

M702

Taught by: Dr. Matthias Strauch
Written by: Thanic Nur Samin

Tuesday, 1/14/2025

Abstract

Chapter 1: Local Class Field Theory (LCFT).

Chapter 2: p -divisible groups (eg LT formal groups) and associated Galois representations V and the Hodge-Tate Decomposition of $V \otimes_{\mathbb{Q}_p} \mathbb{C}_p$ and also the diagonal action of \mathcal{G}_K .

Tate: p -divisible groups.

Chapter 3: Sen theory, Fontaine's period rings (φ, Γ) -modules.

1 Local Class Field Theory (LCFT)

1.1 Lubin Tate Theory

[N] Neukirch, Alg. NT

[S] Serre, Local Class Field Theory (Cassels-Frohlich)

[LT] Lubin, Tate Formal complex multiplication

K = non-archimedean local field (locally compact) $\supset \mathcal{O} = \mathcal{O}_K$ = valuation ring $\supset P_K$ = valuation ideal.

Residue Field $k = \mathcal{O}/P_K$, $\text{char}(k) = p > 0$, $q := |k| = p^f$.

Normalized Valuation $v = v_K : K \rightarrow \mathbb{Z} \cup \{\infty\}$, $|a| = q^{-v(a)}$.

$U_K = \mathcal{O}_K^\times$.

Definition. $e(x) \in \mathcal{O}[[x]]$ (a formal power series) is called a Lubin-Tate (LT) series for the uniformizer π (fixed) if the following conditions are fulfilled:

- $e(x) \equiv \pi x \pmod{\deg 2}$.
- $e(x) \equiv x^q \pmod{\pi}$.

Set \mathcal{E}_π = set of LT series for the uniformizer π .

Recall: Let R be any \mathcal{O} -algebra ($i : \mathcal{O} \rightarrow R$ ring homomorphism).

A formal \mathcal{O} -module over R is a 1-dimensional commutative formal group $F(x, y) \in R[[x, y]]$ over R (some people call it a formal group law) together with a unital (sending 1 to 1) ring homomorphism:

$$[\cdot]_F : \mathcal{O} \rightarrow \text{End}_R(F) = \{f(x) \in R[[x]] \mid f(0) = 0, f(F(x, y)) = F(f(x), f(y))\}$$

such that $\forall a \in \mathcal{O} : [a]_F(x) = i(a)x \pmod{\deg 2}$.

We have the following properties:

$F(x, y) = x + y + \text{higher order terms}$

Associativity: $F(x, F(y, z)) = F(F(x, y), z)$

Commutativity: $F(x, y) = F(y, x)$.

$\implies \exists! \iota(x) \in R[[x]] : F(x, \iota(x)) = 0$. Also, $\iota(x) = -x + \text{higher order terms}$.

If R is a local \mathcal{O} -algebra with maximal ideal M ($i^{-1}(M) = P_K$, $k = \mathcal{O}/P_K \rightarrow R/M$) then a formal \mathcal{O} -module F over R is called a LT \mathcal{O} -module over R if in addition it is a formal \mathcal{O} -module and for any uniformizer π of K : $[\pi]_F(x) \equiv x^q \pmod{M}$.

Remark. If F is a LT \mathcal{O} -module over \mathcal{O} [$i : \mathcal{O} \xrightarrow{\text{id}} \mathcal{O}$] then $[\pi]_F(x) \in \mathcal{E}_\pi$ [meaning it is a Lubin Tate series] for any uniformizer π .

Example. 1) $K = \mathbb{Q}_p, F = \widehat{\mathbb{G}}_m, \widehat{\mathbb{G}}_m(x, y) = x + y + xy = (1 + x)(1 + y) - 1$.

Then, $[\cdot] : \mathbb{Z}_p \rightarrow \text{End}_{\mathbb{Z}_p}(\widehat{\mathbb{G}}_m), [a](x) = (1 + x)^a - 1 := \sum_{n=1}^{\infty} \binom{a}{n} x^n, \binom{a}{n} = \frac{a(a-1)\cdots(a-n+1)}{n!} \in \mathbb{Z}_p$ for any $a \in \mathbb{Z}_p, n \geq 1$.

Exercise. 1) $\forall a \in \mathbb{Z}_p \forall n \geq 0, \binom{a}{n}$ as defined above is in \mathbb{Z}_p .

2) If K is a proper extension of \mathbb{Q}_p then $\binom{a}{n} \notin \mathcal{O}_K$ for infinitely many $a \in \mathcal{O}_K$.

2) $K = \mathbb{F}_q((t)), F = \widehat{\mathbb{G}}_a, \widehat{\mathbb{G}}_a(x, y) \equiv x + y$. Set $[t](x) = tx + x^q$. Then,

$$\left[\underbrace{\sum_{\nu=0}^{\infty} \alpha_{\nu} t^{\nu}}_a \right] (x) := \sum_{\nu=0}^{\infty} \alpha_{\nu} [t]^{\circ \nu}(x) = \sum_{n=1}^{\infty} a_n x^n \text{ where } a_1 = a$$

gives $F = \widehat{\mathbb{G}}_a$ the structure of a LT \mathcal{O} -module over \mathcal{O} .

Theorem 1.1.1. i) For all uniformizer π of K and any $e \in \mathcal{E}_{\pi}$ there exists unique LT \mathcal{O} -module F_e over \mathcal{O} such that:

$$[\pi]_{F_e}(x) = e(x)$$

ii) $\forall e, e' \in \mathcal{E}_{\pi}$ there is an isomorphism of formal \mathcal{O} -modules $f : F_e \rightarrow F_{e'} (f \in x\mathcal{O}[[x]], f(F_e(x, y)) = F_{e'}(f(x), f(y)))$.
 $\forall a \in \mathcal{O} : f([a]_{F_e}(x)) = [a]_{F_{e'}}(f(x))$.
 $f'(0) \in \mathcal{O}^{\times}$.

iii) Let K^{nr} be the maximal unramified extension of K (inside some fixed algebraic closure \bar{K}) and let $K_{nr} := \widehat{K^{nr}}$ be the completion of K^{nr} and let $\mathcal{O}_{K_{nr}}$ be its valuation ring. Then for any two uniformizers π, π' of K and LT series $e \in \mathcal{E}_{\pi}$ and $e' \in \mathcal{E}_{\pi'}$, \exists an isomorphism of formal \mathcal{O} -modules $F_e \rightarrow F_{e'}$ over $\mathcal{O}_{K_{nr}}$.

Formal Complex Multiplication

Let \bar{K} be the fixed algebraic closure of $K \supset \mathcal{O}_{\bar{K}} \supset P_{\bar{K}}$. Let π = the fixed uniformizer, $e \in \mathcal{E}_{\pi}, F_e = \text{LT } \mathcal{O}\text{-module over } \mathcal{O}$.

Set $F[\pi^m] = \left\{ \alpha \in P_{\bar{K}} \mid \underbrace{[\pi^m]_{F_e}}_{e^{\circ m}(x)}(\alpha) = 0 \right\}$. This can be shown to be finite from Theorem 1.1.1.ii by setting $e'(x) = \pi x + x^q$. Then the isomorphism will provide a bijection to $F_{e'}[\pi^m, e' \in \mathcal{E}_{\pi}]$. Then the zeros of the power series are the zeros of the iteration of the polynomial. Hence the set is finite.

$L_{\pi, m} := K(F_e(\pi^m))$ called the field of π^m -torsion points of F_e . It doesn't depend on e , though it does depend on π .

Example. if $K = \mathbb{Q}_p$ and $e(x) = (1 + x)^p - 1$ then, $L_{p, m} = \mathbb{Q}_p(\zeta - 1 \mid \zeta^{p^m} = 1) = \mathbb{Q}_p(\mu_{p^m})$.

If we take $e'(x) = px + x^p$, the power series and the torsion points $F_e[p^m]$ and $F_{e'}[p^m]$ are different but the fields $\mathbb{Q}_p(F_e[p^m])$ and $\mathbb{Q}_p(F_{e'}[p^m])$ has to be the same!

Theorem 1.1.2. i) $F_e[\pi^m]$ is a free $\mathcal{O}/(\pi^m)$ module of rank 1 [note that $[\pi^m]$ annihilates $[a](x)$ since $[\pi^m]_{F_e}(\alpha) = 0$].

ii) $\forall m \geq 1$ the maps $\mathcal{O}/(\pi^m) \rightarrow \text{End}_{\mathcal{O}}(F_e[\pi^m]), a \pmod{\pi^m} \mapsto [\alpha \mapsto [a](\alpha)]$.

Also, $\mathcal{O}^{\times}/(1 + (\pi^m)) \rightarrow \text{Aut}_{\mathcal{O}}(F_e[\pi^m])$, same formula are isomorphism (of finite groups).

iii) $L_{\pi, m}$ does not depend on $e \in \mathcal{E}_{\pi}$ but depends on π . In particular, if $e'(x) = \pi x + x^q$ then $L_{\pi, m} = K(F_{e'}[\pi^m])$.

iv) $L_{\pi,m}$ is a finite purely ramified Galois extension (so it does not contain a proper unramified extension) of K of degree $(q-1)q^{m-1}$.

The map $G(L_{\pi,m}/K) \rightarrow \text{Aut}_{\mathcal{O}}(F_e[\pi^m]) \xrightarrow{\text{ii, canonical}} \mathcal{O}^\times/(1+(\pi^m))$ given by $\sigma \mapsto a \pmod{1+(\pi^m)}$.

If $\forall \alpha \in F_e[\pi^m]: \sigma(\alpha) = [a]_{F_e}(\alpha)$, is an isomorphism.

v) If $L_\pi = \bigcup_{m \geq 1} L_{\pi,m}$, then the maps in iv induce an isomorphism:

$$G(L_\pi/K) = \varprojlim_m G(L_{\pi,m}/K) \xrightarrow{\cong} \varprojlim \mathcal{O}^\times/(1+(\pi^m)) \cong \mathcal{O}^\times$$

Thursday, 1/16/2025

Recall: we fixed an algebraic closure \bar{K} . Residue field of $\bar{K} = \bar{k}$ = algebraic closure of $k = \mathbb{F}_q$.

Theorem 1.1.3. If L/K is abelian, $L_\pi \subset L$, and L/L_π is purely rammified, then $L_\pi = L$.

Proof. Proof uses the Hasse-Arf theorem, which says that the jumps (or breaks) of the upper ramification filtration $(G(L/K)^t, t \geq -1)$ are integers. \square

Remark. $G(L_\pi/K)^m = \text{Gal}(L_\pi/L_{\pi,m})$, $m \geq 0$.
 $L_{\pi,0} := K$.

Let $K^{ab} \subset \bar{K}$ be the maximal abelian subextension.

Theorem 1.1.4. For any uniformizer π one has $K^{ab} = K^{nr}$.

$K^{nr} = \text{maximal unramified extension} = K(\mu_n \mid p \nmid n)$.

Proof. Set $L_\pi^{nr} := K^{nr}.L_\pi \subset K^{ab}$. This gives us an exact sequence:

$$\begin{aligned} 1 \longrightarrow G(K^{ab}/L_\pi^{nr}) \longrightarrow G(K^{ab}/L_\pi) \longrightarrow G(L_\pi^{nr}/L_\pi) \longrightarrow 1 \\ G(L_\pi^{nr}/L_\pi) \xrightarrow{\cong} G(\bar{k} \mid k) = \langle \varphi \rangle^{\text{top}} \end{aligned}$$

Where $\varphi(\bar{\alpha}) = \bar{\alpha}^q, \bar{\alpha} \in \bar{k}$.

$$\langle \varphi \rangle^{\text{top}} := \varprojlim \varphi^{\mathbb{Z}}/\varphi^{n\mathbb{Z}} \cong \varprojlim \mathbb{Z}/n\mathbb{Z} =: \hat{\mathbb{Z}}$$

Choose $\tilde{\varphi} \in G(K^{ab}/L_\pi)$ such that $\tilde{\varphi}|_{K^{nr}} = \varphi$

$L_\pi \subset L := (K^{ab})^{\overline{\langle \tilde{\varphi} \rangle}}$.

$\overline{\langle \tilde{\varphi} \rangle}$ is the closed subgroup of $G(K^{ab}/L_\pi)$ generated by $\tilde{\varphi}$.

\square

Tuesday, 1/21/2025

Recall: K = local nonarch.. field, π = uniformizer, $e \in \mathcal{E}_\pi$ a LT seriess for π , F_e a LT formal \mathcal{O} -module, $L_\pi = \bigcup K(F_e[\pi^m]) \subset K^{ab}$ with topological isomorphism $\text{Gal}(L_\pi/K) \xrightarrow{\cong}_{\iota_\pi} U_K = \mathcal{O}_K^\times$.

1.1.6 \implies

$$K^\times = U_K \times \pi^{\mathbb{Z}} \longrightarrow G(K^{ab}/K)$$

$$(a, \pi^n) \longmapsto \underbrace{\iota_\pi^{-1}(a)}_{\text{acts trivially on } K^{nr}} \tilde{\varphi}^n$$

$\tilde{\varphi}$ = Frobenius element of $G(K^{ab}/K)$.

The map:

$$U_K \xrightarrow[\cong]{\text{can}} G(L_\pi/K) \xleftarrow[\cong]{\text{can}} G(L_\pi K^{nr}/K^{nr}) \hookrightarrow G(K^{ab}/K)$$

is canoncial. Here, $K^{ab} = L_\pi K^{nr}$.

Definition. The Weil group W_K is defined by:

$$W_K = \left\{ \sigma \in G(\overline{K}/K) \mid \sigma \Big|_{K^{nr}} \in \varphi_{K^{nr}}^{\mathbb{Z}} \right\}$$

Here $\varphi_{K^{nr}} = \underline{\text{the}} \text{ arithmetic Frobenius of } K^{nr}$.

We equip W_K with the coarsest topology which makes the inertia subgroup:

$$I_K = \left\{ \sigma \in G(\overline{K}/K) \mid \sigma \Big|_{K^{nr}} = \text{id}_{K^{nr}} \right\}$$

an open subgroup, and I_K is equipped with its profinite topology. Then,

$$W_K = \bigsqcup_{n \in \mathbb{Z}} I_K \tilde{\varphi}^{\mathbb{Z}}$$

(disjoint union of open cosets) with $\tilde{\varphi}$ as in 1.1.6.

Proposition 1.1.5. The abelianization $W_K^{ab} = W_K / \overline{[W_K, W_K]}$ is isomorphic to:

$$\left\{ \sigma \in G(K^{ab} \mid K) \mid \sigma \Big|_{K^{nr}} \in \varphi_{K^{nr}}^{\mathbb{Z}} \right\}$$

The image of the homomorphism:

$$K^\times \rightarrow G(K^{ab}/K)$$

of 1..1.6 is W_K^{ab} .

$U_K \supset 1 + (p^m)$ is open.

Definition. Let Γ be a topological group and $\rho : \Gamma \rightarrow \text{Aut}(V)$ be a representation of Γ as an E -vector space ($E = \text{any field}$). ρ is called smooth if $\forall v \in V$ we have:

$$\text{Stab}_\rho(v) = \{ \gamma \in \Gamma \mid \rho(\gamma)(v) = v \}$$

is open.

Proposition 1.1.6 (ℓ -adic local Langlands correspondence for GL_1). Let $\ell \neq p$ be a prime. Then the isomorphism $K^\times \rightarrow W_K^{ab}$ from 1.1.7 induces a bijection:

$$\begin{aligned} \left\{ \text{continuous homomorphisms} \right\} &\rightarrow \left\{ \begin{array}{l} \text{smooth irreducible} \\ \text{rep's of } GL_1(K) = K^\times \\ \text{on } \overline{\mathbb{Q}_\ell} \text{-vector space} \end{array} \right\} / \cong \\ W_K \rightarrow GL_1(\overline{\mathbb{Q}_\ell}) = \overline{\mathbb{Q}_\ell}^\times & \\ \chi \mapsto \left[K^\times \xrightarrow{\cong} W_K^{ab} \xrightarrow{\chi} \overline{\mathbb{Q}_\ell}^\times \right] & \\ \chi \longmapsto [K^\times \xrightarrow{\cong} W_K^{ab} \xrightarrow{\chi} \overline{\mathbb{Q}_\ell}^\times] & \\ \uparrow & \\ W_K & \end{aligned}$$

Proof. Main point: a smooth irreducible representation of K^\times on a $\overline{\mathbb{Q}_\ell}^\times$ vector space is 1-dimensional. \square

Remark. Proposition 1.1.8 is also true when $\overline{\mathbb{Q}_\ell}$ is replaced by \mathbb{C} and with the appropriate modifications, when $\overline{\mathbb{Q}_\ell}$ is replaced by $\overline{\mathbb{Q}_p}$.

1.2 1-dim formal groups: the functional equation lemma

Cf. Hazewinkel, Formal groups and Applications = [H1 Formal]

Here we let:

- K = any commutative ring
- $A \subset K$ subring
- p prime
- q power of p
- $\sigma : K \rightarrow K$ ring homomorphism
- $I \subset A$ ideal
- $s_1, s_2, s_3, \dots \in K$

We assume:

- $\sigma(A) \subset A$
- $\forall a \in A : \sigma(a) \cong a^q \pmod{I}$
- $p \in I$ so A/I is an \mathbb{F}_p -algebra
- $\forall i \geq 1 : s_i I \subset A$
- $\forall b \in K \forall r \geq 0 : bI^r \subset A \implies \sigma(b)I^r \subset A$.

Lemma 1.2.1. Let $g(x) = \sum_{i=1}^{\infty} b_i x^i \in xA[[x]]$.
By HW1, $\exists! f_g(x) = \sum_{i=1}^{\infty} d_i x^i \in xK[[x]]$ so that,

$$f(x) = g(x) + \sum_{i=1}^{\infty} s_i (\sigma_*^i f)(x^{q^i}) \quad (1.2.1)$$

where $\sigma_*^i f_g$ is power series obtained from f_g obtained by applying σ^i to all coefficients.

$$\text{Indeed, } d_n = \begin{cases} b_n, & \text{if } q \nmid n; \\ b_n + s_1 \sigma(d_{n/q}) + \dots + s_r \sigma(d_{n/q^r}), & \text{if } n = q^r m, q \nmid m. \end{cases}$$

Lemma 1.2.2 (The functional equation lemma (FEL)). Let the data be as above. Let $g(x) = \sum_{i=1}^{\infty} b_i x^i$ and $\bar{g}(x) = \sum_{i=1}^{\infty} \bar{b}_i x^i$ be in $xA[[x]]$ and assume $b_1 \in A^\times$. Then, $f_g(x) = b_1 x + \text{higher order terms} \implies f_g$ has inverse f_g^{-1} w.r.t. composition. Then,

- i) $F_g(x, y) := f_g^{-1}(f_g(x) + f_g(y))$ is a formal group over A .
- ii) $f_g^{-1}(f_{\bar{g}}(x)) \in xA[[x]]$.
- iii) Given $h(x) = \sum_{i=1}^{\infty} c_n x^n \in xA[[x]]$, $\exists \hat{h}(x) = \sum_{n=1}^{\infty} \hat{c}_n x^n$ s.t. $f_g(h(x)) = f_{\hat{h}}(x)$.
- iv) If $\alpha(x) \in xA[[x]]$, $\beta(x) \in K[[x]]$, then $\forall r \geq 0 : \alpha(x) \equiv \beta(x) \pmod{I^r A[[x]]} \iff f_g(\alpha(x)) \equiv f_g(\beta(x)) \pmod{I^r A[[x]]}$

Lemma 1.2.3 (HW1). Write $f_g(x) = \sum_{i=1}^{\infty} d_i x^i$ and write $n = q^r m, q \nmid m$. Then $d_n I^r \subset A$.

Lemma 1.2.4. Let $G(x, y) \in A[[x, y]]$ and $n = q^r m$, and $\ell > 0$. Then,

$$G(x, y)^{q^\ell n} \cong \left((\sigma_*^\ell G)(x^{q^\ell}, y^{q^\ell}) \right)^n \pmod{I^{r+1}}$$

$$(\sigma(a) \equiv a^q \pmod{I})$$

Proof of (i) of FEL. Note that $f_g^{-1}(x) = b_1^{-1}x + h.o.t.$ Then,

$$F_g(x, y) = b_1^{-1}(b_1x + b_1y + h.o.t) = x + y + h.o.t \quad (1)$$

and associativity follows from the definition.

Write $F(x, y) = F_1(x, y) + F_2(x, y) + F_3(x, y) + \dots$ with $F_d(x, y) \in K[x, y]$ homogeneous of degree d .

We want to show, $\forall d \geq 1, F_d(x, y) \in A[x, y]$.

We prove this by induction. Case $d = 1$ already done.

Assume $d \geq 2$ and the statement is true for F_1, \dots, F_{d-1} .

Note:

$$\forall r \geq 2 : (F_1(x, y) + \dots + F_{d-1}(x, y))^r \equiv F(x, y)^r \pmod{\deg d + 1} \quad (2)$$

(2) and 1.2.4 together imply that $\forall i \geq 1, n = q^r m, q \nmid m$ ($n = 1, r = 0$ are ok).

$$F(x, y)^{q^i n} \cong \left((\sigma_*^i F)(x^{q^i}, y^{q^i}) \right)^n \pmod{\deg d + 1, I^{n+1}} \quad (3)$$

By definition,

$$f(F(x, y)) = f(x) + f(y) \quad (4)$$

(4) \implies (5):

$$(\sigma_*^i f)((\sigma_*^i F)(x, y)) = (\sigma_*^i f)(x) + (\sigma_*^i f)(y) \quad (5)$$

(1.1.2) = (6)

$$f(x) = g(x) + \sum_{i=1}^{\infty} s_i (\sigma_*^i f)(x^{q^i}) \quad (6)$$

Substitute $F(x, y)$ for x in (6). We get (7):

$$f(F(x, y)) = g(F(x, y)) + \sum_{i=1}^{\infty} s_i \sum_{n=1}^{\infty} \sigma^i(d_n) F(x, y)^{q^i n} \quad (7)$$

Then we use the 12.4 congruence and our knowledge about the integrality of s_i . Eventually it turns out that $F_d(x, y) \equiv 0 \pmod{A[[x, y]]}$. Thus F_d has coefficients in A .

Thursday, 1/23/2025

Write $n = q^r m, q \nmid m$.

$F(x, y)^{q^i n}$ in (7) satisfies (3).

1.2.3 $d_n I^r \subset A \implies \sigma(d_n) I^r \subset A$. Iterating, $\sigma^i(d_n) I^r \subset A$.

Also, $s_i I \subset A$. Multiplying both sides,

$$s_i \sigma^i(d_n) I^{r+1} \subset A$$

Multiply (3) by $s_i \sigma^i(d_n)$,

$$s_i \sigma^i(d_n) F(x, y)^{q^i n} \equiv s_i \sigma^i(d_n) ((\sigma_*^i F)(x^{q^i}, y^{q^i}))^n \pmod{A, \deg d + 1} \quad (8)$$

(7) and (8) together imply that,

$$\underline{f(F(x, y))} \equiv g(F(x, y)) + \sum_{i=1}^{\infty} s_i (\sigma_*^i f)((\sigma_*^i F)(x^{q^i}, y^{q^i})) \pmod{A, \deg d + 1}$$

$$\stackrel{(5)}{\equiv} g(F(x, y)) + \sum_{i=1}^{\infty} s_i ((\sigma_*^i f)(x^{q^i}) + (\sigma_*^i f)(y^{q^i}))$$

$$\stackrel{(6)}{=} g(F(x, y)) + f(\cancel{x}) - g(x) + f(\cancel{y}) - g(y)$$

Upshot:

$$g(F(x, y)) \equiv g(x) + g(y) \stackrel{\text{by assoc. on } g}{\equiv} 0 \pmod{A, \deg d + 1} \quad (9)$$

$$\implies 0 \stackrel{\text{mod } A, \deg d + 1}{\equiv} g(F(x, y)) = b_1 F(x, y) + b_2 F(x, y)^2 + \dots$$

$$b_2 F^2 + \dots \equiv b_2 \underbrace{(F_1 + \dots + F_{d-1})^2}_{\in A[x, y] \text{ by ind. hyp.}} + b_3 (F_1 + \dots + F_{d-1})^3 + \dots \pmod{\deg d + 1}$$

$$\implies 0 \equiv b_1 \underbrace{(F_1 + \dots + F_{d-1} + F_d)}_{\in A[x, y]} \equiv b_1 F_d(x, y)$$

Since $b_1 \in A^\times$ we have, $F_d(x, y) \in A[x, y]$.

Statement ii ($(f_g^{-1}(f_{\bar{g}}(x)) \in A[[x]])$ is proved in the same way.

Statement iii: $\forall h(x) = \sum_{n=1}^{\infty} c_n x^n \in xA[[x]]$, suppose $\exists \hat{h}(x) = \sum_{n=1}^{\infty} \hat{c}_n x^n \in A[[x]]$ such that $f_g(h(x)) = f_{\hat{h}}(x)$ which is defined by the Functional Equation of same type (i.e. all the other data are the same).

Set $\hat{f}(x) = f(h(x))$ by assoc. $h(x) \in xA[[x]]$.

Recall:

$$f(x) = g(x) + \sum_{i=1}^{\infty} s_i (\sigma_*^i f)(x^{q^i})$$

Then,

$$\hat{f}(x) - \sum_{i=1}^{\infty} s_i (\sigma_*^i \hat{f})(x^{q^i}) = f(h(x)) - \sum_{i=1}^{\infty} s_i (\sigma_*^i f)((\sigma_*^i h)(x^{q^i}))$$

When $n = q^r m$, $q \nmid m$,

$$= f(h(x)) - \sum_{i=1}^{\infty} s_i \sum_{n=1}^{\infty} \sigma^i(d_n) \underbrace{\left((\sigma_*^i h)(x^{q^i}) \right)^n}_{\substack{\equiv \\ 1.2.4} h(x, y)^{q^i n} \pmod{I^{r+1}}}$$

Use 1.2.3 and $s_i I \subset A$ to deduce that,

$$\stackrel{\text{mod } A}{\equiv} f(h(x)) - \sum_{i=1}^{\infty} s_i (\sigma_*^i f)(h(x)) \equiv g(h(x)) \equiv 0 \pmod{A}$$

Set $\hat{h}(x) := \hat{f}(x) - \sum_{i=1}^{\infty} s_i (\sigma_*^i \hat{f})(x^{q^i}) \in xA[[x]]$.

Construction $\implies \hat{f}(x) = f_{\hat{h}}(x)$ [unique solution to the functional equation].

□

For statement iv: [H, Formal, ch 1, sec. 2.4.]

So, we can write many formal group laws of the form $F(x, y) = f^{-1}(f(x) + f(y))$, where f is invertible. f is logarithm for this formal group law.

Applications:

1) If K/\mathbb{Q}_p is a finite extension, \exists polynomials $p_1(x), p_2(x), \dots \in K[x]$ such that:

$$[a]_{F_e}(x) = \sum_{n=1}^{\infty} p_n(a) x^n$$

with $\forall n \geq 1 \forall a \in \mathcal{O}_K, p_n(a) \in \mathcal{O}_K$.

Where F_e is a LT \mathcal{O}_K -module.

eg when $K = \mathbb{Q}_p$, $e(x) = (1+x)^p - 1 \implies p_n(x) = \binom{x}{n}$.

$p_n(a) \in \mathbb{Z}_p$ if $a \in \mathbb{Z}_p$ but if $K \neq \mathbb{Q}_p$ then $\exists a \in \mathcal{O}_K$ such that $\binom{a}{n} \notin \mathcal{O}_K$.

2) Formal groups over \mathbb{F}_p or $\bar{\mathbb{F}}_p$.

Fix $n \geq 1$. Set $A = \mathbb{Z}$, p a prime, $I = p\mathbb{Z}$, $K = \mathbb{Q}$, $\sigma = \text{id}$, $q = p$.

Define $s_i^{(n)} = \begin{cases} 0, & \text{if } i \neq n; \\ \frac{1}{p}, & \text{if } i = n. \end{cases}$

Let $g(x) = x$, $f_n(x) \in \mathbb{Z} \left[\frac{1}{p} \right] [[x]]$ be the unique power series satisfying the functional equation:

$$f_n(x) = x + p^{-1} f_n(x^{p^n})$$

Then,

$$f_n(x) = x + \frac{x^{p^n}}{p} + \frac{x^{p^{2n}}}{p^2} + \cdots = \sum_{i=1}^{\infty} \frac{x^{p^{ni}}}{i} \quad (*)$$

FEL $\implies F_n(x, y) = f_n^{-1}(f_n(x) + f_n(y)) \in \mathbb{Z}[[x]]$ by FEL.

Exercise: if ℓ is a prime $\neq p$ then $F_n(x, y) \pmod{\ell}$ is isomorphic to $\widehat{\mathbb{G}}_{a, \mathbb{F}_\ell}$.

Set $\bar{F}_n(x, y) = F_n(x, y) \pmod{p\mathbb{Z}} \in \mathbb{F}_p[x, y]$ a formal group over \mathbb{F}_p .

Proposition 1.2.5. i) $[p]_{F_n} \equiv x^{p^n} \pmod{p}$.

ii) If $n \neq m \in \mathbb{Z}_{>0}$, then for any field k of characteristic p , we have:

$$\text{Hom}_{\text{formal grp } / K}(\bar{F}_n \otimes k, \bar{F}_m \otimes k) = \{0\}$$

In particular, \bar{F}_n and \bar{F}_m are not isomorphic over any k .

Proof. i) Set $\alpha(x) = [p]_{F_n}(x) \in \mathbb{Z}[[x]]$ and $\beta(x) = x^{q^n}$.

Recall that $[p]_{F_n}(x) = f_n^{-1}(p f_n(x))$.

$$f_n(\alpha(x)) = p \cdot f_n(x), f_n(\beta(x)) = f_n(x^{p^n}).$$

$$(*) \implies f_n([p](x)) - f_n(x^{p^n}) = px \equiv 0 \pmod{p}.$$

FEL iv $\implies \alpha(x) \equiv \beta(x) \pmod{p}$.

ii) Let $h(x) \in xk[[x]]$ be a non-zero homomorphism $\bar{F}_n \otimes k \rightarrow \bar{F}_m \otimes k$.

Let $h(x) = ux^t + \text{h.o.t}$, $u \in k^\times$, $t \geq 1$. Then,

$$\implies h([p]_{\bar{F}_n}(x)) = [p]_{\bar{F}_m}(h(x))$$

$$\implies ux^{p^n t} + \text{h.o.t} = up^m x^{p^m t} + \text{h.o.t}.$$

$$\implies p^n t = p^m t \implies p^n = p^m$$

Which is a contradiction. □

Remark. 1) One can show [H, Formal, 18.5.1] that a 1-dimensional (commutative) formal group over a separably closed field k of $\text{char } p$ is isomorphic to exactly one of $\overline{F}_n \otimes k$ for a unique $n \geq 1$ or $\widehat{\mathbb{G}}_{a,k}$.

We define the height of F to be:

$$ht(F) := \begin{cases} n, & \text{if } F \cong \overline{F}_n \otimes k; \\ \infty, & \text{if } F \cong \widehat{\mathbb{G}}_{a,k}. \end{cases}$$

2) Let $K = \mathbb{Q}_p(\zeta_{p^n} - 1)$ unramified extension of degree n over \mathbb{Q}_p . Let $q = p^n$, $e(x) = f_n^{-1}(pf_n(x))$ which we know is a Lubin-Tate series for the uniformizer $\pi = p$ of K .

Clearly, $e(x) = px + h.o.t, e(x) \equiv x^{p^n} = x^q \pmod{p}$. These are exactly the conditions for LT series.

$\implies F_n = f_n^{-1}(f_n(x) + f_n(y)) = F_e$ is the LT \mathcal{O}_K -module for $e(x)$ by LT theory.

One can show the canonical map:

$$\begin{array}{ccc} \mathcal{O}_K & \longrightarrow & \text{End}(F_n \otimes_{\mathbb{Z}} \mathcal{O}_K) \longrightarrow \text{End}(\overline{F}_n \otimes_{\mathbb{F}_p} \mathbb{F}_q) \\ & & \downarrow = \\ & & \text{End}(F_e, \mathcal{O}_K) \end{array}$$

is injective but not surjective.

$\phi(x) = x^p$ is an endomorphism of \overline{F}_n

$\implies \text{End}(\overline{F}_n \otimes \mathbb{F}_q) = \mathcal{O}_K[\phi]$ where $[a]_{\overline{F}_n} \circ \phi = \phi \circ [\phi(a)]_{\overline{F}_n}$
and $\mathcal{O}_K[\phi] \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$ is a divisional algebra over \mathbb{Q}_p .

$$\text{End}(\overline{F}_n \otimes_{\mathbb{F}_q} \mathbb{F}_q) \otimes_{\mathbb{Q}_p} \mathbb{Q}_p =: D_n$$

We have: $\dim_{\mathbb{Q}_p}(D_n) = n^2$

Furthermore, $\text{center}(D_n) = \mathbb{Q}_p$. D_n also contains K but it is not in the center.

1.3 LCFT following Hazewinkel

[H] = ‘Local Class Field Theory is easy’

In this section, a local field is, by convention, a field K which is complete for a discrete non-trivial non-archimedean absolute value $|\cdot|$. i.e., $|K^\times|$ is a non-trivial discrete subgroup of $R_{>0}$.

