M702

Taught by: Dr. Matthias Strauch
Written by: Thanic Nur Samin

Tuesday, 1/14/2025

Abstract

Chapter 1: Local Class Field Theory (LCFT).

Chapter 2: p-divisible groups (eg LT formal groups) and associated Galois
representations V' and the Hodge-Tate Decomposition of V' ®q, C, and also the
diagonal action of ¥k .

Tate: p-divisible groups.

Chapter 3: Sen theory, Fontaine’s period rings (¢, I')-modules.

1 Local Class Field Theory (LCFT)

1.1 Lubin Tate Theory

[N] Neukirch, Alg. NT

[S] Serre, Local Class Field Theory (Cassels-Frohlich)

[LT] Lubin, Tate Formal complex multiplication

K = non-archimedean local field (locally compact) D O = Ok = valuation ring
D Py = valuation ideal.

Residue Field k = O/ Pk, char(k) = p > 0,q = |k| = p/.

Normalized Valuation v = vy : K — Z U {oc}, |a| = ¢~ (@),

Uk = OF.

Definition. e(x) € O[[z]] (a formal power series) is called a Lubin-Tate (LT) series
for the uniformizer 7 (fixed) if the following conditions are fulfilled:

e e(x) =mx mod deg?2.
e e(z) =27 mod 7.

Set &, = set of LT series for the uniformizer 7.

Recall: Let R be any O-algebra (i : O — R ring homomorphism).

A formal O-module over R is a 1-dimensional commutative formal group F(z,y) €
R[]z, y]] over R (some people call it a formal group law) together with a unital (sending
1 to 1) ring homomorphism:

[r: O = Endg(F) = {f(z) € R[[z] | f(0) =0, f(F(z,y)) = F(f(z), f(y))}

such that Va € O : [a]p(z) = i(a)z mod deg?2.

We have the following properties:

F(x,y) = x + y + higher order terms

Associativity: F(z, F(y,2)) = F(F(z,y), 2)

Commutativity: F(z,y) = F(y,x).

= 3l(z) € R[[z]] : F(x,(x)) = 0. Also, ¢(x) = —z + higher order terms.

If R is a local O-algebra with maximal ideal M (i~*(M) = Px,k = O/Px — R/M)
then a formal O-module F' over R is callled a LT O-module over R if in addition it is
a formal O-module and for any uniformizer 7 of K: [7]p(z) = 2? mod M.

Remark. If F is a LT O-module over O [i: O LN O] then [r]p(z) € & [meaning it
is a Lubin Tate series| for any uniformizer .



Example. 1) K=Q,,F = @m,@m(x,y) =z+yt+ezy=(1+z)(1+y) — 1.

~

Then, [] : Z, — Endg,(Gm),[a](z) = (1+2)* =1 = 37, (7)a", (}) =
alazl)(a—ntl) o Z,, for any a € Zp,n > 1.

n!
Exercise. 1) Va € Z,¥n >0, () as defined above is in Z,.

2) If K is a proper extension of Q, then ( ) ¢ O for infinitely many a € Ok.

a
n

2) K =F,((t)),F = Ga,Gq(2,y) = = +y. Set [t](z) = tz + 7. Then,

o0 o0 o)
Z a,t’| (z) = Z a, [t () = Z anx" where a; = a
v=0 v=0

n=1

a

gives F' = @a the structure of a LT O-module over O.

Theorem 1.1.1. i) For all uniformizer 7 of K and any e € &, there exists unique
LT O-module F, over O such that:

7] () = e(x)

ii) Ve,e' € &, there is an isomorphism of formal O-modules f : F, — Fo (f €
zO[[z]], f(Fe(z,y)) = For (f(2), f(y))-
Va € O: f([alr. (z)) = [alr,, (f(2))-
£'(0) € O*.

iii) Let K™ be the maximal unramified extension of K (inside some fixed algebraic
closure K) and let K, = K™ be the completion of K™ and let Ok, be its
valuation ring. Then for any two uniformizers 7,7’ of K and LT series ¢ € &,
and e’ € &/, 3 an isomorphism of formal O-modules F, — F.. over O, .

Formal Complex Multiplication

Let K be the fixed algebraic closure of K D O D Pg. Let m = the fixed uniformizer,
e € &, F, = LT O-module over O.

