible group over R.

G(S) := lim←−
i

G(S/ϖiS)

where G(S/ϖi) := lim−→ν
Gν(S/ϖ

i)

Caution: In general, G(S) ̸= lim−→ν
Gν(S).

Note:

S/ϖi+1 S/ϖi

O(Gν)

⇝ Gν(S/ϖ
i+1)→ Gν(S/ϖ

i).

G(S/ϖi+1) = lim−→ν
Gν(S/ϖ

i+1)→ lim−→ν
Gν(S/ϖ

i) = G(S/ϖi)
These are the maps in this proj. system.

Example: K/Qp finite, ϖ uniformizer of K,G = µ
p∞,R

, L = K
∧
(= Cp).

Gν(S/ϖ
i) = HomR-alg

(
R[x]/(xp

ν − 1), S/ϖi
)
⊃ µpν (L) = µpν (K).

bij−→
{
ζ ∈ S/ϖi | ζp

ν

= 1 in S/ϖi
}

=⇒ ζ ≡ 1 mod mS .
Claim: ∀a ∈ mS∀i > 0∃ν ≥ 0 : 1 + a mod ϖiS ∈ Gν(S/ϖi).

Proof. Choose ν ≫ 0 such that ∀1 ≤ j ≤ pν ,
(
pν

j

)
aj ∈ ϖiS.

Reason:
(
pν

j

)
= pν(pν−1)···(pν−j+1)

j! , so for ν ≫ 0 the numerator is highly divisible by
p and thus ϖ.
Exercise: such ν exists.
Therefore, 1 + a ∈ Gν(S/ϖi). The claim is proved.
The claim implies, ∀a ∈ mS , 1 + a mod ϖi ∈ G(S/ϖi) = lim−→ν

Gν(S/ϖ
i) [we can

think about the inductive limit as union].
This gives us a coherent system mod ϖi therefore we have,

1 + a ∈ lim←−
i

G(S/ϖi) = G(S)

Conclusion: ∃Aut(L/K) = GK-equivariant isomorphism of groups µ
p∞,R

(S)
∼
↪−→

(mS , +
Ĝm

) where S = OL = OCp . The map is ζ 7→ ζ − 1 ∈ mS .

Also, multiplication ↔ a +
Ĝm

b = a+ b+ ab.

This has more points than we would naively expect.
Upshot: G(S) may not be a torsion group. In Ĝm note that [pm](a) = (1 + a)p

m − 1.
1 + a is not necessarily a root of unity!
Similarly, G(S) might not be equal to lim−→Gν(S).

In fact, the pν torsion points G(S)[pν ] = lim←−i(G(S/ϖ
i)[pν ]).

We have the exact sequence:
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0 Gν Gν+µ Gν 0
[pν ]

This induces,

0 Gν(S/ϖ i) Gν+µ(S/ϖ
i) Gν(S/ϖ

i) 0
[pν ]

Therefore, Gν+µ(S/ϖ
i)[pν ] = Gν(S/ϖ

i)
Note that G(S)[pν ] = lim←−i(G(S/ϖ

i)[pν ]) = lim←−iGν(S/ϖ
i).

Thus, G(S/ϖi)[pν ] = lim←−µGµ(S/ϖ
i)[pν ] = Gν(S/ϖ

i)

= lim←−iHomR-alg(O(Gν), S/ϖi) ↪→ HomR-alg(O(Gν), lim←−i S/ϖ
i)

= HomR-alg(O(Gν), S) = Gν(S)
This inclusion is bijective because O(Gν) is a f.g. S-algebra.
Caution: Homcont

R-algs(R[[x]], S) ̸= HomR-algs(R[[x]], S) where S is given the usual val-
uation topology and R[[x]] the topology defined by (ϖ,x).
Conclusion: G(S)[pν ] = Gν(S) hence the torsion subgroup G(S)torsion = lim−→Gν(S).
Also, if G is étale then G(S) = G(S)torsion since the connected part of the group is
trivial.
If G is connected and F is the corresponding formal group then,

G(OK∧)
∼=−−→

GK

(
m⊕nO

K∧ ,+
F

)
n = dimG.

G(S) has all the information needed to define Φ(G) =
⋃
ν Gν(S), T (G) lim←−ν Gν(S).

But these are nicer.
T (G) is something like Zhp .
G(S)torsion = Φ(G) if S = OCp .

Tuesday, 3/25/2025

Recall” R is a CDVR, k = R/mR,K = Frac(R), char(k) = p, we most often assume
k is perfect. ϖ = uniformizer of R.
L = completion of a Galois extension of K inside K.
S = valuation ring of L ⊃ mS = maximal ideal of S.
Set G(S) = lim←−iG(S/ϖ

i), G(S/ϖi) = lim−→ν
Gν(S/ϖ

i)

For example, G = µ
p∞,R

=⇒ G(S) ∼= 1 + mS ⊃ µp∞(K) = G(S)tors. So G(S) in

this case contains more than the torsion points.
Proposition.

1) G(S)[pν ] = Gν(S), hence G(S)tors = lim−→ν
Gν(S).

2) G étale =⇒ G(S) = G(S)tors.

3) If G is commutative with associated formal group F = F (x1, · · · , xn, y1, · · · , yn)
of dimn, then ∃GK(= Gal(Ksep/K)) equiv. isom. G(S) ∼= (m⊕nS ,+

F
). On G(S)

the identity element is 1, but in m⊕nS the identity element is (0, · · · , 0).

4) If dim(G0) = n then ∃GK-equivariant exct sequence

0→ (m⊕nS ,+
F
)→ G(S)→ Gét(S)→ 0

and Gét ∼= (Qp/Zp)h
′
if L = K̂ and h′ = height(Gét).

Proposition 2.2.4.1. If k is perfect then G→ Gét has a formal section in the sense
that O(Gν) ∼= O(Gét

ν )⊗R O(G0
ν) and these isom. can be chosen such that

lim←−O(Gν)
∼= (lim←−O(G

ét
ν ))⊗̂

R
(lim←−O(G

0
ν))
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∼= Aét⊗̂
R
R[[x1, · · · , xn]]

:= lim←−
i

(
Aét ⊗

R
R[[x1, · · · , xn]]/(x1, · · · , xn)i

)
The sequence

0→ G0(S)→ G(S)→ Gét(S)→ 0

is exact.
Corollary 2.2.4.2. Assume k is perfect. ∀x ∈ G(S)∃ finite extension L′/L and
y ∈ G(S) such that x = [p](y).

Proof. (Sketch) Reduce to the case of a connected and an étale grup using 2.2.4.1.
We check them individually.
Étale case: we only need to enlarge the residue field k. In other words, we replace
L by an unramified extension (at most), simply because in this case Gét

ν ×
k
k over a

finite Galois extension k′/k =⇒ Gét
ν ×

R
R′ is constant for an unramified extension

R′/R with residue field k′.
Connected case:

xi [p]i(x1, · · · , xn)

lim←−ν O(Gν) R[[x1, · · · , xn]] R[[x1, · · · , xn]]

S S′ = OL′

∼=
[p]#

xi 7→ai∈mS

Here R[[x1, · · · , xn]] = finitely generated module over R[[x1, · · · , xn]], use the theory
of integral extensions.

Corollary 2.2.4.3. If L is algebraically closed (eg char(K) = 0, L = K̂) then G(S)
is divisible, ie ∀n ∈ Z>0, the multiplication-by-n map on G(S) is surjective.

Proof. If p ∤ n then [n]Gν : Gν → Gν is an isomorphism: choose m such that m · n ≡
1(pν) then [n] : G(S) =⇒ G(S) is an isomorphism.
2.2.4.2 =⇒ multiplication by p is surjective =⇒ multiplication by pm is surjective.