Examples:

- 1) $\mathbb{Q}_p, \mathbb{F}_q((t))$
- 2) $(\mathbb{Q}_p)_{nr} = \widehat{\mathbb{Q}_p^{nr}}, \overline{\mathbb{F}_q}((t)) = \underbrace{(\mathbb{F}_q((t)) \otimes_{\mathbb{F}_q} \overline{\mathbb{F}_q})^\wedge}_{\mathbb{F}_q((t))^{nr}}$ [the t -adic completion]
- 3) $\mathbb{C}((t))$ or $k((t))$ [they are complete w.r.t. a t -adic absolute value].

Outline:

- 1) Assume K has algebraically closed residue field k , and L/K is finite abelian extension. [Note that abelian here automatically means Galois]. Set $U(K) = \mathcal{O}_K^\times$, units of the valuation ring, and $V(L/K) = \langle \sigma(u)u^{-1} \mid \sigma \in G(L/K), u \in U(L) \rangle$ [subgroup generated by these elements].

Fix a uniformizer π_L of L and define:

$$i : G(L/K) \rightarrow U(L)/V(L/K)$$

$$i(\sigma) = \frac{\sigma(\pi_L)}{\pi_L} \pmod{V(L/K)}$$

Note: i does not depend on the choice of π_L . Indeed, if ω is another uniformizer of L then $\omega = v\pi_L \implies \frac{\sigma(\omega)}{\omega} = \frac{\sigma(\pi_L)}{\pi_L} \frac{\sigma(v)}{v} \equiv \frac{\sigma(\pi_L)}{\pi_L} \pmod{V(L/K)}$.

Theorem 1.3.1. The sequence:

$$1 \rightarrow G(L/K) \rightarrow U(L)/V(L/K) \xrightarrow{N_{L/K}} U(K) \rightarrow 1$$

is exact.

2) Now assume that K has finite residue field (equivalently, K is locally compact). Also assume that L/K is a finite abelian extension. Set $K_{nr} = \widehat{K^{nr}}$, $L_{nr} = \widehat{L^{nr}} = \widehat{L \cdot K^{nr}} = L \cdot K_{nr}$.

Let $\varphi_K \in \text{Gal}(K^{nr}/K)$, $\varphi_L \in \text{Gal}(L^{nr}/L)$ be the arithmetic Frobenius.

Let $G(L/K)_0$ be the 0th ramification group. Then, we have an exact sequence:

$$1 \rightarrow G(L/K)_0 \rightarrow G(L/K) \rightarrow G(k_L/k) \rightarrow 0$$

Here k_L is the residue field of L .

Note: $G(L/K)_0 \xleftarrow[\text{res}]{}^{\cong} G(L^{nr} (= L \cdot K^{nr})/K^{nr}) \cong G(L/L \cap K^{nr})$. $L \cap K^{nr}$ is the maximal unramified subfield of L over K . Furthermore, $G(L^{nr}/K^{nr})$ is isomorphic to the Galois group of the completion. Then we have,

$$\begin{array}{ccccccc}
& & & & 1 & & \\
& & & & \downarrow & & \\
& & & & U(K) & & \\
& & & & \downarrow & & \\
1 & \longrightarrow & G(L/K)_0 & \xrightarrow{\cong} & G(L_{nr}/K_{nr}) & \longrightarrow & U(K_{nr}) \longrightarrow 1 \\
& & \downarrow \sigma \mapsto 1 & & \downarrow \frac{U(L_{nr})}{V(L_{nr}/K_{nr})} & & \downarrow \psi_L \\
1 & \longrightarrow & G(L/K)_0 & \xrightarrow{\cong} & G(L_{nr}/K_{nr}) & \longrightarrow & U(K_{nr}) \longrightarrow 1 \\
& & \downarrow & & \downarrow \psi_L & & \downarrow \psi_K \\
& & G(L/K)_0 & & & &
\end{array}$$

by snake lemma.

Here, $\psi_K(v) = \varphi_K(v)v^{-1}$, $\psi_L(v) = \varphi_L(v)v^{-1}$.

Hence we get a canonical homomorphism:

$$U(K) \xrightarrow{i_{L/K}} G(L/K)_0$$

Theorem 1.3.2. $i_{L/K}$ is surjective and $\ker(i_{L/K}) = N_{L/K}(U(L))$.

Hence we have a canonical basis:

$$\frac{U(K)}{N_{L/K}}(V(L)) \xrightarrow[i_{L/K}]{\cong} G(L/K)_0$$

If L/K is a subextension of a finite abelian extension L'/K one has a commutative diagram:

$$\begin{array}{ccc}
\frac{U(K)}{N_{L'/K}(U(L'))} & \xrightarrow{i_{L'/K}} & G(L'/K)_0 \\
\downarrow & & \downarrow \\
\frac{U(K)}{N_{L/K}(U(L))} & \xrightarrow{i_{L/K}} & G(L/K)_0
\end{array}$$

[Use $N_{L'/K}(U_{L'}) = N_{L/K}(N_{L'/L}(U(L')) \subset N_{L/K}(U(L))$].

Taking the limit over all finite abelian extensions of K inside a fixed maximal abelian extension K^{ab} gives:

Proposition 1.3.3. The homomorphisms $i_{L/K}$ for varying finite abelian L/K induce canonically isomorphisms:

$$U(K) \cong \varprojlim_{L/K} \frac{U(K)}{N_{L/K}(U(L))} \cong \varprojlim_{L/K} G(L/K)_0 = G(K^{ab}/K^{nr})$$

Preliminaries Let K be a local field with perfect residue field k . Given a finite Galois extension L/K , we set $K_L =$ maximal unramified subextension of L/K , $= L \cap K^{nr}$. We have an exact sequence:

$$1 \rightarrow G(L/K_L) \rightarrow G(L/K) \rightarrow G(k_L/k) \rightarrow 1$$

Set $K_{nr} = \widehat{K^{nr}}$, $L_{nr} = \widehat{L^{nr}} = L \cdot K_{nr}$. The maps:

$$G(L_{nr}/K_{nr}) \xrightarrow[\text{res}]{\cong} G(L^{nr}/K^{nr}) \xrightarrow[\text{res}]{\cong} G(L/K_L)$$

Proposition 1.3.4. i) Let K be a local field with algebraically closed residue field k and L/K a finite extension. Then, $N_{L/K} : L^\times \rightarrow K^\times$ and $N_{L/K} : U(L) \rightarrow U(K)$ are both surjective.

ii) Let K be a local field with finite residue field and L/K a finite unramified extension. Then, $N_{L/K} : U(L) \rightarrow U(K)$ is surjective.

Proof. HW3 □

The Decomposition Theorem

Fix an algebraically closed field Ω containing $K_{nr} = \widehat{K^{nr}}$. All composite fields are taken in Ω .

Theorem 1.3.5. Let K be a local field with finite residue field and L/K a finite Galois extension. Then \exists a totally ramified extension L'/K inside L/K such that,

$$L'K^{nr} = LK^{nr} = L^{nr}$$

$$(L')_{nr} = L' \cdot K_{nr} = L \cdot K_{nr} = L_{nr}$$

If $G(L/K)_0$ is contained in the center $Z(G(L/K))$ then $G(L/K)$ is abelian and L'/K is abelian

We have, $K^{ab} =$ (totally ramified extension). K^{nr}

Thursday, 1/30/2025

Proof. Let $K_L/K \subset L/K$ be maximal unramified subextension.

$$\begin{array}{ccccccc}
 1 & \longrightarrow & G(L/K)_0 & \longrightarrow & G(L/K) & \longrightarrow & G(k_L/k) \longrightarrow 1 \\
 & & \downarrow = & & \downarrow \cong & & \\
 & & G(L/K_L) & & G(K_L/K) & & \\
 & & & & \downarrow \in & & \\
 & & & & \tilde{\varphi} \longmapsto & & \varphi_{K_L/K}
 \end{array}$$

$$s = [K_L : K] = [k_L : k] = \text{ord}(\varphi_{K_L/K}). \quad r = \text{ord}(\tilde{\varphi}) \text{ thus } s \mid r.$$

Note: K_L is the unique unramified extension of K in Ω of degree s .

Let K_r = unique unramified extension of K in Ω of degree r .

$K_L \subseteq K_r$ since $s \mid r$.

Claim: The canonical homomorphism,

$$\begin{aligned}
 G(L.K_r/K) &\xrightarrow[G(L \cap K_r/K)]{(res,res)} G(L/K) \times G(K_r/K) \\
 &= \{(\sigma, \tau) \mid \sigma \Big|_{L \cap K_r} = \tau \Big|_{L \cap K_r}\}
 \end{aligned}$$

is an isomorphism.

The proof of claimm is Exercise (HW3).

Claim $\implies \exists! \psi \in G(LK_r/K)$ such that $\psi|_L = \tilde{\varphi}$ and $\psi|_{K_r} = \varphi_{K_r/K}$.

Set $L' := (L.K_r)^{\langle \psi \rangle}$

Note: the maximal unramified subextension of $L.K_r/K$:

$L' \cap K_r = K \implies L'/K$ is totally ramified.

Note: $\text{ord}(\psi) = r = |\langle \psi \rangle| \implies [L' : K]r = [L' : K][LK_r : L'] = [LK_r : K]$.

Since this has the right degree, we deduce that $L'.K_r = LK_r$.

$\implies L'K^{nr} = (L'K_r)K^{nr} = (LK_r)K^{nr} = L.K^{nr} = L^{nr}$.

Same argument goes for the completion.

Note that $G(L/K)$ is generated by $\tilde{\varphi}$ and $G(L/K)_0$. The last point follows from this. \square

Corollary 1.3.6. Let K^{ab} be the maximal abelian extension of K . Then, \exists a totally ramified extension L/K such that $K^{ab} = L.K^{nr}$.

Proof. Choose a splitting of $G(K^{ab}/K) \twoheadrightarrow G(K^{nr}/K) \cong \widehat{\mathbb{Z}}$. We have $\sigma : G(K^{nr}) \rightarrow G(K^{ab}/K)$.

Set $H = \text{im } \sigma, L \equiv (K^{ab})^H$. Then L is totally ramified.

Because of the restriction, $G(K^{ab}/K) \rightarrow G(L/K)$ has H as kernel.

Thus $G(K^{ab}/L) \cong H$. This concludes the proof. \square

$$\begin{aligned}
 \text{Corollary 1.3.7. } G(K^{ab}/K^{nr}) &= \varprojlim_{M/K^{nr}, \text{ finite, } M/K \text{ abelian}} G(M/K^{nr}) \\
 &= \varprojlim_{L/K \text{ finite abelian}} G(L.K^{nr}/K^{nr}) \\
 &= \varprojlim_{L/K \text{ finite abelian}} G(L/K_L) \\
 &= \varprojlim_{L/K \text{ finite}} G(L/K)_0
 \end{aligned}$$

Local Fields with Algebraically Closed Residue Field

For example, $K = K_{nr}, K = \mathbb{C}((t))$.

Proposition 1.3.8. Let K have algebraically closed residue field k and L/K finite abelian. Then we have,

$$1 \rightarrow G(L/K) \xrightarrow{i} \frac{U(L)}{V(L/K)} \xrightarrow{N_{L/K}} U(K) \rightarrow 1 \quad (*)$$

Goal is to show that $(*)$ is exact.

Recall: $V(L/K) = \{\sigma(u)/u : u \in U(L), \sigma \in G(L/K)\}$.

Lemma 1.3.9. i is well-defined and a group homomorphism.

Proof. Let π be a uniformizer of L . Then, $i(\sigma) = \frac{\sigma(\pi)}{\pi} \pmod{V(L/K)}$, clearly well defined.

$$\frac{(\sigma\tau)(\pi)}{\pi} = \frac{\sigma(\tau(\pi))}{\tau(\pi)} \frac{\tau(\pi)}{\pi} \equiv \frac{\sigma(\pi)}{\pi} \frac{\tau(\pi)}{\pi} \pmod{V(L/K)}. \quad \square$$

Lemma 1.3.10. Let G be a finite abelian group and $g \in G$ an element. Then, $\exists H \leq G$ (subgroup) such that:

i) G/H is cyclic.

ii) $\text{ord}(gH) = \text{ord}(g)$

Proposition 1.3.11. i: $G(L/K) \rightarrow U(L)/V(L/K)$ is injective.

Proof. Set $G = G(L/K).g \in G \setminus \{1\}$. Let $H \leq G$ be as 1.3.10.

$$\exists f \in G : G/H = \langle \bar{f} \rangle, \bar{f} = fH \implies g = f^r \cdot h_0, h_0 \in H, 0 < r < s := \text{ord}(\bar{f}).$$

Suppose $i(g) \in V(L/K)$.

Write $\pi = \pi_L$.

$$\implies \frac{g(\pi)}{\pi} = \underbrace{\frac{f^r(\pi)}{\pi}}_{=i(f^r)=i(f)^r} \frac{h_0(\pi)}{\pi} \stackrel{1.3.9}{\equiv} \frac{f(\pi) \cdots f(\pi)}{\pi \cdots \pi} \frac{h_0(\pi)}{\pi} = \frac{f(\pi^r)}{\pi^r} \frac{h_0(\pi)}{\pi} \pmod{V(L/K)}.$$

By assumption, this is an element of the subgroup.

So, it can be written as:

$$\prod_{0 \leq i < s} \frac{(f^i h_j)(u_{ij})}{u_{ij}} \quad (1)$$

For some $h_j \in H, v_{ij} \in U(L)$.

Next: let $h \in H$ be any element.

$$\begin{aligned} \frac{(f^i h)(v)}{u} &= \frac{(f^i h)(u)}{(f^{i-1} h)(u)} \frac{(f^{i-1} h)(u)}{(f^{i-2} h)(u)} \cdots \frac{(f h)(u)}{h(u)} \frac{h(u)}{u} \\ &= \underbrace{\frac{f((f^{i-1} h)(u))}{(f^{i-1} h)(u)}}_{=v_1} \underbrace{\frac{f((f^{i-2} h)(u))}{(f^{i-2} h)(u)}}_{=v_2} \cdots \underbrace{\frac{f(h(u))}{h(u)}}_{=v_i} \frac{h(u)}{u} \\ &= \frac{f(v_1 \cdots v_i)}{v_1 \cdots v_i} \frac{h(u)}{u} = \frac{f(u')}{u'} \frac{h(u)}{u} \end{aligned} \quad (2)$$

$$1 \text{ and } 2 \implies \frac{f(\pi^r)}{\pi^r} \frac{h_0(\pi)}{\pi} \stackrel{(3)}{=} \frac{f(w)}{w} \prod_{h \in H} \frac{h(u_h)}{u_h}$$

Let $M = L^H$ and apply $N = N_{L/M}$ to both sides of 3.

$$\implies \frac{f(\pi_M^r)}{\pi_M^r} = \frac{f(\tilde{w})}{\tilde{w}}, \pi_M = N_{L/M}(\pi), \tilde{w} = nN_{L/M}(w) \in U(M).$$

$\implies f(\pi_m^r \tilde{w}^{-1}) = \pi_M^r \tilde{w}^{-1} \in M$ and fixed by f .

$\langle f, H \rangle = G$ so $\pi_M^r \tilde{w}^{-1} \in K$.

$\implies [M : K] \mid r$. But $[M : K] = |G(M/K)| = |G/H| = s$.

We have chosen $r < s$

\square

Theorem 1.3.12 (Hilbert 90). Let E/F be any finite cyclic Galois extension, $\sigma \in G = G(E/F)$. Then, if $N_{E/F}(x) = 1$ for $x \in E^\times \implies \exists y \in E^\times : x = \sigma(y)y^{-1}$.

Proof. Let $n = [E : F]$. For any $a \in E$ set:

$$y = y(a) = a + \sigma(a)x^{-1} + \sigma^2(a)\sigma(x^{-1})x^{-1} + \cdots + \sigma^{n-1}(a)\sigma^{n-2}(x^{-1}) \cdots \sigma(x^{-1})x^{-1}$$

$$\begin{aligned} \implies \sigma(y) &= \sigma(a) + \sigma^2(a)\sigma(x^{-1}) + \cdots + \underbrace{\sigma^n(a)}_{=a} \underbrace{\sigma^{n-1}(x^{-1}) \cdots \sigma(x^{-1})x^{-1}}_{=1} x \\ &= (\sigma(a)x^{-1} + \sigma^2(a)\sigma(x^{-1})x^{-1} + \cdots + a)x = yx. \end{aligned}$$

Let (a_1, \dots, a_n) be a K -basis of L .

$$\begin{bmatrix} y(a_1) \\ y(a_2) \\ \vdots \\ y(a_n) \end{bmatrix} = \begin{bmatrix} a_1 & \sigma(a_1) & \cdots & \sigma^{n-1}(a_1) \\ a_2 & \sigma(a_2) & \cdots & \sigma^{n-1}(a_2) \\ \vdots & & & \\ a_n & \sigma(a_n) & \cdots & \sigma^{n-1}(a_n) \end{bmatrix} \begin{bmatrix} 1 \\ x^{-1} \\ \sigma(x^{-1})x^{-1} \\ \vdots \\ \sigma^{n-2}(x^{-1}) \cdots \sigma(x^{-1})x^{-1} \end{bmatrix}$$

$0 \neq \text{disc}(a_1, \dots, a_n) = \det(\text{mat})^2$ since E/F is separable.

$\implies \exists 1 \leq i \leq n$ such that $y(a_i) \neq 0$.

Then, $x = \sigma(y(a_i))y(a_i)^{-1}$. □

Remark. Hilbert 90 is equivalent to $H^1(G(E/F), E^\times) = \{1\}$.
If E/F is any finite Galois extension and n any positive integer,
 $H^1(G(E/F), \text{GL}_n(E)) = \{1\}$.

Tuesday, 2/4/2025

$$\begin{array}{ccccccc} & & & \ker(\psi_K) = U(K) & & & \\ & & & \downarrow & & & \\ 1 & \longrightarrow & G(L/K)_0 & \xrightarrow{i} & \frac{U(L_{nr})}{V(L_{nr}/K_{nr})} & \xrightarrow{N} & U(K_{nr}) \longrightarrow 1 \\ & & \downarrow \sigma \mapsto 1 & & \downarrow \psi_L & & \downarrow \psi_K \\ 1 & \longrightarrow & G(L/K)_0 & \xrightarrow{i} & \frac{U(L_{nr})}{V(L_{nr}/K_{nr})} & \xrightarrow{N} & U(K_{nr}) \longrightarrow 1 \\ & & \downarrow & & & & \\ & & G(L/K) & & & & \end{array}$$

Connecting homomorphism: $\eta_{L/K} : U(K) \rightarrow G(L/K)_0$

Then theorem 1.3.2 is: $\eta_{L/K}$ is surjective and $\ker \eta_{L/K} = N(U(L))$.

Proposition 1.3.13. Suppose $k = \bar{k}$ and L/K is finite cyclic. Then,

$$1 \rightarrow G(L/K) \xrightarrow{i_{L/K}} \frac{U(L)}{V(L/K)} \xrightarrow{N_{L/K}} U(K) \rightarrow 1 \quad (*)$$

is exact.

Proof. Exactness on left: 1.3.11.

Exactness on right: 1.3.4(i) [Haven't seen yet, HW4].

For exactness on the middle,

Set $N = N_{L/K}$.

$$(N \circ i_{L/K})(\sigma) = N \left(\frac{\sigma(\pi_L)}{\pi_L} \right) = \prod_{\tau \in G(L/K)} \tau \left(\frac{\sigma(\pi_L)}{\pi_L} \right) = 1$$

Now suppose $N(x) = 1, x \in U(L)$.

Hilbert 90 (1.3.12) implies $\exists y \in L^\times : x = \sigma(y)y^{-1}, \langle \sigma \rangle = G(L/K)$.

Write $y = v\pi_L^r, v \in U(L)$.

Then, $x = \frac{\sigma(y)}{y} = \frac{\sigma(v)}{v} \left(\frac{\sigma(\pi)}{\pi} \right)^r \equiv \left(\frac{\sigma(\pi)}{\pi} \right)^r \pmod{V(L/K)} = i_{L/K}(\sigma)^r \stackrel{1.3.9}{=} i_{L/K}(\sigma^r)$
Thus, $xV(L/K) \in \text{im}(i_{L/K})$. □

Lemma 1.3.14. Suppose $k = \bar{k}$ and L/K finite Galois extension (not necessarily abelian).

Let $M/K \subseteq L/K$ [Galois] be such that L/M is cyclic. Then,

$$N_{L/M} : V(L/K) \rightarrow V(M/K)$$

is cyclic.

Proof. Let $G = G(L/K)$ and $H = G(L/M)$ and consider $\bar{\gamma}(v)v^{-1} \in V(M/K)$.

$v \in U(M)$, $\bar{\gamma} = \gamma H \in G(M/K)$.

1.3.4i $\implies N_{L/M} : U(L) \rightarrow U(M)$ is surjective.

Thus, $\exists w \in U(L)$ such that $u = N_{L/M}(w)$.

$$\implies N_{L/M} \left(\frac{\gamma(w)}{w} \right) = \frac{\bar{\gamma}(N_{L/M}(w))}{N_{L/M}(w)} = \frac{\bar{\gamma}(v)}{v}$$

□

Lemma 1.3.15. Assume $k = \bar{k}$. Let L/K be finite abelian and $M/K \subseteq L/K$ such that $H := G(L/M)$ is cyclic. Then the sequence:

$$1 \rightarrow G(L/M) \xrightarrow{j} \frac{U(L)}{V(L/K)} \rightarrow U(K) \rightarrow 1$$

is exact.

Here j is given by the composition canonically:

$$G(L/M) \hookrightarrow G(L/K) \xrightarrow{i_{L/K}} \frac{U(L)}{V(L/K)} \xrightarrow{N_{L/M}} \frac{U(M)}{V(M/K)} \rightarrow 1$$

Proof. 1.3.11 implies:

$$G(L/K) \xrightarrow{i_{L/K}} \frac{U(L)}{V(L/K)}$$

is injective. Then trivially j is injective from definition.

Also, $N_{L/M} \circ j$ is the trivial homomorphism (trivially).

1.3.4i $\implies N_{L/M}$ is surjective.

Only nontrivial part is exactness in the middle.

Suppose $N_{L/M}(v) = 1_{U(M)/V(M/K)} \implies N_{L/M}(v) = w \in V(M/K)$.

1.3.14 $\implies \exists \tilde{w} \in (V_{L/K})$ such that $N_{L/M}(\tilde{w}) = w$.

Thus, $N_{L/M}(v\tilde{w}^{-1}) = 1_{U(M)} \implies \xrightarrow[1.3.13]{L/M \text{ cyclic}} v\tilde{w}^{-1} \bmod V(L/M) = i_{L/M}(\sigma)$.

$\implies j(\sigma) = \underbrace{i_{L/K}(\sigma)}_{\in U(L)/V(L/K)} = \underbrace{i_{L/M}(\sigma)}_{\in U(L)/V(L/M)} V(L/K) = v\tilde{w}^{-1}V(L/K) = uV(L/K)$.

$\implies uV(L/K) \in \text{im } j$.

□

Theorem 1.3.16. Assume $k = \bar{k}$ and L/K is finite abelian. Then,

$$1 \rightarrow G(L/K) \xrightarrow{i_{L/K}} U(L)/V(L/K) \rightarrow U(K) \rightarrow 1$$

is exact.

Proof. Induction on $[L : K]$. Case $L = K$ is trivial. Assume $[L : K] > 1$.

L/K cyclic \implies by 1.3.13 we're done. Assume L/K not cyclic.

Choose subextension $M/K \subsetneq L/K$ a subextension such that L/M is cyclic.

Consider the following commutative diagram:

(1)

$$\begin{array}{ccccc}
 & 1 & & 1 & \\
 & \downarrow & & \downarrow & \\
 & G(L/M) & \xrightarrow{id} & G(L/M) & \\
 & \downarrow & & \downarrow & \\
 (2) \quad 1 & \longrightarrow & G(L/K) & \xrightarrow{i_{L/K}} & U(L)/V(L/K) \xrightarrow{N_{L/K}} U(K) \longrightarrow 1 \\
 & & \downarrow & & \downarrow N_{L/M} \quad \downarrow id \\
 (3) \quad 1 & \longrightarrow & G(M/K) & \xrightarrow{i_{M/K}} & U(M)/V(M/K) \xrightarrow{N_{M/K}} U(K) \longrightarrow 1 \\
 & & \downarrow & & \downarrow \\
 & & 1 & & 1
 \end{array}$$

(1) is exact by 1.3.15, (3) is exact by induction, (2) is exact on the left [1.3.11] and on the right [1.3.4i]. Diagram chase implies exactness of 2 in the middl.

□

Remark. If L/K is any totally ramified Galois extension one still has an exact sequence:

$$\begin{array}{ccccccc}
 1 & \longrightarrow & G(L/K)^{ab} & \xrightarrow{i_{L/K}} & \frac{U(L)}{V(L/K)} & \longrightarrow & U(K) \longrightarrow 1 \\
 & & \searrow & & & & \\
 & & G(L/K) & & & &
 \end{array}$$

Almost the Reciprocity Homomorphism

Suppose now that K has finite residue field k and $|k| = q$.

Let L/K be a totally ramified finite abelian extension.

Then the map:

$$G(\underbrace{L_{nr}}_{=L_{\pi}K_{nr}}/K_{nr}) \xrightarrow[\cong]{res} \underbrace{G(L^{nr}/K^{nr})}_{=G(L/(L \cap K^{nr}=K))} \xrightarrow[\cong]{res} G(L/K)$$

Define $\psi_K : U(K_{nr}) \rightarrow U(K_{nr})$ by $\psi_K(a) = \varphi_{K_{nr}/K}(a)a^{-1}$ and similarly $\psi_L : U(L_{nr}) \rightarrow U(L_{nr})$. Consider the commutative diagram:

$$\begin{array}{ccccccc}
 & & \ker(\bar{\psi}_L) & \longrightarrow & \ker(\psi_K) & & \\
 & & \downarrow & & \downarrow & & \\
 1 & \longrightarrow & G(L/K) \cong G(L_{nr}/K_{nr}) & \xrightarrow{i_{L_{nr}/K_{nr}}} & \frac{U(L_{nr})}{V(L_{nr}/K_{nr})} & \longrightarrow & U(K_{nr}) \longrightarrow 1 \\
 & & \downarrow \sigma \mapsto 1 & & \downarrow \bar{\psi}_L & & \downarrow \psi_K \\
 1 & \longrightarrow & G(L/K) & \xrightarrow{i_{L_{nr}/K_{nr}}} & \frac{U(L_{nr})}{V(L_{nr}/K_{nr})} & \longrightarrow & U(K_n) \longrightarrow 1 \\
 & & \downarrow \cong & \nearrow & \downarrow & & \\
 & & G(L/K) & \longrightarrow & \text{coker}(\bar{\psi}_L) & & \\
 & & & & \downarrow & & \\
 & & & & 1 & &
 \end{array}$$

$\bar{\psi}_L$ is the induced map on $U(L_{nr})/V(L_{nr}/K_{nr})$

Note: 1. $\bar{\psi}_L(i_{L_{nr}/K_{nr}}(\sigma)) = \psi_L\left(\frac{\sigma(\pi_L)}{\pi_L}\right) = 1$

2. $\varphi_{L_{nr}/L}|_{K_{nr}} = \varphi_{K_{nr}/K}$, hence:

$$N_{L_{nr}/K_{nr}} \circ \psi_L = \psi_K \circ N_{L_{nr}/K_{nr}}$$

These two points show the commutativity of this diagram.

Lemma 1.3.17. i) $\psi_K : U(K_{nr}) \rightarrow U(K_{nr})$ is surjective and $\psi_K^a : \mathcal{O}_{K_{nr}} \rightarrow \mathcal{O}_{K_{nr}}$, $\psi_K^a(a) = \varphi_{K_{nr}/K}(a) - a$.

ii) $\psi_L : V(L_{nr}/K_{nr}) \rightarrow V(L_{nr}/K_{nr})$ is surjective.

iii) $\ker \psi_K = U(K)$

Proof. Set $U^n = 1 + \pi_K^n \mathcal{O}_{K_{nr}} \leq U(K_{nr})$

i) One has $\psi_K(a) \stackrel{(1)}{\cong} a^{q-1} \pmod{U^1} \implies \psi_K \pmod{U^1}$ is surjective since $k_{K_{nr}} = \bar{k}_{K_{nr}}$. Also,

$$\psi_K : U^n/U^{n+1} \rightarrow U^n/U^{n+1}$$

$$1 + a\pi^n \pmod{U^{n+1}} \mapsto 1 + (a^q - a)\pi^n \pmod{U^{n+1}}$$

$$(1 + a^q\pi^n)(1 + a\pi^n)^{-1} = 1 + (a^q - a)\pi^n$$

$$\frac{1}{1+x} = 1 - x + \dots$$

And since $a \mapsto a^q - a$ is surjective on $k_{K_{nr}}$ this map is surjective.

By HW3/1 $\psi_K : U(K_{nr}) \rightarrow U(K_{nr})$ is surjective. Same reasoning gives that $\psi_K^a : \mathcal{O}_{K_{nr}} \rightarrow \mathcal{O}_{K_{nr}}$ is surjective.

ii) For $\sigma \in G(L/K) = G(L_{nr}/K_{nr})$, $x \in U(L_{nr})$ consider $\sigma(x)x^{-1} \in V(L_{nr}/K_{nr})$.

By i we can choose $y \in U(L_{nr})$ such that $x = \psi_L(y)$. $L^{nr}/K = L \cdot K^{nr}/K$ is abelian.

Thus, $\varphi_{L_{nr}/L} \circ \sigma = \sigma \circ \varphi_{L_{nr}/L}$

$$\implies \psi_L\left(\frac{\sigma(y)}{y}\right) = \sigma(x)x^{-1} \in V(L_{nr}/K_{nr}). \text{ This shows ii.}$$

iii) $u \in \ker \psi_K$. Write $u = \sum_{i=0}^{\infty} a_i \pi^i$, $a_i \in \mu(K^{nr}) \cup \{0\}$, $a_0 \neq 0$.

$\implies \psi_K(u) = \varphi_{K_{nr}/K}(u)u^{-1} = 1 \pmod{\pi} \cdot a_0^{q-1} \equiv 1 \pmod{\pi}$. a_0 is a root of unity $\implies a_0^{q-1} = 1$. $\implies a_0 \in \mu_{q-1}(K^{nr})$. By Hensel's lemma, $a_0 \in \mu_{q-1}(K)$.

By induction, assume $a_0, \dots, a_{n-1} \in \mu(K) \cup \{0\}$, $n \geq 1$. $\exists w \in U(K) : uw^{-1} = 1 + a\pi^n$ where $a \in \mathcal{O}_{K_{nr}}$.

$$u = a_0 + a_1\pi + \dots + a_{n-1}\pi^{n-1} + b\pi^n$$

$$= \underbrace{(a_0 + \dots + a_{n-1}\pi^{n-1})}_{=w} \left(1 + \frac{b\pi^n}{a_0 + a_1\pi + \dots + a_{n-1}\pi^{n-1}}\right).$$

$$\implies 1 = \psi_K(u) = \psi_K(uw^{-1}) = \frac{1 + \varphi_{K_{nr}/K}(a)\pi^n}{1 + a\pi^n} \equiv 1 + (a^q - a)\pi^n \pmod{\pi^{n+1}}$$

Therefore, $a^q \equiv a \pmod{\pi} \implies a = c_n + b_n\pi$ with $c_n \in \mu_{q-1}(K) \cup \{0\}$, $b_n \in \mathcal{O}_{K_{nr}}$.

Thefeferore, $a_n \in \mu_{q-1}(K) \cup \{0\}$.

□

Thursday, 2/6/2025

Theorem 1.3.18. Suppose $k = k_K$ is finite. For any abelian totally ramified extension L/K , there is a canonical homomorphism:

$$\eta_{L/K} : U(K) \rightarrow G(L/K)$$

Which is surjective and has kernel $N_{L/K}(U(L))$.

Hence $\eta_{L/K}$ induces an isomorphism:

$$\frac{U(K)}{N_{L/K}(U(L))} \xrightarrow{\eta_{L/K}} G(L/K)$$

$\eta_{L/K}$ is functorial in the sense that if $M/K \subseteq L/K$ is a subextension then there is a commutative diagram:

$$\begin{array}{ccccccc} 1 & \longrightarrow & N_{L/K}(U(L)) & \longrightarrow & U(K) & \xrightarrow{\eta_{L/K}} & G(L/K) \longrightarrow 1 \\ & & \downarrow & & \downarrow id & & \downarrow res \\ 1 & \longrightarrow & N_{M/K}(U(M)) & \longrightarrow & U(K) & \xrightarrow{\eta_{M/K}} & G(M/K) \longrightarrow 1 \end{array}$$

Proof. From the diagram we considered before the snake lemma gives us an exact sequence:

$$\begin{array}{ccccccc} U(L) \cap V(L_{nr}/K_{nr}) & \longrightarrow & U(L) & \twoheadrightarrow & \ker(\bar{\psi}_L) & \xrightarrow{N} & \ker(\psi_K) \\ & & \searrow & & \downarrow \subset & & \downarrow \\ 1 & \longrightarrow & G(L/K) \cong G(L_{nr}/K_{nr}) & \xrightarrow{i_{L_{nr}/K_{nr}}} & \frac{U(L_{nr})}{V(L_{nr}/K_{nr})} & \xrightarrow{N} & U(K_{nr}) \longrightarrow 1 \\ & & \downarrow \sigma \mapsto 1 & & \downarrow \bar{\psi}_L & & \downarrow \psi_K \\ 1 & \longrightarrow & G(L/K) & \xrightarrow{i_{L_{nr}/K_{nr}}} & \frac{U(L_{nr})}{V(L_{nr}/K_{nr})} & \longrightarrow & U(K_n) \longrightarrow 1 \\ & & \downarrow \cong & & \downarrow & & \\ & & G(L/K) & \longrightarrow & \text{coker}(\bar{\psi}_L) & & \\ & & & & \downarrow & & \\ & & & & 1 & & \end{array}$$

$$\ker(\bar{\psi}_L) \rightarrow \ker(\psi_K) \xrightarrow{1.3.17ii} U(K) \xrightarrow{\eta_{L/K}} G(L/K) \rightarrow \text{coker}(\bar{\psi}_L) \xrightarrow{1.3.17i} 1$$

Let $\bar{u} = uV(L_{nr}/K_{nr}) \in \ker(\bar{\psi}_L) \implies \psi_L(u) \in V(L_{nr}/K_{nr})$.