Set F[r™] = v € P | [7™]F. () = 0 ». This can be shown to be finite from Theo-
——

e°™ (x)
rem 1.1.1.ii by setting e¢’(x) = ma +x%. Then the isomorphism will provide a bijection
to Fu [n™, e € &;]. Then the zeros of the power series are the zeros of the iteration
of the polynomial. Hence the set is finite.
Ly = K(Fe(n™)) called the field of 7™-torsion points of F,. It doesn’t depend on
e, though it does depend on 7.

Example. if K = Q, and e(z) = (1 +2)? — 1 then, L,,, = Q,(¢ —1[¢?" =1) =
Qp(ppm).

If we take €'(x) = px + 2P, the power series and the torsion points Fi[p™] and F,/[p™]
are different but the fields Q,(Fepm)) and Q,(Fer[p™]) has to be the same!

Theorem 1.1.2. i) F.[7™] is a free O/(7™) module of rank 1 [note that [7™]
annihilates [a](x) since [7™]F, () = 0].
ii) Vm > 1 the maps O/(7™) — Endo(Fe[r™]),a mod 7™ — [a — [a](a)].
Also, O* /(14 (x™)) = Autp(F.[r™]), same formula are isomorphism (of finite
groups).

ili) Lx., does not depend on e € &, but depends on 7. In particular, if ¢/(z) =
mx + x9 then Ly, = K(Fer[7™]).



iv) Lz is a finite purely ramified Galois extension (so it does not contain a proper
unramified extension) of K of degree (¢ — 1)g™ .

ii, canonical

The map G(Lym/K) — Auto(F[r™]) = O*/(1 4+ (7™)) given by
o+ a mod (14 (7™)).

If Va € Fe[n™]: o(a) = [a]p, (), is an isomorphism.
v) f L, = Um21 Ly m, then the maps in iv induce an isomorphism:

G(Lr/K) = i G(Lrm/K) =N lim O™ /(1 + (™)) = O~

m
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Recall: we fixed an algebraic closure K. Residue field of K = k = algebraic closure
of k =T,.

Theorem 1.1.3. If L/K is abelian, L, C L, and L/L, is purely rammified, then
L,=1L.

Proof. Proof uses the Hasse-Arf theorem, which says that the jumps (or breaks) of
the upper ramification filtration (G(L/K)* t > —1) are integers. O

Remark. G(L,/K)™ = Gal(Lr/Lyxm),m > 0.
L‘n’,O =K.

Let K c K be the maximal abelian subextension.

Theorem 1.1.4. For any uniformizer m one has K% = K"".
K™ = maximal unramified extension = K (p,, | ptn).

Proof. Set L™ := K™ .L, C K. This gives us an exact sequence:
1 —— G(K®/L"™) —— G(K*/L,) — G(L"™ /L) —— 1
G(LY [La) —— G(E | k) = ()"
Where p(@) = a?,a € k.
top .__ 1: Z nZ ~ 1; _. 7
{p) ._hingp /e _hinZ/nZ—.Z

Choose § € G(K®/L,) such that 95|K =

L. C L= (K®)®.
(@) is the closed subgroup of G(K®/L,) generated by &.
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Recall: K = local nonarch.. field, 7 = uniformizer, e € &, a LT seriess for mw, F,
a LT formal O-module, L, = |JK(F.[r™]) C K with topological isomorphism

Gal(Ly/K) = Ug = O%.
11.6 —

K* == Ug x 1% ——— G(K®/K)

(a,7") —— iz'(a) "

acts trivially on Kn"



@ = Frobenius element of G(K%/K).
The map:

UK L;) G(L'n-/K) (% G(Lﬂ_K’I’L’I’/K'n’r) SN G(K“b/K)

is canoncial. Here, K% = L K"".

Definition. The Weil group Wi is defined by:

Wy = {0’ S G(?/K) ‘ o

Z
€ Pgnr }
K’IE’V‘

Here pgnr = the arithmetic Frobenius of K™".
We equip Wg with the coarsest topology which makes the inertia subgroup:

~iden |
Knr

an open subgroup, and [k is equipped witth its profinite topology. Then,

Ix = {a €EGK/K)| o

Wk = UnezI¢"
(disjoint union of open cosets) with ¢ as in 1.1.6.