The logarithm From now on we assume char(K) = 0 and k is separable.

Definition. The tangent space tG of G is defined to be the tangent space of the
formal group F associated to G [which is the same as the formal group associated to
G0, the connected component].
If A0

ν = O(G0
ν) and A0 := lim←−A

0
ν
∼= R[[x1, · · · , xn]] ⊃ U0 := (x1, · · · , xn) = ker(ε :

A0 → R). We have Spec(R)
eG0
ν−−→ G0

ν . Corrrespondingly, we have R
εG0
ν←−− A0

ν and also

the zero section R
ε←− A0.

Choosing the coordinates is non-canonical!
Then, tG = HomR(I

0/(I0)2, R). This is sometimes called the Zariski tangent space.

Remark. 1) If A is any ring and P ∈ Spec(A) =: X then the Zariski tangent space
of X at P is defined to be HomkP (PAP /(PAP )

2, kP ) where kP = AP /PAP =
Frac(A/P ).
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2) ∃ canonical isomorphism tG(L)
∼−→ DerR(A

0, L)

=
{
τ : A0 → L | τ is R-linear, ∀f, g ∈ A0 : τ(fg) = ε(f)τ(g) + ε(g)τ(f)

}
=⇒ τ ∈ DerR(A

0, L) and f, g ∈ I0 =⇒ τ(fg) = ε(f)
=0

τ(g) + ε(g)
=0

τ(f) = 0

=⇒ τ
∣∣
(I0)2

= 0.

Also: τ(1) = τ(1 · 1) = 1 · τ(1) + τ(1) · 1 =⇒ 2τ(1) = τ(1) =⇒ τ(1) = 0.

=⇒ ∀a ∈ R : τ(a) = 0 =⇒ τ is uniquely determined by its restriction to
I0/(I0)2.

Note that I0/(I0)2 = Rx1 ⊕ . · ⊕Rxn ∼= R⊕n.

=⇒ dimL(tG(L)) = dim(F ) = dim(G).

Conclusion: Since I0/(I0)2 ∼= R⊕n =⇒ dimL(tG(L)) = dim(F ) = dim(G)
The Logarithm Map log = logG : G(S)→ tG(L) is defined by:

log

(
a
∈S

)
( f
∈A0

) := lim
i→∞

f([pi]G(a))− f(0)
pi

If f = xj then f([p]i(a)) ≡ [pi]j( a
=(a1,··· ,an)∈G0(S)∼=m⊕n

S

) = pi(linear term in ak) +

p2ihigher order terms
So the limit exists in this case.
Note:

1) For a ∈ Gét(S) one has pia = 0 for i≫ 0. Hence pia ∈ G0(S).

2) If G is étale then tG(L) = 0 and log is the zeron map.

3) G(S) is a Zp-module: if nj ∈ Z converges p-adically to n ∈ Zp then ∀a ∈ G(S) :
nj · a converges in G(S) = lim←−G( S/ϖi︸ ︷︷ ︸

equipped with discrete top

)

Thursday, 3/27/2025

The Galois modules Φ and T

G is a p-div gp over R, R = CDVR of mixed char with perfect residue field k of
char p > 0,K = Frac(R),GK = Gal(K/K).
CDVR of mixed characteristic means K and k have different characteristic.
Φ(G) = lim−→ν

Gν(K) with transition map Gν
iν−→ Gν+1

T (G) = lim←−ν Gν(K) with transition map jν such that:

Gν+1 Gν+1

Gν

[p]

jν
iν

Fact(HW 10): A finite group scheme over a field of char 0 is étale.
Consequence: Gν(K) = (Gν ⊗K K)︸ ︷︷ ︸

étale

(K) = (G⊗K K)︸ ︷︷ ︸
const fin alg grp/K

(K) ∼=
as abstract grp

(Z/pν)h ∼=

(p−νZ/Z)h p−→ (p−(ν−1)Z/Z)h
=⇒ as groups Φ(G) ∼= (Qp/Zp)h and T (G) ∼=

top.
lim←−ν (p−νZ/Z)h︸ ︷︷ ︸

trans map are given by mult by p

=

Zhp .
In lim←−(Z/p

n) trans. maps are mod pn−1.
Important: In this description, the Galois action has been neglected. But it is there
by transport of structure.
Checkk: Φ(G) ∼=

can
T (G)⊗Zp (Qp/Zp), T (G) ∼=

can
HomZp(Qp/Zp,Φ(G))
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xn ←[ ( xν
∈Gν(K)

)ν ⊗ 1
pn , (xν)ν 7→

[
1
pn + Zp 7→ xn

]
T (G)⊗Z Z/pn = T (G)/pnT (G) ∼= Gn(K)
These isomorphisms are obviously GK-equivariant!
Moreover: G(OK)tors = Φ(G)(
∼= lim←−iG(OK/p

i)
)

Tate

Section 1: Introduction
Section 2: Group scheme preliminaries
Section 3: Number theoretic preliminaries

2.5 2.3 The completion of the algebraic closure of K

R = CDVR of mixed char with perfect residue field k of char p > 0,K = Frac(R), π =
uniformizer of K, p ·R = peR, e = absolute ram. index of K over Qp.
v = vK : K× → Z, v(π) = 1, v(p) = e. Extend to K and C := K̂, v : C× → Q
Absolute value on K : |x| = |π|v(x). Similarly, ∀x ∈ C, |x| = |π|v(x)
Recall: ifM/L is a finite extension of cdvfs (complete discretely valued field) we have
the codifferent:

D−1M/L =
{
a ∈M | ∀b ∈ OM : TrM/L(ab) ∈ OL

}
⊃ OM

D−1M/L is a fractional ideal: it is nonzero and finitely generated.

We have the different: DM/L = (D−1M/K)−1 generated by a−1 if D−1M/L = aOM as

OM -module.
Suppose L/K finite.
Given a fractional ideal I ⊂ OL we set v(I) = vK(a), a ∈ L×, I = a · OL.
Recall HW4 1vi: if vL is the normalized valuation attached to L we have:

vL(DL/K) =

∞∑
i=0

(|G(L/K)i| − 1)

If L/K is totally ramified, hence [L : K] = e(L/K) = |G(L/K)0| and G(L/K)0 =
G(L/K) = G(L/K)−1
=⇒ vK(DL/K) = 1

|G(L/K)0|
∑∞
i=0(|G(L/K)i| − 1)

=

∞∑
i

(
1

[G(L/K)0 : G(L/K)i]
− 1

[L : K]

)
2.3.1. Study of certain totally ramified extensions:
Let K∞/K be an infinite Galois extension of K which is totally ramified with C :=
Gal(K∞/K) isomorphic to Zp as a profinite group.
Hence C has a unique closed subgroup of index pn for any n ≥ 0 and any finite
indexed closed subgroup C (n) of index pn of C and any finite index closed subgroup

of C is one of C (n). Set Kn = K
C (n)
∞ . Set Kn = K

C (n)
∞ . Then Kn/K is Galois and

G(Kn/K) ∼= C /C (n) ∼= Zp/pnZp ∼= Z/(pn).
Proposition 2.3.1.1. ∃c ∈ Q∃ bounded sequence (an)n in Q such that:

vk(DKn/K) = e · n+ c+ p−nan

e being the absolute ramification index of K over Qp, p ·R = πe ·R.
⇐⇒

e(Kn/K)=pn
VKn(DKn/K) = e · pn · n+ cpn + an
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Tuesday, 4/1/2025