1.3.17ii $\implies \exists w \in V(L_{nr}/K_{nr})$ such that $\psi_L(w) = \psi_L(u)$.

Thus, $\psi_L(uw^{-1}) = 1$.

1.3.17iii $\implies uw^{-1} \in U(L)$.

Therefore we can deduce that $\ker(\bar{\psi}_L) = U(L)V(L_{nr}/K_{nr})$.

$$\implies \text{im}(\ker(\bar{\psi}_L)) \xrightarrow{N} \ker(\psi_K) = U(K) = N_{L/K}(U(L))$$

$$\text{Hence, } \frac{U(K)}{N(U(L))} \xrightarrow[\eta_{L/K}]{\cong} G(L/K)$$

The functoriality of $\eta_{L/K}$ follows from the functoriality of the connecting homomorphism of the snake lemma. □

Theorem 1.3.19. For every finite abelian extension L/K (not necessarily totally ramified), there is a canonical isomorphism

$$\eta_{L/K} : \frac{U(K)}{N_{L/K}(U(L))} \rightarrow G(L/K)_0$$

which is functorial w.r.t. subextensions M/K as in the previous theorem.

Proof. We use the decomposition theorem [1.3.5].

$\exists L' \subset L^{nr}$ such that $\overline{L'/K}$ is finite abelian [since $L^{nr} = L.K^{nr}$ the compositum of two abelian extensions] such that $(L')^{nr} = L'.K^{nr} = L.K^{nr} = L^{nr}$.

Then, $\text{Gal}(L'/K) \cong G((L')^{nr}/K^{nr}) \cong G(L^{nr}/K^{nr}) \cong G(L/K)_0$.

$$1.3.18 \implies \frac{U(K)}{N_{L'/K}(U(L'))} \cong G(L'/K) = G(L/K)_0.$$

We can pass to the completion.

Since $L'K_r \stackrel{(1)}{=} L.K_r$ for some unramified K_r/K (proof of 1.3.5).

and $N_{L'K_r/L'}(U(L'K_r)) \stackrel{(2)}{=} U(L')$ by 1.3.4i

$$N_{L'K_r/L}(U(LK_r)) \stackrel{(3)}{=} U(L) \text{ by 1.3.4i.}$$

$$\implies N_{L'/K}(U(L')) \stackrel{(2)}{=} N_{L'/K}(N_{L'K_r/L'}(U(L'K_r)))$$

$$= N_{L'K_r/K}(U)L'K_r$$

$$\stackrel{(1)}{=} N_{LK_r/K}(U(LK_r))$$

$$= N_{L/K}(N_{LK_r/L}(U(LK_r)))$$

$$\stackrel{(3)}{=} N_{L/K}(U(L))$$

\implies we get an isomorphism:

$$\frac{U(K)}{N_{L/K}(U(L))} \xrightarrow{\eta_{L/K}} G(L/K)_0$$

□

Goal: we want to prove that there is a canonical isomorphism:

$$K^\times/N_{L/K}(L^\times) \xrightarrow{\cong} G(L/K)$$

for any finite abelian extension L/K .

We want to do something with uniformizers, and uniformizers should roughly correspond to frobenius elements.

Norm Groups of Lubin-Tate Extensions

Let π be a uniformizer of K , $|k_K| = q = p^f$, $\mathcal{O} = \mathcal{O}_K$, $e \in \mathcal{E}_\pi$ aka a LT series for π .

Let F_e be an LT \mathcal{O} -module for e , and $L_m = L_{\pi,m} = K(F_e[\pi^m])$ aka the series generated by π^m torsion points. This is independent of the choice of e but does depend on π .

We know that L_m/K is totally ramified abelian Galois extension of degree $(q-1)q^{m-1}$ where $m \geq 1$. Recall that $L_0 = K$.

Set $U^m(K) = 1 + \pi^m(K) \leq U(K)$, $U^0(K) = U(K)$.

We now have two description of $G(L_m/K)$.

- 1) Via LT theory: the map $U(K)/U^m(K) \xrightarrow{\cong} G(L_m/K)$ defined by $aU^m(K) \leftrightarrow \sigma$ if for all $\alpha \in F_e[\pi^m]$, $\sigma(\alpha) = [a]_{F_e}(\alpha)$
- 2) Via $\eta_{L/K} : U(K)/N_{L_m/K}(U(L_m)) \xrightarrow{\cong} G(L_m/K)$ [we don't need to put ramification since it is totally ramified].

Natural questions:

- i) Is $N_{L_m/K}(U(L_m)) = U^m(K)$? Answer is yes, but not obviously so.
- ii) If the answer to i is yes [which it is] then are these two maps the same? [Answer is no, but kind of close! $\forall a \in U(K), \forall \alpha \in F_e[\pi^m], \eta_{L_m/K}(a)(\alpha) = [a^{-1}](\alpha)$]

Lemma 1.3.20. Given a monic polynomial $f(x) \in \mathcal{O}[x] \setminus \{0\}$ with degree n with $p \nmid n$, there exists $s \in \mathbb{Z}_{>0}$ and $r(x) \in \mathcal{O}[x]$ with $r(0) = 1, \deg r < s$ such that the mod π reduction of $h(x) := x^s f(x) + r(x)$ is separable.

Proof. HW4

□

Theorem 1.3.21. $N_{L_m/K}(U(L_m)) = U^m(K)$

Proof. We show first $N(U(L)) \subset U^m(K)$

Set $L_m = L$ and write $w \in U(L)$ as $w = \zeta u$ with $u \in U'(L)$ and $\zeta \in \mu(L)L$ totally ramified $= \mu(K) = \mu_{q-1}(K)$.

$$\implies N(w) = N(\zeta u) = \zeta^{[L:K]} N(u) = \zeta^{(q-1)q^{m-1}} N(u) = N(u).$$

Suffices to show that $N_{L/K}(U'(L)) \subset U^m(K)$.

Case $m = 1$ is easy.

Assume $m \geq 2$, set $n = m(q-1)q^{m-1} - 1 \implies p \nmid n$. Let λ be a uniformizer of L .

Write $U'(L) \ni u = 1 + a_1\lambda + \dots + a_n\lambda^n + x, v(x) \geq n+1 = v(\pi^m)$.

$v = v_L$ = normalized valuation on $L, v_L(\lambda) = 1 \implies v(\pi) = (q-1)q^{m-1}$.

Consider $f(x) = x^n + a_1x^{n-1} + \dots + a_n \in \mathcal{O}[x]$. Since $p \nmid n$ we can apply 1.3.20 and get $h(x) = x^s f(x) + r(x), h \pmod{\pi}$ separable. Then \bar{h} has $s+n := t = \deg(h) = \deg(\bar{h})$ distinct roots in $\bar{k} = \bar{\mathbb{F}}_q$. Hensel's lemma implies roots of h in \bar{K} are actually in K_{nr} .

Let z_1, \dots, z_t be the roots of $h(x)$ in K_{nr} .

Since h is monic, they actually lie on $\mathcal{O}_{K_{nr}}$. $z_i \in \mathcal{O}_{K_{nr}}$.

Recall that $h(0) = r(0) = 1$ so $\prod z_i = \pm 1$.

Thus, $z_i \in \mathcal{O}_{K_{nr}}^\times = U(K_{nr})$.

Tuesday, 2/11/2025

Moreover:

$$\begin{aligned} (1 - z_1\lambda)(1 - z_2\lambda) \cdots (1 - z_t\lambda) &= 1 - \left(\sum_i z_i \right) \lambda \\ &= 1 + a_1\lambda + a_2\lambda^2 + \cdots + a_n\lambda^n + x', v_L(x') \geq n+1 \\ &= 1 + a_1\lambda + \cdots + a_n\lambda^n + x + (x' - x) = v \left(1 + \frac{x' - x}{v} \right) \end{aligned}$$

Let $y := \frac{x' - x}{v}$. So $v_L(y) \geq n+1$.

Therefore,

$$N(1+y) = 1 + \sum_{\sigma \in G(L/K)} \sigma(y) + \cdots = 1 + y', v_L(y') \geq n+1 = v_L(\pi^m)$$

Thus, $y' \in \mathcal{O}_K \implies y' \in \pi^m \mathcal{O}_K$.

Therefore, $N(1+y) \equiv 1 \pmod{\pi^m}$.

Therefore, $N(u) \in U^m(K) \iff N\left(\prod_{i=1}^t (1 - z_i\lambda)\right) \in U^m(K)$ (2)

NOTE: UNUSED: Then, STS: $\forall 1 \leq i \leq t : N_{L_m/K}(1 - z_i\lambda) \in U^m(K)$.

Since L_m/K is totally ramified, $G(L_{nr}/K_{nr}) \xrightarrow[\text{res}]{\cong} G(L/K)$.

Therefore, $N_{L/K}(1 - z_i\lambda) = N_{L_{nr}/K_{nr}}(1 - z_i\lambda) = N_{L_{nr}/K_{nr}}(z_i(z_i^{-1} - \lambda))$

$$= z_i^d N_{L_{nr}/K_{nr}}(z_i^{-1} - \lambda)$$

Setting $\zeta_i = z_i^{-1}, e_m(x) = [\pi^m]_{F_e}$,

$$N_{L_{nr}/K_{nr}}(\zeta_i - \lambda) = \prod_{\sigma \in G(L/K)} (\zeta_i - \sigma(\lambda)) = \text{min. poly of } \lambda(\zeta_i).$$

From here WLOG assume that $e(x) = \pi x + x^q$. We can further assume that $e_m(\lambda) = 0$ but $e_{m-1}(\lambda) \neq 0$.

Then, the minimal polynomial of λ is $\frac{e_m(x)}{e_{m-1}(x)}$.

Thus, $N_{L_{nr}/K_{nr}}(\zeta_i - \lambda) = \left(\frac{e_m}{e_{m-1}} \right) (\zeta_i)$. Since ζ_i is not a root of these, $= \frac{e_m(\zeta_i)}{e_{m-1}(\zeta_i)}$. Hence,

$$N\left(\prod_i (1 - z_i\lambda)\right) = \prod_i N(1 - z_i\lambda) = \left(\prod_i z_i^d\right) \prod_i N(\zeta_i - \lambda) = \left(\prod_i z_i\right)^d \prod_i N(\zeta_i - \lambda)$$

Since d is even,

$$= \prod N(\zeta_i - \lambda) = \prod_i \frac{e_m(\zeta_i)}{e_{m-1}(\zeta_i)i} = 1 + \frac{\prod_i e_m(\zeta_i) - \prod_i e_{m-1}(\zeta_i)}{\prod_i e_{m-1}(\zeta_i)}$$

Note that $\prod_i e_{m-1}(\zeta_i), \prod_i e_m(\zeta_i)$ have $v_L = 0$.

Then it suffices to show that $\prod_i e_m(\zeta_i) - \prod_i e_{m-1}(\zeta_i) \equiv 0 \pmod{\pi^m}$.

Note: $e(\zeta_i) \equiv \zeta_i^q \pmod{\pi}$. It is the same as applying the frobenius. Note that the frobenius must permute the roots.

Thus, $e(\zeta_i) \equiv \zeta_{\tau(i)}$ where τ is some permutation of $\{1, \dots, t\}$.

$$\begin{aligned} \text{Lifting the Exponent?} &\implies e(\zeta_i)^q = \zeta_{\tau(i)} \pmod{\pi^2} \\ &\implies e_2(\zeta_i) = e_1(\zeta_{\tau(i)}) \pmod{\pi^2} \end{aligned}$$

Inducting, $e_m(\zeta_i) \equiv e_{m-1}(\zeta_{\tau(i)}) \pmod{\pi^m}$

$$\text{Product} \implies \prod_i e_m(\zeta_i) \equiv \prod_i e_{m-1}(\zeta_{\tau(i)}) \pmod{\pi^m}$$

This shows (3) \implies (2) \implies (1).

This ends Step 1.

Step 2: $N_{L/K}(U(L)) = U^m(K)$.

$$\text{Proof of Step 2 } |G(L_m/K)| \stackrel{1.3.18}{=} |U(K)/N(U(L))| \geq |U(K)/U^m(K)|$$

inequality since $N(U(L_m)) \subset U^m(K)$ from step 1.

However, $|U(K)/U^m| = |G(L/K)|$ from LT Theory theorem 1.1.2 [as discussed in Fall].

□

Local Class Field Theory

Let K be a field. Then we have a correspondence:

$$\left\{ \mathcal{N} \subset K^\times \mid \mathcal{N} \text{ open, } [K^\times : \mathcal{N}] < \infty \right\} \leftrightarrow \{L/K \subset K^{ab}/K \text{ finite exts}\}$$

$$\mathcal{N} \mapsto L_{\mathcal{N}} = \text{class field assoc. to } \mathcal{N}$$

Here $N_{L_{\mathcal{N}}/K}(L_{\mathcal{N}}^\times) = \mathcal{N}$ and $K^\times/\mathcal{N} \xrightarrow{\cong} G(L_{\mathcal{N}}/K)$.

$$N_{L/K}(L^\times) \leftrightarrow L$$

$L_{\mathcal{N}}$ is called the class field corresponding to \mathcal{N} .

Let K be as above, $|k| < \infty$. Let $K^{ab} \subset \bar{K}$ be the maximal abelian extension of K .

$$G(K^{ab}/K)_0 := \ker(G(K^{ab}/K) \rightarrow G(k_{K^{ab}}/k) = G(\bar{k}/k))$$

Recall if we have $M/K \subseteq L/K$ we indeed have $G(L/K)_0 \xrightarrow{\text{res}} G(M/K)_0$. This is not true for lower numbering for larger numbers!!!

Theorem 1.3.22. i) The isomorphisms $\eta_{L/K} : U(K)/N(U(L)) \xrightarrow{\cong} G(L/K)_0$ from 1.3.19 for L/K finite abelian induce an isomorphism:

$$U(K) \xrightarrow[\eta_K]{\cong} G(K^{ab}/K)_0$$

ii) The exact sequence:

$$1 \rightarrow G(K^{ab}/K)_0 \rightarrow G(K^{ab}/K) \rightarrow G(\bar{k}/k) \rightarrow 1$$

splits continuous (but not canonically).

Proof. i) Let \mathcal{A} be the set of all finite subextensions $L/K \subset K^{ab}/K$. Set $\mathcal{N}_L^0 = N_{L/K}(U(L))$. Then $(\eta_{L/K})_{L \in \mathcal{A}}$ induces an isomorphism:

$$\varprojlim_{L \in \mathcal{A}} U(K)/\mathcal{N}_L^0 \xrightarrow{\cong} \varprojlim_{L \in \mathcal{A}} G(L/K)_0 \stackrel{\text{exercise}}{=} G(K^{ab}/K)_0$$

Given $L \in \mathcal{A}$, $U(L)$ is compact. Since $N_{L/K}$ is continuous, $N_{L/K}(U(L))$ is compact. A compact subset in a Hausdorff space is closed. Thus, \mathcal{N}_L^0 is closed. \mathcal{N}_L^0 has finite index in $U(K)$. It is also complement of union of finitely many cosets thus it is also open..

Thus, $\exists m \geq 0 : U^m(K) \subseteq \mathcal{N}_L^0$.

1.3.21 $\implies N_{L_m/K}(U(L_m)) = U^m(K) \implies$ the system $(\mathcal{N}_L^0)_{L \in \mathcal{A}}$ is equivalent to the system $(U^m(K))_{m \geq 0}$ but the profinite completion

$$\varprojlim_m U(K)/U^m(K) \xleftarrow{\cong} U(K)$$

$$\varprojlim_{L \in \mathcal{A}} U(K)/\mathcal{N}_L^0 \xleftarrow{\cong} U(K)$$

This proves i.

ii) HW 3 □

Theorem 1.3.23. With $L_\pi = \bigcup_m L_{\pi,m}$ as in section 1.1 we have $K^{ab} = L_\pi \cdot K^{nr}$.

Proof. Consider the commutative diagram with exact rows:

$$\begin{array}{ccccccc}
& & U(K) & & & & \\
& & \downarrow \cong_{\eta_K} & & & & \\
1 & \longrightarrow & G(K^{ab}/K)_0 & \longrightarrow & G(K^{ab}/K) & \longrightarrow & 1 \\
& & \downarrow \alpha = \text{res} & & \downarrow \beta = \text{res} & & \downarrow \gamma = \text{res} = \text{id} \\
1 & \longrightarrow & G(L_\pi K^{nr}/K)_0 & \longrightarrow & G(L_\pi K^{nr}/K) & \longrightarrow & 1 \\
& & \downarrow = & & & & \\
& & \varprojlim G(L_m K^{nr}/K)_0 & & & & \\
& & \downarrow = & & & & \\
& & \varprojlim_m G(L_m/K) & & & & \\
& & \downarrow = & & & & \\
& & \varprojlim_m U(K)/U^m(K) & & & & \\
& & \downarrow = & & & & \\
& & U(K) & & & &
\end{array}$$

Note: $\alpha = \text{id} \implies \beta$ is an isomorphism, thus $G(K^{ab}/L_\pi K^{nr}) = \{1\} \implies L_\pi K^{nr} = K^{ab}$ □

Thursday, 2/13/2025

Lemma 1.3.24. Let π be a uniformizer of K , $e \in \mathcal{E}_\pi$ a LT series, $L_{\pi,m} =$ Lubin Tate extension associated to F_e [which is independent of choice of e]. Then, $\pi \in N_{L_{\pi,m}/K}(L_{\pi,m}^\times =)$.

Proof. WLOG we may assume $e(x) = \pi x + x^q$. Set $e_m(x) = \underbrace{(e \circ \cdots \circ e)}_m(x)$.

We've seen $\frac{e_m(x)}{e_{m-1}(x)} \in \mathcal{O}_K[x]$ is irreducible polynomial over K of degree $(q-1)q^{m-1}$. This is not only irreducible, but also Eisenstein. Since we're adjoining root λ_m of an Eisenstein polynomial, λ_m must be a uniformizer.

$$\frac{e_m(x)}{e_{m-1}(x)} = \prod_{\sigma \in G_{L_{\pi}, m}} (x - \sigma(\lambda_m))$$

Now note that,

$$\pi = \left(\frac{e_m(x)}{e_{m-1}(x)} \right) (0) = \prod_{\sigma} (-\sigma(\lambda_m)) = \prod_{\sigma} \sigma(-\lambda_m) = N_{L_{\pi, m}/K}(\lambda_m)$$

□

Definition of the norm residue symbol

Let L'/K be a totally ramified finite abelian extension. Let $\lambda \in L'$ be a uniformizer and set $\pi = N_{L'/K}(\lambda)$. Since it is totally ramified, π must be a uniformizer of K . Let K_n/K be the unramified extension of degree n . Set $L := L'.K_n$. This is abelian over K . Then the exact sequence:

$$1 \longrightarrow G(L/K)_0 \longrightarrow G(L/K) \xrightarrow{\cong G(k_L/k)} G(K_n/K) \longrightarrow 1$$

The exact sequence splits since the canonical map $G(L/K) \rightarrow G(L'/K) \times G(K_n/K)$ is an isomorphism.

Hence, there exists a unique $\varphi_{L/L'} \in G(L/K)$ such that $\varphi_{L/L'}|_{L'} = \text{id}_{L'}$ and $\varphi_{L/L'}|_{K_n} = \varphi_{K_n/K}$.

Then we define $r_{L/K} : K^\times \rightarrow G(L/K)$ such that,

$$r_{L/K}(a) = \eta_{L/K} \left(\underbrace{a^{-1} \pi^{v(a)}}_{\in U(K)} \right) \varphi_{L/L'}^{v(a)}$$

Where $v : K^\times \rightarrow \mathbb{Z}$ given by $\pi \mapsto 1$ is the normalized valuation and $\eta_{L/K} : U(K) \rightarrow G(L/K)$ is the surjective homomorphism in 1.3.19 with $\text{kker}(\eta_{L/K}) = N_{L/K}(U(L))$.

Note: $r_{L/K}$ is a homomorphism.

Set $\mathcal{N}_L = N_{L/K}(L^\times)$, $\mathcal{N}_L^0 = N_{L/K}(U(L))$.

$r_{L/K}(a)$ is also written as $(a, L/K)$ and is called the norm residue symbol.

Proposition 1.3.25. Let L'/K and $L = L'.K_n$, $\lambda \in L'$ a uniformizer and $\pi = N_{L'/L}(\lambda)$ be as above. Then, $r_{L/K}$ is surjective and its kernel is \mathcal{N}_L . Hence, $r_{L/K}$ induces an isomorphism which by abuse of notation we can also denote as $r_{L/K}$.

$$\frac{K^\times}{\mathcal{N}_L} \xrightarrow[r_{L/K}]{\cong} G(L/K)$$

Proof. We have $L^\times = U(L) \cdot \lambda^\mathbb{Z}$ since L/L' is unramified. Applying the norm, $\mathcal{N}_L = \mathcal{N}_L^0 \cdot N_{L/K}(\lambda)^\mathbb{Z} = \mathcal{N}_L^0 N_{L'/K}(N_{L/L'}(\lambda))^\mathbb{Z} = \mathcal{N}_L^0 \cdot N_{L'/K}(\lambda^n)^\mathbb{Z} = \mathcal{N}_L^0 \cdot \pi^{n\mathbb{Z}}$.

Write $a \in K^\times$ as $a = u\pi^m$ so that $u \in U(K), m \in \mathbb{Z}$.

Thus, $r_{L/K}(a) = \eta_{L/K}(u^{-1}) \varphi_{L/L'}^m \stackrel{!}{=} \text{id} \iff \eta_{L/K}(u) = \text{id}$ and $\varphi_{L/L'}^m = \text{id}$
 $\stackrel{1.3.19}{\iff} u \in \mathcal{N}_L^0, n \mid m (\text{ord}(\varphi_{L/L'}) = \text{ord}(\varphi_{K_n/K}) = n) \iff a \in \mathcal{N}_L$.

1.3.19: $\eta_{L/K} : U(K) \rightarrow G(L/K)_0$ is surjective, and since $G(L/K) = G(L/K)_0 \cdot \varphi_{L/L'}^\mathbb{Z}$ we deduce that $r_{L/K}$ is surjective. □

Next goals:

- 1) Show that $r_{L/K}$ is independent of the choice $L' \subset L$.
- 2) To show that for any subextension $M/K \subset L/K$,

$$\ker(K^\times \rightarrow G(L/K) \rightarrow G(M/K)) = \mathcal{N}_M$$

Lemma 1.3.26. If L/K is an arbitrary finite abelian extension, then $[K^\times : \mathcal{N}_L] = [L : K]$.

Proof. Let $K_L \subset L$ be the maximal unramified subextension. Then L/K_L is totally ramified and if λ is a uniformizer of L , then $\pi := N_{L/K_L}(\lambda)$ is a uniformizer of K_L . Hence, upto an element of $U(K_L)$ also a uniformizer of $K \implies |K_L^\times| = |K^\times| = |\pi|^\mathbb{Z}$.

$$\begin{aligned} &\implies \left| \frac{K^\times}{\mathcal{N}_L} \right| = \left| \frac{U(K)}{\mathcal{N}_L^0} \right| \left| \frac{|K^\times|}{|N_{L/K}(\lambda)|^\mathbb{Z}} \right| \\ &\stackrel{1.3.19}{=} |G(L/K)_0| \left| \frac{|\pi|^\mathbb{Z}}{|N_{K_L/K}(\pi)|^\mathbb{Z}} \right| = |G(L/K)_0| \left| \frac{|\pi|^\mathbb{Z}}{|\pi|^{[K_L : K] \mathbb{Z}}} \right| \\ &= |G(L/K)_0| [K_L : K] = e(L/K) f(L/K) = [L : K] \end{aligned}$$

□

Proposition 1.3.27. Let $L', L, \lambda \in L'$ be as in the beginning of this section. Let $L'_2 \subset L$ be another totally ramified extension of K such that $L'_2 \cdot K_n = L$. Then,

$$\ker(K^\times \xrightarrow{r_{L/K}} G(L/K) \rightarrow G(L'_2/K)) = \mathcal{N}_{L'_2} \subset K^\times$$

Proof. Set $r = r_{L/K} : K^\times \rightarrow G(L/K)$. Recall $r(a) = \eta_{L/K}(a^{-1} \pi^{v(a)}) \varphi_{L/L'}^{v(a)}$. Let r_2 be the composite homomorphism:

$$\begin{array}{ccc} & r_2 & \\ K^\times & \xrightarrow{r} & G(L/K) \longrightarrow G(L'_2/K) \end{array}$$

r_2 is surjective by 1.3.25. r_2 induces an isomorphism:

$$K^\times / \ker(r_2) \rightarrow G(L'_2/K)$$

If we show that $\mathcal{N}_{L'_2} \subset \ker(r_2) \implies$ surjection $\underbrace{K^\times / \mathcal{N}_{L'_2}}_{\text{order } [L'_2 : K]} \xrightarrow{\cong} K^\times / \ker(r_2)$

$G(L'_2/K)$

Hence $N_{L'_2} = \ker r_2$.

STS: $\mathcal{N}_{L'_2} \subset \ker(r_2)$.

$\mathcal{N}_{L'_2} = \mathcal{N}_{L'_2}^0 \mathcal{N}_{L'_2/K}(\lambda_2)^\mathbb{Z}$ for any uniformizer λ_2 of L'_2 .

Since $U(L'_2) = \{\lambda_2(\tilde{\lambda}_2)^{-1} \mid \lambda_2, \tilde{\lambda}_2 \text{ uniformizer of } L'_2\}$, it suffices to show $N_{L'_2/K}(\lambda_2) \in \ker(r_2)$ for any uniformizer λ_2 of L'_2 .

Note: L/L'_2 is unramified since $L = L'_2 \cdot K_n$. Therefore, $G(L/L'_2)$ is cyclic and if we restrict this to $G(K_n/K)$ we get an isomorphism. Since $G(K_n/K)$ is generated by the frobenius $\langle \varphi_{K_n/K} \rangle$ and $\varphi_{L/L'}|_{K_n} = \varphi_{K_n/K}$:

Let φ_{L/L'_2} be the unique element with $|_{\varphi_{L/L'_2}} = \text{id}$. Then, $\varphi_{L/L'_2} \circ \varphi_{L/L'}^{-1}|_{K_n} = \text{id}$ and $\varphi_{L/L'_2}|_{K_n} = \varphi_{K_n/K}$

$$\implies \varphi_{L/L'_2} \circ \varphi_{L/L'}^{-1} \in G(L/K)_0 \stackrel{1.3.19}{=} \eta_{L/K}(U(K))$$

Thus $\varphi_{L/L'_2} = r(u) \varphi_{L/L'}$ for some $u \in U(K)$.

Then, $G(L/L'_2) = \langle \varphi_{L/L'_2} \rangle$

Fix a uniformizer λ_2 of L'_2 which is a uniformizer of L . Then $\lambda_2 = x\lambda$ where $\lambda \in L', x \in U(L)$. Therefore,

$$\pi = N_{L'/K}(\lambda) = N_{L/K_n}(\lambda) = N_{L/K_n}(x^{-1}) N_{L/K_n}(\lambda_2) = N_{L/K_n}(x^{-1}) N_{L'/K}(\lambda_2) \in K$$

Therefore, $N_{L/K_n}(x) \in U(K)$.

Further, $(r(u) \varphi_{L/L'})(\lambda_2) = \varphi_{L/L'_2}(\lambda_2) = \lambda_2$.

Now we compute in $U(L_{nr}) = U((L')_{nr}) = U((L'_2)_{nr})$.

$$\begin{aligned}
\frac{\eta_{L/K}(u^{-1})(\lambda)}{\lambda} &= \frac{r(u)(\lambda)}{\lambda} = \frac{(r(u)\varphi_{L/L'})(\lambda)}{\lambda} = \overbrace{\frac{(r(u)\varphi_{L/L'})(x^{-1}\lambda_2)}{x^{-1}\lambda_2}}^{\varphi_{L/L'_2}} \\
&= \frac{(r(u)\varphi_{L/L'})(x^{-1})(r(v)\varphi_{L/L'})(\lambda_2)}{x^{-1}\lambda_2} = \frac{(r(v)\varphi_{L/L'})(x^{-1})\lambda}{x^{-1}\lambda} = \frac{(r(v)\varphi_{L/L'})(x^{-1})}{x^{-1}} \\
&= \frac{r(v)(\varphi_{L/L'}(x^{-1}))}{\varphi_{L/L'}(x^{-1})} \frac{\varphi_{L/L'}(x^{-1})}{x^{-1}} \equiv \frac{\varphi_{L/L'}(x^{-1})}{x^{-1}} \pmod{V(L'_{nr}/K_{nr})}
\end{aligned}$$

□

Corollary 1.3.28. The definition of $r_{L/K}$ is independent of the choice of $L' \subset L$ and the uniformizer λ of L' .

Theorem 1.3.29. For any finite abelian extension Ln/K choose an unramified extension K_n/K such that $LK_n = L'K_n$ for L'/K totally ramified. Then,

$$\ker(r_{LK_n/K} : K^\times \rightarrow G(LK_n/K) \rightarrow G(L/K)) = \mathcal{N}_L$$

and induces an isomorphism:

$$\frac{K^\times}{\mathcal{N}_L} \xrightarrow[r_{L/K}]{\cong} G(L/K)$$

2 Tate's Article: p -divisible Groups

Let R be a complete discrete valuation ring (CDVR) with \mathfrak{m} = maximal ideal, $k = R/\mathfrak{m}$, $K = \text{Frac}(R)$.

Convention: R is not a field ($\iff \mathfrak{m} \neq 0$).

Futher Assumption: k is perfect of $\text{char}(k) = p > 0$ and $\text{char}(K) = 0$ (this is applicable in most settings we want to use this in).

Example: $R = \mathbb{Z}_p$ or the ring of integers in a finite extension K/\mathbb{Q}_p . Then $K = \mathbb{Q}_p$ or a finite extension of \mathbb{Q}_p .

Example: $K = \widehat{\mathbb{Q}_p^{nr}} p \supset \mathcal{O}_{\widehat{\mathbb{Q}_p^{nr}}}, k = \overline{\mathbb{F}_p}$.

Example: k any perfect field of $\text{char}(k) = p$ and $R = W(k)$ [Witt Vectors]. Then $\mathfrak{m} = pR$.

Goal: To study certain continuous representation of $\mathcal{G}_K = \text{Gal}(\overline{K}/K)$ on finite dimensional \mathbb{Q}_p -vector spaces. Here we (implicitly) mean continuity by the Krull Topology. Krull Topology on $\text{Gal}(K/F)$ is defined as follows:

Let $\mathcal{F} = \{L \mid L \text{ finite galois subextension of } K \text{ over } F\}$ and $\mathcal{N} = \{\text{Gal}(K/L) \mid L \in \mathcal{F}\}$. Then a subset X of $\text{Gal}(K/F)$ is open if $X = \emptyset$ or $X = \bigcup_i g_i N_i$ with $g_i \in G, N_i \in \mathcal{N}$. This makes $\text{Gal}(K/F)$ a topological group.

The Prototypical Example is the p -adic cyclotomic character given by:

$$\chi_{cyc} : \mathcal{G}_K \rightarrow \mathbb{Z}_p^\times \curvearrowright \mathbb{Q}_q = V$$

$$\chi_{cyc}(\sigma) = a \in \mathbb{Z}_p^\times \iff \forall \zeta \in \mu_{p^\infty}(\overline{K}) : \sigma(\zeta) = \zeta^a$$

This is meant as follow: if $\zeta^{p^n} = 1$ and $a \equiv b \pmod{p^n}$ for some $b \in \mathbb{Z}$ then $\zeta^a := \zeta^b$. Equivalently, χ_{cyc} is obtained as the composition of:

$$\mathcal{G}_K \xrightarrow{\chi_{cyc}} \varprojlim_n G(K(\mu_{p^n})/K) \hookrightarrow \varprojlim_n (\mathbb{Z}/p^n\mathbb{Z})^\times \xrightarrow{=} \mathbb{Z}_p^\times$$

Note: if $K = \mathbb{Q}_p$ (or $\widehat{\mathbb{Q}_p^{nr}}$) then χ_{cyc} is surjective by the irreducibility of the cyclotomic polynomials. If K/\mathbb{Q}_p is finite then $\chi_{cyc}(\mathcal{G}_K)$ is open.