Proposition 1.1.5. The abelianization W&’ = Wy /[Wk, W] is isomorphic to:
c @Z}
K’IZT

K* = G(K*/K)

{oGG(K“b|K)|J

The image of the homomorphism:

of 1..1.6 is W@,
Uk D1+ (p™) is open.

Definition. Let I' be a topological group and p : I' — Aut(V') be a representation of
I as an E-vector space (E = any field). p is called smooth if Yo € V' we have:

Stab,(v) = {y € I'| p(7)(v) = v}

is open.

Proposition 1.1.6 (¢-adic local Langlands correspondence for GL1). Let £ # p be a
prime. Then the isomorphism K* — Wla(b from 1.1.7 induces a bijection:

rep’s of GLq(K) = K* 3 / =

{continuous homomorphisms
on Q-vector space

smooth irreducible
_— = —
Wik — GL1(Q0) = Q; }

o

X [KX = Wi *&@X]

X

X [ —== W —— Q]

i3

Proof. Main point: a smooth irreducible representation of K on a @Z vector space
is 1-dimensional. O

Remark. Proposition 1.1.8 is also true when @Lis replaced by C and with the
appropriate modifications, when Q, is replaced by @Q,,.



1.2 1-dim formal groups: the functional equation lemma

Cf. Hazewinkel, Formal groups and Applications = [H1 Formal]
Here we let:

e K = any commutative ring
e A C K subring
e p prime
e ¢ power of p
e 0 : K — K ring homomorphism
e [ C Aideal
® 51,850,583, - € K
We assume:

° O'(A) CcA

Va€ A:o(a)=a? mod I

p € Iso A/I is an Fj-algebra
e Vi>1l:5,ICA
e Vbe KVr>0:0I"C A = o(b)I" C A

Lemma 1.2.1. Let g(z) =Y o, bjz* € xA[[x]].
By HW1, 3lf,(z) = Y2, diz' € xK[[z]] so that,

)+ ZSZ ol f)( xq (1.2.1)
=1
where o f, is power series obtained from f, obtained by applying ¢* to all coefficients.
bn, if ¢ 1n;
Indeed, d,, — ifgfn )
bn+slg(dn/q)+"'+57‘U(dn/qr)7 lf'fl:q qujfm

Lemma 1.2.2 (The functional equation lemma (FEL)). Let the data be as above.
Let g(z) = Y o2, bz’ and g(x) = Y o, bz’ be in xA[[z]] and assume by € A*. Then,
fq(x) = biz+ higher order terms = f, has inverse fg_1 w.r.t. composition. Then,

i) Fy(z,y) = fy (fg(x) + fy(y)) is a formal group over A.
i) £ (o)) € 2A[].

iii) Given h(z) = > 2, cpa™ € zA[[z]], Elﬁ(x) =3 Gaa™ st fy(h(x)) = fr(x).

iv) If a(x) € 2A[[z]], B(z) € K[[X]], then ¥r > 0: a(x) = (x) mod I"A[[z]] <
fo(a(@)) = f4(B(x)) mod I"Aflx]]

Lemma 1.2.3 (HW1). Write fy(z) = Y2, d;z" and write n = ¢"m,q { m. Then
d,I" C A.

Lemma 1.2.4. Let G(x,y) € A[z,y]] and n = ¢"m, and ¢ > 0. Then,

G(z, y)q = ((UfG)(qu’yqe)) mod "

(o(a) = a? mod I)



Proof of (i) of FEL. Note that f;'(x) = by 'z + h.o.t. Then,

Fy(z,y) = by (biz + b1y + h.ot) =2 +y + h.ot (1)

and associativity follows from the definition.

Write F(z,y) = Fi(z,y)+Fa(z,y)+Fs5(z, y)+- - - with Fy(z, y) € K[z, y] homogeneous
of degree d.

We want to show, Vd > 1, Fy(z,y) € Alx,y].

We prove this by induction. Case d = 1 already done.

Assume d > 2 and the statement is true for Fy,--- | Fq_1.

Note:

Vr>2: (Fi(z,y)+ -+ Fao1(x,y))" = F(z,y)"” mod degd+1 (2)

(2) and 1.2.4 together imply that Vi > 1,n = ¢"m,qtm (n =1,r = 0 are ok).