For simplicity let K = Qp(µp) =⇒ Kn = Qp(µpn+1). Then Gal(Kn/K) ∼= Z/pn.
In fact, Gal(Kn/K) = (1 + pZp)/(1 + pn+1Zp) ∼= Z/pnZ. [p odd].
G(Kn/K)i ∼= pm−1Z/pnZ, pm−1 ≤ i < pm [follows from G(Q(µpn)/Qp)i].
=⇒ vKn(DKn/K)

HW1
=

∑∞
i=0(|G(Kn/K)i|−1) = pn−1+

∑n
m=1(p

m−pm−1)(pn−m+1−
1) = (p− 1)npn

Normalized means we have to divide by the ramification index. The ramification
index in this case is equal to the degree pn so:

vK(DKn/K) =
1

pn
vKn(DKn/K) = (p− 1)n = e(K/Qp)n

Reminder: Herbrand function and upper ramification filtration
Let L/K be any finite Galois etension of local fields with G = G(L/K), Gx :=
G⌈x⌉, x ≥ −1
Herbrand function φL/K : [−1,∞)→ [−1,∞)

φL/K(s) =

∫ s

0

dx

[G0 : Gx]

This is a bijection.
We define ψL/K := φ−1L/K .

The upper ramification numbering is a restatement: Gt := GψL/K(t).

Theorem 2.5.1 (Herbrand). If L ⊃M ⊃ K and M/K is Galois, then,

G(M/K)t = im(G(L/K)t ↪→ G(L/K)↠ G(M/K))

≡ G(L/K)tG(L/M)/G(L/M)

Theorem 2.5.2 (Hasse-Arf). If L/K is abelian and n ∈ [−1,∞) is a break of the
upper ramification filtration [G(L/K)t < G(L/K)n∀t > n] then n∈ Z≥1.

Upper filtration of:
G t
K

A t
K

Proposition 2.5.3. L/K finite Galois and L/K separable (hence is Galois). Then,

vK(DL/K) =

∫ ∞
0

(
1− 1

|G(L/K)t|

)
dt

Proof. Set G = G(L/K), φ = φL/K , ψ = ψL/K . HW4 =⇒ vL(DL/K) =
∑∞
i=0(|Gi|−

1).
G0 = ker(G→ Aut(L/K)), ef = n =⇒ |G0| = e(L/K)

=⇒ vk(DL/K) = 1
e(L/K)vL(DL/K) =

∑∞
i=0

(
|Gi|
|G0| −

1
|G0|

)
=
∫∞
0

(
1

[G0,Gx]
− 1
|G0|

)
dx

Set x = ψ(t) =⇒ dx = ψ′(t)dt, (φ ◦ ψ)(t) =⇒ φ′(ψ(t))ψ′(t) = 1 =⇒ ψ′(t) =
1

φ′(ψ(t))

= [G0 : Gψ(t)] = vK(DL/K) =
∫∞
0

(
1

����
[G0:Gψ(t)]

− 1
|G0|

)
������
[G0 : Gψ(t)] dt

=

∫ ∞
0

(
1− 1

|Gψ(t)|

)
dt =

∫ ∞
0

(
1− 1

|Gt|

)
dt

Let K∞ =
⋃
n≥0Kn be as in the beginning of 2.3.1. Cn = G(Kn/K)

C (i) := G(K/Ki) = pie(∼= pie) which is unique closed subgroup of index pi of C .

Lemma 2.5.4. Let v−1 := −1 < v0 < v1 < .· be the sequence of breaks (ncessarily
integers by Hasse-Arf) of (C t)t≥−1 so that ∀i ≥ 0 : C t = C (i) for vi−1 < t < vi.
Then there is i0 ∈ Z≥0 such that ∀i > i0 : vi = e + vi−1. Hence vi = (i − i0)e + vi0
for all i > i0
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Sketch. Assume K is locally compact, hence K/Qp is finite. Write A = G(Kab/K)

which is ∼= K̂× the profinite completion and A 0 = lim←−G(L/K)0, L/K finite abelian.

= lim←−L/K finite abelian
G(L/K)0

LCFT
= U(K) = O×K . Also, LCFT tells us A t ∼=

U t(K) = 1 + πtOK when t ∈ Z≥0, U0(K) = U(K).

Easy: ∃t0 ∈ Z>0∀t ∈ [t0,∞) ∩ Z : A t
∼=−−→
log

πtOK [is even on an isometry of Zp-

modules.]
Choose i0 minimal such that vi0 ≥ t0
=⇒ C (i0 + 1) = p0

i+1
C = pC (i0) = pC vi0 = p res(A vi0 ).

= res((A vi0 )p) the subgroup of p’th powers / p-multiples.
∼= res(A vi0+e)
So we need:
pπtOK = πeπTOK = πe+tOK
It follows by definition: vi0+1 ≤ vI0 = e.
Need to show: vi0+1 = vi0 + e. Repeat the argument with any i > i0.

Sketch of 2.3.1.1. Let Cn = G(Kn/K).

vK(DKn/K)
prev−−−→
prop

=

∫ ∞
0

(
1− 1

|C t
n|

)
dt

and C t
n = C tC (n)/C (n) = C (i)/C (n) for 0 ≤ i ≤ n, vi−1 < t ≤ vi.

Note: C (i)/C (n) has order pn−i.

=

∫ vi0

0

(· · · ) dt+
n−1∑

i=i0+1

∫ vi

vi−1

(
1− 1

|C t
n|

)
dt

=

∫ vi0

0

(· · · ) dt︸ ︷︷ ︸
=c′+ bn

pn

+ e ·
n−1∑

i=i0+1

(
1− pi

pn

)
︸ ︷︷ ︸

n+c′′+ an
pn

= en+ c+
an
pn

Thursday, 4/3/2025

Lemma: Let v−1 := −1 < 0 ≤ v0 < v1 < · · · be the breaks of the upper ramification
filtration (C t)t≥1 so that C t = C (i) = piC for vi−1 < t ≤ vi for all i ≥ 0. Recall that
C ∼= Zp.
Then ∃i0 ∈ Z≥0 such that ∀i ≥ i0 : vi = e(i− i0) + vi0 .
Complement to the proof of the Lemma: we had seen: ∀i ≥ i0,

C vi+e = pC vi

This implies vi+1 ≥ vi + e.
C vi+1 = pC vi since vi is a break.
vi+ e is a break so vi+1 = vi+ e if C vi+e+1 = pC vi+e. But this is true. Namely, since
vi is a break, C vi+1 = pC vi

Therefore, C vi+e+1 = res(A vi+e+1) = res(Uvi+e+1(K)) where A denotes the maxi-
mal abelian extension.
= res(1 + πvi+ei+1OK) = res(1 + pπvi+1OK) = res((1 + πvi+1OK)p)
= res((A vi+1)p) = p res(A vi+1) = pC vi+1 = ppC vi = pC vi+e.
Thus, vi is a break =⇒ vi+1 = vi + e. This finishes the proof of the lemma.
Proposition 2.3.1.1. vK(DKn/K) = en + c + an

pn for some constant c and some
bounded sequence an.

Proof. vK(DKn/K) =
∫∞
0

(
1− 1

|C t
n|

)
dt and use the lemma.
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Corollary 2.3.1.2. ∃ bounded sequence (bn)n of real numbers bn such that ∀n ≥ 0 :

v(DKn+1/Kn) = e+ p−nbn

Proof. vKn(DKn+1/Kn) =
∫∞
0

(
1− 1

|G(Kn+1/Kn)t|

)
dt. Now use the lemma and de-

termine the unique break of (G(Kn+1/Kn)
t)t≥−1

Caution: the upper numbering of ramification groups is not compatible with passing
to subgroups.
Alternatively, use that DKn+1/K = DKn+1/Kn · (DKn/KOKn+1

).
cf Serre, Local Fields III, S4, Prop 8.