Note: E/K elliptic curve, $E[p^n](\overline{K}) = \{x \in E(\overline{K}) \mid [p^n]_E(x) = \mathcal{O}_E\} \cong (\mathbb{Z}/p^n) \oplus (\mathbb{Z}/p^n) \curvearrowright \mathcal{G}_K$. Therefore,

$\mathcal{G}_K \rightarrow \varprojlim_n \text{Aut}(E[p^n](\overline{K})) = \text{Aut}(\varprojlim E[p^n](\overline{K})) \cong \text{Aut}(\varprojlim (\mathbb{Z}/p^n)^{\oplus 2}) = \text{Aut}(\mathbb{Z}_p^{\oplus 2}) = \text{GL}_2(\mathbb{Z}_p) \curvearrowright \mathbb{Q}_p^2$.

This gives us a \mathbb{Z}_p -linear action of \mathcal{G}_K on $T_p E = \varprojlim E[p^n](\overline{K})$ called the p -adic Tate module of E , and also on $V_p E = T_p E \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$ which is a 2-dimensional \mathbb{Q}_p vector space.

Final: Let K/\mathbb{Q}_p finite and π = uniformizer. Then, $e = \mathcal{E}_\pi$ a LT series for π , $F_e = \text{LT } \mathcal{O}_K$ module.

$$\mathcal{G}_K \curvearrowright T_p F_e = \varprojlim_n \underbrace{F_e[\pi^n](\overline{K})}_{\cong \mathcal{O}_K(\pi^n)} \text{ non-canonically } \cong \mathcal{O}_K \text{ as } \mathcal{O}_K\text{-module.}$$

Thus, $\text{im}(\mathcal{G}_K \rightarrow T_p F_e) \cong \mathcal{O}_K^\times = \text{Aut}_{\mathcal{O}_K}(\mathcal{O}_K)$.

Thus, $\mathcal{G}_K \curvearrowright V_p F_e = T_p F_e \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$ is a vector space of dimension $[K : \mathbb{Q}_p]$.

LCFT tells us this factors through the abelianization: $\mathcal{G}_K \rightarrow \mathcal{G}_K^{ab} \curvearrowright V_p F_e$.

Question: Why p -adic representations? Why not continuous representations $\mathcal{G}_K \rightarrow \text{GL}_n(\mathbb{C})$? Why not $\mathcal{G}_K \rightarrow \text{GL}(\mathbb{Q}_l), l \neq p$? Why not $\mathcal{G}_K \rightarrow \text{GL}_n(\mathbb{A}_\mathbb{Q}) = \prod'_{l \leq \infty} \text{GL}_n(\mathbb{Q}_l)$ where $\mathbb{Q}_\infty = \mathbb{R}$?

Answer: We can study them, but the p -adic representations are especially interesting for the following reason: Continuous representations $\mathcal{G}_K \rightarrow \text{GL}_n(\mathbb{C})$ have finite image! The topologies are incompatible.

For $\mathcal{G}_K \rightarrow \mathrm{GL}_n(\mathbb{Q}_l), l \neq p$ have finite image when restricted to the wild inertial subgroup $\mathcal{P}_K = \mathcal{G}_K^{>0} = \bigcup_{s>0} \mathcal{G}_K^s$ [upper numbering of ramification groups]. $\mathcal{G}_K \rightarrow \mathrm{GL}_n(\mathbb{A}_{\mathbb{Q}})$ are put together from representations into $\mathrm{GL}_n(\mathbb{Q}_l), l \leq \infty$. About \mathcal{G}_K : There are two fundamental exact sequence:

$$1 \rightarrow \mathcal{I}_K \rightarrow \mathcal{G}_K \rightarrow \mathrm{Gal}(\bar{k}/k) \rightarrow 1$$

\mathcal{I}_K is the inertia subgroup. It is closed, and we can write $\mathcal{I}_K = \mathcal{G}_K^0$. Let $\pi \in K$ be a uniformizer. Then $\forall n \in \mathbb{Z}_{>0} \setminus p\mathbb{Z}, \forall \sigma \in \mathcal{I}_K$,

$$\frac{\sigma(\sqrt[n]{\pi})}{\sqrt[n]{\pi}} \in \mu_n(\bar{K})$$

is independent of the choice of $\sqrt[n]{\pi}$ and also independent of the choice of π . Hence one obtains a homomorphism $t : \mathcal{I}_K \rightarrow \varprojlim_{n>0, p \nmid n} \mu_n(\bar{K}) =: \widehat{\mathbb{Z}}^{(p)}(1)$.

superscript (p) since we're not taking the p divisible powers. 'Twist' by (1) since we're taking the roots of unity.

It is non-canonically isomorphic to $\varprojlim_{p \nmid n} \mathbb{Z}/n\mathbb{Z} = \prod_{l \neq p} \mathbb{Z}_l$.

Then, $\mathcal{P}_K = \ker(t)$. We have the following exact sequence:

$$1 \rightarrow \mathcal{P}_K \rightarrow \mathcal{I}_K \rightarrow \widehat{\mathbb{Z}}^{(p)}(1) \rightarrow 1$$

Theorem 2.0.1. \mathcal{P}_K is a pro- p group, is maximal with this property, and is normal in \mathcal{G}_K . One has $\mathcal{P}_K = G(\bar{K}/K_{nr}(\sqrt[n]{\pi} \mid n > 0, p \nmid n))$.

$K_{nr}(\sqrt[n]{\pi} \mid n > 0, p \nmid n)$ is the maximal tamely ramified extension K^{tame} . We have the following exact sequence:

$$1 \rightarrow \widehat{\mathbb{Z}}^{(p)}(1) \rightarrow G(K^{tame}/K) \rightarrow G(K_{nr}/K) \cong G(\bar{k}/k) \rightarrow 1$$

We can be more precise: it is in fact a semidirect product.

Motto: p -adic vector spaces are the natural environment for representations of \mathcal{G}_K (which is 'close to being a pro- p group', meaning it has a very large pro- p subgroup).

Plan: 2.1: Finite Group Schemes.

2.2: p -divisible groups.

2.3: $C = \widehat{\bar{K}}$. In case of \mathbb{Q}_p we denote this by \mathbb{C}_p .

2.4: Theorems on Galois Representations attached to p -divisible groups.

2.1 Finite Group Schemes

2.1.1

Let R be a commutative ring. An affine group scheme over R is an affine scheme $G = \mathrm{Spec}(A) \xrightarrow{\uparrow s} S := \mathrm{Spec}(R)$ equipped with:

- a multiplication $m : G \times_S G \rightarrow G, S = \mathrm{Spec}(A \otimes_R A)$.
- A unit section $e : S \rightarrow G$
- An inversion $i : G \rightarrow G$

These are required to be morphisms over S .

Thursday, 2/20/2025

We redo:

Let R be a commutative ring. An affine group scheme over R is an affine scheme $G = \mathrm{Spec} A \xrightarrow{P_G} S = \mathrm{Spec} R$, equipped with morphisms over S :

$$m = m_G : G \times_S G \rightarrow G = \mathrm{Spec}(A \otimes_R A) \rightarrow G$$

$$i = i_G : G \rightarrow G \text{ [inverse]}$$

$$e = e_G \text{ unit section so that:}$$

$$\begin{array}{ccc}
S & \xrightarrow{\quad} & G \\
& \searrow^{id} & \swarrow^{P_G} \\
& S &
\end{array}$$

such that the following diagrams are commutative:

1) Associativity:

$$\begin{array}{ccccc}
(G \times_S G) \times_S G & \xrightarrow{\quad can \quad} & G \times_S (G \times_S G) & \xrightarrow{\quad m \times id \quad} & G \times G \\
& & \downarrow id \times m & & \downarrow m \\
& & G \times G & \xrightarrow{\quad m \quad} & G
\end{array}$$

$$\begin{array}{ccc}
G = S \times_S G = G \times_S & \xrightarrow{\quad e \times id \quad} & G \times G \\
2) & \downarrow id \times e & \searrow id & \downarrow m \\
& G \times G & \xrightarrow{\quad m \quad} & G
\end{array}$$

$$\begin{array}{ccc}
G & \xrightarrow{\quad i \times id \quad} & G \times G \\
3) & \downarrow id \times i & \searrow P_G & \downarrow m \\
& S & \searrow e & \downarrow \\
& G \times G & \xrightarrow{\quad m \quad} & G
\end{array}$$

1-3 can be reformulated in terms of A .

- P_S makes A into an R -algebra.
- m corresponds to a morphism of R -algebras $\mu : A \rightarrow A \otimes_R A$, co-multiplication
- i corresponds to the morphism $\iota : A \rightarrow A$ inverson.
- e corresponds to $\varepsilon : A \rightarrow R$ called the co-unit

$(A, \mu, \iota, \varepsilon)$ has the property that the diagrams:

$$\begin{array}{ccc}
1') & (A \otimes_R A) \otimes_R A = A \otimes_R (A \otimes_R A) & \xleftarrow{\mu \otimes id} A \otimes_R A \\
& id \otimes \mu \uparrow & \mu \uparrow \\
& A \otimes_R A & \xleftarrow{\mu} A
\end{array}$$

$$\begin{array}{ccc}
2') & R \otimes_R A = A \otimes_R R & \xleftarrow{\varepsilon \otimes id} A \otimes_R A \\
& id \otimes \varepsilon \uparrow & \searrow id & \mu \uparrow \\
& A \otimes_R A & \xleftarrow{\mu} A
\end{array}$$

$$\begin{array}{ccc}
3') & A & \xleftarrow{\delta} A \otimes_R A \xleftarrow{\iota \otimes id} A \otimes_R A \\
& \delta \uparrow & & \uparrow \mu \\
& A \otimes A & & \\
& id \otimes \iota \uparrow & & \\
& A \otimes A & \xleftarrow{\mu} A &
\end{array}$$

Here $\delta : A \otimes_R A \rightarrow A$ is multiplication, $G \xrightarrow[\Delta]{\quad} G \times_S S$

This means that $(A, \mu, \iota, \varepsilon)$ is a Commutative Hopf Algebra.
The group scheme $G = \text{Spec}(A)$ is called commutative if:

$$\begin{array}{ccc} G \otimes G & \xrightarrow{m} & G \\ \downarrow & & \downarrow id \\ G \otimes G & \xrightarrow{m} & G \end{array}$$

commutes. Equivalently,

$$\begin{array}{ccc} A \otimes_R A & \xleftarrow{\mu} & A \\ b \otimes a & & \\ \uparrow & & \uparrow id \\ A \otimes_R A & \xleftarrow{\mu} & A \\ a \otimes b & & \end{array}$$

commutes. In this case A is called co-commutative.
Examples:

- 1) The additive group (scheme) $\mathbb{G}_{a,R}$ over $R : \mathbb{G}_{a,R} = \text{Spec}(A), A = R[x], \mu : R[x] \rightarrow R[x] \otimes_R R[x]$ by $x \mapsto 1 \otimes x + x \otimes 1$.
 $\varepsilon : R[x] \rightarrow R$ by $\varepsilon(x) = 0, \iota : R[x] \rightarrow R[x]$ by $x \mapsto -x$.
- 2) The multiplicative group (scheme) $\mathbb{G}_{m,R}$ over $R : \mathbb{G}_{m,R} = \text{Spec}(A), A = R[x, x^{-1}] = R[x, t]/(tx - 1)$.
 $\mu : A \rightarrow A \otimes_R A, \mu(x) = x \otimes x, \mu(x^{-1}) = x^{-1} \otimes x^{-1}$.
 $\varepsilon : A \rightarrow R, \varepsilon(x) = \varepsilon(x^{-1}) = 1, \iota(x) = x^{-1}, \iota(x^{-1}) = x$.
- 3) The group scheme of n 'th roots of unity $\underline{\mu}_{n,R} = \text{Spec}(A), A = R[x]/(x^n - 1)$.
Then $\mu(\bar{x}) = \bar{x} \otimes \bar{x}, \varepsilon(\bar{x}) = 1, \iota(\bar{x}) = \bar{x}^{-1} = \bar{x}^{n-1}$.
The quotient map $R[x, x^{-1}] \rightarrow R[x]/(x^n - 1) = R[x, x^{-1}]/(x^n - 1)$ given by $x \mapsto \bar{x}$ is a morphism of Hopf algebras over R .
This induces a closed immersion $\underline{\mu}_{n,R} \rightarrow G_{m,R}$.

- 4) Let Γ be any finite group of order m . Set $A = R^\Gamma$ (set of maps $f : \Gamma \rightarrow R$) equipped with pointwise addition and multiplication. Then,

$A = R \times \dots \times R$ product of rings,

Comultiplication $\mu : A \rightarrow A \otimes_R A \cong R^{\Gamma \times \Gamma}, f \otimes g \mapsto [(\gamma, \delta) \mapsto f(\gamma)g(\delta)]$

$\mu(f)(\gamma, \delta) = f(\gamma\delta)$.

$\varepsilon : A \rightarrow R, \varepsilon(f) = f(1_\Gamma)$.

$\iota : A \rightarrow A, \iota(f)(\gamma) = f(\gamma^{-1})$.

Exercise: This makes $(A, \mu, \iota, \varepsilon)$ a commutative Hopf algebra, which is co-commutative if and only if Γ is commutative.

We set $\underline{\Gamma}_R = \text{Spec}(R^\Gamma)$ and call it the constant group scheme associated to Γ .

One can think of $\underline{\Gamma}_R$ as m copies of S labeled by the elements of Γ .

- 5) $\text{GL}_{n,R} = \text{Spec}(A), A = R[x_{ij} \mid 1 \leq i, j \leq n][t]/(t \det - 1)$. $\text{SL}_{n,R}$ is closed inside $\text{GL}_{n,R}$. $\text{SL}_{n,R} = \text{Spec}(A/I)$, A as above, $\det = \det((x_{ij}))$, $I = (\bar{t} - 1) = (\det - 1)$.

Caution: If G is a group scheme over S then $|G| =$ underlying set (topological space) is in general not a group.

For example, $\underline{G} = \mathbb{G}_{a,\mathbb{C}} = \text{Spec}(\mathbb{C}[x])$ which is bijective with $\mathbb{C} \cup \{\eta\}$ where η is a generic point associated to (0) , the zero ideal.

Note: $|G| \times_{\text{Spec}(\mathbb{C})} G = |\text{Spec}(\mathbb{C}[x, y])| \neq |\text{Spec}(\mathbb{C}[x])| \times |\text{Spec}(\mathbb{C}[y])|$

Points If $T \xrightarrow{f} S$ is a scheme over $S = \text{Spec}(R)$ eg $T = \text{Spec}(R')$ and $G \rightarrow S$ is a group scheme, then $G(T) := \text{Mor}_{\text{Scheme}/S}(T, G)$. In the affine scheme it is the same as $\text{Hom}_{R\text{-alg}}(A, R')$ if $G = \text{Spec}(A)$, $T = \text{Spec}(R')$.

$G(T)$ is naturally a group, called the group of T -valued points of G .

$$\begin{array}{ccc} T & \xrightarrow{\quad} & G \\ \text{Given } x, y : & \searrow & \swarrow \\ & S & \end{array}$$

There is a commutative diagram:

$$\begin{array}{ccccc} & & G \times_S G & & \\ & \nearrow \exists! xy & \downarrow & \searrow p_2 & \\ T & \xrightarrow{\quad} & x_{p_1} & \xrightarrow{\quad} & G \\ & \searrow y & \downarrow & & \downarrow \\ & & G & \longrightarrow & S \end{array}$$

$$x^\# - y^\#(b) \leftrightarrow a \otimes b$$

$$\begin{array}{ccccc} & & A \otimes_R A & & \\ & \swarrow (x y)^\# & \uparrow & \searrow & \\ R' & \xleftarrow{\quad} & x^\# & \xrightarrow{\quad} & A \\ & \uparrow y^\# & & & \uparrow \\ & & A & \xleftarrow{\quad} & R \end{array}$$

Then define $x \cdot y := m \circ (x, y) : T \rightarrow G$.

$$R' \xleftarrow{(x,y)^\#} A' \otimes_R A \xleftarrow{\mu} A.$$

This gives $G(T)$ the structure of a group with unique element $e_G \circ f$ where $T \xrightarrow{f} S$ is the structure map.

For example,

$$1) \quad \mathbb{G}_{a,R}(R') = (R', +).$$

$$\text{Hom}_{R\text{-alg}}(R[x], R') \xleftrightarrow{\text{bij}} R' \text{ with } \varphi \mapsto \varphi(x).$$

$$2) \quad \mathbb{G}_{m,R}(R') = ((R')^\times, \cdot), \text{Hom}_{R\text{-alg}}(R[x, x^{-1}], R') \text{ with } \varphi \mapsto \varphi(x) \in (R')^\times.$$

$\underline{\mu}_{n,R}(R') = \{a \in R' \mid a^n = 1\}$ is not necessarily finite if R' is not an integral domain. Sometimes we also have very few roots of unity.

For example, if $n = p^m$, p prime and $R = \mathbb{F}_p$ and R' an integral domain (and also \mathbb{F}_p algebra), then,

$$\underline{\mu}_{p^m, \mathbb{F}_p}(R'). \text{ This is because } (x^{p^m} - 1) = (x - 1)^{p^m}.$$

Definition. Let $S = \text{Spec}(R)$. Let $G = \text{Spec}(A)$, $H = \text{Spec}(B)$ two (affine) group schemes over S . A homomorphism $f : H \rightarrow G$ over S is a morphism of schemes over S such that the following diagram commutes:

$$\begin{array}{ccc} H \times H & \xrightarrow{m_H} & H \\ \downarrow f \times f & & \downarrow f \\ G \times G & \xrightarrow{m_G} & G \end{array}$$

If G and H are affine (as indicated) then f corresponds to $f^\# : A \rightarrow B$ a morphism of R algebras and f is a homomorphism if and only if $f^\#$ is a homomorphism of Hopf Algebras.

Example Suppose p prime, $R = \mathbb{F}_p$ algebra, $\alpha_{p,R} = \text{Spec}(A)$, $A = R[x]/(x^p)$ with co-multiplication $\mu(\bar{x}) = 1 \otimes \bar{x} + \bar{x} \otimes 1$ and inversion $\iota(\bar{x}) = -\bar{x}$ and $\varepsilon(\bar{x}) = 0$.

Then $R[x] \rightarrow A$ gives a morphism:

$$\alpha_{p,R} \rightarrow \mathbb{G}_{a,R}$$

Question: Is $\alpha_{p,R}$ isomorphic to $\mu_{p,R}$?

Example 2: Suppose R is a k -algebra and k is a field containing a primitive n 'th root of unity. Then $\text{char } k \nmid n$. In this case, $\underline{\mu}_{n,R} \cong \underline{\mathbb{Z}/n\mathbb{Z}}_R$.

Tuesday, 2/25/2025

Note that, in the previous question, even though as schemes $\underline{\alpha}_{p,R} \cong \underline{\mu}_{p,R}$, they are not isomorphic as group schemes over R .

Definition. A group scheme $G \xrightarrow{p_G} S = \text{Spec}(R)$ is called finite, if p_G is a finite morphism ($G = \text{Spec}(A)$ is affine and $p_G^\# : R \rightarrow A$ makes A into a finitely generated R -module).

A finite group scheme G/R [here $G = \text{Spec}(A)$] is called flat (resp. locally free) if A is flat (resp. projective) R -module.

We denote by Gps_R the category of (affine) group schemes $/R$ and $\text{Gps}_R^{\text{fin/proj}}$ category of finite locally free group schemes $/R$ and $\text{Gps}_R^{\text{fin}}$ category of finite group schemes $/R$.

Example from LT Theory: Let K/\mathbb{Q}_p be finite, $F_e = \text{LT } \mathcal{O}_K$ module attached to the LT series $e \in \mathcal{E}_\pi$, $F_e[\pi^m] := \text{Spec}(\mathcal{O}_K[[x]]/([\pi^m]_{F_e}(x)))$.

Fact (HW7): $A_m := \mathcal{O}_K[[x]]/([\pi^m]_{F_e}(x))$ is a free \mathcal{O}_K -module of rank q^m where $q = |k_K|$.

Hence, the co-multiplication $A_m \rightarrow A_m \otimes_{\mathcal{O}_K} A_m$ is given by the formal module structure: $x \mapsto F_e(x_1, x_2) \in \mathcal{O}_K[[x_1, x_2]]/([\pi^m](x_1), [\pi^m](x_2)) \cong \mathcal{O}_K[x_1]/([\pi^m](x_1)) \otimes_{\mathcal{O}_K} \mathcal{O}_K[[x_2]]/([\pi^m](x_2))$.

Inversion map is given by inversion on F_e .

Augmentation (\leftrightarrow unit section) $A_m \rightarrow \mathcal{O}_K, x \mapsto 0$.

Remark. If M is a finitely generated projective R -module then $\forall P \in \text{Spec}(R)$ the localization M_P is a finitely generated free R_P -module. This is a consequence of Nakayama's Lemma.

The function $\text{Spec}(R) \rightarrow \mathbb{Z}_{\geq 0}, \text{rk}(M)(P) := \text{rank}_{R_P}(M_P)$ is locally constant.

If G is in $\text{Gps}_R^{\text{fin,proj}}$ then we let $\text{rk}(G) := \text{rk}(A)$ where $G = \text{Spec}(A)$. We call it the rank or order of G .

2.1.2 Carter Duality

From now on all group schemes are assumed to be commutative. Given an affine group scheme $G = \text{Spec}(A)$ over R we set $\mathcal{O}(G) = A$. So, $\mathcal{O}(G)$ is the corresponding affine algebra of G .

Let $\mu : A \rightarrow A \otimes_R A$ be the co-multiplication, and $\delta_A : A \otimes_R A \rightarrow A$ the multiplication. Then, $\delta_A(a \otimes b) = ab$.

Let $A^\vee = \text{Hom}_{R\text{-mod}}(A, R)$. Now assume that A is f.g. projective ($\iff G$ is finite, locally free).

Then we have the following:

$$(A \otimes_R A)^\vee = \text{Hom}_{R\text{-mod}}(A \otimes_R A, R) = \text{Hom}_{R\text{-mod}}(A, \text{Hom}_{R\text{-mod}}(A, R))$$

$$= \text{Hom}_{R\text{-mod}}(A, R) \otimes_R \text{Hom}_{R\text{-mod}}(A, R) = A^\vee \otimes_R A^\vee.$$

Consider the maps: $\delta_{A^\vee} := \delta_A^\vee : A^\vee \rightarrow (A \otimes_R A)^\vee \xrightarrow{\text{can}} A^\vee \otimes_R A^\vee$

μ_{A^\vee}

Proposition/Definition 2.1.2.1. Let $G \in \text{Gps}_R^{\text{fin, proj}}$, $A = \mathcal{O}(G)$. Then A^\vee equipped with the multiplication is given by $\delta_{A^\vee} = \mu_A^\vee$ is a commutative ring with unit $\varepsilon_A : A \rightarrow R$ ($\varepsilon_A \in A^\vee$).

If we define:

$$\begin{aligned}\varepsilon_{A^\vee} : A^\vee &\rightarrow R, \varepsilon_{A^\vee}(f) = f(0) \\ \iota_{A^\vee} &:= \iota_A^\vee : A^\vee \rightarrow A^\vee, \iota_{A^\vee}(f) = f \circ \iota_A\end{aligned}$$

Then $A^\vee, \mu_{A^\vee}, \iota_{A^\vee}, \varepsilon_{A^\vee}$ is a co-commutative Hopf algebra of the same rank as fcs on $\text{Spec}(R)$.

Furthermore, the map $A \rightarrow (A^\vee)^\vee$ given by $a \mapsto (f \mapsto f(a))$ is an isomorphism of Hopf Algebras. We set $G^\vee : \text{Spec}(A^\vee)$ and call it the Carter Dual of G . Then, $(G^\vee)^\vee \xrightarrow{\text{can}} G$.

Example: let $G = \underline{\mu}_{n,R}$, $A = R[x]/(x^n - 1)$, $\mu_A(\bar{x}) = \bar{x} \otimes \bar{x}$.

$$A^\vee = \bigoplus_{i=0}^{n-1} Rf_i, f_i \left(\sum_{j=0}^{n-1} a_j \bar{x}^j \right) = a_i \in R.$$

Then, $(f_i \cdot f_j)(\bar{x}^k)$ can be evaluated as follows:

Recall $A^\vee \otimes_R A^\vee \rightarrow A^\vee$ is given by $f \otimes g \mapsto [a \mapsto (f \otimes g)(\mu_A(a))]$. Then,

$$(f_i \cdot f_j)(\bar{x}^k) = (f_i \otimes f_j)(\mu_A(\bar{x}^k)) = (f_i \otimes f_j)(\bar{x}^k \otimes \bar{x}^k) = f_i(\bar{x}^k) f_j(\bar{x}^k)$$

$$\text{Therefore, } (f_i \cdot f_j)(\bar{x}^k) = \begin{cases} 1, & \text{if } i = j = k; \\ 0, & \text{otherwise.} \end{cases}$$

$$\text{Therefore, } f_i f_j = \delta_{i,j} f_i.$$

Thus, f_0, \dots, f_{n-1} are pairwise orthogonal idempotents. Furthermore, $f_0 + \dots + f_{n-1} = 1_{A^\vee}$.

Therefore, as an R -algebra,

$$A^\vee = \prod_{i=0}^{n-1} Rf_i \cong R \times \dots \times R \xrightarrow{!} R^{\mathbb{Z}/n\mathbb{Z}}$$

Then, the co-multiplication on $A^\vee \cong R^{\mathbb{Z}/(n)}$ is given by:

$$R^{\mathbb{Z}/(n)} \rightarrow R^{\mathbb{Z}/(n)} \times R^{\mathbb{Z}/(n)} = R^{\mathbb{Z}/(n) \times \mathbb{Z}/(n)}$$

$$f \mapsto [(i \mod n, j \mod n) \mapsto f(i + j \mod n)]$$

$$f \in R^{\mathbb{Z}/n\mathbb{Z}} \leftrightarrow \left[\sum_{i=0}^{n-1} a_i \bar{x}^i \mapsto \sum_{i=0}^{n-1} a_i f(i) \right]$$

$$\text{Therefore, } (\underline{\mu}_{n,R})^\vee \cong \underline{\mathbb{Z}/n\mathbb{Z}}_R$$

Example: Assume p is prime and R an \mathbb{F}_p algebra. Then, $(\underline{\alpha}_{p,R})^\vee \cong \underline{\alpha}_{p,R}$.

Note that this proves that $\underline{\alpha}_{p,R} \not\cong \underline{\mu}_{p,R}$ for any ring $R \neq 0$.

Sketch of proof of 2.1.2.1. Check Associativity of multiplication δ_{A^\vee} . It comes from the associativity of the comultiplication.

Let $a \in A$. Write $\mu_A(a) = \sum_i a_i \otimes b_i$.

$$\mu_A(b_i) = \sum_j b_{ij} \otimes d_{ij}, \mu_A(a_i) = \sum_k a_{ik} \otimes c_{ik} \implies \sum_{i,k} a_{ik} \otimes c_{ik} \otimes b_i = \sum_{i,j} a_i \otimes b_{ij} \otimes d_{ij}.$$

$$\begin{aligned}\text{For all } f, g, h \in A^\vee : ((f \cdot g) \cdot h)(a) &= ((f \cdot g) \otimes h)(\mu_A(a)) = \sum_i (f \cdot g)(a_i) h(b_i) = \\ \sum_i f(a_{ik}) g(c_{ik}) h(b_i) &= (f \otimes g \otimes h)(\sum a_{ik} \otimes c_{ik} \otimes b_i) = (f \otimes g \otimes h)(\sum a_i \otimes b_{ij} \otimes d_{ij}) = \\ \sum_i f(a_i) (g h)(b_i) &= (f \cdot (g \cdot h))(a).\end{aligned}$$

Similarly one proves the associativity of co-multiplicatin μ_{A^\vee} and verify the other axioms.

□

Functorial Description of the Carter Dual

Let $G = \text{Spec}(A) \in \text{Gps}_R^{\text{fin,proj}}$ for $R' \in R\text{-alg}$ (= cattegory of comm. R -algebras) we define:

$$\underline{\text{Hom}}(G, \mathbb{G}_m)(R') := \text{Hom}_{\text{Gps}_{R'}}(G_{R'}, \mathbb{G}_{m,R'})$$

$$= \text{Hom}_{R'\text{-Hopfalg}}(\mathcal{O}(\mathbb{G}_{m,R'}), \mathcal{O}(G_{R'})) = \text{Hom}_{R'\text{-Hopfalg}}(R'[x, x^{-1}], A \otimes_R R')$$

This is a functor: $R\text{-alg} \rightarrow (\text{Groups})$ into the category of abstract groups.

If we have $\alpha, \beta : G_{R'} \rightarrow \mathbb{G}_{m,R'}$ we can multiply them, $\alpha \cdot \beta : G_{R'} \rightarrow \mathbb{G}_{m,R}$ is a homomorphism.

Proposition 2.1.2.2 If $G \in \text{Gps}_R^{\text{fin,proj}}$, then $G^\vee \xrightarrow{\text{can}} \underline{\text{Hom}}(G, \mathbb{G}_m)$.

Thursday, 2/27/2025

Notation: Given a ring R we denote by Ab_R the category of affine commutative group schemes over R , and $\text{Ab}_R^{\text{fin}}(\text{Ab}_R^{\text{fin,proj}})$ the category of objects which are finite (resp. finite and locally free ($\iff \mathcal{O}(G)$ is projective)) over R .

For $R' \in R\text{-alg}$ we defined $\underline{\text{Hom}}(G, \mathbb{G}_m)(R') = \text{Hom}_{\text{Ab}_{R'}}(G_{R'}, \mathbb{G}_{m,R'})$.

Proposition 2.1.2.2. For $G \in \text{Ab}_R^{\text{fin,proj}}$ we have G^\vee (=Carter dual) $\cong \underline{\text{Hom}}(G, \mathbb{G}_m)$.

Sketch. $R' \in R\text{-alg}$. Then,

$$G(R') = \text{Hom}_{R\text{-alg}}(\mathcal{O}(G), R') \hookrightarrow \text{Hom}_{R\text{-mod}}(\mathcal{O}(G), R') \cong \text{Hom}_{R\text{-mod}}(A, R) \otimes_R R' = A^\vee \otimes_R R'.$$

Where $\underbrace{A^\vee}_{A_{R'}^\vee} = \text{Hom}_{R\text{-mod}}(A, R)$. Consider $\varphi : A \rightarrow R' \in G(R')$, an R -algebra homomorphism. We can then make φ into R' -linear in the obvious way: $A \otimes_R R' \xrightarrow{\varphi} R'$ with $a \otimes r \mapsto \varphi(a) \otimes r$.

$$\mu_{A_{R'}^\vee} : A_{R'}^\vee \rightarrow A_{R'}^\vee \rightarrow A_{R'}^\vee \otimes_{R'} A_{R'}^\vee \cong (A_{R'} \otimes_{R'} A_{R'})^\vee$$

$$\text{Therefore, } (\mu_{A_{R'}^\vee}(\varphi))(a \otimes b) = \varphi(a \otimes b) \underset{=} \text{ring hom} \varphi(a)\varphi(b) = (\varphi \otimes \varphi)(a \otimes b).$$

$$\text{Therefore, } \mu_{A_{R'}^\vee}(\varphi) = \varphi \otimes \varphi.$$

Remark. An element φ of a Hopf algebra H over R' is called group-like if the comultiplication $\mu_H(\varphi) = \varphi \otimes \varphi$.

So, φ is group-like.

On the other hand, any element Φ of $\underline{\text{Hom}}(G^\vee, \mathbb{G}_m)(R') = \text{Hom}(G_{R'}^\vee, \mathbb{G}_{m,R'}) = \text{Hom}_{R'\text{-alg}}(R'[x, x^{-1}], A^\vee \otimes_R R')$ is completely determined by $\Phi(x) \in A_{R'}^\vee$. Let this be Ψ .

Then we have $\Psi(ab) = \mu_{A_{R'}^\vee}(\Psi)(a \otimes b) = (\Phi \otimes \Phi)(\mu_{\mathbb{G}_{m,R'}}(x))(a \otimes b) = (\Phi \otimes \Phi)(x \otimes x)(a \otimes b) = \Psi(x) \otimes \Psi(x)(a \otimes b) = \Psi(a)\Psi(b)$.

Moreover $\Psi \cdot \Phi(x^{-1}) = \Phi(x)\Phi(x^{-1}) = \Phi(1) = 1$.

Therefore, $\Psi \in (A_{R'}^\vee)^\times$.

Check: the element φ from before is a unit in $A_{R'}^\vee$.

$$\text{Therefore, } \underline{\text{Hom}}(G^\vee, \mathbb{G}_m)(R') = \text{Hom}_{(\text{Hopf algs}/R')}(R'[x, x^{-1}], A_{R'}^\vee)$$

$$= \{\varphi \in (A_{R'}^\vee)^\times \mid \varphi(ab) = \varphi(a)\varphi(b)\}$$

$$= \text{Hom}_{R'\text{-alg}}(A, R') = G(R').$$

$$\implies \underline{\text{Hom}}(G^\vee, \mathbb{G}_m) \cong G$$

Replace G by G^\vee and use the fact that $G^{\vee\vee} \xrightarrow{\text{can}} G$.