F(x,y)qi" = ((a F)(z? qui))" mod degd + 1, 1" (3)
By definition,
f(F(z,y)) = f(x) + f(y) (4)
(4) = ()
(0 f) (0L F) (@, y) = (0Lf)(@) + (o2f)(y) (5)
(1.1.2) = (6)
f(w) = g(@) + 3 si(ol () (6)

Substitute F'(z,y) for z in (6). We get (7):

F(F(x,9)) = g(F(x,9)) + Y 50 Y 0" (dn)F(z,9)"" (7)
i=1 n=1
Then we use the 12.4 congruence and our knowledge about the integrality of s;.
Eventually it turns out that Fy(z,y) =0 mod A[[z,y]]. Thus Fy has coefficients in
A.

Thursday, 1/23/2025

Write n = ¢"m, q { m.
F(x,y)7™ in (7) satisfies (3).
1.2.3 d,I" C A = o(d,)I" C A. Iterating, o'(d,)I" C A.
Also, s;I C A. Multiplying both sides,
50 (dp) " C A
Multiply (3) by s;0(d,),
5:0° () F(2,9)7" = 5:0"(d) (0L F) (27, y7))" mod A, degd+1  (8)

(7) and (8) together imply that,

oo

f(Elry zg(F(w))+stoif)((oiF)(xqi,yqi)) mod A,degd + 1



—~
(=]
=

= g(F(z,y)) + fhx) — g(z) + flg) —

Upshot:
by assoc. on
g(F(z,) =g@)+gy) "= "0 mod A,degd+1 (9)
mod A,degd+1
= 0 = (P2, y) = biF(,y) + baF(,y)° + - -
boF?+ o =bo( Fi 44+ Fy1 )> +bs(Fy+- 4+ F41)° + -+ mod degd+1
—_—

€A[z,y] by ind. hyp.

= 0=b1(F1+ -+ Fg_1 +Fy) = b1 Fy(z,y)
—_—
€Alz,y]

Since by € A* we have, Fy(z,y) € Alz,y].

Statement ii (f; ' (fg(x)) € A[[z]] ) is proved in the same way.

Satetement iii: Vh(z) = Y - | c,a™ € zA[z]], suppose Jh(z) = oo ena™ € Allz]]
such that f,(h(z)) = f;(x) which is defined by the Functional Equation of same type
(i.e. all the other data are the same).

Set f(x) = f(h(z)) by assoc. h(z) € xA[[z]].

Recall:
(@) = g(z) + Y si(olf)(a?)
i=1
Then,

Use 1.2.3 and s;I C A to deduce that,
= Z si(o )=g(h(z)) =0 mod A
mod )

Set h(w) = f(x) = 72, si(0Lf) (27) € wA[[a]).
Construction == f(z) = f; () [unique solution to the functional equation].
O

For statement iv: [H, Formal, ch 1, sec. 2.4.]

So, we can write many formal group laws of the form F(x,y) = f~1(f(z) + f(v)).
where f is invertible. f is logarithm for this formal group law.

Applications:

1) If K/Q, is a finite extension, 3 polynomials p; (z), p2(x), - - - € K[z] such that:

z) =Y pala)z

n=1

with Vn > 1Va € Ok, pn(a) € Ok.



Where F, is a LT Og-module.
eg when K = Qp,e(x) = (1+2)P —1 = py(x) = (””)

n

pn(a) € Zy if a € Z,, but if K # Q, then 3a € Ok such that (?) ¢ Ok.

a

2) Formal groups over F, or F,,.
Fixn>1. Set A=7Z,p aprime, [ =pZ, K =Q,0 =id, q = p.

0, ifi#n;
Define sgn) =

, ifi=n.

D=

Let g(z) = =, fn
tional equation:

—~

x) €L Lﬂ [[x]] be the unique power series satisfying the func-

Then,
2P 2" P
fola) = S T b= (+)

FEL = Fy(z,y) = f; ' (fa(2) + fu(y)) € Z[[z]] by FEL.

Exercise: if £ is a prime # p then F,(x,y) mod ¢ is isomorphic to @a,JFz-
Set F,(z,y) = Fn(z,y) mod pZ € Fylz,y] a formal group over F,.
Proposition 1.2.5. i) [p|g, =2 mod p.

ii) If n #£ m € Zxg, then for any field k of characteristic p, we have:

Homgormal grp /K (Fn ® kvfm ® k) = {0}
In particular, F,, and F,, are not isomorphic over any k.
Proof. i) Set a(x) = [p|r, (x) € Z[[x]] and B(z) = x7".
Recall that [p]r, () = f, ' (pfa(2)).
fala(@)) =p- fulz), fa(B(2)) = fn(xp">-

(+) = fullp)l(2)) = fa(a”") = pr =0 mod p.
FEL iv = a(z) = f(z) mod p.

ii) Let h(z) € zk[[x]] be a non-zero homomorphism F,, ® k — F,, ® k.
Let h(z) = uz® + h.ot,u € k*,t > 1. Then,

= h(lplF, (2) = [plF,, (h(z))
— uz” "t + hot=upmz?"t + ho.t.