Corollary 2.3.1.3 ∃ constant a ≥ 0 independent of n such that: ∀n ≥ 0∀x ∈ Kn+1 :∣∣TrKn+1/Kn(x)
∣∣ ≤ |p|1−a/pn |x|

Proof. Write DKn+1/Kn = mdn+1 where mn+1 is the maximal ideal of OKn+1
, where

d = vKn+1(DKn+1/Kn) = [Kn+1 : K]vK(DKn+1/Kn)

2.3.1.2.
= pn+1(e+ p−nbn) = pn+1e+ pbn

HW5/1/iii =⇒ TrKn+1/Kn(m
i
n+1) = mjn where j =

⌊
d+i
p

⌋
where p = [Kn+1 : Kn]

Suppose xf ∈ min+1 \mi−1n+1.

Then |x| = |πin+1| = |π|i/p
n+1

.

|TrKn+1/Kn(x)| ≤ |πjn| = |π|j/p
n ≤ |π|(

d+i
p −1)/p

n

= |π|
d

pn+1− 1
pn+ i

pn+1 = |π|e+
bn
pn−

1
pn ·

|π|i/pn+1

= |π|e(1+
(bn−1)/e

pn )|x| = |p|1+
(bn−1)/e

pn |x|.
(bn)n bounded, so ∃a ≥ 0 : ∀n ≥ 0 : bn−1e ≥ −a.
Thus, |p|1+

(bn−1)/e
pn ≤ |p|1−a/pn .

Thus we ultimately have:

|TrKn+1/Kn(x)| ≤ |p|
1−a/pn |x|

Corollary 2.3.1.4. ∃ constant c ≥ 0 independent of n such that ∀n ≥ 0∀x ∈ Kn:

|TrKn/K(x)| ≤ |p|n−c|x|

Proof. Iterate the formula in 2.3.1.3:

|TrKn/K(x)| = |TrK1/K(TrKn/K1
(x))|

2.3.1.3
≤ |p|1−a|TrKn/K1

(x)|

≤ |p|1−a|TrK2/K1
(TrKn/K2

(x))|
2.3.1.3.
≤ |p|1−a|p|1−a/p|TrKn/K2

(x)|
= |p|2−a(1+1/p)|TrKn/K2

(x)| ≤ · · · ≤ |p|n−a(1+1/p+···+1/pn−1)|x|
We can take c = a

1−1/p

Let σ ∈ C be a topological generator, aka σ mod C (n) is a generator of C /C (n) ∼=
G(Kn/K) for all n ≥ 0.
Lemma 2.3.1.5: ∃c > 0 independent of n such that ∀n ≥ 0∀x ∈ Kn+1 :∣∣x− p−1 TrKn+1/Kn(x)

∣∣ ≤ c|σpn(x)− x|
Proof. Write τ = σp

n

. Then τ
∣∣
Kn+1

is a generator of G(Kn+1/Kn). Then px −
TrKn+1/Kn(x) =

∑p−1
i=0 (id−τ i)(x).

=

p−1∑
i=0

(1 + τ + · · ·+ τ i−1︸ ︷︷ ︸
=0 if i=0

)(1− τ)(x)
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=

p−1∑
i=0

p−1∑
j=0

τ j((1− τ)(x))


Note that |τ j(1− τ)(x)| = |(1− τ)(x)| so,

≤ |(1− τ)(x)|

Divde by |p| and get,

|x− p−1 TrKn+1/Kn(x)| ≤ |p|
−1|σp

n

(x)− x|

Can take c = |p|−1

A most crucial definition:

Definition. Define t : K∞ → K by t(x) = p−nTrKn/K(x) if x ∈ Kn.

Remark. This is well defined. If x ∈ Kn and m ≥ n then p−m TrKm/K(x) =

p−nTrKn/K(p−(m−n) TrKm/Kn(x)) = p−nTrKn/K(p−(m−n)pm−nx)

Proposition 2.3.1.6. Let σ be as above. ∃ constant d > 0 such that ∀x ∈ K∞,

|x− t(x)| ≤ d|σ(x)− x|

Proof. Let c0 = 1, c1 = constant in 2.3.1.5. Hence |x−p−1 TrK1/K0
(x)| ≤ c1|σ(x)−x|

for all x ∈ K1 [here K = K0].
For n ≥ 1, cn+1 := |p|−a/pncn with a as in 2.3.1.3.
Clearly, cn → c > 0.
Consider for any n ≥ 0,

∀x ∈ Kn : |x− t(x)| ≤ cn|σ(x)− x| (∗)

For n = 0 both sides are 0.
For n = 1 this is the statement |x − p−1 TrK1/K0

(x)| ≤ c1|σ(x) − x| which we have
above.
To be continued.

Tuesday, 4/8/2025

Assume (∗) is true for n ≥ 1. Let x ∈ Kn+1 and set y = TrKn+1/Kn(x).
=⇒ |y − pt(x)| = |y − p−nTrKn+1/K(x)| = |y − p−nTrKn/K(y)|
By induction, ≤ cn|σ(y)− y| = cn

∣∣∣(∑p−1
i=0 (σ

pn)i(x)
)
−
∑p−1
i=0 (σ

pn)i(x)
∣∣∣

= cn

∣∣∣∑p−1
i=0 (σ

pn)i(σ(x))−
∑p−1
i=0 (σ

pn)i(x)
∣∣∣ = cn

∣∣TrKn+1/Kn(σ(x)− x)
∣∣

by 2.3.1.3 ≤ cn|p|1−ap
−n |σ(x)− x|

Furthermore: |x− t(x)| ≤ max{|x− p−1y|, |p−1y − t(x)|} (+).

2.3.1.5 and + implies ≤ max{c1|σp
n

(x)−x|, cn|p|−ap
−n |σ(x)−x|}. cn+1 := cn|p|−ap

−n
.

Note: |σi+1(x)− x| ≤ max{|σi+1(x)− σi(x)|, |σi(x)− x|}
= max{|σi(σ(x)− x)|, |σi(x)− x|}
= max{|σ(x)− x|, |σi(x)− x|}.
Iterating, ≤ |σ(x)− x|.
Thus, the thing before note ≤ max{c1, cn+1}|σ(x)− x| = cn+1|σ(x)− x|
Hence we have proved ∗ for n+ 1.
We end the proof by letting d = limn→∞ cn.

Remark. An inspection of the proof of 2.3.1.6 shows that the statement of 2.3.1.6 is
also true, with the same constant d if we replace K by Kn as base field.
Note: G(K∞/Kn) ∼= Zp.
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Notation: set X = K̂∞. This is a K-Banach space, since the absolute value on K∞
extends to X.
The action of C also extends continuously to X.
Proposition. t : K∞ → K extends continuously to a K-linear map t : X → K which
is the identtiy on K.

Proof. t extends continuously by 2.3.1.4 or 2.3.1.6.

Set X0 = ker(t) ⊂ X. It is a closed (by continuity) K-subspace of X.
Naturally X = X0 ⊕K.
Proposition 2.3.1.7.

a) X = X0 ⊕K as a topological K-vector space.

b) σ− id : X → X has kernel K and is bijective on X0 with a continuos inverse on
X0.

c) Let λ ∈ R such that λ ≡ 1 (mod π) and assume that λ is not a root of unity.
Then σ − λ id : X → X is bijective with a continuous inverse.

Proof. a) Define p0 : X → X0 by p0(x) = x− t(x) =⇒ t(p0(x)) = t(x)− t(t(x)) =
0.