Therefore, $G^\vee \cong \underline{\text{Hom}}(G, \mathbb{G}_m)$.

□

Example: $(\underline{\alpha}_{p,R})^\vee \cong \underline{\alpha}_{p,R}$ [from HW7]
 $(\underline{\mu}_{n,R})^\vee \cong \underline{\mathbb{Z}/n\mathbb{Z}}_R$.

2.1.3 Short Exact Sequences

Let $G, G', G'' \in \text{Ab}_R^{\text{fin,proj}}$.

Definition. A sequence $0 \rightarrow G' \xrightarrow{f} G \xrightarrow{g} G'' \rightarrow 0$ is called exact if:

- i) f is a closed immersion ($\iff f^\# : \mathcal{O}(G) \rightarrow \mathcal{O}(G')$ is surjective) which identifies (G', f) with the categorical kernel of g in Ab_R .

(If $H \in \text{Ab}_R$ and $h : H \xrightarrow[S=\text{Spec}(R)]{} G$ has the property that $g \circ h = e_{G''} \circ p_H$ [here p_H is the map $H \rightarrow S$] then there is a unique $h' : H \rightarrow G'$ such that $h = f \circ h'$).

ii) g is faithfully flat ($\iff g^\# : \mathcal{O}(G'') \rightarrow \mathcal{O}(G)$ is faithfully flat).

Propositon 2.1.3.1. Let $0 \rightarrow G' \rightarrow G \rightarrow G \rightarrow G'' \rightarrow 0$ be an exact sequence in $\text{Ab}_R^{\text{fin,proj}}$. Then,

i) $\text{rk}(G) = \text{rk}(G') \text{rk}(G'')$ as functions on $\text{Spec}(R)$.

ii) The dual sequence $0 \rightarrow (G'')^\vee \rightarrow G^\vee \rightarrow (G')^\vee \rightarrow 0$ is exact.

Reference: Demazure, Gabriel Groupes Algébriques, SGA 3

Remark. 1) If $0 \rightarrow H \rightarrow G \rightarrow Q \rightarrow 0$ is exact sequence of affine commutative group schemes $/R$, then the sequence of R' valued points:

$$0 \rightarrow H(R') \rightarrow G(R')Q(R') \rightarrow 0$$

need not be exact for $R' \in R\text{-alg}$. Usually surjectivity is the problem.

Example: We take $G = \text{Res}_{\mathbb{R}}^{\mathbb{C}}(\mathbb{G}_{m,\mathbb{C}}) = \text{Spec}(\mathbb{R}[x,y,z]/(z(x^2 + y^2) - 1)) \supset H = \text{Spec}(\mathbb{R}[x,y]/(x^2 + y^2 - 1))$.

Fact: The morphism $G = \text{Spec}(\mathbb{R}[x,y] \xrightarrow[x^2+y^2]{\frac{1}{x^2+y^2}}) \xrightarrow{\sim} Q : \mathbb{G}_{m,\mathbb{R}} = \text{Spec}(\mathbb{R}[t,t^{-1}])$

is the quotient of G by $H :=$ we have an exact sequence of algebraic groups $1 \rightarrow H = S^1 \rightarrow \text{Res}_{\mathbb{R}}^{\mathbb{C}}(\mathbb{G}_{m,\mathbb{C}}) \xrightarrow[(x,y)]{x^2+y^2} \mathbb{G}_{m,\mathbb{R}} \rightarrow 1$.

Take \mathbb{R} -valued points: $1 \rightarrow H(\mathbb{R}) = \xrightarrow[\in \mathbb{C}^\times]{S^1} \mathbb{C}^\times \xrightarrow[(x,y)]{x^2+y^2} \mathbb{R}^\times \rightarrow 1$

Note that $(x,y) \mapsto x^2 + y^2$ is not surjective!

2) If $R = K$ is a field and $G \in \text{Ab}_R$ has the property that \forall field extensions $L/K : G(L) = \{1\}$ then this does not imply that G is the trivial group scheme over R .

Example: $\text{char } K = p > 0$ and $G = \underline{\mu}_{p,K} \implies \forall L/K$ field extensions, $\underline{\mu}_{p,K}(L) = \{1\}$.

Prototypical Examples of Exact Sequences:

$$\begin{aligned}
 & \zeta \longmapsto \zeta \quad a \longmapsto a^p \\
 1 & \longrightarrow \underline{\mu}_{p,R} \longrightarrow \underline{\mu}_{p^n,R} \longrightarrow \underline{\mu}_{p^{n-1},R} \longrightarrow 1 \\
 1) \quad & R[t]/(t^p - 1) \longleftarrow R[x]/(x^{p^n} - 1) \qquad \qquad R[y]/(y^{p^{n-1}} - 1) \\
 & \bar{t} \longleftarrow \bar{x} \quad \bar{x}^p \longleftarrow \bar{y}
 \end{aligned}$$

2) If $F = F_e$ is a LT \mathcal{O}_K -module for a uniformizer π then,

$$a \longmapsto [\pi](a)$$

$$0 \longrightarrow F[\pi] \longrightarrow F[\pi^m] \longrightarrow F[\pi^{m-1}] \longrightarrow 0$$

3) If $R = k = \bar{k}$ is a field of $\text{char } p > 0$ and E an ordinary elliptic curve over k [so $E[p](k) = E(k)[p] \cong \mathbb{Z}/p$ then,

$$0 \rightarrow E[p]^0 \rightarrow E[p] \rightarrow E[p]^{\text{ét}} \cong \underline{\mathbb{Z}/p}_k \rightarrow 0$$

$E[p]^0$ is connected component of rank p .

$E[p]$ has rank p^2

$E[p]^{\text{ét}}$ is the Étale quotient.

2.1.4 Connected and étale groups

In this section (R, \mathfrak{m}) is a local complete noetherian ring (in particular, $R \xrightarrow{\text{can}} R/\mathfrak{m}^n$ is an isomorphism). Let $G \in \text{Gps}_R^{\text{fin, loc free}} = \text{proj}, G = \text{Spec}(A)$, A finite projective R -module.

Remark. In such a case A is a free R -module [since R is local] [HW7].

There is an exact sequence in $\text{Gps}_R^{\text{fin, loc free}}$

$$0 \rightarrow G^0 \rightarrow G \rightarrow G^{\text{ét}} \rightarrow 0$$

where G^0 is connected [ie the underlying topological space is connected] and $G^{\text{ét}}$ is étale, $\mathcal{O}(G^{\text{ét}})$ is an étale R -algebra.

Definition. Let $A \xrightarrow{\varphi} B$ be a finitely generated A -algebra. Then B is called étale over A , if

- 1) B is a flat A -module, meaning $B \otimes_A (-)$ is an exact functor.
- 2) $\forall \mathfrak{q} \in \text{Spec}(B)$ the homomorphism $A_{\mathfrak{p}} \rightarrow B_{\mathfrak{q}}$ where $\mathfrak{p} = \varphi^{-1}(\mathfrak{q})$ is unramified.
i.e:
 - $\varphi_{\mathfrak{q}}(\mathfrak{p}A_{\mathfrak{p}}) \cdot B_{\mathfrak{q}} = \mathfrak{q} \cdot B_{\mathfrak{q}}$
 - $\kappa(\mathfrak{q}) := B_{\mathfrak{q}}/\mathfrak{q}B_{\mathfrak{q}} (= \text{Frac}(B/\mathfrak{q}))$ is a separable (finite) extension of $\kappa(\mathfrak{p}) = \text{Frac}(A/\mathfrak{p})$

Example:

- 1) $|\Gamma| < \infty \implies \underline{\Gamma}_R = \text{Spec}(R^{\Gamma})$ is étale.
- 2) If $A, B/R$ is étale then $A \times B$ is étale over R .
- 3) $\underline{\mathbb{Z}/n\mathbb{Z}}_R$ is étale over R
- 4) If $n \in R^{\times}$ then $\underline{\mu_n}_R$ is étale (HW7)

Proposition. (Milne, Ét. Coh. I, Prop 3.2) Let A be an R -algebra of finite type. Then A is unramified over $R \iff \forall \mathfrak{p} \in \text{Spec}(R)$ and any separably closed extension $\tilde{k}/\kappa(\mathfrak{p}) = \text{Frac}(R/\mathfrak{p})$, the \tilde{k} -algebra

$$A \otimes_R \tilde{k} = (A \otimes_R \kappa(\mathfrak{p})) \otimes_{\kappa(\mathfrak{p})} \tilde{k}$$

Is unramified over \tilde{k} , ie a finite product of copies of \tilde{k} .

For us, étale = flat + unramified. We generally already have flat since we're working in the local case.

$$\left(\underline{\mu}_{n,R} \times_{\text{Spec}(R)} \text{Spec}(\kappa(\mathfrak{p})) \right) \times_{\text{Spec}(\kappa(\mathfrak{p}))} \text{Spec}(\tilde{k}) = \underline{\mu}_{n,\tilde{k}}$$

- 5) R is a field of $\text{char } p > 0$ then $\underline{\mu}_{p^n,R}$ and $\underline{\alpha}_{p,R}$ are not étale over R , but they are connected: $|\underline{\mu}_{p^n,R}| = n\{*\} = |\underline{\alpha}_{p,R}|$ where $|\cdot|$ denotes the underlying topological space.

6) Suppose (R, \mathfrak{m}) is local and $\text{char}(R/\mathfrak{m}) = p > 0$ and $n = p^e m, e > 0, p \nmid m$. Then the connected-étale sequence for $\underline{\mu}_{n,R}$ is:

$$0 \rightarrow \underline{\mu}_{p^e,R} = (\underline{\mu}_{n,R})^0 \rightarrow \underline{\mu}_{n,R} \xrightarrow{\zeta \mapsto \zeta^{p^e}} \underline{\mu}_{m,R} = (\underline{\mu}_{n,R})^{\text{ét}} \rightarrow 0$$

This sequence actually splits. $\underline{\mu}_{n,R} = \underline{\mu}_{p^e,R} \times_{\text{Spec}(R)} \underline{\mu}_{m,R}$.

$\underline{\mu}_{p^e,R} = \text{Spec}(R[x]/(x^{p^e} - 1))$: show that $R[x]/(x^{p^e} - 1)$ is a local ring. It is known that spec of local rings are connected.

More facts:

G is connected $\iff G = G^0$. Then the order of G is a power of $p = \text{char}(R/\mathfrak{m})$.

In particular, G is étale if $\text{char}(R/\mathfrak{m}) = 0$.

G is étale iff $G = G^{\text{ét}}$. One has an equivalence of categories:

The category of finite affine étale commutative and co-commutative Hopf algebras over R .

The category of finite abelian groups Γ together with a continuous action of the absolute galois group $G_k \times \Gamma \rightarrow \Gamma$ by group automorphisms [here $k = R/\mathfrak{m}$].

Note that if R is local noetherian then f.g. flat \iff f.g. proj. \iff f.g. free.

The equivalence is given as follows: $A \mapsto \text{Hom}_R(A, k^{\text{sep}})$.

If $G = \text{Spec}(A)$ then $G \mapsto G(k^{\text{sep}})$.

There is a maximal étale extension $R_{\text{ét}}$, called the strict Henselization, which is local and whose residue field is k^{sep} (= separable closure of k), and done has an isomorphism of groups:

$$\text{Aut}(R_{\text{ét}}/R) \xrightarrow{\cong} G_k$$

And $(R_{\text{ét}})^{G_k} = R$

Given $(\Gamma, G_k \rightarrow \text{Aut}(\Gamma))$ one sets $A_{\Gamma} := \text{Map}_{G_k}(\Gamma, R_{\text{ét}})$ [Galois Equivariant Map].

$\implies A_{\Gamma}$ is a finite free R -module, and étale as R -algebra and A_{Γ} has a Hopf-algebra structure, and then $\underline{\Gamma}_R = \text{Spec}(A_{\Gamma})$ is a commutative finite locally free étale group scheme over R .

Remark. If $(\Gamma, G_k \rightarrow \text{Aut}(\Gamma))$ then $\forall \sigma \in G_k, \sigma(0_{\Gamma}) = 0_{\Gamma}$. Thus,

$$\begin{aligned} \text{Map}_{G_k}(\Gamma, R_{\text{ét}}) &= \text{Map}_{G_k}(\{0_{\Gamma}\}, R_{\text{ét}}) \times \text{Map}_{G_k}(\Gamma \setminus \{0\}, R_{\text{ét}}) \\ &= R \times \underbrace{\text{Map}_{G_k}(\Gamma \setminus \{0\}, R_{\text{ét}})}_{=\ker(\varepsilon_{A_{\Gamma}}), \text{ kernel of co-unit}} \end{aligned}$$

Note that $\ker(\varepsilon_{A_{\Gamma}})$ is itself a ring, so $A_{\Gamma} = R \times \ker(\varepsilon_{A_{\Gamma}})$ is itself a product ring.

Therefore, $\underline{\Gamma}_R = \text{Spec}(A_{\Gamma}) = \underbrace{\text{Spec}(R)}_{\text{image of unit section}} \coprod \text{Spec}(\ker(\varepsilon_{A_{\Gamma}}))$.

Upshot: If $\Gamma \neq 0$ then $\underline{\Gamma}_R$ is not connected.

A finite locally free étale group scheme is never connected unless it is the trivial group scheme (assumption R is local).

2.2 p -divisible groups

p always denotes a prime number.

Definition. An (abstract) abelian group Γ is called p -divisible if $[p]_{\Gamma} : \Gamma \rightarrow \Gamma, a \mapsto pa := a + \dots + a$ is surjective.

In particular, every element of Γ can be ‘divided’ by p . Note that the result of the division need not be unique. Meaning, $[p]_{\Gamma}$ need not be injective.

Example. 1) $\Gamma = \mathbb{Q}$ is uniquely p -divisible: $[p]_{\mathbb{Q}}$ is a bijection.

2) $\Gamma = \mathbb{Q}_p/\mathbb{Z}_p = \bigcup_{\nu=0}^{\infty} \frac{1}{p^{\nu}}/\mathbb{Z}$. It is surjective but not injective: $[p]_{\mathbb{Q}_p/\mathbb{Z}_p}$ has a kernel.

In (arithmetic) algebraic geometry, ‘ p -divisible’ has a more specific meaning. These are also called Barsotti-Tate groups.

Grothendieck, Groupes de Barsotti-Tate et cristaux de Dieudonné (1974)

Messing, The crystal associated to Barsotti-Tate groups

Berthelot-Breen-Messing

Demazure-Gabriel

Zink’s Display Theory

2.2.1 Definitions

Let R be a ring, $h \in \mathbb{Z}_{\geq 0}$. A p -divisible group over R of height h is an inductive system $G = (G_\nu, i_\nu : G_\nu \rightarrow G_{\nu+1})_{\nu \geq 0}$ where:

- G_ν is a finite loc. free comm. group scheme of order $p^{\nu h}$ over R .
- for each $\nu \geq 0$ the sequence:

$$0 \rightarrow G_\nu \xrightarrow{i_\nu} G_{\nu+1} \xrightarrow{[p^\nu]_{G_{\nu+1}}} G_{\nu+1}$$

ie exact. $i_\nu : G_\nu \rightarrow G_{\nu+1}$ is the categorical kernel of $[p^\nu] : G_{\nu+1} \rightarrow G_{\nu+1}$.

We have the following commutative diagram:

$$\begin{array}{ccccccc} 0 & \longrightarrow & G_\nu & \xrightarrow{i_\nu} & G_{\nu+1} & \xrightarrow{[p^\nu]_{G_{\nu+1}}} & G_{\nu+1} \\ & & \swarrow \exists! \varphi & & \uparrow & & \uparrow e_{G_{\nu+1}} \\ & & H & \xrightarrow{p_H} & \text{Spec}(R) & & \end{array}$$

If G_ν would be ordinary abelian groups then G_ν would have order $p^{\nu h}$ and it would be annihilated by p^ν .

Thus, $G_1 \cong (\mathbb{Z}/p)^h$ and $G_\nu \cong \bigoplus_{i=1}^s \mathbb{Z}/p^{m_i}$ and $\sum_{i=1}^s m_i = \nu h$.

Thus, $G_\nu[p] = \bigoplus_{i=1}^s p^{m_i-1} \mathbb{Z}/p^m \mathbb{Z} \implies s = h \implies \forall i, m_i = \nu$.

Upshot: $G_\nu = (\mathbb{Z}/p^\nu)^h$.

Thursday, 3/6/2025

If the G_ν would be just finite abelian groups $\implies G_\nu = (\mathbb{Z}/p^\nu)^h \implies G = (\mathbb{Q}_p/\mathbb{Z}_p)^h$.

Examples of more p -divisible groups:

1) $((\mathbb{Z}/p^\nu)^h)_R$ is the constant p -divisible group of ht h over R .

2) $(\underline{\mu}_{p^\nu, R}^{\oplus h})_\nu$ is a p -divisible group over R of ht h .

Question: Are there any other p -divisible groups over \mathbb{Z} other than $(\mathbb{Q}_p/\mathbb{Z}_p)^h_{\mathbb{Z}}$ or $\underline{\mu}_{p^\infty, \mathbb{Z}}^{\oplus h}$?

We don’t know the answer.

See Fontaine (1980’s) Il n’ya pas de courbes elliptiques sur \mathbb{Z}

3) $F = \text{LT Formal } \mathcal{O}_K\text{-module}, [K : \mathbb{Q}_p] < \infty, |k_K| = q = p^f$ then $(F[p^\nu])_{\nu \geq 0}$ is a p -divisible over \mathcal{O}_K of height $h = [K : \mathbb{Q}_p]$.

Question: $F[p^\nu] \cong (\underline{\mu}_{p^\nu, \mathcal{O}_K}^{\oplus h})^{\oplus h}, h = [K : \mathbb{Q}_p]$? Answer is no if $h > 1$.

Lubin-Tate Theory provides us with p -divisible groups that are not obvious!

A homomorphism of p -divisible groups $f : G = (G_\nu) \rightarrow H = (H_\nu)$ is a system of morphisms of group schemes $f_\nu : G_\nu \rightarrow H_\nu$ which are compatible with the transition maps:

$$\begin{array}{ccc}
G_\nu & \xrightarrow{f_\nu} & H_\nu \\
\downarrow & & \downarrow \\
G_{\nu+1} & \xrightarrow{f_{\nu+1}} & H_{\nu+1}
\end{array}$$

For $\nu, \mu \geq 0$ let $i_{\nu, \mu} : G_\nu \xrightarrow{i_\nu} G_{\nu+1} \xrightarrow{i_{\nu+1}} \cdots \xrightarrow{i_{\nu+\mu}} G_{\nu+\mu}$ be the composition of i_j where $\nu \leq j \leq \nu + \mu$.

Then, we have $G_\nu \xrightarrow{i_{\nu, \mu}} G_{\nu+\mu} = \ker([p^\nu] : G_{\nu+\mu} \rightarrow G_{\nu+\mu})$
 $\implies [p^\nu] : G_{\nu+\mu} \rightarrow G_{\nu+\mu}$ has the property that $[p^\nu] \circ [p^\mu] = 0$. Indeed,

$$\begin{array}{ccc}
[p^\nu] & : & G_{\nu+\mu} \longrightarrow G_{\nu+\mu} \\
& & \downarrow \exists! \quad \nearrow i_{\nu, \mu} \\
& & G_\nu \qquad \qquad G_{\nu+\mu}
\end{array}$$

Thus we have an exact sequence:

$$\begin{array}{ccccccc}
& & & G_{\nu+\mu} & & & \\
& & & \nearrow [p^\mu] & \uparrow i_{\nu, \mu} & & \\
0 & \longrightarrow & G_\mu & \xrightarrow{i_{\mu, \nu}} & G_{\mu+\nu} & \xrightarrow{j_{\mu, \nu}} & G_\nu \longrightarrow 0
\end{array}$$

$$\text{eg } 0 \rightarrow p^{-1}\mathbb{Z}/\mathbb{Z} \rightarrow p^{-2}\mathbb{Z}/\mathbb{Z} \xrightarrow{p} p^{-1}\mathbb{Z}/\mathbb{Z} \rightarrow 0$$

2.2.2 Relations with Formal Lie Groups

R is assumed to be noetherian, local with maximal \mathfrak{m} , complete with residue field k of $\text{char } p > 0$.

An n -dimensional commutative formal Lie group F over R is given by:

$$F(x, y) = (F_1(x, y), \dots, F_n(x, y)) \in R[[x, y]]^n$$

Here $R[[x, y]] = R[[x_1, \dots, x_n, y_1, \dots, y_n]]$

Satisfying,

- i) $F(x, y) = F(y, x)$
- ii) $F(0, y) = y = (y_1, \dots, y_n)$
- iii) $F(F(x, y), z) = F(x, F(y, z))$

We write $x + y = F(x, y)$ then we have $[p](x) = x + \dots + x = ([p]_1(x), \dots, [p]_n(x))$.

F is called p divisible if $[p](x)$ is an isogeny, i.e. the map $R[[x]] \rightarrow R[[x]]$ sending $x_i \rightarrow [p]_i(x)$, $1 \leq i \leq n$ turns $R[[x]]$ into a module over itself which is finitely generated and free.

Example: We look at dimension 1.

- 1) $F(x, y) = x + y \implies [p](x) = px$, then $R[[x]]$ is not a finite $R[[x]]$ -module via $x \mapsto px$. Recall that k has $\text{char } p$ so the $\text{mod } \mathfrak{m}$ reduction of this map is $k[[x]] \rightarrow k[[x]]$ sending $x \mapsto 0$.
- 2) $F(x, y) = x + y + xy \implies [p](x) = (1+x)^p - 1 = px + \binom{p}{2}x^2 + \dots + px^{p-1} + x^p$ which is regular of order p in the terminology given in the HW.

HW7 $\implies R[[x]]$ a free $R[[x]]$ -module of rank p .

- 3) If F is a Lubin-Tate \mathcal{O}_K module, it is p -divisible when K/\mathbb{Q}_p is finite.

If F is p -divisible, then not only multiplication by p is an isogeny, but iterations $[p^\nu]$ is an isogeny.

For any $\nu \geq 0$, $A_\nu := \frac{R[[x]]}{([p^\nu]_1(x), \dots, [p^\nu]_n(x))R[[x]]}$ is finite free over R , and the power series $F(x, y)$ defines a co-multiplication $A_\nu \rightarrow A_\nu \otimes_R A_\nu$ given by $\bar{x_i} \mapsto F_i(x, y) \pmod{([p^\nu]_j)_{j=1}^n}$.

Then A_ν becomes a commutative and co-commutative Hopf-algebra $/R$ and thus $G_\nu = \text{Spec}(A_\nu)$ is a finite free commutative group scheme $/R$.

Upshot: $G = (G_\nu, G_\nu \xrightarrow{A_\nu} G_{\nu+1})$ is p -divisible over R and each A_ν is a local ring $\implies G_\nu$ is connected.

Proposition 2.2.2.1. Let R be a ccomplete noetherian local ring with residue field k of $\text{char } p > 0$. Then, $F \rightsquigarrow G_F$ is an equivalence of the categories of p -divisible formal Lie groups and category of connected p -divisible groups over R .

Remark. A p -divisible group $G = (G_\nu)$ is called connected if all (G_ν) are connected.

Example:

$$1) F = \widehat{\mathbb{G}}_{m,R} \text{ (so } F(x, y) = x + y + xy \implies G_F = \underline{\mu}_{p^\infty, R})$$

$$2) F = \text{LT } \mathcal{O}_K\text{-module, } [K : \mathbb{Q}_p] < \infty \implies G_F = (F[p^\nu])_\nu.$$

Going from connected p -divisible groups to formal Lie Groups:

Given $G = (G_\nu, i_\nu)$ where $G_\nu = \text{Spec}(A_\nu)$ connected p -divisible group over R and i_ν corresponds to morphisms of Hopf algebras $A_{\nu+1} \rightarrow A_\nu$.

Theorem. $A := \varprojlim_\nu A_\nu$ is isomorphic to $R[[x_1, \dots, x_n]]$ and the co-multiplications $A_\nu \rightarrow A_\nu \otimes A_\nu$ give a ring homomorphism:

$$A \rightarrow \varprojlim_\nu A_\nu \otimes A_\nu \cong R[[x_1, \dots, x_n, y_1, \dots, y_n]] (\cong A \widehat{\otimes}_R A).$$

Complete w.r.t. the ideal $\mathfrak{m} \otimes A + A \otimes \mathfrak{m}$.

Proof. Sending x_i to $F_i(x, y)$ and $F(x, y) = (F_1(x, y), \dots, F_n(x, y))$ is a formal lie group over R as define dbefore. \square

Proposition - Definition. Given a p -divisible group $G = (G_\nu)_\nu$ over R , the systems $G^0 = (G_\nu^0)_\nu$ and $G^{\text{ét}} = (G_\nu^{\text{ét}})_\nu$ are p -divisible groups. One has $\text{ht}(G) = \text{ht}(G^0) = \text{ht}(G^{\text{ét}})$. If F is the formal lie group associated to G^0 by proposition 2.2.2.1 then we set $\dim(G) := \dim(G^0) := \dim(F)$.

Example:

$$1) \dim(\underline{\mu}_{p^\infty, R}) = 1 \text{ recall that } \underline{\mu}_{p^\infty, R} \leftrightarrow \widehat{\mathbb{G}}_m$$

$$2) \dim(\underline{\mathbb{Q}_p}/\mathbb{Z}_p)_R = 0$$

$$3) \mathcal{E}/R \text{ elliptic curve, } \mathcal{E}[p^\infty] = (\mathcal{E}[p^\nu])_\nu \rightsquigarrow 0 \rightarrow \mathcal{E}[p^\infty]^0 \rightarrow \mathcal{E}[p^\infty] \implies \mathcal{E}[p^\infty]^{\text{ét}} \rightarrow 0$$

Either $\mathcal{E}[p^\infty]^{\text{ét}} = 0 \implies \dim(\mathcal{E}[p^\infty]) = 1$ and $\text{ht}(\mathcal{E}[p^\infty]^0) = \text{ht}(\mathcal{E}[p^\infty]) = 2$ supersingular case.

Ordinary: $\mathcal{E}[p^\infty]^{\text{ét}} \neq 0 \implies \text{ht}(\mathcal{E}[p^\infty]^{\text{ét}}) = 1$ and $\text{ht}(\mathcal{E}[p^\infty]^0) = 1$

$\dim(\mathcal{E}[p^\infty]^{\text{ét}}) = 0$ and $\dim(\mathcal{E}[p^\infty]^0) = 1$

In general $\text{ht}(\mathcal{A}[p^\infty]^0) \in [g, \dots, 2g]$. Everything can be achieved inbetween. $2g$ is the supersingular case, which is extreme in the sense that the étale part is 0.

$$\dim \left(\underbrace{\mathcal{E}_{\text{ord}}^a \times \mathcal{E}_{\text{supersing}}^b}_{\text{connected part}} \right) = a + b$$

$$= (\mathcal{E}_{\text{ord}}^0)^a \times \mathcal{E}_{\text{super}}^b$$

$$\text{So, } \text{ht}(\mathcal{E}[p^\infty]^0) = a + 2b.$$

This shows we can achieve any number between g and $2g$.

Tuesday, 3/11/2025

The Discriminant

Let R be any ring, and A a commutative R -algebra which is f.g. and free as R -module. Then we have the trace map $\text{Tr} = \text{Tr}_{A/R} : A \rightarrow R$ defined as, $\text{Tr}(a) = \text{trace}(\text{mult. by } a : A \rightarrow A)$ choose basis \rightsquigarrow matrix $X_a \in M_n(R)$, $n = \text{rank}_R A = \text{tr}(X_a)$.

The trace form of A/R is the R -bilinear map $A \times A \xrightarrow{b=b_{A/R}} R$, $b_{A/R}(a, a') = \text{Tr}(aa')$.

Definition (Discriminant). 1) The discriminant of A/R , called $\text{disc}(A/R)$, is the discriminant of the trace form, which is the ideal generated by the discriminant of any basis (e_1, \dots, e_n) of A as an R -module. The latter is defined to be:

$$\det((b_{A/R}(e_i, e_j))_{1 \leq i, j \leq n}) = \det 0((\text{Tr}_{A/R}(e_i e_j))_{1 \leq i, j \leq n})$$

This ideal is independent of the choice of a basis.

2) If $G = \text{Spec}(A)$ is a finite group scheme over R with a free R -module, we set $\text{disc}(G) := \text{disc}(A/R) \subset R$.

Examples:

1) Suppose $G = \underline{\mu}_{p,R} = \text{Spec}(R[x]/(x^p - 1))$, $e_i = x^i$, $0 \leq i \leq p-1$, then $e_i e_j = \bar{x}^{i+j} = \bar{x}^{i+j} \pmod{p}$.

Then, $\text{Tr}_{A/R}(\bar{x}^0) = \text{Tr}_{A/R}(1) = p$, $\text{Tr}_{A/R}(\bar{x}^{\neq 0}) = 0$.

Thus, if $i+j \equiv 0 \pmod{p}$, $\text{Tr}_{A/R}(e_i e_j) = p$, otherwise 0. Then, the discriminant is generated by (example: $p = 5$)

$$\begin{bmatrix} p & & & & \\ & & & & p \\ & & p & & \\ & & & p & \\ p & & & & p \end{bmatrix}$$

Therefore, $\text{disc}(\underline{\mu}_{p,R}) = p^p \cdot R$.

2) If G is étale then $\text{disc}(G) = 1 \cdot R$.

Proposition 2.2.2.2. If $G = (G_\nu)_\nu$ is a p -divisible group over R , R complete local noetherian of height h and dimension n , then $\text{disc}(G_\nu) = p^{n\nu p^{h\nu}} \cdot R$. Proof is involved.

2.2.3 Duality for p -divisible groups

Let $G = (G_\nu)_\nu$ be a p -divisible group over R , R not necessarily local. Then we have an exact sequence:

$$0 \longrightarrow G_1 \longrightarrow G_{\nu+1} \xrightarrow{j_{1,\nu}^*} G_\nu \longrightarrow 0$$

Applying Cartier Duality we get:

$$0 \longrightarrow G_\nu^\vee \xrightarrow{j_{1,\nu}^\vee} G_{\nu+1}^\vee \longrightarrow G_1^\vee \longrightarrow 0$$

Check: $(G_\nu^\vee, j_{1,\nu}^\vee)$ form a p -divisible group over R , called the Cartier dual of G .

Note: Since $\text{ord}(G_\nu^\vee) = \text{ord}(G_\nu) = p^{\nu h}$, $h = \text{ht}(G)$ hence $\text{ht}(G^\vee) = \text{ht}(G)$.

Standard Example: $\left(\underline{\mu}_{p^\infty, R}\right)^\vee = \left(\left(\underline{\mu}_{p^\nu, R}\right)^\vee\right)_\nu = \left(\frac{1}{p^\nu} \mathbb{Z}/\mathbb{Z}\right)_\nu = \underline{\mathbb{Q}_p}/\underline{\mathbb{Z}_p}_R$

Proposition 2.2.3.1. Suppose R is a complete local noetherian ring with residue field k of $\text{char } p$. Then, $\dim(G) + \dim(G^\vee) = \text{ht}(G)$.

Example: Let $[K : \mathbb{Q}_p] = d$, $F = \text{LT } \mathcal{O}_K$ module, then we know $F[p^\infty] = (F[p^\nu])_\nu$ has height d and dimension 1.

Then, 2.2.3.1 $\implies \dim(F[p^\infty])^\vee = d - 1$

2.3 Frobenius and Verschiebung

Let k be a field of $\text{char } p > 0$. (This should also work for any \mathbb{F}_p algebra).

Let $\varphi : k \rightarrow k$, $\lambda \mapsto \lambda^p$ be the (absolute) Frobenius.

If $G = \text{Spec}(A)$ is a group scheme over k then we can form $A^{(p)} = k \otimes_{\varphi, k} A$ which we consider as a k -algebra via the left \otimes -factor and $G^{(p)} := \text{Spec}(A^{(p)}) = \text{Spec}(k) \times_{\varphi^a, \text{Spec}(k)} G$

$\text{Spec}(A) = \text{Spec}(k) \times_{\varphi^a, \text{Spec}(k)} G$

Which is again a group scheme over k via

$$pr_1 : G^{(p)} = \text{Spec}(k) \times_{\varphi^a, \text{Spec}(k)} G \rightarrow \text{Spec}(k)$$

The morphism of k -algebras $A^{(p)} = k \otimes_{\varphi, k} A \xrightarrow{F_G^\#} A$

$\lambda \otimes a \mapsto \lambda a^p$ is well defined:

$$\lambda \otimes \mu a \mapsto \lambda \mu^p a^p$$

$$= \lambda \mu^p \cdot \otimes a \mapsto \lambda \mu^p a^p$$

and is a morphism of Hopf algebras over k (check) and corresponds to a morphism $F_G : G \rightarrow G^{(p)}$ of group schemes over k , called the Frobenius of G .

Question: How do we think about $A^{(p)}$?

We write $A = k[x_1, \dots, x_n]/(f_1, \dots, f_r)$.

Then, Claim: $k \otimes_{\varphi, k} A \xrightarrow{\cong} k[x]/(f_1^\varphi, \dots, f_r^\varphi)$ where f^φ is the polynomial obtained from f by applying φ to all coefficients.