Thus p0(x) ∈ X0 and the map X → X0 ⊕ K given by x 7→ (p0(x), t(x)) is a
conitinuous K-linear bijection with inverse X0 ⊕ K → X given by (x0, a) 7→
x0 + a.

b) Clear: ker(σ − id) ⊃ K. Write Kn = Kn,0 ⊕ K with Kn,0 = ker(TrKn/K) =

ker( t
∣∣
Kn

).

2.3.1.6 =⇒ ∀x ∈ Kn,0 : |σ(x) − x| ≥ 1
d |x − t(x)| =

1
d |x| =⇒ (σ − id)

∣∣
Kn,0

is

bijective. Also, ∀y ∈ Kn,0 : |(σ − id)−1(y)| ≤ d|y| [by the previous inequality].

Therefore, (σ − id)−1 extends continuously to
⋃
n≥1Kn,0 = ker( t

∣∣
K∞

).

By this inequality, (σ − id)−1 extends continuously to the closure of ker( t
∣∣
K∞

)
inside X, which is X0.

c) λ ̸= 1 thus σ − λ id is bijective on K since σ − λ id
∣∣
K

= (1− λ) idK .

For x ∈ X0, (σ− id)−1(σ−λ) = (σ− id)−1(σ− id+(1−λ) id) = id−(1−λ)(σ−
id)−1.

If |1− λ| < d with d as in 2.3.1.6,

|(λ− 1)(σ − id)−1(y)| ≤ |λ− 1|d|y| ≤ d′|y| with d′ := |λ− 1|d < 1.

Thus, (id−(1− λ)(σ − id)−1)−1 =
∑∞
n=0((1− λ)(σ − id)−1)n

Converges as a continuous K-linear operator on X0.

Thus, (σ − λ)−1 = (σ − id)−1(id−(1 − λ)(σ − id)−1)−1 exists as a continuous
K-linear operator on X.

If |1 − λ|d ≥ 1 instead we replace σ by σp
n

and λ by λp
n

with n large enough
so that |λpn − 1|d < 1. Replacing K by Kn and using the remark after 2.3.1.6,
|σpn − λpn | has a continuous inverse on X. Recall that λp

n ̸= 1 by assumption.
Note that:

(σ − λ)(σpn−1 + · · ·+ λp
n−1) = σp

n − λpn .
Thus, σ − λ has a continuous inverse on X.
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Continuous Cohomology (in degrees ≤ 1)

Let V be a K-Banach space. So,
∥·∥ : V → R>0.
∥λv∥ = |λ|∥v∥, λ ∈ K
∥v + w∥ ≤ max{∥v∥, ∥w∥}
∥v∥ = 0 ⇐⇒ v = 0.
V is complete w.r.t. ∥·∥ topology.
We assume V is equipped with a continuous action of C (∼= Zp).
i.e. C × V → V is continuous.
i.e. For each τ ∈ C the map v 7→ τv is continuous.
Define Z1(C , V ) := Z1

cont(C, V ) = {c : C → V, σ 7→ cσ | c continuous and ∀σ, τ ∈ C :
cστ = cσ + σ(cτ )} K-vector space of continuous 1-cocycles.

Map V
d−→ Z1(C , V ), (dv)σ = v − σ(v).B1(C , V ) = B1

cont(C , V ) = im(d : V →
Z1(C , V )) is called the K-vector space of continuous 1-coboundaries.
H0(C , V ) = V C = {v ∈ V | ∀σ ∈ C : σ(v) = v}.
H1(C , V ) := Z1

cont(C , V )/B1
cont(C , V )

Let χ : C → R× be a continuous character. Set X(χ) = X(= K̂∞) with the action
of C given by σ .

χ
x := χ(σ) · σ(x).

Proposition 2.3.1.8.

a) H0(C , X) = K and dimK H
1(C , X) = 1.

b) | im(χ)| =∞ =⇒ H0(C1X(χ)) = 0 = H1(C1X(χ)) = 0

Proof. Let Y ⊂ X be a closed K-subspace stable under C .
Let σ be a top. gen of C .
Then H0(C , Y (χ)) = ker(σ − χ(σ)−1

∣∣
Y
) and any c ∈ Z1(C , Y (χ)) is determined by

cσ ∈ Y .
(dy)σ = y − σ .

χ
y = y − χ(σ)σ(y) = −χ(σ)(σ − χ(σ)−1)(y)

Thus, H1(C , Y (χ)) ↪→ Y/ im(σ − χ(σ)−1
∣∣
Y
).

χ(σ) not a root of 1.
To be continued.

Thursday, 4/10/2025

Skipped

Tuesday, 4/15/2025

3.2 Finite extensions of K∞

L/K∞, RL ⊂ L,R∞ = RK∞ ⊃ m∞,H = Gal(K/K∞)
Proposition 2.3.2.1. (Almost étaleness of K over K∞)

TrL/K∞(RL) ⊃ m∞

Note that Étale would mean TrL/K∞(RL) = R∞ unramified.
H0
c (C , X(χ)), H1

c (C , X(χ))
The c stands for continuous.
Cohomology: M = abelian group, ⟲ G = pro-finite group.

Definition. M is called discrete G module if M = ∪H≤G,H openM
H ie for every

m ∈M∃ open subgroup H ≤ G such that H < stabG(m).

Remark. If G is a p-adic group [eg G = GLn(Qp)] then a representation of G on a
vector space V is called smooth if V is a discrete G-module in the previously defined
sense.
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Consider G ×M → M . Then {1} × {m} → m, continuity means open pre-image.
Giving M discrete topology, an open neighborhood must contain a set of the form
U × {m} where U ⊂ G open with 1 ∈ U .
Continuous cochains Cr(G,M) = {f : Cr → Mδ | f continuous}. Notation: Mδ is
M with discrete topology.
dr : Cr(G,M)→ Cr+1(G,M), (drf)(g1, . · · · , gr+1) = g1 · f(g2, · · · , gr+1)
+
∑r
i=1(−1)if(g1, · · · , gigi+1, · · · , gr+1) + (−1)r+1f(g1, · · · , gr)

these are called ‘r-cochains’. We have dr+1 ◦ dr = 0
Then Zr(G,M) = ker(dr), Br(G,M) = im(dr−1), Hr(G,M) = ker(dr)

im(dr−1)

Example: r = 0 gives us C0(G,M) =M,d0 :M → C1(G,M).
(dm)(g) = g ·m−m. B0 = 0 thus H0(G,M) =MG = set of elements fixed by G.
We also consider TrL/K∞ : L→ K∞ = Z0(G(L/K∞), L) ⊂ C0(G(L/K∞), L).
Referecnce: Article on group cohomology in Cossels-Fröhlich.
Serre, Galois Cohomology.
Set Lδ = L with discrete topology.
Corollary 2.3.2.2. Let L/K∞ be a finite Galois extension with group G. Fix a
real number c > 1. Let r ≥ 0 and f ∈ Cr(G,L). Then ∃g ∈ Cr−1(G,L) s.t.
∥f − dg∥ ≤ c∥df∥ and ∥g∥ ≤ c∥f∥.
∥f∥ = max{|f(g)| | g ∈ Gr} = sup(· · · ) by compacntess of G. If r = 0 then ∃y ∈ L
such that,
dy := TrL/K∞(y) is such that ∥f − dy∥ = |f − dy| ≤ c∥df∥ and |dy| ≤ c|f |.

Proof. Proposition 2.3.2.1 (almost étaleness) implies ∃y ∈ RL : |TrL/K∞(y)|︸ ︷︷ ︸
=dy

≥ c−1.

Consider y as a (−1)-cochain.
Define an (r − 1) cochain by y ∪ f = yf if r = 0.
Formally, C−1(G,L) := L.
If r ≥ 1 then
(y ∪ f)(s1, · · · , sr−1) = (−1)r

∑
sr∈G (s1, · · · , sr)(y)︸ ︷︷ ︸

∈L

f(s1, · · · , sr)︸ ︷︷ ︸
∈L

Check: dy︸︷︷︸
K∞

·f − dr−1(y ∪ f) = y ∪ (drf) (∗)

Example: If r = 0 then LHS = Tr(y) · f − Tr(yf).
RHS = (y∪d0f)(1) = (−1)1

∑
s∈G s(y)(df)(s) =

∑
s∈G s(y)(s(f)−f) =

∑
s∈G s(y)f−∑

s∈G s(yf) = Tr(y)f − Tr(yf).

Set x = dy ∈ K×∞, g = x−1(y ∪ f) [as maps Gr−1 → L].
Note: dg = x−1d(y ∪ f).
∗ =⇒ f − dg = x−1(y ∪ df).
Note: 1. |x−1| ≤ c.
2. ∥g∥ ≤ |x−1|∥y ∪ f∥ ≤ c∥f∥.
2. ∥f − dg∥ = ∥x−1(y ∪ df)∥ ≤ |x−1|∥y ∪ df∥ ≤ c∥df∥.
Now we pass to K which is a discretee module for H = Gal(K/K∞).

Corollary 2.3.2.3. Fix c > 1. Let r ≥ 0 and f∈ Cr(H ,K). Let f ∈ Cr(H ,K
δ
).

Then ∃g ∈ Cr−1(H ,K
δ
) such that ∥f − dg∥ ≤ c∥df∥ and ∥g∥ ≤ c∥f∥.

For r = 0 the conclusion is to be replaced by: ∃x ∈ K∞ such that |f − x| ≤ c∥df∥.

Proof. This is because Cr(H ,K
δ
) = ∪L/K∞⊆K/K∞,finite galoisC

r(G(L/K∞), L).
Use compactness of H r.

Continuous Cohomology Set C = K̂ endowed with the topology induced by absolute

value. H = G(K/K∞) and G = G(K/K) act continuously on C.
Let Cr(H , C) be the continuous map H r → C.
Define dr, Zr(H , C), Br(H , C) as before. We call:
Hr
c (H , C) = Zr(H , C)/Br(H , C).

The continuous cohomology group of H with coefficients in C. Similarly for G .
Proposition 2.3.2.4. H0

c (H , C) = K̂∞ = X. Hr
c (H , C) = 0 for all r > 0.
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Proof. Let OC = {x ∈ C | |x| ≤ 1}. Then C = K + πνOC for any ν ≥ 0. Let
ψν : C → C/πνOC , endow the target with the quotient topology, hence discrete
topology.

As ψν
∣∣
K

is surjective ∃ϕν : C/πνOC → K
δ
such that ψν ◦ ϕν = id. Note that ϕν is

continuous.
Set fν = ϕν ◦ ψν ◦ f : H r → K which is continuous.
ψν ◦ fν = ψν ◦ ϕν ◦ ψν ◦ f = ψν ◦ f =⇒ ∥f − fν∥ ≤ |π|ν .
To be continued.

Thursday, 4/17/2025

Fix c > 1 once and for all. Consider f ∈ Zr(H , C) to be an r-cocycle. We want to
show it is a coboundary: ∃g ∈ Cr−1(H , C) such that f = dg. If r = 0 we instead
mean ∃gν ∈ Lν /

finite

K∞ such that f = limν→∞TrLν/K∞(gν) ∈ K∞.

Case r = 0: f ∈ Z0(H , C) = CH . Then fν ∈ K so we have fν → f .
t : K∞ → K, t(a) = 1

pn TrKn/K(a).

d : K → K∞. L ⊂ K and L
TrL/K∞−−−−−→ K∞.

Then, for a ∈ L, d(a) = 1
[L:K∞] TrL/K∞(a).

2.3.2.3 =⇒ ∃Lν/K∞ finite, gν ∈ Lν : |fν − dgν︸︷︷︸
∈K∞

| ≤ c∥dfν∥ = cmax{σ ∈ H |

|σ(fν)− fν |} = c∥d(fν − f)∥ ≤ c∥fν − f∥ → 0

Thus, ∥f − dgν∥ ≤ max{|f − fν |
→0

, fν − dgν
→0

} → 0. Therefore, f ∈ K̂∞.

Now we finish the case r > 0.
2.3.2.3. =⇒ ∃gν ∈ Cr−1(H ,K

δ
) : ∥f − dgν∥ ≤ c∥dfν∥ and ∥gν∥ ≤ c∥fν∥.

We want: ∥gν − gν∥
?−→ 0.

Again, 2.3.2.3. =⇒ ∃hνnICr−2(H ,K
δ
) : ∥gr+1 − gr − dhν∥ ≤ c∥d(gr+1 − gr)∥ ≤

cmax{∥dgν+1 − fν+1∥
→0

, ∥fν+1 − fν∥, ∥fν − dgν∥
→0

} ≤ max{∥fν+1 − f∥
→0

, ∥f − fν∥
→0

}.

Thus, g := g1 +
∑∞
ν=1(gν+1 − gν − dhν

∈Cr−1(H ,K
δ
)

)

Converges in Cr−1(H , C).
Note: dg = dg1 +

∑
ν≥1 d(gν+1 − gν − dhν) = dg1 +

∑
νGeq1(dgν+1 − dgν)

Claim: dg converges to f .
Proof: dg = limµ→∞(dg1+

∑µ
ν=1(dgν+1−dgν)) = limµ→∞ dgµ+1 = limµ→∞((dgµ+1−

fµ+1) + fµ+1) = lim
µ→∞

(dgµ+1 − fµ+1)︸ ︷︷ ︸
=0

+ limµ→∞ fµ+1 = f .

3.3 The action of GK on C

Define continuous cohomology groups Hr
c (GK , C(χ)) as before. We usually droop the

subscript c and K and just write Hr(G , C(χ)).
Recall: G is the absolute Galois group of K .
We have the following theorem.
Theorem 2.3.3.1. H0(G , C) = K and H1(G , C) is a 1-dimensional K-vector space.

Proof. H0(G , C) = H0(C ,H0(H , C))
2.3.2.4
= H0(C , X)

2.3.1.8
= K.

1→H = G(K/K∞)→ G = GK → G(K∞/K)→ G(K∞/K) = C → 1

H1: ∃ inflation-restriction exact sequence (Weibel, Serre, Local Fields, Galois Coho-
mology)

0→ H1(C , H0(H , C))→ H1(G , C)
res−−→ H1(H , C) =

2.3.2.4
0

Hence the assertion follows from 2.3.1.8
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Theorem 2.3.3.2. Given a continuous homomorphism χ : GK → R× we define
C(χ) = C with GK action given by the twist σ ·

χ
a = χ(σ)σ(a).

Let K∞ = K
ker(χ)

. Then G(K/K∞) = ker(χ). Suppose ∃ finite extension K0/K
such that K∞/K0 is a purely ramified extension and G(K∞/K0) ∼= Zp as topological
groups.
Then H0(GK , C(χ)) = H1(GK , C(χ)) = 0.

Remark. G(K∞/K0)
∼=Zp

↪→
fin. index

G(K∞/K) = GK/G(K/K∞)
∼=−→ im(χ)

Furthermore, im(χ) is abelian. Thus, K0/K is Galois.
This excludes the case that K∞ is the Lubin-Tate extension associated to a LT group
over OK (unless K = Qp). (in this case G(K∞/K0) ⊂

open
G(K∞/K)

∼−→ O×K). But

this includes the case of the cyclotomic class: χcyc : GK
open image−−−−−−−→ Z×p ⊂ R×.