This map sends $\lambda \otimes x_1^{m_1} \cdots x_n^{m_n} \mapsto \lambda x_1^{m_1} \cdots x_n^{m_n}$.

Well defined: Using multi index: suppose $f_j(x) = \sum_m a_m x^m$, $a_m \in k \implies 1 \otimes f_j(x) = \sum_m a_m^p \otimes x^m \mapsto \sum_m a_m^p x^m = f_j^\varphi(x)$

Hence $G^{(p)} = \text{Spec}(A^{(p)})$ is obtained by applying the Frobenius to the coefficients of the defining equations of G .

Question: How do we think of F_G ? Again write $A = k[x]/(f_1, \dots, f_r)$.

$$\begin{array}{ccc}
 A^{(p)} & = & k \otimes_{\varphi, k} A \xrightarrow{\cong} \frac{k[x]}{(f_1^\varphi, \dots, f_r^\varphi)} & f_j^\varphi \\
 & & \downarrow & \downarrow \\
 & & 1 \otimes \bar{x}_i \longmapsto \bar{x}_i & \\
 & \swarrow \varpi & & \\
 \lambda \otimes a & & & \\
 \downarrow & & & \\
 \lambda \otimes a^p & & & \\
 & \downarrow F_G^\# & & \\
 & & 1 \otimes \bar{x}_i^p \longmapsto \bar{x}_i^p & \\
 & & & \downarrow \\
 & & & \frac{k[x]}{(f_1, \dots, f_r)} \\
 & & & \xrightarrow{id_A} \\
 & & & = f_j^\varphi(x^p) \\
 & & & = (f_j(x))^p
 \end{array}$$

Example:

$$1) \quad G = \underline{\mu}_{n,k} \text{ [any } n], (\underline{\mu}_{n,k})^{(p)} = \text{Spec} \left((k[x]/(x^n - 1))^{(p)} \right) \cong \text{Spec} (k[x]/(x^n - 1)) = \underline{\mu}_{n,k}$$

$F_G : \underline{\mu}_{n,k} \rightarrow (\underline{\mu}_{n,k})^{(p)} = \underline{\mu}_{n,k}$ hence $F_{\underline{\mu}_{n,k}} = [p]_{\underline{\mu}_{n,k}}$ is multiplication by p , with $\bar{x}^p \leftrightarrow \bar{x}$. This is multiplication by p . If $p \nmid n$ then F_G is invertible.

2) If G is finite étale then $F_G : G \rightarrow G^{(p)}$ is an isomorphism.

Verschiebung G/K finite group scheme, k field of $\text{char } p$ or \mathbb{F}_p -algebra.

$F_{G^\vee} : G^\vee \rightarrow (G^\vee)^{(p)}$ $\xrightarrow{\text{can}} (G^{(p)})^\vee$ [check], dualize again and get:

$V_G : G^{(p)} \xrightarrow{\text{can}} ((G^{(p)})^\vee)^\vee \rightarrow (G^\vee)^\vee = G$ which is a morphism of group schemes over k .

Proposition. $V_G \circ F_G = [p]_G$, $F_G \circ V_G = [p]_{G^{(p)}}$.

Thursday, 3/13/2025

Recall: Forbenius and Verschiebung: $R = k$ = field of $\text{char } p > 0$.

$$G^{(p)} = G \times_{\text{Spec}(k), \varphi^a} \text{Spec}(k), \varphi : k \rightarrow k, \lambda \mapsto \lambda^p.$$

$$= \text{Spec}(A^{(p)}), A^{(p)} = A \otimes_{k, \varphi} k$$

$$G \xrightarrow{\quad} G^{(p)} \quad , \quad V_G = (F_{G^\vee})^\vee : ((G^\vee)^{(p)})^\vee \xrightarrow{\text{check}} G^{(p)} \rightarrow (G^\vee)^\vee \cong G$$

$\searrow \quad \swarrow$
 $\text{Spec}(k)$

Lemma: $F_G \circ V_G = [p]_{G^{(p)}}$ and $V_G \circ F_G = [p]_G$.

Sketch of Proof of 2.2.3.1. $[\dim(G) + \dim(G^\vee) = \text{ht}(G)]$ Note: If $I \subset R$ is an ideal and $G \bmod I = G \times_{\text{Spec } R} \text{Spec}(R/I)$, then $F_{G \bmod I} = F_G \bmod I \in (R/I)[[x_1, \dots, x_n]] \implies$

$\dim(G \bmod I) = \dim G$ where $F_{G \bmod I}$ and F_G are the associated formal groups.

Hence we may take $I = \mathfrak{m}_R \rightsquigarrow$ reduced to the statement for $R = k$ is a field of $\text{char } p$.

We have universal property:

$$G^{(p)} \xleftarrow{\quad} \ker \left(G_1^{(p)} \xrightarrow{V_{G_1}} G_1 \right)$$

$\swarrow \quad \uparrow$
 $F_{G_1} \quad G_1$

Previous lemma $\implies \exists$ exact sequence:

$$0 \longrightarrow \ker(F_{G_1}) \longrightarrow G_1 \xrightarrow{\text{`}F_{G_1}\text{'}} \ker(V_{G_1}) \longrightarrow 0$$

$\swarrow \quad \searrow$
 $F_{G_1} \quad V_{G_1}$

$$V_{G_1} \circ F_{G_1} = [p]_{G_1}.$$

Similarly,

$$0 \longrightarrow \ker(V_{G_1}) \longrightarrow G_1^{(p)} \xrightarrow{\text{`}V_{G_1}\text{'}} \ker(F_{G_1}) \longrightarrow 0$$

2.1.4 implies,

$$0 \longrightarrow G_1^0 \longrightarrow G_1 \longrightarrow G_1^{\text{ét}} \longrightarrow 0$$

$F_{G_1}^{\text{ét}}$ is an isomorphism (HW9) $\implies \ker(F_{G_1}) \hookrightarrow G_1^0 = \text{Spec} \left(\frac{k[[x_1, \dots, x_n]]}{([p]_1(x), \dots, [p]_n(x))} \right)$

Explicit description $\implies \ker(F_{G_1}) = \text{Spec} \left(\frac{k[[x_1, \dots, x_n]]}{(x_1^p, \dots, x_n^p)} \right)$

$\implies \text{ord}(\ker(F_{G_1})) = p^n, \text{ord}(G_1) = p^h \implies \text{ord}(\ker(V_{G_1})) = p^{h-n}$.

One has: $\ker(V_{G_1})^\vee \cong \ker(F_{G_1}^\vee)$.

Therefore, $\dim(G^\vee) = \log_p \text{ord}(\ker(F_{G_1}^\vee)) = \log_p (\text{ord}(\ker(V_{G_1})^\vee)) = \log_p (\text{ord}(\ker(V_{G_1}))) = \log_p p^{h-n} = h - n$.

2.4 S -valued points and the Galois modules $\Phi(G)$ and $T(G)$

$(R, \mathfrak{m}) = \text{CDVR}$ (complete discrete valuation ring) with uniformizer ϖ and residue field k of $\text{char } p > 0$, $K = \text{Frac}(R)$, L = completion of a Galois extension inside \overline{K}^\wedge = fixed alg. closure $\implies L \subset \overline{K}^\wedge$.

$S = \mathcal{O}_L$ is a valuation ring, not necessarily noetherian, not necessarily PID.

Example:

- 1) $L = \widehat{K}^{nr} \implies S$ is noetherian and its maximal ideal is generated by ϖ .
- 2) $L = \text{completion of } K(\mu_{p^\infty})$ if $\text{char}(K) = 0 \implies L$ is not discretely valued, S is not PID.
- 3) $L = \overline{K}^\wedge \implies S$ is not a PID.

Definition. Let G be a p -divisible group over R .

$$G(S) := \varprojlim_i G(S/\varpi^i S)$$

where $G(S/\varpi^i) := \varinjlim_\nu G_\nu(S/\varpi^i)$

Caution: In general, $G(S) \neq \varinjlim_\nu G_\nu(S)$.

$$\begin{array}{ccc} S/\varpi^{i+1} & \xrightarrow{\quad} & S/\varpi^i \\ \text{Note:} & \swarrow & \nearrow \dots \rightarrow \\ & \mathcal{O}(G_\nu) & \end{array} \rightsquigarrow G_\nu(S/\varpi^{i+1}) \rightarrow G_\nu(S/\varpi^i).$$

$$G(S/\varpi^{i+1}) = \varinjlim_\nu G_\nu(S/\varpi^{i+1}) \rightarrow \varinjlim_\nu G_\nu(S/\varpi^i) = G(S/\varpi^i)$$

These are the maps in this proj. system.

Example: K/\mathbb{Q}_p finite, ϖ uniformizer of K , $G = \underline{\mu}_{p^\infty, R}$, $L = \overline{K}^\wedge (= \mathbb{C}_p)$.

$$G_\nu(S/\varpi^i) = \text{Hom}_{R\text{-alg}}(R[x]/(x^{p^\nu} - 1), S/\varpi^i) \supset \mu_{p^\nu}(L) = \mu_{p^\nu}(\overline{K}).$$

$$\xrightarrow{\text{bij}} \left\{ \zeta \in S/\varpi^i \mid \zeta^{p^\nu} = 1 \text{ in } S/\varpi^i \right\}$$

$$\implies \zeta \equiv 1 \pmod{\mathfrak{m}_S}.$$

Claim: $\forall a \in \mathfrak{m}_S \forall i > 0 \exists \nu \geq 0 : 1 + a \pmod{\varpi^i} \in G_\nu(S/\varpi^i)$.

Proof. Choose $\nu \gg 0$ such that $\forall 1 \leq j \leq p^\nu, \binom{p^\nu}{j} a^j \in \varpi^i S$.

Reason: $\binom{p^\nu}{j} = \frac{p^\nu(p^\nu-1)\dots(p^\nu-j+1)}{j!}$, so for $\nu \gg 0$ the numerator is highly divisible by p and thus ϖ .

Exercise: such ν exists.

Therefore, $1 + a \in G_\nu(S/\varpi^i)$. The claim is proved.

The claim implies, $\forall a \in \mathfrak{m}_S, 1 + a \pmod{\varpi^i} \in G(S/\varpi^i) = \varinjlim_\nu G_\nu(S/\varpi^i)$ [we can think about the inductive limit as union].

This gives us a coherent system $\pmod{\varpi^i}$ therefore we have,

$$1 + a \in \varprojlim_i G(S/\varpi^i) = G(S)$$

Conclusion: $\exists \text{Aut}(L/K) = \mathcal{G}_K$ -equivariant isomorphism of groups $\underline{\mu}_{p^\infty, R}(S) \xrightarrow{\sim} (\mathfrak{m}_S, +)$ where $S = \mathcal{O}_L = \mathcal{O}_{\mathbb{C}_p}$. The map is $\zeta \mapsto \zeta - 1 \in \mathfrak{m}_S$.

Also, multiplication $\leftrightarrow a + b = a + b + ab$.

This has more points than we would naively expect.

Upshot: $G(S)$ may not be a torsion group. In $\widehat{\mathbb{G}}_m$ note that $[p^m](a) = (1 + a)^{p^m} - 1$. $1 + a$ is not necessarily a root of unity!

Similarly, $G(S)$ might not be equal to $\varinjlim G_\nu(S)$.

In fact, the p^ν torsion points $G(S)[p^\nu] = \varprojlim_i (G(S/\varpi^i)[p^\nu])$.

We have the exact sequence:

$$0 \longrightarrow G_\nu \longrightarrow G_{\nu+\mu} \xrightarrow{[p^\nu]} G_\nu \longrightarrow 0$$

This induces,

$$0 \longrightarrow G_\nu(S/\varpi) \xrightarrow{i} G_{\nu+\mu}(S/\varpi^i) \xrightarrow{[p^\nu]} G_\nu(S/\varpi^i) \longrightarrow 0$$

Therefore, $G_{\nu+\mu}(S/\varpi^i)[p^\nu] = G_\nu(S/\varpi^i)$

Note that $G(S)[p^\nu] = \varprojlim_i (G(S/\varpi^i)[p^\nu]) = \varprojlim_i G_\nu(S/\varpi^i)$.

Thus, $G(S/\varpi^i)[p^\nu] = \varprojlim_\mu G_\mu(S/\varpi^i)[p^\nu] = G_\nu(S/\varpi^i)$

$$= \varprojlim_i \text{Hom}_{R\text{-alg}}(\mathcal{O}(G_\nu), S/\varpi^i) \hookrightarrow \text{Hom}_{R\text{-alg}}(\mathcal{O}(G_\nu), \varprojlim_i S/\varpi^i)$$

$$= \text{Hom}_{R\text{-alg}}(\mathcal{O}(G_\nu), S) = G_\nu(S)$$

This inclusion is bijective because $\mathcal{O}(G_\nu)$ is a f.g. S -algebra.

Caution: $\text{Hom}_{R\text{-algs}}^{\text{cont}}(R[[x]], S) \neq \text{Hom}_{R\text{-algs}}(R[[x]], S)$ where S is given the usual valuation topology and $R[[x]]$ the topology defined by (ϖ, x) .

Conclusion: $G(S)[p^\nu] = G_\nu(S)$ hence the torsion subgroup $G(S)_{\text{torsion}} = \varinjlim G_\nu(S)$.

Also, if G is étale then $G(S) = G(S)_{\text{torsion}}$ since the connected part of the group is trivial.

If G is connected and F is the corresponding formal group then,

$$G(\mathcal{O}_{\overline{K}^\wedge}) \xrightarrow[\mathcal{G}_K]{\cong} \left(\mathfrak{m}_{\mathcal{O}_{\overline{K}^\wedge}}^{\oplus n}, + \right)$$

$$n = \dim G.$$

□

$G(S)$ has all the information needed to define $\Phi(G) = \bigcup_\nu G_\nu(S), T(G) = \varprojlim_\nu G_\nu(S)$.
But these are nicer.

$T(G)$ is something like \mathbb{Z}_p^h .

$G(S)_{\text{torsion}} = \Phi(G)$ if $S = \mathcal{O}_{\mathbb{C}_p}$.

Tuesday, 3/25/2025

Recall" R is a CDVR, $k = R/\mathfrak{m}_R, K = \text{Frac}(R), \text{char}(k) = p$, we most often assume k is perfect. $\varpi = \text{uniformizer of } R$.

$L = \text{completion of a Galois extension of } K \text{ inside } \overline{K}$.

$S = \text{valuation ring of } L \supset \mathfrak{m}_S = \text{maximal ideal of } S$.

Set $G(S) = \varprojlim_i G(S/\varpi^i), G(S/\varpi^i) = \varinjlim_\nu G_\nu(S/\varpi^i)$

For example, $G = \varprojlim_{p^\infty, R} \mathfrak{m}_{p^\infty, R} \implies G(S) \cong 1 + \mathfrak{m}_S \supset \mu_{p^\infty}(\overline{K}) = G(S)_{\text{tors}}$. So $G(S)$ in this case contains more than the torsion points.

Proposition.

- 1) $G(S)[p^\nu] = G_\nu(S)$, hence $G(S)_{\text{tors}} = \varinjlim_\nu G_\nu(S)$.
- 2) G étale $\implies G(S) = G(S)_{\text{tors}}$.
- 3) If G is commutative with associated formal group $F = F(x_1, \dots, x_n, y_1, \dots, y_n)$ of $\dim n$, then $\exists \mathcal{G}_K (= \text{Gal}(K^{\text{sep}}/K))$ equiv. isom. $G(S) \cong (\mathfrak{m}_S^{\oplus n}, +)$. On $G(S)$ the identity element is 1, but in $\mathfrak{m}_S^{\oplus n}$ the identity element is $(0, \dots, 0)$.
- 4) If $\dim(G^0) = n$ then $\exists \mathcal{G}_K$ -equivariant exact sequence

$$0 \rightarrow (\mathfrak{m}_S^{\oplus n}, +) \rightarrow G(S) \rightarrow G^{\text{ét}}(S) \rightarrow 0$$

and $G^{\text{ét}} \cong (\mathbb{Q}_p/\mathbb{Z}_p)^{h'}$ if $L = \widehat{\overline{K}}$ and $h' = \text{height}(G^{\text{ét}})$.

Proposition 2.2.4.1. If k is perfect then $G \rightarrow G^{\text{ét}}$ has a formal section in the sense that $\mathcal{O}(G_\nu) \cong \mathcal{O}(G_\nu^{\text{ét}}) \otimes_R \mathcal{O}(G_\nu^0)$ and these isom. can be chosen such that

$$\varprojlim \mathcal{O}(G_\nu) \cong (\varprojlim \mathcal{O}(G_\nu^{\text{ét}})) \widehat{\otimes} (\varprojlim \mathcal{O}(G_\nu^0))$$

$$\begin{aligned} &\cong A^{\text{ét}} \widehat{\otimes}_R R[[x_1, \dots, x_n]] \\ &:= \varprojlim_i \left(A^{\text{ét}} \otimes_R R[[x_1, \dots, x_n]] / (x_1, \dots, x_n)^i \right) \end{aligned}$$

The sequence

$$0 \rightarrow G^0(S) \rightarrow G(S) \rightarrow G^{\text{ét}}(S) \rightarrow 0$$

is exact.

Corollary 2.2.4.2. Assume k is perfect. $\forall x \in G(S) \exists$ finite extension L'/L and $y \in G(S)$ such that $x = [p](y)$.

Proof. (Sketch) Reduce to the case of a connected and an étale group using 2.2.4.1. We check them individually.

Étale case: we only need to enlarge the residue field k . In other words, we replace L by an unramified extension (at most), simply because in this case $G_{\nu}^{\text{ét}} \times_k$ over a finite Galois extension $k'/k \implies G_{\nu}^{\text{ét}} \times_R k'$ is constant for an unramified extension R'/R with residue field k' .

Connected case:

$$x_i \longmapsto [p]_i(x_1, \dots, x_n)$$

$$\begin{array}{ccc} \varprojlim_{\nu} \mathcal{O}(G_{\nu}) & \cong & R[[x_1, \dots, x_n]] \xrightarrow{[p]^{\#}} R[[x_1, \dots, x_n]] \\ & & \downarrow \\ & & S \xrightarrow{x_i \mapsto a_i \in \mathfrak{m}_S} S' = \mathcal{O}_{L'} \end{array}$$

Here $R[[x_1, \dots, x_n]]$ = finitely generated module over $R[[x_1, \dots, x_n]]$, use the theory of integral extensions. \square

Corollary 2.2.4.3. If L is algebraically closed (eg $\text{char}(K) = 0, L = \widehat{\overline{K}}$) then $G(S)$ is divisible, ie $\forall n \in \mathbb{Z}_{>0}$, the multiplication-by- n map on $G(S)$ is surjective.

Proof. If $p \nmid n$ then $[n]_{G_{\nu}} : G_{\nu} \rightarrow G_{\nu}$ is an isomorphism: choose m such that $m \cdot n \equiv 1(p^{\nu})$ then $[n] : G(S) \rightarrow G(S)$ is an isomorphism.

2.2.4.2 \implies multiplication by p is surjective \implies multiplication by p^m is surjective. \square

The logarithm From now on we assume $\text{char}(K) = 0$ and k is separable.

Definition. The tangent space t_G of G is defined to be the tangent space of the formal group F associated to G [which is the same as the formal group associated to G^0 , the connected component].

If $A_{\nu}^0 = \mathcal{O}(G_{\nu}^0)$ and $A^0 := \varprojlim_{\nu} A_{\nu}^0 \cong R[[x_1, \dots, x_n]] \supset U^0 := (x_1, \dots, x_n) = \ker(\varepsilon : A^0 \rightarrow R)$. We have $\text{Spec}(R) \xrightarrow{e_{G_{\nu}^0}} G_{\nu}^0$. Correspondingly, we have $R \xleftarrow{\varepsilon_{G_{\nu}^0}} A_{\nu}^0$ and also the zero section $R \xleftarrow{\varepsilon} A^0$.

Choosing the coordinates is non-canonical!

Then, $t_G = \text{Hom}_R(I^0/(I^0)^2, R)$. This is sometimes called the Zariski tangent space.

Remark. 1) If A is any ring and $P \in \text{Spec}(A) =: X$ then the Zariski tangent space of X at P is defined to be $\text{Hom}_{k_P}(PA_P/(PA_P)^2, k_P)$ where $k_P = A_P/PA_P = \text{Frac}(A/P)$.

$$\begin{aligned}
2) \exists \text{ canonical isomorphism } t_G(L) &\xrightarrow{\sim} \text{Der}_R(A^0, L) \\
&= \{ \tau : A^0 \rightarrow L \mid \tau \text{ is } R\text{-linear, } \forall f, g \in A^0 : \tau(fg) = \varepsilon(f)\tau(g) + \varepsilon(g)\tau(f) \} \\
&\implies \tau \in \text{Der}_R(A^0, L) \text{ and } f, g \in I^0 \implies \tau(fg) = \varepsilon(f)\tau(g) + \varepsilon(g)\tau(f) = 0 \\
&\implies \tau|_{(I^0)^2} = 0.
\end{aligned}$$

$$\text{Also: } \tau(1) = \tau(1 \cdot 1) = 1 \cdot \tau(1) + \tau(1) \cdot 1 \implies 2\tau(1) = \tau(1) \implies \tau(1) = 0.$$

$$\implies \forall a \in R : \tau(a) = 0 \implies \tau \text{ is uniquely determined by its restriction to } I^0/(I^0)^2.$$

$$\text{Note that } I^0/(I^0)^2 = Rx_1 \oplus \dots \oplus Rx_n \cong R^{\oplus n}.$$

$$\implies \dim_L(t_G(L)) = \dim(F) = \dim(G).$$

Conclusion: Since $I^0/(I^0)^2 \cong R^{\oplus n} \implies \dim_L(t_G(L)) = \dim(F) = \dim(G)$
The Logarithm Map $\log = \log_G : G(S) \rightarrow t_G(L)$ is defined by:

$$\log\left(\frac{a}{\in S}\right)\left(\frac{f}{\in A^0}\right) := \lim_{i \rightarrow \infty} \frac{f([p^i]_G(a)) - f(0)}{p^i}$$

If $f = x_j$ then $f([p^i]_G(a)) \equiv [p^i]_j\left(\frac{a}{=(a_1, \dots, a_n) \in G^0(S) \cong \mathfrak{m}_S^{\oplus n}}\right) = p^i(\text{linear term in } a_k) + p^{2i}\text{higher order terms}$

So the limit exists in this case.

Note:

- 1) For $a \in G^{\text{ét}}(S)$ one has $p^i a = 0$ for $i \gg 0$. Hence $p^i a \in G^0(S)$.
- 2) If G is étale then $t_G(L) = 0$ and \log is the zero map.
- 3) $G(S)$ is a \mathbb{Z}_p -module: if $n_j \in \mathbb{Z}$ converges p -adically to $n \in \mathbb{Z}_p$ then $\forall a \in G(S) : n_j \cdot a$ converges in $G(S) = \varprojlim G(\underbrace{S/\varpi^i}_{\text{equipped with discrete top}})$

Thursday, 3/27/2025

The Galois modules Φ and T

G is a p -div gp over R , $R = \text{CDVR}$ of mixed char with perfect residue field k of $\text{char } p > 0$, $K = \text{Frac}(R)$, $\mathcal{G}_K = \text{Gal}(\bar{K}/K)$.

CDVR of mixed characteristic means K and k have different characteristic.

$\Phi(G) = \varinjlim_\nu G_\nu(\bar{K})$ with transition map $G_\nu \xrightarrow{i_\nu} G_{\nu+1}$

$T(G) = \varprojlim_\nu G_\nu(\bar{K})$ with transition map j_ν such that:

$$\begin{array}{ccc}
G_{\nu+1} & \xrightarrow{[p]} & G_{\nu+1} \\
& \searrow j_\nu & \uparrow i_\nu \\
& & G_\nu
\end{array}$$

Fact(HW 10): A finite group scheme over a field of char 0 is étale.

$$\text{Consequence: } G_\nu(\bar{K}) = \underbrace{(G_\nu \otimes_K \bar{K})(\bar{K})}_{\text{étale}} = \underbrace{(G \otimes_K \bar{K})}_{\text{const fin alg grp}/\bar{K}}(\bar{K}) \xrightarrow{\text{as abstract grp}} (\mathbb{Z}/p^\nu)^h \cong$$

$$\begin{aligned}
(p^{-\nu} \mathbb{Z}/\mathbb{Z})^h &\xrightarrow{p} (p^{-(\nu-1)} \mathbb{Z}/\mathbb{Z})^h \\
\implies \text{as groups } \Phi(G) &\cong (\mathbb{Q}_p/\mathbb{Z}_p)^h \text{ and } T(G) \xrightarrow[\text{top.}]{\cong} \underbrace{(p^{-\nu} \mathbb{Z}/\mathbb{Z})^h}_{\text{trans map are given by mult by } p} = \\
&\mathbb{Z}_p^h.
\end{aligned}$$

In $\varprojlim(\mathbb{Z}/p^n)$ trans. maps are mod p^{n-1} .

Important: In this description, the Galois action has been neglected. But it is there by transport of structure.

Checkk: $\Phi(G) \cong T(G) \otimes_{\mathbb{Z}_p} (\mathbb{Q}_p/\mathbb{Z}_p)$, $T(G) \cong \text{Hom}_{\mathbb{Z}_p}(\mathbb{Q}_p/\mathbb{Z}_p, \Phi(G))$

$$x_n \hookrightarrow \left(\underset{\in G_\nu(\bar{K})}{x_\nu} \right)_\nu \otimes \frac{1}{p^n}, (x_\nu)_\nu \mapsto \left[\frac{1}{p^n} + \mathbb{Z}_p \mapsto x_n \right]$$

$$T(G) \otimes_{\mathbb{Z}} \mathbb{Z}/p^n = T(G)/p^n T(G) \cong G_n(\bar{K})$$

These isomorphisms are obviously \mathcal{G}_K -equivariant!

Moreover: $G(\mathcal{O}_{\bar{K}})_{\text{tors}} = \Phi(G)$

$$\left(\cong \varprojlim_i G(\mathcal{O}_{\bar{K}}/p^i) \right)$$

Tate

Section 1: Introduction

Section 2: Group scheme preliminaries

Section 3: Number theoretic preliminaries

2.5 2.3 The completion of the algebraic closure of K

$R = \text{CDVR}$ of mixed char with perfect residue field k of char $p > 0$, $K = \text{Frac}(R)$, $\pi = \text{uniformizer of } K$, $p \cdot R = p^e R$, $e = \text{absolute ram. index of } K \text{ over } \mathbb{Q}_p$.

$v = v_K : K^\times \rightarrow \mathbb{Z}$, $v(\pi) = 1$, $v(p) = e$. Extend to \bar{K} and $C := \hat{\bar{K}}$, $v : C^\times \rightarrow \mathbb{Q}$

Absolute value on K : $|x| = |\pi|^{v(x)}$. Similarly, $\forall x \in C$, $|x| = |\pi|^{v(x)}$

Recall: if M/L is a finite extension of cdvfs (complete discretely valued field) we have the codifferent:

$$D_{M/L}^{-1} = \{a \in M \mid \forall b \in \mathcal{O}_M : \text{Tr}_{M/L}(ab) \in \mathcal{O}_L\} \supset \mathcal{O}_M$$

$D_{M/L}^{-1}$ is a fractional ideal: it is nonzero and finitely generated.

We have the different: $D_{M/L} = (D_{M/K}^{-1})^{-1}$ generated by a^{-1} if $D_{M/L}^{-1} = a\mathcal{O}_M$ as \mathcal{O}_M -module.

Suppose L/K finite.

Given a fractional ideal $I \subset \mathcal{O}_L$ we set $v(I) = v_K(a)$, $a \in L^\times$, $I = a \cdot \mathcal{O}_L$.

Recall HW4 1vi: if v_L is the normalized valuation attached to L we have:

$$v_L(D_{L/K}) = \sum_{i=0}^{\infty} (|G(L/K)_i| - 1)$$

If L/K is totally ramified, hence $[L : K] = e(L/K) = |G(L/K)_0|$ and $G(L/K)_0 = G(L/K) = G(L/K)_{-1}$

$$\implies v_K(D_{L/K}) = \frac{1}{|G(L/K)_0|} \sum_{i=0}^{\infty} (|G(L/K)_i| - 1)$$

$$= \sum_i^{\infty} \left(\frac{1}{[G(L/K)_0 : G(L/K)_i]} - \frac{1}{[L : K]} \right)$$

2.3.1. Study of certain totally ramified extensions:

Let K_∞/K be an infinite Galois extension of K which is totally ramified with $\mathcal{C} := \text{Gal}(K_\infty/K)$ isomorphic to \mathbb{Z}_p as a profinite group.

Hence \mathcal{C} has a unique closed subgroup of index p^n for any $n \geq 0$ and any finite indexed closed subgroup $\mathcal{C}(n)$ of index p^n of \mathcal{C} and any finite index closed subgroup of \mathcal{C} is one of $\mathcal{C}(n)$. Set $K_n = K_\infty^{\mathcal{C}(n)}$. Set $K_n = K_\infty^{\mathcal{C}(n)}$. Then K_n/K is Galois and $G(K_n/K) \cong \mathcal{C}/\mathcal{C}(n) \cong \mathbb{Z}_p/p^n \mathbb{Z}_p \cong \mathbb{Z}/(p^n)$.

Proposition 2.3.1.1. $\exists c \in \mathbb{Q} \exists$ bounded sequence $(a_n)_n$ in \mathbb{Q} such that:

$$v_k(D_{K_n/K}) = e \cdot n + c + p^{-n} a_n$$

e being the absolute ramification index of K over \mathbb{Q}_p , $p \cdot R = \pi^e \cdot R$.

$$\underset{e(K_n/K) = p^n}{\iff} V_{K_n}(D_{K_n/K}) = e \cdot p^n \cdot n + c p^n + a_n$$

Tuesday, 4/1/2025

For simplicity let $K = \mathbb{Q}_p(\mu_p) \implies K_n = \mathbb{Q}_p(\mu_{p^{n+1}})$. Then $\text{Gal}(K_n/K) \cong \mathbb{Z}/p^n$.

In fact, $\text{Gal}(K_n/K) = (1 + p\mathbb{Z}_p)/(1 + p^{n+1}\mathbb{Z}_p) \cong \mathbb{Z}/p^n\mathbb{Z}$. [p odd].

$G(K_n/K)_i \cong p^{m-1}\mathbb{Z}/p^n\mathbb{Z}, p^{m-1} \leq i < p^m$ [follows from $G(\mathbb{Q}(\mu_{p^n})/\mathbb{Q}_p)_i$].

$$\implies v_{K_n}(D_{K_n/K}) \stackrel{HW1}{=} \sum_{i=0}^{\infty} (|G(K_n/K)_i| - 1) = p^n - 1 + \sum_{m=1}^n (p^m - p^{m-1})(p^{n-m+1} - 1) = (p-1)np^n$$

Normalized means we have to divide by the ramification index. The ramification index in this case is equal to the degree p^n so:

$$v_K(D_{K_n/K}) = \frac{1}{p^n} v_{K_n}(D_{K_n/K}) = (p-1)n = e(K/\mathbb{Q}_p)n$$

Reminder: Herbrand function and upper ramification filtration

Let L/K be any finite Galois extension of local fields with $G = G(L/K)$, $G_x := G_{[x]}$, $x \geq -1$

Herbrand function $\varphi_{L/K} : [-1, \infty) \rightarrow [-1, \infty)$

$$\varphi_{L/K}(s) = \int_0^s \frac{dx}{[G_0 : G_x]}$$

This is a bijection.

We define $\psi_{L/K} := \varphi_{L/K}^{-1}$.

The upper ramification numbering is a restatement: $G^t := G_{\psi_{L/K}(t)}$.

Theorem 2.5.1 (Herbrand). If $L \supset M \supset K$ and M/K is Galois, then,

$$G(M/K)^t = \text{im}(G(L/K)^t \hookrightarrow G(L/K) \twoheadrightarrow G(M/K))$$

$$\equiv G(L/K)^t G(L/M)/G(L/M)$$

Theorem 2.5.2 (Hasse-Arf). If L/K is abelian and $n \in [-1, \infty)$ is a break of the upper ramification filtration $[G(L/K)^t < G(L/K)^n \forall t > n]$ then $n \in \mathbb{Z}_{\geq 1}$.

Upper filtration of: $\frac{\mathcal{G}_K^t}{\mathcal{A}_K^t}$

Proposition 2.5.3. L/K finite Galois and \bar{L}/\bar{K} separable (hence is Galois). Then,

$$v_K(D_{L/K}) = \int_0^\infty \left(1 - \frac{1}{|G(L/K)^t|} \right) dt$$

Proof. Set $G = G(L/K)$, $\varphi = \varphi_{L/K}$, $\psi = \psi_{L/K}$. HW4 $\implies v_L(D_{L/K}) = \sum_{i=0}^{\infty} (|G_i| - 1)$.

$G_0 = \ker(G \rightarrow \text{Aut}(\bar{L}/\bar{K}))$, $ef = n \implies |G_0| = e(L/K)$

$$\implies v_k(D_{L/K}) = \frac{1}{e(L/K)} v_L(D_{L/K}) = \sum_{i=0}^{\infty} \left(\frac{|G_i|}{|G_0|} - \frac{1}{|G_0|} \right) = \int_0^\infty \left(\frac{1}{[G_0 : G_x]} - \frac{1}{|G_0|} \right) dx$$

Set $x = \psi(t) \implies dx = \psi'(t)dt$, $(\varphi \circ \psi)(t) \implies \varphi'(\psi(t))\psi'(t) = 1 \implies \psi'(t) = \frac{1}{\varphi'(\psi(t))}$

$$= [G_0 : G_{\psi}(t)] = v_K(D_{L/K}) = \int_0^\infty \left(\frac{1}{[G_0 : G_{\psi(t)}]} - \frac{1}{|G_0|} \right) \underbrace{[G_0 : G_{\psi(t)}]} dt$$

$$= \int_0^\infty \left(1 - \frac{1}{|G_{\psi(t)}|} \right) dt = \int_0^\infty \left(1 - \frac{1}{|G^t|} \right) dt$$

□

Let $K_\infty = \bigcup_{n \geq 0} K_n$ be as in the beginning of 2.3.1. $\mathcal{C}_n = G(K_n/K)$

$\mathcal{C}(i) := G(K/K_i) = p^i e (\cong p^i e)$ which is unique closed subgroup of index p^i of \mathcal{C} .

Lemma 2.5.4. Let $v_{-1} := -1 < v_0 < v_1 < \dots$ be the sequence of breaks (necessarily integers by Hasse-Arf) of $(\mathcal{C}^t)_{t \geq -1}$ so that $\forall i \geq 0 : \mathcal{C}^t = \mathcal{C}(i)$ for $v_{i-1} < t < v_i$.

Then there is $i_0 \in \mathbb{Z}_{\geq 0}$ such that $\forall i > i_0 : v_i = e + v_{i-1}$. Hence $v_i = (i - i_0)e + v_{i_0}$ for all $i > i_0$

Sketch. Assume K is locally compact, hence K/\mathbb{Q}_p is finite. Write $\mathcal{A} = G(K^{ab}/K)$ which is $\cong \widehat{K^\times}$ the profinite completion and $\mathcal{A}^0 = \varprojlim G(L/K)^0, L/K$ finite abelian. $= \varprojlim_{L/K \text{ finite abelian}} G(L/K)_0 \xrightarrow{LCFT} U(K) = \mathcal{O}_K^\times$. Also, LCFT tells us $\mathcal{A}^t \cong U^t(K) = 1 + \pi^t \mathcal{O}_K$ when $t \in \mathbb{Z}_{\geq 0}, U^0(K) = U(K)$.

Easy: $\exists t_0 \in \mathbb{Z}_{>0} \forall t \in [t_0, \infty) \cap \mathbb{Z} : \mathcal{A}^t \xrightarrow[\log]{\cong} \pi^t \mathcal{O}_K$ [is even on an isometry of \mathbb{Z}_p -modules.]

Choose i_0 minimal such that $v_{i_0} \geq t_0$

$$\begin{aligned} \implies \mathcal{C}(i_0 + 1) &= p^{v_{i_0}+1} \mathcal{C} = p \mathcal{C}(i_0) = p \mathcal{C}^{v_{i_0}} = p \text{res}(\mathcal{A}^{v_{i_0}}). \\ &= \text{res}((\mathcal{A}^{v_{i_0}})^p) \text{ the subgroup of } p\text{'th powers / } p\text{-multiples.} \\ &\cong \text{res}(\mathcal{A}^{v_{i_0}+e}) \end{aligned}$$

So we need:

$$p \pi^t \mathcal{O}_K = \pi^e \pi^T \mathcal{O}_K = \pi^{e+t} \mathcal{O}_K$$

It follows by definition: $v_{i_0+1} \leq v_{i_0} = e$.

Need to show: $v_{i_0+1} = v_{i_0} + e$. Repeat the argument with any $i > i_0$.

□

Sketch of 2.3.1.1. Let $\mathcal{C}_n = G(K_n/K)$.

$$v_K(D_{K_n/K}) \xrightarrow[\text{prop}]{\text{prev}} \int_0^\infty \left(1 - \frac{1}{|\mathcal{C}_n^t|}\right) dt$$

and $\mathcal{C}_n^t = \mathcal{C}^t \mathcal{C}(n)/\mathcal{C}(n) = \mathcal{C}(i)/\mathcal{C}(n)$ for $0 \leq i \leq n, v_{i-1} < t \leq v_i$.
Note: $\mathcal{C}(i)/\mathcal{C}(n)$ has order p^{n-i} .

$$\begin{aligned} &= \int_0^{v_{i_0}} (\dots) dt + \sum_{i=i_0+1}^{n-1} \int_{v_{i-1}}^{v_i} \left(1 - \frac{1}{|\mathcal{C}_n^t|}\right) dt \\ &= \underbrace{\int_0^{v_{i_0}} (\dots) dt}_{=c' + \frac{b_n}{p^n}} + \underbrace{e \cdot \sum_{i=i_0+1}^{n-1} \left(1 - \frac{p^i}{p^n}\right)}_{n+c' + \frac{a_n}{p^n}} = en + c + \frac{a_n}{p^n} \end{aligned}$$

□

Thursday, 4/3/2025

Lemma: Let $v_{-1} := -1 < 0 \leq v_0 < v_1 < \dots$ be the breaks of the upper ramification filtration $(\mathcal{C}^t)_{t \geq 1}$ so that $\mathcal{C}^t = \mathcal{C}(i) = p^i \mathcal{C}$ for $v_{i-1} < t \leq v_i$ for all $i \geq 0$. Recall that $\mathcal{C} \cong \mathbb{Z}_p$.

Then $\exists i_0 \in \mathbb{Z}_{\geq 0}$ such that $\forall i \geq i_0 : v_i = e(i - i_0) + v_{i_0}$.

Complement to the proof of the Lemma: we had seen: $\forall i \geq i_0$,

$$\mathcal{C}^{v_i+e} = p \mathcal{C}^{v_i}$$

This implies $v_{i+1} \geq v_i + e$.

$\mathcal{C}^{v_i+1} = p \mathcal{C}^{v_i}$ since v_i is a break.

$v_i + e$ is a break so $v_{i+1} = v_i + e$ if $\mathcal{C}^{v_i+e+1} = p \mathcal{C}^{v_i+e}$. But this is true. Namely, since v_i is a break, $\mathcal{C}^{v_i+1} = p \mathcal{C}^{v_i}$

Therefore, $\mathcal{C}^{v_i+e+1} = \text{res}(\mathcal{A}^{v_i+e+1}) = \text{res}(U^{v_i+e+1}(K))$ where \mathcal{A} denotes the maximal abelian extension.

$$\begin{aligned} &= \text{res}(1 + \pi^{v_i+e+1} \mathcal{O}_K) = \text{res}(1 + p \pi^{v_i+1} \mathcal{O}_K) = \text{res}((1 + \pi^{v_i+1} \mathcal{O}_K)^p) \\ &= \text{res}((\mathcal{A}^{v_i+1})^p) = p \text{res}(\mathcal{A}^{v_i+1}) = p \mathcal{C}^{v_i+1} = p p \mathcal{C}^{v_i} = p \mathcal{C}^{v_i+e}. \end{aligned}$$

Thus, v_i is a break $\implies v_{i+1} = v_i + e$. This finishes the proof of the lemma.

Proposition 2.3.1.1. $v_K(D_{K_n/K}) = en + c + \frac{a_n}{p^n}$ for some constant c and some bounded sequence a_n .

Proof. $v_K(D_{K_n/K}) = \int_0^\infty \left(1 - \frac{1}{|\mathcal{C}_n^t|}\right) dt$ and use the lemma. □

Corollary 2.3.1.2. \exists bounded sequence $(b_n)_n$ of real numbers b_n such that $\forall n \geq 0$:

$$v(D_{K_{n+1}/K_n}) = e + p^{-n}b_n$$

Proof. $v_{K_n}(D_{K_{n+1}/K_n}) = \int_0^\infty \left(1 - \frac{1}{|G(K_{n+1}/K_n)^t|}\right) dt$. Now use the lemma and determine the unique break of $(G(K_{n+1}/K_n)^t)_{t \geq -1}$

Caution: the upper numbering of ramification groups is not compatible with passing to subgroups.

Alternatively, use that $D_{K_{n+1}/K} = D_{K_{n+1}/K_n} \cdot (D_{K_n/K} \mathcal{O}_{K_{n+1}})$.
cf Serre, Local Fields III, S4, Prop 8. \square

Corollary 2.3.1.3 \exists constant $a \geq 0$ independent of n such that: $\forall n \geq 0 \forall x \in K_{n+1}$:

$$|\text{Tr}_{K_{n+1}/K_n}(x)| \leq |p|^{1-a/p^n} |x|$$

Proof. Write $D_{K_{n+1}/K_n} = \mathfrak{m}_{n+1}^d$ where \mathfrak{m}_{n+1} is the maximal ideal of $\mathcal{O}_{K_{n+1}}$, where

$$\begin{aligned} d &= v_{K_{n+1}}(D_{K_{n+1}/K_n}) = [K_{n+1} : K] v_K(D_{K_{n+1}/K_n}) \\ &\stackrel{2.3.1.2.}{=} p^{n+1} (e + p^{-n} b_n) = p^{n+1} e + p b_n \end{aligned}$$

HW5/1/iii $\implies \text{Tr}_{K_{n+1}/K_n}(\mathfrak{m}_{n+1}^i) = \mathfrak{m}_n^j$ where $j = \left\lfloor \frac{d+i}{p} \right\rfloor$ where $p = [K_{n+1} : K_n]$

Suppose $xf \in \mathfrak{m}_{n+1}^i \setminus \mathfrak{m}_{n+1}^{i-1}$.

Then $|x| = |\pi_{n+1}^i| = |\pi|^{i/p^{n+1}}$.

$$|\text{Tr}_{K_{n+1}/K_n}(x)| \leq |\pi_n^j| = |\pi|^{j/p^n} \leq |\pi|^{(\frac{d+i}{p}-1)/p^n} = |\pi|^{p^d/p^{n+1} - \frac{1}{p^n} + \frac{i}{p^{n+1}}} = |\pi|^{e + \frac{b_n}{p^n} - \frac{1}{p^n}}.$$

$$|\pi|^{i/p^{n+1}} = |\pi|^{e(1 + \frac{(b_n-1)/e}{p^n})} |x| = |p|^{1 + \frac{(b_n-1)/e}{p^n}} |x|.$$

$(b_n)_n$ bounded, so $\exists a \geq 0 : \forall n \geq 0 : \frac{b_n-1}{e} \geq -a$.

Thus, $|p|^{1 + \frac{(b_n-1)/e}{p^n}} \leq |p|^{1-a/p^n}$.

Thus we ultimately have:

$$|\text{Tr}_{K_{n+1}/K_n}(x)| \leq |p|^{1-a/p^n} |x|$$

\square

Corollary 2.3.1.4. \exists constant $c \geq 0$ independent of n such that $\forall n \geq 0 \forall x \in K_n$:

$$|\text{Tr}_{K_n/K}(x)| \leq |p|^{n-c} |x|$$

Proof. Iterate the formula in 2.3.1.3:

$$\begin{aligned} |\text{Tr}_{K_n/K}(x)| &= |\text{Tr}_{K_1/K}(\text{Tr}_{K_n/K_1}(x))| \stackrel{2.3.1.3.}{\leq} |p|^{1-a} |\text{Tr}_{K_n/K_1}(x)| \\ &\leq |p|^{1-a} |\text{Tr}_{K_2/K_1}(\text{Tr}_{K_n/K_2}(x))| \stackrel{2.3.1.3.}{\leq} |p|^{1-a} |p|^{1-a/p} |\text{Tr}_{K_n/K_2}(x)| \\ &= |p|^{2-a(1+1/p)} |\text{Tr}_{K_n/K_2}(x)| \leq \dots \leq |p|^{n-a(1+1/p+\dots+1/p^{n-1})} |x| \end{aligned}$$

We can take $c = \frac{a}{1-1/p}$ \square

Let $\sigma \in \mathcal{C}$ be a topological generator, aka $\sigma \pmod{\mathcal{C}(n)}$ is a generator of $\mathcal{C}/\mathcal{C}(n) \cong G(K_n/K)$ for all $n \geq 0$.

Lemma 2.3.1.5: $\exists c > 0$ independent of n such that $\forall n \geq 0 \forall x \in K_{n+1}$:

$$|x - p^{-1} \text{Tr}_{K_{n+1}/K_n}(x)| \leq c |\sigma^{p^n}(x) - x|$$

Proof. Write $\tau = \sigma^{p^n}$. Then $\tau|_{K_{n+1}}$ is a generator of $G(K_{n+1}/K_n)$. Then $px - \text{Tr}_{K_{n+1}/K_n}(x) = \sum_{i=0}^{p-1} (\text{id} - \tau^i)(x)$.

$$= \sum_{i=0}^{p-1} \underbrace{(1 + \tau + \dots + \tau^{i-1})}_{=0 \text{ if } i=0} (1 - \tau)(x)$$

$$= \sum_{i=0}^{p-1} \left(\sum_{j=0}^{p-1} \tau^j((1-\tau)(x)) \right)$$

Note that $|\tau^j(1-\tau)(x)| = |(1-\tau)(x)|$ so,

$$\leq |(1-\tau)(x)|$$

Divde by $|p|$ and get,

$$|x - p^{-1} \text{Tr}_{K_{n+1}/K_n}(x)| \leq |p|^{-1} |\sigma^{p^n}(x) - x|$$

Can take $c = |p|^{-1}$

□

A most crucial definition:

Definition. Define $t : K_\infty \rightarrow K$ by $t(x) = p^{-n} \text{Tr}_{K_n/K}(x)$ if $x \in K_n$.

Remark. This is well defined. If $x \in K_n$ and $m \geq n$ then $p^{-m} \text{Tr}_{K_m/K}(x) = p^{-n} \text{Tr}_{K_n/K}(p^{-(m-n)} \text{Tr}_{K_m/K_n}(x)) = p^{-n} \text{Tr}_{K_n/K}(p^{-(m-n)} p^{m-n} x)$

Proposition 2.3.1.6. Let σ be as above. \exists constant $d > 0$ such that $\forall x \in K_\infty$,

$$|x - t(x)| \leq d |\sigma(x) - x|$$

Proof. Let $c_0 = 1, c_1 = \text{constant}$ in 2.3.1.5. Hence $|x - p^{-1} \text{Tr}_{K_1/K_0}(x)| \leq c_1 |\sigma(x) - x|$ for all $x \in K_1$ [here $K = K_0$].

For $n \geq 1, c_{n+1} := |p|^{-a/p^n} c_n$ with a as in 2.3.1.3.

Clearly, $c_n \rightarrow c > 0$.

Consider for any $n \geq 0$,

$$\forall x \in K_n : |x - t(x)| \leq c_n |\sigma(x) - x| \quad (*)$$

For $n = 0$ both sides are 0.

For $n = 1$ this is the statement $|x - p^{-1} \text{Tr}_{K_1/K_0}(x)| \leq c_1 |\sigma(x) - x|$ which we have above.

To be continued.

Tuesday, 4/8/2025

Assume $(*)$ is true for $n \geq 1$. Let $x \in K_{n+1}$ and set $y = \text{Tr}_{K_{n+1}/K_n}(x)$.

$$\implies |y - pt(x)| = |y - p^{-n} \text{Tr}_{K_{n+1}/K}(x)| = |y - p^{-n} \text{Tr}_{K_n/K}(y)|$$

$$\begin{aligned} \text{By induction, } & \leq c_n |\sigma(y) - y| = c_n \left| \left(\sum_{i=0}^{p-1} (\sigma^{p^n})^i(x) \right) - \sum_{i=0}^{p-1} (\sigma^{p^n})^i(x) \right| \\ & = c_n \left| \sum_{i=0}^{p-1} (\sigma^{p^n})^i(\sigma(x)) - \sum_{i=0}^{p-1} (\sigma^{p^n})^i(x) \right| = c_n |\text{Tr}_{K_{n+1}/K_n}(\sigma(x) - x)| \end{aligned}$$

$$\text{by 2.3.1.3} \leq c_n |p|^{1-ap^{-n}} |\sigma(x) - x|$$

$$\text{Furthermore: } |x - t(x)| \leq \max\{|x - p^{-1}y|, |p^{-1}y - t(x)|\} (+).$$

$$\text{2.3.1.5 and } + \text{ implies } \leq \max\{c_1 |\sigma^{p^n}(x) - x|, c_n |p|^{-ap^{-n}} |\sigma(x) - x|\}. c_{n+1} := c_n |p|^{-ap^{-n}}.$$

$$\text{Note: } |\sigma^{i+1}(x) - x| \leq \max\{|\sigma^{i+1}(x) - \sigma^i(x)|, |\sigma^i(x) - x|\}$$

$$= \max\{|\sigma^i(\sigma(x) - x)|, |\sigma^i(x) - x|\}$$

$$= \max\{|\sigma(x) - x|, |\sigma^i(x) - x|\}.$$

$$\text{Iterating, } \leq |\sigma(x) - x|.$$

$$\text{Thus, the thing before note } \leq \max\{c_1, c_{n+1}\} |\sigma(x) - x| = c_{n+1} |\sigma(x) - x|$$

Hence we have proved $*$ for $n + 1$.

We end the proof by letting $d = \lim_{n \rightarrow \infty} c_n$.

□

Remark. An inspection of the proof of 2.3.1.6 shows that the statement of 2.3.1.6 is also true, with the same constant d if we replace K by K_n as base field.

Note: $G(K_\infty/K_n) \cong \mathbb{Z}_p$.

Notation: set $X = \widehat{K_\infty}$. This is a K -Banach space, since the absolute value on K_∞ extends to X .

The action of \mathcal{C} also extends continuously to X .

Proposition. $t : K_\infty \rightarrow K$ extends continuously to a K -linear map $t : X \rightarrow K$ which is the identity on K .

Proof. t extends continuously by 2.3.1.4 or 2.3.1.6. \square

Set $X_0 = \ker(t) \subset X$. It is a closed (by continuity) K -subspace of X .

Naturally $X = X_0 \oplus K$.

Proposition 2.3.1.7.

- a) $X = X_0 \oplus K$ as a topological K -vector space.
- b) $\sigma - \text{id} : X \rightarrow X$ has kernel K and is bijective on X_0 with a continuous inverse on X_0 .
- c) Let $\lambda \in R$ such that $\lambda \equiv 1 \pmod{\pi}$ and assume that λ is not a root of unity. Then $\sigma - \lambda \text{id} : X \rightarrow X$ is bijective with a continuous inverse.

Proof. a) Define $p_0 : X \rightarrow X_0$ by $p_0(x) = x - t(x) \implies t(p_0(x)) = t(x) - t(t(x)) = 0$.

Thus $p_0(x) \in X_0$ and the map $X \rightarrow X_0 \oplus K$ given by $x \mapsto (p_0(x), t(x))$ is a continuous K -linear bijection with inverse $X_0 \oplus K \rightarrow X$ given by $(x_0, a) \mapsto x_0 + a$.

- b) Clear: $\ker(\sigma - \text{id}) \supset K$. Write $K_n = K_{n,0} \oplus K$ with $K_{n,0} = \ker(\text{Tr}_{K_n/K}) = \ker(t|_{K_n})$.

2.3.1.6 $\implies \forall x \in K_{n,0} : |\sigma(x) - x| \geq \frac{1}{d}|x - t(x)| = \frac{1}{d}|x| \implies (\sigma - \text{id})|_{K_{n,0}}$ is bijective. Also, $\forall y \in K_{n,0} : |(\sigma - \text{id})^{-1}(y)| \leq d|y|$ [by the previous inequality].

Therefore, $(\sigma - \text{id})^{-1}$ extends continuously to $\bigcup_{n \geq 1} K_{n,0} = \ker(t|_{K_\infty})$.

By this inequality, $(\sigma - \text{id})^{-1}$ extends continuously to the closure of $\ker(t|_{K_\infty})$ inside X , which is X_0 .

- c) $\lambda \neq 1$ thus $\sigma - \lambda \text{id}$ is bijective on K since $\sigma - \lambda \text{id}|_K = (1 - \lambda) \text{id}_K$.

For $x \in X_0$, $(\sigma - \text{id})^{-1}(\sigma - \lambda) = (\sigma - \text{id})^{-1}(\sigma - \text{id} + (1 - \lambda) \text{id}) = \text{id} - (1 - \lambda)(\sigma - \text{id})^{-1}$.

If $|1 - \lambda| < d$ with d as in 2.3.1.6,

$|(\lambda - 1)(\sigma - \text{id})^{-1}(y)| \leq |\lambda - 1|d|y| \leq d'|y|$ with $d' := |\lambda - 1|d < 1$.

Thus, $(\text{id} - (1 - \lambda)(\sigma - \text{id})^{-1})^{-1} = \sum_{n=0}^{\infty} ((1 - \lambda)(\sigma - \text{id})^{-1})^n$

Converges as a continuous K -linear operator on X_0 .

Thus, $(\sigma - \lambda)^{-1} = (\sigma - \text{id})^{-1}(\text{id} - (1 - \lambda)(\sigma - \text{id})^{-1})^{-1}$ exists as a continuous K -linear operator on X .

If $|1 - \lambda|d \geq 1$ instead we replace σ by σ^{p^n} and λ by λ^{p^n} with n large enough so that $|\lambda^{p^n} - 1|d < 1$. Replacing K by K_n and using the remark after 2.3.1.6, $|\sigma^{p^n} - \lambda^{p^n}|$ has a continuous inverse on X . Recall that $\lambda^{p^n} \neq 1$ by assumption. Note that:

$$(\sigma - \lambda)(\sigma^{p^n-1} + \dots + \lambda^{p^n-1}) = \sigma^{p^n} - \lambda^{p^n}.$$

Thus, $\sigma - \lambda$ has a continuous inverse on X . \square

Continuous Cohomology (in degrees ≤ 1)

Let V be a K -Banach space. So,

$$\begin{aligned}\|\cdot\| : V &\rightarrow \mathbb{R}_{>0} \\ \|\lambda v\| &= |\lambda| \|v\|, \lambda \in K \\ \|v + w\| &\leq \max\{\|v\|, \|w\|\} \\ \|v\| = 0 &\iff v = 0.\end{aligned}$$

V is complete w.r.t. $\|\cdot\|$ topology.

We assume V is equipped with a continuous action of $\mathcal{C} (\cong \mathbb{Z}_p)$.

i.e. $\mathcal{C} \times V \rightarrow V$ is continuous.

i.e. For each $\tau \in \mathcal{C}$ the map $v \mapsto \tau v$ is continuous.

Define $Z^1(\mathcal{C}, V) := Z_{\text{cont}}^1(C, V) = \{c : \mathcal{C} \rightarrow V, \sigma \mapsto c_\sigma \mid c \text{ continuous and } \forall \sigma, \tau \in \mathcal{C} : c_{\sigma\tau} = c_\sigma + \sigma(c_\tau)\}$ K -vector space of continuous 1-cocycles.

Map $V \xrightarrow{d} Z^1(\mathcal{C}, V)$, $(dv)_\sigma = v - \sigma(v)$. $B^1(\mathcal{C}, V) = B_{\text{cont}}^1(\mathcal{C}, V) = \text{im}(d : V \rightarrow Z^1(\mathcal{C}, V))$ is called the K -vector space of continuous 1-coboundaries.

$$H^0(\mathcal{C}, V) = V^{\mathcal{C}} = \{v \in V \mid \forall \sigma \in \mathcal{C} : \sigma(v) = v\}.$$

$$H^1(\mathcal{C}, V) := Z_{\text{cont}}^1(\mathcal{C}, V) / B_{\text{cont}}^1(\mathcal{C}, V)$$

Let $\chi : \mathcal{C} \rightarrow R^\times$ be a continuous character. Set $X(\chi) = X(\widehat{K_\infty})$ with the action of \mathcal{C} given by $\sigma \cdot x := \chi(\sigma) \cdot \sigma(x)$.

Proposition 2.3.1.8.

- a) $H^0(\mathcal{C}, X) = K$ and $\dim_K H^1(\mathcal{C}, X) = 1$.
- b) $|\text{im}(\chi)| = \infty \implies H^0(\mathcal{C}_{1X(\chi)}) = 0 = H^1(\mathcal{C}_{1X(\chi)})$

Proof. Let $Y \subset X$ be a closed K -subspace stable under \mathcal{C} .

Let σ be a top. gen of \mathcal{C} .

Then $H^0(\mathcal{C}, Y(\chi)) = \ker(\sigma - \chi(\sigma)^{-1}|_Y)$ and any $c \in Z^1(\mathcal{C}, Y(\chi))$ is determined by $c_\sigma \in Y$.

$$(dy)_\sigma = y - \sigma \cdot y = y - \chi(\sigma)\sigma(y) = -\chi(\sigma)(\sigma - \chi(\sigma)^{-1})(y)$$

Thus, $H^1(\mathcal{C}, Y(\chi)) \hookrightarrow Y / \text{im}(\sigma - \chi(\sigma)^{-1}|_Y)$.

$\chi(\sigma)$ not a root of 1.

To be continued. □

Thursday, 4/10/2025

Skipped

Tuesday, 4/15/2025

3.2 Finite extensions of K_∞

$$L/K_\infty, R_L \subset L, R_\infty = R_{K_\infty} \supset \mathfrak{m}_\infty, \mathcal{H} = \text{Gal}(\overline{K}/K_\infty)$$

Proposition 3.2.1. (Almost étaleness of \overline{K} over K_∞)

$$\text{Tr}_{L/K_\infty}(R_L) \supset \mathfrak{m}_\infty$$

Note that Étale would mean $\text{Tr}_{L/K_\infty}(R_L) = R_\infty$ unramified.

$$H_c^0(\mathcal{C}, X(\chi)), H_c^1(\mathcal{C}, X(\chi))$$

The c stands for continuous.

Cohomology: M = abelian group, $\circlearrowleft G$ = pro-finite group.

Definition. M is called discrete G module if $M = \cup_{H \leq G, H \text{ open}} M^H$ ie for every $m \in M \exists$ open subgroup $H \leq G$ such that $H < \text{stab}_G(m)$.

Remark. If G is a p -adic group [eg $G = GL_n(\mathbb{Q}_p)$] then a representation of G on a vector space V is called smooth if V is a discrete G -module in the previously defined sense.

Consider $G \times M \rightarrow M$. Then $\{1\} \times \{m\} \rightarrow m$, continuity means open pre-image. Giving M discrete topology, an open neighborhood must contain a set of the form $U \times \{m\}$ where $U \subset G$ open with $1 \in U$.

Continuous cochains $C^r(G, M) = \{f : C^r \rightarrow M^\delta \mid f \text{ continuous}\}$. Notation: M^δ is M with discrete topology.

$$d^r : C^r(G, M) \rightarrow C^{r+1}(G, M), (d^r f)(g_1, \dots, g_{r+1}) = g_1 \cdot f(g_2, \dots, g_{r+1}) + \sum_{i=1}^r (-1)^i f(g_1, \dots, g_i g_{i+1}, \dots, g_{r+1}) + (-1)^{r+1} f(g_1, \dots, g_r)$$

these are called ‘ r -cochains’. We have $d^{r+1} \circ d^r = 0$

$$\text{Then } Z^r(G, M) = \ker(d^r), B^r(G, M) = \text{im}(d^{r-1}), H^r(G, M) = \frac{\ker(d^r)}{\text{im}(d^{r-1})}$$

Example: $r = 0$ gives us $C^0(G, M) = M, d^0 : M \rightarrow C^1(G, M)$.

$$(dm)(g) = g \cdot m - m. B^0 = 0 \text{ thus } H^0(G, M) = M^G = \text{set of elements fixed by } G.$$

We also consider $\text{Tr}_{L/K_\infty} : L \rightarrow K_\infty = Z^0(G(L/K_\infty), L) \subset C^0(G(L/K_\infty), L)$.

Reference: Article on group cohomology in Cossels-Fröhlich.

Serre, Galois Cohomology.

Set $L^\delta = L$ with discrete topology.

Corollary 2.3.2.2. Let L/K_∞ be a finite Galois extension with group G . Fix a real number $c > 1$. Let $r \geq 0$ and $f \in C^r(G, L)$. Then $\exists g \in C^{r-1}(G, L)$ s.t. $\|f - dg\| \leq c\|df\|$ and $\|g\| \leq c\|f\|$.

$\|f\| = \max\{|f(g)| \mid g \in G^r\} = \sup(\dots)$ by compactness of G . If $r = 0$ then $\exists y \in L$ such that,

$dy := \text{Tr}_{L/K_\infty}(y)$ is such that $\|f - dy\| = |f - dy| \leq c\|df\|$ and $|dy| \leq c|f|$.

Proof. Proposition 2.3.2.1 (almost étalement) implies $\exists y \in R_L : \underbrace{|\text{Tr}_{L/K_\infty}(y)|}_{=dy} \geq c^{-1}$.

Consider y as a (-1) -cochain.

Define an $(r-1)$ cochain by $y \cup f = yf$ if $r = 0$.

Formally, $C^{-1}(G, L) := L$.

If $r \geq 1$ then

$$(y \cup f)(s_1, \dots, s_{r-1}) = (-1)^r \sum_{s_r \in G} \underbrace{(s_1, \dots, s_r)}_{\in L}(y) \underbrace{f(s_1, \dots, s_r)}_{\in L}$$

$$\text{Check: } \underbrace{dy}_{K_\infty} \cdot f - d^{r-1}(y \cup f) = y \cup (d^r f) \quad (*)$$

Example: If $r = 0$ then LHS = $\text{Tr}(y) \cdot f - \text{Tr}(yf)$.

$$\text{RHS} = (y \cup d^0 f)(1) = (-1)^1 \sum_{s \in G} s(y)(df)(s) = \sum_{s \in G} s(y)(s(f) - f) = \sum_{s \in G} s(y)f - \sum_{s \in G} s(yf) = \text{Tr}(y)f - \text{Tr}(yf). \quad \square$$

Set $x = dy \in K_\infty^\times, g = x^{-1}(y \cup f)$ [as maps $G^{r-1} \rightarrow L$].

Note: $dg = x^{-1}d(y \cup f)$.

$$* \implies f - dg = x^{-1}(y \cup df).$$

Note: 1. $|x^{-1}| \leq c$.

$$2. \|g\| \leq |x^{-1}| \|y \cup f\| \leq c\|f\|.$$

$$2. \|f - dg\| = \|x^{-1}(y \cup df)\| \leq |x^{-1}| \|y \cup df\| \leq c\|df\|.$$

Now we pass to \bar{K} which is a discrete module for $\mathcal{H} = \text{Gal}(\bar{K}/K_\infty)$.

Corollary 2.3.2.3. Fix $c > 1$. Let $r \geq 0$ and $f \in C^r(\mathcal{H}, \bar{K})$. Let $f \in C^r(\mathcal{H}, \bar{K}^\delta)$.

Then $\exists g \in C^{r-1}(\mathcal{H}, \bar{K}^\delta)$ such that $\|f - dg\| \leq c\|df\|$ and $\|g\| \leq c\|f\|$.

For $r = 0$ the conclusion is to be replaced by: $\exists x \in K^\infty$ such that $|f - x| \leq c\|df\|$.

Proof. This is because $C^r(\mathcal{H}, \bar{K}^\delta) = \cup_{L/K_\infty \subseteq \bar{K}/K_\infty, \text{finite galois}} C^r(G(L/K_\infty), L)$.

Use compactness of \mathcal{H}^r . \square

Continuous Cohomology Set $C = \widehat{\bar{K}}$ endowed with the topology induced by absolute value. $\mathcal{H} = G(\bar{K}/K_\infty)$ and $\mathcal{G} = G(\bar{K}/K)$ act continuously on C .

Let $C^r(\mathcal{H}, C)$ be the continuous map $\mathcal{H}^r \rightarrow C$.

Define $d^r, Z^r(\mathcal{H}, C), B^r(\mathcal{H}, C)$ as before. We call:

$$H_c^r(\mathcal{H}, C) = Z^r(\mathcal{H}, C)/B^r(\mathcal{H}, C).$$

The continuous cohomology group of \mathcal{H} with coefficients in C . Similarly for \mathcal{G} .

Proposition 2.3.2.4. $H_c^0(\mathcal{H}, C) = \widehat{K}_\infty = X$. $H_c^r(\mathcal{H}, C) = 0$ for all $r > 0$.

Proof. Let $\mathcal{O}_C = \{x \in C \mid |x| \leq 1\}$. Then $C = \overline{K} + \pi^\nu \mathcal{O}_C$ for any $\nu \geq 0$. Let $\psi_\nu : C \rightarrow C/\pi^\nu \mathcal{O}_C$, endow the target with the quotient topology, hence discrete topology.

As $\psi_\nu|_{\overline{K}}$ is surjective $\exists \phi_\nu : C/\pi^\nu \mathcal{O}_C \rightarrow \overline{K}^\delta$ such that $\psi_\nu \circ \phi_\nu = \text{id}$. Note that ϕ_ν is continuous.

Set $f_\nu = \phi_\nu \circ \psi_\nu \circ f : \mathcal{H}^r \rightarrow \overline{K}$ which is continuous.

$$\psi_\nu \circ f_\nu = \psi_\nu \circ \phi_\nu \circ \psi_\nu \circ f = \psi_\nu \circ f \implies \|f - f_\nu\| \leq |\pi|^\nu.$$

To be continued.