Proof. Case H0: H0(GK , C(χ)) ⊂ H0(GK0
, C(χ))

Note that:

1→ G(K/K∞) =: H ↪→ G(K/K0) = GK0
↠ G(K∞/K0) =: C ∼= Zp

Thus, H0(GK0 , C(χ)) = H0(C , H0(H , C(χ)))

= H0(C , H0(H , C)(χ))
2.3.2.4
= H0(C , X(χ))

2.3.1.8b,| imχ|=∞
= 0.

Case H1: Apply infl-res. sequence to:

1→ G(K/K0)→ G(K/K)→ G(K0/K)
finite

→ 1

1→ GK0
→ GK → G(K0/K)→ 1

Thus,

0→ H1(G(K0/K),H0(GK0 , C(χ))︸ ︷︷ ︸
K0-v.s., char 0

)

︸ ︷︷ ︸
=0

→ H1(GK , C(χ))→ H1(GK0 , C(χ))

Apply infl-res. sequence to:

1→H = G(K/K∞)→ GK0 → C → 1

Thus,

0→ H1(C , H0(H , C(χ))︸ ︷︷ ︸
=

2.3.2.4
X(χ)

)

︸ ︷︷ ︸
=

2.3.1.8
0

→ H1(GK0 , C(χ))︸ ︷︷ ︸
=0

→ H1(H , C(χ)) = H1(H , C) =
2.3.2.4

0

4 Theorems on p-divisible groups

R = cdvr, k = R/mR perfect field of char p > 0,K = Frac(R) is of char 0, C = K̂.
Recall proposition 2.1.2.2: which says that the cartier dualG∨ν = Homgpsch/R(Gν ,Gm,R)
( =⇒ ∀S ∈ AlgR : G∨ν (S) = Homgpschm/R(Gν ⊗R S,Gm,S) = Gν ×Spec(R) Spec(S))
Thus G∨ν (OC) = Homgpschm/OC (Gν ⊗R OC ,Gm,OC )
Easily = Homgpsch/OC (Gν ⊗R OC , µp∞,OC ) (1).

Tate module TG∨ = lim←−ν G
∨
ν (K) = HomR-alg(O(Gν),K) = lim←−G

∨
ν (C) = lim←−G

∨
ν (OC) (2)

Here G∨ = (G∨ν )ν
(1) and (2) togehter imply:

TG∨Homp-div gps/OC

(
lim−→ν

Gν ⊗R OC , µp∞,OC

)
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= Homp-div. gps/OC (G⊗R OC , µp∞,OC ) (3)
Note Hom(µp∞ , µp∞) = Zp
T (Qp/Zp) ∼= Zp has trivial Galois action.

Tuesday, 4/22/2025

Recall: G = (Gν)ν is a p-divisible group /R. C = b̂arrK ⊃ OC ⊃ mC := mOC .
Proposition 2.1.2.2. G∨ν = Homgpsch/R(Gν ,Gm,R).
(G∨ν (S) = Homgpsch/S)(Gν ⊗R S,Gm,S)
TG∨ = lim←−ν G

∨
ν (K) = lim←−ν G

∨
ν (C) = lim←−ν G

∨
ν (OC) = lim←−ν Homgpsch/OC (Gν ⊗R

OC , µp∞,OC )
= Homp-div/OC (lim−→ν

Gν ⊗R OC , µp∞,OC ) = Homp-div gps/OC (G⊗OC , µp∞,OC )

Recall: G(OC) := lim←−iG(OC/π
i) = lim←−i

(
lim−→Gν(OC/πi)

)
(̸= lim−→ν

Gν(OC))
Example: G = µp∞ . Claim: G(OC/πi) = 1 +mC/π

iOC
a ∈ OC , a mod πi ∈ µpν (OC/πi)
=⇒ ap

ν ≡ 1 mod πi =⇒ ap
ν ≡ 1 mod (mC)

Thus a = 1 where a = a mod mC and OC/mC = k.
Then, a mod πi ∈ 1 +mC/π

iOC .
Conversely, if a ∈ 1 +mC then ∀ν ≫ 0 : ap

ν ≡ 1 mod πi =⇒ (a mod πi)p
ν

= 1 in
OC/πi.
Then a mod πi ∈ µpν (OC/πi).
Then µp∞(OC) = lim←−µp∞(OC/πi) = lim←−(1 +mC/π

iOC) = 1 +mC
From now on: U := 1 +mC considered as µp∞(OC).. This is Zp-module.
Then [c](a) = ac =

∑∞
j=0

(
c
j

)
(a− 1)j ∈ U .

Utors =
⋃
ν µpν (OC) = Φ(µp∞)

We have a logarithm: logµp∞ : µp∞(OC) = U → C

a 7→ log(a) =
∑∞
n=1

(−1)n−1

n (a− 1)n

Then we have exact sequence:

0→ Φ(µp∞) = Utors → U
log−−→ C → 0

Recall:
TG∨ ∼=

can
Hompdivgps/OC (G⊗OC , µp∞,OC )

Definition. We define a pairing TGν ×G(OC)→ µp∞(OC) = U
(τ, ξ) 7→ ⟨τ, ξ⟩ = εξ(τ) as follows: given ξ ∈ G(OC), write ξ = (ξi)i with ξi ∈
G(OC/πi), and τ ∈ TG∨, we have:

τ ◦ ξi : Spec(OC/πi) G⊗OC µp∞,OC

∈ µp∞(OC/πi)

τ

=⇒ εξ(τ) := (τ ◦ ξi)i ∈ lim←−µp∞(OC/πi) = µp∞(OC) = U
Check: this pairing is Zp-bilinear.

Recall: logG : G(OC)→ tG(C) = HomR(I
0/(I0)2, C)

Where I0 = ker(A0 → R) is the augmentation ideal. A0 → R is induced by the unit
section.
A0 = lim←−ν O(G

0
ν) [
∼= R[[x1, · · · , xn]], n = dimG]

Then for a ∈ G(OC), f ∈ I0,

logG(a)(f) = lim
i→∞

f([pi]G(a))− f(a)
pi

We get an induced pairing TG∨ × tG(C)→ tµp∞ (C)
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(τ, logG(ξ)) 7→ ⟨τ, logG(ξ)⟩ = logµp∞ (⟨τ, ξ⟩)
Recall the exact sequence:

O G(OC)tors = Φ(G) = lim−→Gν(OC)

G(OC)

t(C)

0

logG

So independent of lift ξ of logG(ξ).
We have the diagram (∗): ’

0 Φ(G) = G(OC)tors G(OC) tG(C) 0

0 HomZp(TG
∨,Φ(µp∞)) HomZp(TG

∨, µp∞(OC)) HomZp(TG
∨, tµp∞ (C))

=C

0

α0

logG

α dα

λ 7→ logµp∞ ◦λ
Here α : ξ 7→ ⟨−, ξ⟩

Exactness of Bottom Row: 0→ Utors → U
logµp∞−−−−−→ C → 0 exact by earlier results.

TG∨ is a free Zp module of rank h = ht(G∨) = ht(G). Hence it is projetive. Hence
HomZp(TG

∨,−) produces an exact sequene.
Rem All groups in the diagram (∗) are naturally G -modules. For the top row, this
action comes from the action of G = Gal(K/K) on C. The G action on the modules
in the bottom row is given by (σ · λ)(τ) = σ(λ(σ−1(τ))). τ ∈ TG∨. α0, α and dα are
G -equivariant.
Check for α: α(σ(ξ))(τ) = ⟨τ, σ(ξ)⟩ = (τ ◦ σ(ξi))i
(σ · α(ξ))(τ) = σ(α(ξ)(σ−1(τ))) = σ(⟨σ−1(τ), ξ⟩) = σ((σ−1(τ) ◦ ξi))i = (τ ◦ σ(ξi))i
Lemma 2.4.1.1. If W is a C-vector space with a semi-linear G -action (σ(c · w) =
σ(c) · σ(w) for all c ∈ C and w ∈W ), then the map C ⊗K WG →W, c⊗w 7→ c ·w is
injective.

Proof. Let {w1, · · · , wn} be a set of K-linearly independent vectors in WG . We want
to show that for all scalars c1, · · · , cn ∈ C :

∑
i ciwi = 0 then c1 = · · · = cn = 0.

Suppose there is a linear combination with not all ci = 0. WLOG assume c1 = 1. We
may also assume n is minimal with this property.
∀σ ∈ G : 0 = σ (

∑
ciwi) =

∑
σ(ci)σ(wi) =

∑
σ(ci)wi =

∑
ciwi

Therefore,
∑n
i=2(σ(ci)− ci)wi = 0.

n = 1 is impossible. For n ≥ 2 we get a linear combination with fewer terms, unless
σ(ci) = ci for all ci. This implies ∀i : ci ∈ K. But this contradicts the linear
independence of wi over K.

Proposition 2.4.1.2. In the diagram (∗), α0 is bijective whereas α and dα are
injective.
Theorem 2.4.1.3. The maps αR : G(R) = G(OC)G → HomZp(TG

∨, U)G =
HomZp(G )(TG

∨, U)

dαR : tG(K) = tG(C)
G → HomZp(TG

∨, tµp∞ (C))G = HomZp[G ](TG
∨, C)

are bijective.

Thursday, 4/24/2025

Lemma 2.4.1.4.
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i) ∀ν ≥ 0 the map G∨ν (C)×Gν(C)→ µpν (C), (τν , ξν) 7→ ⟨τν , ξν⟩ := τν ◦ ξν (recall
G∨ν (C) = Homgpsch/C(Gν⊗RC,Gm,C) = Homgpsch/C(Gν⊗C, µpν ,C)) is a perfect
G -equivariant pairing, i.e. G∨ν (C)→ HomZ(Gν(C), µpν (C)) is bijective.

ii) The pairings in (i) induce a perfect G -equivariant Zp-bilinear pairing TG∨ ×
TG→ Tµp∞ .

iii) The pairings in (i) induce a G -equivariant isomorphism Φ(G)→ HomZp(TG
∨,Φ(µp∞))

and this map is equal to the map α0 in the diagram.

Proof. i) ΓS = constant gp scheme over Spec(S) associated to Γ = Spec(SΓ).

G∨ν (C) = Homgpsch/C(Gν⊗RC, µpν ,C), from étaleness = Homgpsch/R(Gν(C)C , µp
ν (C)

C
) =

HomZ(Gν(C), µpν (C)) = HomZp(Gν(C), µpν (C)).

ii) Follows from (i).

iii) The map Φ(G) → Hom(TG∨,Φ(µp∞)) is given by ξν ∈ Gν(C) ⊂ Φ(G). Then
ξν : TG∨ → G∨ν (C) 99K Φ(µp∞) is given by (τµ)µ 7→ τν ◦ ξν .
HomZp(TG

∨,Φ(µp∞)) = lim−→ν
HomZp(TG

∨, µpν (C)) = lim−→ν
HomZp(TG

∨/pνTG∨, µpν (C))

Use Φ(G∨) = TG∨ ⊗ (Qp/Zp) = lim−→ν
TG∨ ⊗ ( 1

pν Z/Z) = lim−→(TG∨/pνTG∨)

Then, lim−→ν
HomZp(TG

∨/pνTG∨, µpν (C)) = lim−→ν
HomZp(Φ(G

∨)[pν ], µpν (C))

= lim−→ν
HomZp(G

∨
ν (C), µpν (C)) = lim−→ν

Gν(C) = Φ(G).

To see that this map is the same map as α0 just trace through the definition.

Proof of Theorem 2.4.1.3. 2.4.1.2. =⇒ the maps αR and dαR in 2.4.1.3. are injec-
tive.
Consider from ∗:

0→ G(OC)
α−→ HomZp(TG

∨, U)→ coker(α)→ 0

Take G -invariants:

0 G(OC)G HomZp(TG
∨, U)G coker(α)G H1

c (G , G(OC))

G(R) HomZp(G )(TG
∨, U)

=2.3.3.1

αR

=

=⇒ coker(αR) ↪→ coker(α)G

Note that 2.4.1.2. implies α is injective.
Similarly, we have dα is injective.

0→ tG(C)
dα−−→ HomZp(TG

∨, C)→ coker(dα)→ 0

Take G invariants:

0→ tG(K)
dαR−−−→ HomZp(TG

∨, C)G → coker(dα)G

Thus, coker(dαR) ↪→ coker(dα)G .
We have a commutative diagram.

coker(α) coker(dα)

coker(α)G coker(dα)G

coker(αR) coker(dαR)

∼=

∼=
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Adding coker to ∗ and using snake lemma, the upper horizontal map is an isomor-
phism.
It follows that coker(αR)→ coker(dαR) is injective.
In order to prove bijectivity, we should prove now that the cokernel vanishes.
It suffices to show coker(dαR) = 0.
Hence we need to show: n := dim(G) = dimK tG(K) =

need to show
dimHomZp[G ](TG

∨, C)G (1)

Set W := HomZp(TG,C)
W ′ = HomZp(TG

∨, C)
Then dimCW = ht(G) =: h = dimC(W

′)
Set d := dimK((W ′)G ), d′ = dimK((W ′)G )
2.4.1.2 =⇒
tG(C) ↪→ HomZp(TG

∨, C) =W ′ =⇒ n ≤ d′
tG∨() ↪→ HomZp(TG,C) =W =⇒ n∨ := dim(G∨) ≤ d
Together they’re (2).

2.2.3.1 =⇒ n+ n∨ =
(3)
h

(2)
=⇒ h ≤

(4)
d+ d′

Upshot: STS: d+ d′ ≤
(5)
h.

Set V G = TG⊗Qp, V G∨ = TG∨ ⊗Zp Qp
Qp(1) := V µp∞ = Tµp∞ ⊗Zp Qp = Qp · χcyc

χcyc : G → Z×p , σ(ζpn) = ζ
χcyc(σ) mod pn

pn

Lemma 2.4.1.4. =⇒ V G ∼=
G
HomQp(TG

∨,Qp(1)) = HomQp(TG
∨,Qp)(1).

Qp gets the trivial G action.
Then V G⊗Qp C

∼=
G
HomQp(TG

∨, C)(1) =W ′(1)

W = HomQp(V G,C) = HomC(V G⊗Qp C,C) = HomC(W
′(1), C)

=⇒ W ×W ′(1)→ C perfect G -equivariant pairing =⇒ W ×W ′ → C(−1) perfect
G -equivariant pairing.
Thus WG × (W ′)G → C(−1)G =

2.3.3.2
0

Thus, WG , (W ′)G are perpendicular w.r.t. ⟨, ⟩
Thus WG ⊗ C ↪→

2.4.1.1
W and (W ′)G ⊗ C ↪→

2.4.1.1
W ′ are perpendicular w.r.t. ⟨, ⟩

it is elementary to see now that d+ d′ ≤ h hence we’re done.
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