Thursday, 4/17/2025

Fix $c > 1$ once and for all. Consider $f \in Z^r(\mathcal{H}, C)$ to be an r -cocycle. We want to show it is a coboundary: $\exists g \in C^{r-1}(\mathcal{H}, C)$ such that $f = dg$. If $r = 0$ we instead mean $\exists g_\nu \in L_\nu / K_\infty$ such that $f = \lim_{\nu \rightarrow \infty} \text{Tr}_{L_\nu / K_\infty}(g_\nu) \in K_\infty$.

Case $r = 0$: $f \in Z^0(\mathcal{H}, C) = C^\mathcal{H}$. Then $f_\nu \in \overline{K}$ so we have $f_\nu \rightarrow f$.

$$t : K_\infty \rightarrow K, t(a) = \frac{1}{p^n} \text{Tr}_{K_n / K}(a).$$

$d : \overline{K} \rightarrow K_\infty$. $L \subset \overline{K}$ and $L \xrightarrow{\text{Tr}_{L / K_\infty}} K_\infty$.

Then, for $a \in L$, $d(a) = \frac{1}{[L : K_\infty]} \text{Tr}_{L / K_\infty}(a)$.

$$2.3.2.3 \implies \exists L_\nu / K_\infty \text{ finite}, g_\nu \in L_\nu : |f_\nu - \underbrace{dg_\nu}_{\in K_\infty}| \leq c \|df_\nu\| = c \max\{\sigma \in \mathcal{H} \mid$$

$$|\sigma(f_\nu) - f_\nu|\} = c \|d(f_\nu - f)\| \leq c \|f_\nu - f\| \rightarrow 0$$

Thus, $\|f - dg_\nu\| \leq \max\{|f - f_\nu|, f_\nu - dg_\nu\} \xrightarrow{\rightarrow 0} 0$. Therefore, $f \in \widehat{K_\infty}$.

Now we finish the case $r > 0$.

$$2.3.2.3. \implies \exists g_\nu \in C^{r-1}(\mathcal{H}, \overline{K}^\delta) : \|f - dg_\nu\| \leq c \|df_\nu\| \text{ and } \|g_\nu\| \leq c \|f_\nu\|.$$

We want: $\|g_\nu - g_\mu\| \xrightarrow{?} 0$.

$$\text{Again, } 2.3.2.3. \implies \exists h_\nu \in C^{r-2}(\mathcal{H}, \overline{K}^\delta) : \|g_{\nu+1} - g_\nu - dh_\nu\| \leq c \|d(g_{\nu+1} - g_\nu)\| \leq c \max\{\|dg_{\nu+1} - f_{\nu+1}\|, \|f_{\nu+1} - f_\nu\|, \|f_\nu - dg_\nu\|\} \leq \max\{\|f_{\nu+1} - f\|, \|f - f_\nu\|\}.$$

$$\text{Thus, } g := g_1 + \sum_{\nu=1}^{\infty} \underbrace{(g_{\nu+1} - g_\nu - dh_\nu)}_{\in C^{r-1}(\mathcal{H}, \overline{K}^\delta)}$$

Converges in $C^{r-1}(\mathcal{H}, C)$.

$$\text{Note: } dg = dg_1 + \sum_{\nu \geq 1} d(g_{\nu+1} - g_\nu - dh_\nu) = dg_1 + \sum_{\nu \geq 1} (dg_{\nu+1} - dg_\nu)$$

Claim: dg converges to f .

$$\text{Proof: } dg = \lim_{\mu \rightarrow \infty} (dg_1 + \sum_{\nu=1}^{\mu} (dg_{\nu+1} - dg_\nu)) = \lim_{\mu \rightarrow \infty} dg_{\mu+1} = \lim_{\mu \rightarrow \infty} ((dg_{\mu+1} - f_{\mu+1}) + f_{\mu+1}) = \underbrace{\lim_{\mu \rightarrow \infty} (dg_{\mu+1} - f_{\mu+1})}_{=0} + \lim_{\mu \rightarrow \infty} f_{\mu+1} = f.$$

□

3.3 The action of \mathcal{G}_K on C

Define continuous cohomology groups $H_c^r(\mathcal{G}_K, C(\chi))$ as before. We usually drop the subscript c and K and just write $H^r(\mathcal{G}, C(\chi))$.

Recall: \mathcal{G} is the absolute Galois group of K .

We have the following theorem.

Theorem 2.3.3.1. $H^0(\mathcal{G}, C) = K$ and $H^1(\mathcal{G}, C)$ is a 1-dimensional K -vector space.

$$\text{Proof. } H^0(\mathcal{G}, C) = H^0(\mathcal{C}, H^0(\mathcal{H}, C)) \xrightarrow{2.3.2.4} H^0(\mathcal{C}, X) \xrightarrow{2.3.1.8} K.$$

$$1 \rightarrow \mathcal{H} = G(\overline{K}/K_\infty) \rightarrow \mathcal{G} = \mathcal{G}_K \rightarrow G(K_\infty/K) \rightarrow G(K_\infty/K) = \mathcal{C} \rightarrow 1$$

H^1 : \exists inflation-restriction exact sequence (Weibel, Serre, Local Fields, Galois Cohomology)

$$0 \rightarrow H^1(\mathcal{C}, H^0(\mathcal{H}, C)) \rightarrow H^1(\mathcal{G}, C) \xrightarrow{\text{res}} H^1(\mathcal{H}, C) \xrightarrow[2.3.2.4]{} 0$$

Hence the assertion follows from 2.3.1.8

□

Theorem 2.3.3.2. Given a continuous homomorphism $\chi : \mathcal{G}_K \rightarrow R^\times$ we define $C(\chi) = C$ with \mathcal{G}_K action given by the twist $\sigma \cdot a = \chi(\sigma)\sigma(a)$.

Let $K_\infty = \overline{K}^{\ker(\chi)}$. Then $G(\overline{K}/K_\infty) = \ker(\chi)$. Suppose \exists finite extension K_0/K such that K_∞/K_0 is a purely ramified extension and $G(K_\infty/K_0) \cong \mathbb{Z}_p$ as topological groups.

Then $H^0(\mathcal{G}_K, C(\chi)) = H^1(\mathcal{G}_K, C(\chi)) = 0$.

Remark. $G(K_\infty/K_0) \xrightarrow[\cong \mathbb{Z}_p]{\text{fin. index}} G(K_\infty/K) = \mathcal{G}_K/G(\overline{K}/K_\infty) \xrightarrow{\cong} \text{im}(\chi)$

Furthermore, $\text{im}(\chi)$ is abelian. Thus, K_0/K is Galois.

This excludes the case that K_∞ is the Lubin-Tate extension associated to a LT group over \mathcal{O}_K (unless $K = \mathbb{Q}_p$). (in this case $G(K_\infty/K_0) \xrightarrow[\text{open}]{\subset} G(K_\infty/K) \xrightarrow{\cong} \mathcal{O}_K^\times$). But this includes the case of the cyclotomic class: $\chi_{\text{cyc}} : \mathcal{G}_K \xrightarrow{\text{open image}} \mathbb{Z}_p^\times \subset R^\times$.

Proof. Case H^0 : $H^0(\mathcal{G}_K, C(\chi)) \subset H^0(\mathcal{G}_{K_0}, C(\chi))$

Note that:

$$1 \rightarrow G(\overline{K}/K_\infty) =: \mathcal{H} \hookrightarrow G(\overline{K}/K_0) = \mathcal{G}_{K_0} \rightarrow G(K_\infty/K_0) =: \mathcal{C} \cong \mathbb{Z}_p$$

$$\begin{aligned} \text{Thus, } H^0(\mathcal{G}_{K_0}, C(\chi)) &= H^0(\mathcal{C}, H^0(\mathcal{H}, C(\chi))) \\ &= H^0(\mathcal{C}, H^0(\mathcal{H}, C)(\chi)) \xrightarrow[2.3.2.4]{=} H^0(\mathcal{C}, X(\chi)) \xrightarrow[2.3.1.8b, |\text{im } \chi| = \infty]{=} 0. \end{aligned}$$

Case H^1 : Apply infl-res. sequence to:

$$1 \rightarrow G(\overline{K}/K_0) \rightarrow G(\overline{K}/K) \xrightarrow[\text{finite}]{} G(K_0/K) \rightarrow 1$$

$$1 \rightarrow \mathcal{G}_{K_0} \rightarrow \mathcal{G}_K \rightarrow G(K_0/K) \rightarrow 1$$

Thus,

$$0 \rightarrow H^1(G(K_0/K), \underbrace{H^0(\mathcal{G}_{K_0}, C(\chi))}_{\substack{K_0\text{-v.s., char 0}}} \rightarrow H^1(\mathcal{G}_K, C(\chi)) \rightarrow H^1(\mathcal{G}_{K_0}, C(\chi))$$

Apply infl-res. sequence to:

$$1 \rightarrow \mathcal{H} = G(\overline{K}/K_\infty) \rightarrow \mathcal{G}_{K_0} \rightarrow \mathcal{C} \rightarrow 1$$

Thus,

$$0 \rightarrow H^1(\mathcal{C}, \underbrace{H^0(\mathcal{H}, C(\chi))}_{\substack{\xrightarrow[2.3.2.4]{=} X(\chi)}} \rightarrow \underbrace{H^1(\mathcal{G}_{K_0}, C(\chi))}_{=0} \rightarrow H^1(\mathcal{H}, C(\chi)) = H^1(\mathcal{H}, C) \xrightarrow[2.3.2.4]{=} 0$$

□

4 Theorems on p -divisible groups

$R = \text{cdvr}$, $k = R/\mathfrak{m}_R$ perfect field of char $p > 0$, $K = \text{Frac}(R)$ is of char 0, $C = \widehat{K}$.

Recall proposition 2.1.2.2: which says that the cartier dual $G_\nu^\vee = \underline{\text{Hom}}_{\text{gpsch}/R}(G_\nu, \mathbb{G}_{m,R})$

($\implies \forall S \in \text{Alg}_R : G_\nu^\vee(S) = \text{Hom}_{\text{gpsch}/R}(G_\nu \otimes_R S, \mathbb{G}_{m,S}) = G_\nu \times_{\text{Spec}(R)} \text{Spec}(S)$)

Thus $G_\nu^\vee(\mathcal{O}_C) = \text{Hom}_{\text{gpsch}/\mathcal{O}_C}(G_\nu \otimes_R \mathcal{O}_C, \mathbb{G}_{m,\mathcal{O}_C})$

Easily $= \text{Hom}_{\text{gpsch}/\mathcal{O}_C}(G_\nu \otimes_R \mathcal{O}_C, \mu_{p^\infty, \mathcal{O}_C})(1)$.

Tate module $TG^\vee = \varprojlim_\nu G_\nu^\vee(\overline{K}) = \text{Hom}_{R\text{-alg}}(\mathcal{O}(G_\nu), \overline{K}) = \varprojlim G_\nu^\vee(C) = \varprojlim G_\nu^\vee(\mathcal{O}_C)$ (2)

Here $G^\vee = (G_\nu^\vee)_\nu$

(1) and (2) togehter imply:

$$TG^\vee \text{ Hom}_{p\text{-div gps}/\mathcal{O}_C} \left(\varinjlim_\nu G_\nu \otimes_R \mathcal{O}_C, \mu_{p^\infty, \mathcal{O}_C} \right)$$

$$= \text{Hom}_{p\text{-div. gps/}\mathcal{O}_C}(G \otimes_R \mathcal{O}_C, \mu_{p^\infty, \mathcal{O}_C}) \quad (3)$$

$$\text{Note } \text{Hom}(\mu_{p^\infty}, \mu_{p^\infty}) = \mathbb{Z}_p$$

$T(\mathbb{Q}_p/\mathbb{Z}_p) \cong \mathbb{Z}_p$ has trivial Galois action.

Tuesday, 4/22/2025

Recall: $G = (G_\nu)_\nu$ is a p -divisible group $/R$. $C = \widehat{\text{barr } \bar{K}} \supset \mathcal{O}_C \supset \mathfrak{m}_C := \mathfrak{m}_{\mathcal{O}_C}$.

Proposition 2.1.2.2. $G_\nu^\vee = \underline{\text{Hom}}_{\text{gpsch}/R}(G_\nu, \mathbb{G}_{m,R})$.

$(G_\nu^\vee(S) = \text{Hom}_{\text{gpsch}/S}(G_\nu \otimes_R S, \mathbb{G}_{m,S})$

$$TG^\vee = \varprojlim_\nu G_\nu^\vee(\bar{K}) = \varprojlim_\nu G_\nu^\vee(C) = \varprojlim_\nu G_\nu^\vee(\mathcal{O}_C) = \varprojlim_\nu \text{Hom}_{\text{gpsch}/\mathcal{O}_C}(G_\nu \otimes_R \mathcal{O}_C, \mu_{p^\infty, \mathcal{O}_C})$$

$$= \text{Hom}_{p\text{-div}/\mathcal{O}_C}(\varinjlim_\nu G_\nu \otimes_R \mathcal{O}_C, \mu_{p^\infty, \mathcal{O}_C}) = \text{Hom}_{p\text{-div gps/}\mathcal{O}_C}(G \otimes \mathcal{O}_C, \mu_{p^\infty, \mathcal{O}_C})$$

$$\text{Recall: } G(\mathcal{O}_C) := \varprojlim_i G(\mathcal{O}_C/\pi^i) = \varprojlim_i \left(\varinjlim G_\nu(\mathcal{O}_C/\pi^i) \right) \\ (\neq \varinjlim_\nu G_\nu(\mathcal{O}_C))$$

Example: $G = \mu_{p^\infty}$. Claim: $G(\mathcal{O}_C/\pi^i) = 1 + \mathfrak{m}_C/\pi^i \mathcal{O}_C$

$$a \in \mathcal{O}_C, a \pmod{\pi^i} \in \mu_{p^\nu}(\mathcal{O}_C/\pi^i)$$

$$\implies a^{p^\nu} \equiv 1 \pmod{\pi^i} \implies a^{p^\nu} \equiv 1 \pmod{\mathfrak{m}_C}$$

Thus $\bar{a} = 1$ where $\bar{a} = a \pmod{\mathfrak{m}_C}$ and $\mathcal{O}_C/\mathfrak{m}_C = \bar{k}$.

Then, $a \pmod{\pi^i} \in 1 + \mathfrak{m}_C/\pi^i \mathcal{O}_C$.

Conversely, if $a \in 1 + \mathfrak{m}_C$ then $\forall \nu \gg 0 : a^{p^\nu} \equiv 1 \pmod{\pi^i} \implies (a \pmod{\pi^i})^{p^\nu} = 1$ in \mathcal{O}_C/π^i .

Then $a \pmod{\pi^i} \in \mu_{p^\nu}(\mathcal{O}_C/\pi^i)$.

Then $\mu_{p^\infty}(\mathcal{O}_C) = \varprojlim \mu_{p^\infty}(\mathcal{O}_C/\pi^i) = \varprojlim (1 + \mathfrak{m}_C/\pi^i \mathcal{O}_C) = 1 + \mathfrak{m}_C$

From now on: $U := 1 + \mathfrak{m}_C$ considered as $\mu_{p^\infty}(\mathcal{O}_C)$. This is \mathbb{Z}_p -module.

Then $[c](a) = a^c = \sum_{j=0}^{\infty} \binom{c}{j} (a-1)^j \in U$.

$U_{\text{tors}} = \bigcup_\nu \mu_{p^\nu}(\mathcal{O}_C) = \Phi(\mu_{p^\infty})$

We have a logarithm: $\log_{\mu_{p^\infty}} : \mu_{p^\infty}(\mathcal{O}_C) = U \rightarrow C$

$$a \mapsto \log(a) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} (a-1)^n$$

Then we have exact sequence:

$$0 \rightarrow \Phi(\mu_{p^\infty}) = U_{\text{tors}} \rightarrow U \xrightarrow{\log} C \rightarrow 0$$

Recall:

$$TG^\vee \underset{\text{can}}{\cong} \text{Hom}_{p\text{-div gps/}\mathcal{O}_C}(G \otimes \mathcal{O}_C, \mu_{p^\infty, \mathcal{O}_C})$$

Definition. We define a pairing $TG^\vee \times G(\mathcal{O}_C) \rightarrow \mu_{p^\infty}(\mathcal{O}_C) = U$

$(\tau, \xi) \mapsto \langle \tau, \xi \rangle = \varepsilon_\xi(\tau)$ as follows: given $\xi \in G(\mathcal{O}_C)$, write $\xi = (\xi_i)_i$ with $\xi_i \in G(\mathcal{O}_C/\pi^i)$, and $\tau \in TG^\vee$, we have:

$$\begin{array}{ccc} \tau \circ \xi_i : & \text{Spec}(\mathcal{O}_C/\pi^i) & \longrightarrow G \otimes \mathcal{O}_C \xrightarrow{\tau} \mu_{p^\infty, \mathcal{O}_C} \\ & & \searrow \\ & \in \mu_{p^\infty}(\mathcal{O}_C/\pi^i) & \end{array}$$

$$\implies \varepsilon_\xi(\tau) := (\tau \circ \xi_i)_i \in \varprojlim \mu_{p^\infty}(\mathcal{O}_C/\pi^i) = \mu_{p^\infty}(\mathcal{O}_C) = U$$

Check: this pairing is \mathbb{Z}_p -bilinear.

Recall: $\log_G : G(\mathcal{O}_C) \rightarrow t_G(C) = \text{Hom}_R(I^0/(I^0)^2, C)$

Where $I^0 = \ker(A^0 \rightarrow R)$ is the augmentation ideal. $A^0 \rightarrow R$ is induced by the unit section.

$$A^0 = \varprojlim_\nu \mathcal{O}(G_\nu^0) \cong R[[x_1, \dots, x_n]], n = \dim G$$

Then for $a \in G(\mathcal{O}_C), f \in I^0$,

$$\log_G(a)(f) = \lim_{i \rightarrow \infty} \frac{f([p^i]_G(a)) - f(a)}{p^i}$$

We get an induced pairing $TG^\vee \times t_G(C) \rightarrow t_{\mu_{p^\infty}}(C)$

$(\tau, \log_G(\xi)) \mapsto \langle \tau, \log_G(\xi) \rangle = \log_{\mu_{p^\infty}}(\langle \tau, \xi \rangle)$
 Recall the exact sequence:

$$\begin{array}{ccccccc}
 0 & \longrightarrow & G(\mathcal{O}_C)_{\text{tors}} & = & \Phi(G) & = & \varinjlim G_\nu(\mathcal{O}_C) \\
 & & & & \downarrow & & \\
 & & G(\mathcal{O}_C) & & & & \\
 & & \downarrow \log_G & & & & \\
 & & t(C) & & & & \\
 & & \downarrow & & & & \\
 & & 0 & & & &
 \end{array}$$

So independent of lift ξ of $\log_G(\xi)$.

We have the diagram (*):

$$\begin{array}{ccccccc}
 0 & \longrightarrow & \Phi(G) = G(\mathcal{O}_C)_{\text{tors}} & \hookrightarrow & G(\mathcal{O}_C) & \xrightarrow{\log_G} & t_G(C) \longrightarrow 0 \\
 & & \downarrow \alpha_0 & & \downarrow \alpha & & \downarrow d\alpha \\
 0 & \longrightarrow & \text{Hom}_{\mathbb{Z}_p}(TG^\vee, \Phi(\mu_{p^\infty})) & \longrightarrow & \text{Hom}_{\mathbb{Z}_p}(TG^\vee, \mu_{p^\infty}(\mathcal{O}_C)) & \longrightarrow & \text{Hom}_{\mathbb{Z}_p}(TG^\vee, t_{\mu_{p^\infty}}(C)) \xrightarrow{=C} 0
 \end{array}$$

$$\lambda \mapsto \log_{\mu_{p^\infty}} \circ \lambda$$

$$\text{Here } \alpha : \xi \mapsto \langle -, \xi \rangle$$

Exactness of Bottom Row: $0 \rightarrow U_{\text{tors}} \rightarrow U \xrightarrow{\log_{\mu_{p^\infty}}} C \rightarrow 0$ exact by earlier results.

TG^\vee is a free \mathbb{Z}_p module of rank $h = ht(G^\vee) = ht(G)$. Hence it is projective. Hence $\text{Hom}_{\mathbb{Z}_p}(TG^\vee, -)$ produces an exact sequence.

Rem All groups in the diagram (*) are naturally \mathcal{G} -modules. For the top row, this action comes from the action of $\mathcal{G} = \text{Gal}(\bar{K}/K)$ on C . The \mathcal{G} action on the modules in the bottom row is given by $(\sigma \cdot \lambda)(\tau) = \sigma(\lambda(\sigma^{-1}(\tau)))$. $\tau \in TG^\vee$. α_0, α and $d\alpha$ are \mathcal{G} -equivariant.

Check for α : $\alpha(\sigma(\xi))(\tau) = \langle \tau, \sigma(\xi) \rangle = (\tau \circ \sigma(\xi_i))_i$

$$(\sigma \cdot \alpha(\xi))(\tau) = \sigma(\alpha(\xi)(\sigma^{-1}(\tau))) = \sigma(\langle \sigma^{-1}(\tau), \xi \rangle) = \sigma((\sigma^{-1}(\tau) \circ \xi_i))_i = (\tau \circ \sigma(\xi_i))_i$$

Lemma 2.4.1.1. If W is a C -vector space with a semi-linear \mathcal{G} -action $(\sigma(c \cdot w) = \sigma(c) \cdot \sigma(w)$ for all $c \in C$ and $w \in W$), then the map $C \otimes_K W^\mathcal{G} \rightarrow W, c \otimes w \mapsto c \cdot w$ is injective.

Proof. Let $\{w_1, \dots, w_n\}$ be a set of K -linearly independent vectors in $W^\mathcal{G}$. We want to show that for all scalars $c_1, \dots, c_n \in C : \sum_i c_i w_i = 0$ then $c_1 = \dots = c_n = 0$.

Suppose there is a linear combination with not all $c_i = 0$. WLOG assume $c_1 = 1$. We may also assume n is minimal with this property.

$$\forall \sigma \in \mathcal{G} : 0 = \sigma(\sum c_i w_i) = \sum \sigma(c_i) \sigma(w_i) = \sum \sigma(c_i) w_i = \sum c_i w_i$$

$$\text{Therefore, } \sum_{i=2}^n (\sigma(c_i) - c_i) w_i = 0.$$

$n = 1$ is impossible. For $n \geq 2$ we get a linear combination with fewer terms, unless $\sigma(c_i) = c_i$ for all c_i . This implies $\forall i : c_i \in K$. But this contradicts the linear independence of w_i over K . \square

Proposition 2.4.1.2. In the diagram (*), α_0 is bijective whereas α and $d\alpha$ are injective.

Theorem 2.4.1.3. The maps $\alpha_R : G(R) = G(\mathcal{O}_C)^\mathcal{G} \rightarrow \text{Hom}_{\mathbb{Z}_p}(TG^\vee, U)^\mathcal{G} = \text{Hom}_{\mathbb{Z}_p(\mathcal{G})}(TG^\vee, U)$
 $d\alpha_R : t_G(K) = t_G(C)^\mathcal{G} \rightarrow \text{Hom}_{\mathbb{Z}_p}(TG^\vee, t_{\mu_{p^\infty}}(C))^\mathcal{G} = \text{Hom}_{\mathbb{Z}_p[\mathcal{G}]}(TG^\vee, C)$ are bijective.

Thursday, 4/24/2025

Lemma 2.4.1.4.

- i) $\forall \nu \geq 0$ the map $G_\nu^\vee(C) \times G_\nu(C) \rightarrow \mu_{p^\nu}(C), (\tau_\nu, \xi_\nu) \mapsto \langle \tau_\nu, \xi_\nu \rangle := \tau_\nu \circ \xi_\nu$ (recall $G_\nu^\vee(C) = \text{Hom}_{\text{gpsch}/C}(G_\nu \otimes_R C, \mathbb{G}_{\mathfrak{m}, \mathfrak{C}}) = \text{Hom}_{\text{gpsch}/C}(G_\nu \otimes C, \mu_{p^\nu, C})$ is a perfect \mathcal{G} -equivariant pairing, i.e. $G_\nu^\vee(C) \rightarrow \text{Hom}_{\mathbb{Z}}(G_\nu(C), \mu_{p^\nu}(C))$ is bijective.
- ii) The pairings in (i) induce a perfect \mathcal{G} -equivariant \mathbb{Z}_p -bilinear pairing $TG^\vee \times TG \rightarrow T\mu_{p^\infty}$.
- iii) The pairings in (i) induce a \mathcal{G} -equivariant isomorphism $\Phi(G) \rightarrow \text{Hom}_{\mathbb{Z}_p}(TG^\vee, \Phi(\mu_{p^\infty}))$ and this map is equal to the map α_0 in the diagram.

Proof. i) $\underline{\Gamma}_S = \text{constant gp scheme over } \text{Spec}(S)$ associated to $\Gamma = \text{Spec}(S^\Gamma)$.

$$G_\nu^\vee(C) = \text{Hom}_{\text{gpsch}/C}(G_\nu \otimes_R C, \mu_{p^\nu, C}), \text{ from } \text{étaleness} = \text{Hom}_{\text{gpsch}/R}(\underline{G_\nu(C)}_C, \underline{\mu_{p^\nu}(C)}_C) = \text{Hom}_{\mathbb{Z}}(G_\nu(C), \mu_{p^\nu}(C)) = \text{Hom}_{\mathbb{Z}_p}(G_\nu(C), \mu_{p^\nu}(C)).$$

ii) Follows from (i).

- iii) The map $\Phi(G) \rightarrow \text{Hom}(TG^\vee, \Phi(\mu_{p^\infty}))$ is given by $\xi_\nu \in G_\nu(C) \subset \Phi(G)$. Then $\xi_\nu : TG^\vee \rightarrow G_\nu^\vee(C) \dashrightarrow \Phi(\mu_{p^\infty})$ is given by $(\tau_\mu)_\mu \mapsto \tau_\nu \circ \xi_\nu$.
 $\text{Hom}_{\mathbb{Z}_p}(TG^\vee, \Phi(\mu_{p^\infty})) = \varinjlim_\nu \text{Hom}_{\mathbb{Z}_p}(TG^\vee, \mu_{p^\nu}(C)) = \varinjlim_\nu \text{Hom}_{\mathbb{Z}_p}(TG^\vee / p^\nu TG^\vee, \mu_{p^\nu}(C))$
Use $\Phi(G^\vee) = TG^\vee \otimes (\mathbb{Q}_p / \mathbb{Z}_p) = \varinjlim_\nu TG^\vee \otimes (\frac{1}{p^\nu} \mathbb{Z} / \mathbb{Z}) = \varinjlim(TG^\vee / p^\nu TG^\vee)$
Then, $\varinjlim_\nu \text{Hom}_{\mathbb{Z}_p}(TG^\vee / p^\nu TG^\vee, \mu_{p^\nu}(C)) = \varinjlim_\nu \text{Hom}_{\mathbb{Z}_p}(\Phi(G^\vee)[p^\nu], \mu_{p^\nu}(C))$
 $= \varinjlim_\nu \text{Hom}_{\mathbb{Z}_p}(G_\nu^\vee(C), \mu_{p^\nu}(C)) = \varinjlim_\nu G_\nu(C) = \Phi(G)$.

To see that this map is the same map as α_0 just trace through the definition. \square

Proof of Theorem 2.4.1.3. 2.4.1.2. \implies the maps α_R and $d\alpha_R$ in 2.4.1.3. are injective.

Consider from *:

$$0 \rightarrow G(\mathcal{O}_C) \xrightarrow{\alpha} \text{Hom}_{\mathbb{Z}_p}(TG^\vee, U) \rightarrow \text{coker}(\alpha) \rightarrow 0$$

Take \mathcal{G} -invariants:

$$\begin{array}{ccccccc} 0 & \longrightarrow & G(\mathcal{O}_C)^\mathcal{G} & \xrightarrow{\alpha_R} & \text{Hom}_{\mathbb{Z}_p}(TG^\vee, U)^\mathcal{G} & \longrightarrow & \text{coker}(\alpha)^\mathcal{G} \longrightarrow H_c^1(\mathcal{G}, G(\mathcal{O}_C)) \\ & & \downarrow = 2.3.3.1 & & \downarrow = & & \\ & & G(R) & & \text{Hom}_{\mathbb{Z}_p(\mathcal{G})}(TG^\vee, U) & & \\ & & & & & & \\ & & & & & & \implies \text{coker}(\alpha_R) \hookrightarrow \text{coker}(\alpha)^\mathcal{G} \end{array}$$

Note that 2.4.1.2. implies α is injective.

Similarly, we have $d\alpha$ is injective.

$$0 \rightarrow t_G(C) \xrightarrow{d\alpha} \text{Hom}_{\mathbb{Z}_p}(TG^\vee, C) \rightarrow \text{coker}(d\alpha) \rightarrow 0$$

Take \mathcal{G} invariants:

$$0 \rightarrow t_G(K) \xrightarrow{d\alpha_R} \text{Hom}_{\mathbb{Z}_p}(TG^\vee, C)^\mathcal{G} \rightarrow \text{coker}(d\alpha)^\mathcal{G}$$

Thus, $\text{coker}(d\alpha_R) \hookrightarrow \text{coker}(d\alpha)^\mathcal{G}$.

We have a commutative diagram.

$$\begin{array}{ccc} \text{coker}(\alpha) & \xrightarrow{\cong} & \text{coker}(d\alpha) \\ \uparrow & & \uparrow \\ \text{coker}(\alpha)^\mathcal{G} & \xrightarrow{\cong} & \text{coker}(d\alpha)^\mathcal{G} \\ \uparrow & & \uparrow \\ \text{coker}(\alpha_R) & \longrightarrow & \text{coker}(d\alpha_R) \end{array}$$

Adding coker to $*$ and using snake lemma, the upper horizontal map is an isomorphism.

It follows that $\text{coker}(\alpha_R) \rightarrow \text{coker}(d\alpha_R)$ is injective.

In order to prove bijectivity, we should prove now that the cokernel vanishes.

It suffices to show $\text{coker}(d\alpha_R) = 0$.

Hence we need to show: $n := \dim(G) = \dim_K t_G(K)$ _{need to show} $= \dim \text{Hom}_{\mathbb{Z}_p[\mathcal{G}]}(TG^\vee, C)^\mathcal{G}$ (1)

Set $W := \text{Hom}_{\mathbb{Z}_p}(TG, C)$

$W' := \text{Hom}_{\mathbb{Z}_p}(TG^\vee, C)$

Then $\dim_C W = \text{ht}(G) =: h = \dim_C(W')$

Set $d := \dim_K((W')^\mathcal{G})$, $d' = \dim_K((W')^\mathcal{G})$

2.4.1.2 \implies

$t_G(C) \hookrightarrow \text{Hom}_{\mathbb{Z}_p}(TG^\vee, C) = W' \implies n \leq d'$

$t_{G^\vee}() \hookrightarrow \text{Hom}_{\mathbb{Z}_p}(TG, C) = W \implies n^\vee := \dim(G^\vee) \leq d$

Together they're (2).

2.2.3.1 $\implies n + n^\vee = h \stackrel{(2)}{\underset{(3)}{\leq}} h \stackrel{(4)}{\leq} d + d'$

Upshot: STS: $d + d' \stackrel{(5)}{\leq} h$.

Set $VG = TG \otimes \mathbb{Q}_p$, $VG^\vee = TG^\vee \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$

$Q_p(1) := V\mu_{p^\infty} = T\mu_{p^\infty} \otimes_{\mathbb{Z}_p} \mathbb{Q}_p = \mathbb{Q}_p \cdot \chi_{\text{cyc}}$

$\chi_{\text{cyc}} : \mathcal{G} \rightarrow \mathbb{Z}_p^\times$, $\sigma(\zeta_{p^n}) = \zeta_{p^n}^{\chi_{\text{cyc}}(\sigma)} \pmod{p^n}$

Lemma 2.4.1.4. $\implies VG \underset{\mathcal{G}}{\cong} \text{Hom}_{\mathbb{Q}_p}(TG^\vee, \mathbb{Q}_p(1)) = \text{Hom}_{\mathbb{Q}_p}(TG^\vee, \mathbb{Q}_p)(1)$.

\mathbb{Q}_p gets the trivial \mathcal{G} action.

Then $VG \otimes_{\mathbb{Q}_p} C \underset{\mathcal{G}}{\cong} \text{Hom}_{\mathbb{Q}_p}(TG^\vee, C)(1) = W'(1)$

$W = \text{Hom}_{\mathbb{Q}_p}(VG, C) = \text{Hom}_C(VG \otimes_{\mathbb{Q}_p} C, C) = \text{Hom}_C(W'(1), C)$

$\implies W \times W'(1) \rightarrow C$ perfect \mathcal{G} -equivariant pairing $\implies W \times W' \rightarrow C(-1)$ perfect \mathcal{G} -equivariant pairing.

Thus $W^\mathcal{G} \times (W')^\mathcal{G} \rightarrow C(-1)^\mathcal{G} \underset{2.3.3.2}{=} 0$

Thus, $W^\mathcal{G}, (W')^\mathcal{G}$ are perpendicular w.r.t. \langle, \rangle

Thus $W^\mathcal{G} \otimes C \underset{2.4.1.1}{\hookrightarrow} W$ and $(W')^\mathcal{G} \otimes C \underset{2.4.1.1}{\hookrightarrow} W'$ are perpendicular w.r.t. \langle, \rangle

it is elementary to see now that $d + d' \leq h$ hence we're done.

□