Which is a contradiction.



Remark. 1) One can show [H, Formal, 18.5.1] that a 1-dimensional (commuta-
tive) formal group over a separably closed field & of charp is isomorphic to
exactly one of F,, ® k for a unique n > 1 or G, k-

We define the height of F' to be:

hi(F) n, if F2F,®k;
"o, if F Gy

2) Let K = Qp((pn—1) unramified extension of degree n over Q,. Let ¢ = p™, e(z) =
fit(pfn(x)) which we know is a Lubin-Tate series for the uniformizer = = p of
K.

Clearly, e(z) = pz + h.ot,e(r) = 2P" = 29 mod p. These are exactly the
conditions for LT series.

= F, = [, (fu(2) + fu(y)) = F. is the LT Og-module for e(z) by LT
theory.

One can show the canonical map:

Ok — End(F, ®z Ox) — End(F,, @r, F,)

J:

End(F,,Ok)
is injective but not surjective.

¢(x) = 2P is an endomorphism of F',

— End(F, @ Fy) = Ok(¢] where [a]p o ¢ = ¢o[d(a)lz

and Ok [¢] ®z, Q, is a divisional algebra over Q,.

n

End(F, ®r, F;) ®g, Qp = Dy

We have: dimg, (D) = n?

Furthermore, center(D,,) = Q,. D, also contains K but it is not in the center.

1.3 LCFT following Hazewinkel

[H] = ‘Local Class Field Theory is easy’

In this section, a local field is, by convention, a field K which is complete for a
discrete non-trivial non-archimedean absolute value | - |. i.e., |[K*| is a non-trivial
discrete subgroup of R~g.

Examples:

1) Qp,Fy((1))
2) (Qp)nr = Q7 Fo (1)) = (Fy((t)) @, Fy)" [the t-adic completion]
Fq((t))™"

3) C((t)) or k((t)) [they are complete w.r.t. a t-adic absolute value].
Outline:

1) Assume K has algebraically closed residue field k, and L/K is finite abelian
extension. [Note that abelian here automatically means Galois]. Set U(K) =
O, units of the valuation ring, and V(L/K) = (c(u)u™! | 0 € G(L/K),u €
U(L)) [subgroup generated by these elements].

Fix a uniformizer w;, of L and define:



i:G(L/K)—U(L)/V(L/K)

i(o) = ”ST”LL) mod V(L/K)

Note: 7 does not depend on the choice of 7. Indeed, if w is another uniformizer
of L then w = vy, = &) — clm)olv) ”(”LL) mod V(L/K).

w L v T

Theorem 1.3.1. The seqeunce:

1 = G(L/K) — U(L)/V(L/K) 2% U(K) - 1
is exact.

Now assume that K has finite residue field (equivalently, K is locally compact).
Also assume that L/K is a finite abelian extension. Set K, = W,Lm =
L7 = LK™ = L.Kp,.

Let ox € Gal(K™/K), o1, € Gal(L™ /L) be the arithmetic Frobenius.

Let G(L/K)g be the 0! ramification group. Then, we have an exeact sequence:

1—-G(L/K)y— G(L/K) = G(k/k) = 0
Here kj, is the residue field of L.
Note: G(L/K)g & G(L" (= L.K")/K"") 2 G(L/LNK"™). LNK" is

the maximal unramified subfield of L over K. Furthermore, G(L""/K™") is
isomorphic to the Galois group of the completion. Then we have,

U(K)
1 —— G(L/K)o —— G(Lur/Kuy) U%f()/ U(Knp) — 1
l”*’l JjﬁL llbx

J

G(L/K)o

by snake lemma.

Here, 1k (v) = o (v)v™1, 90 (v) = or(v)v™
Hence we get a canonical homomorphism:

1

U(K) =5 G(L/ K)o
Theorem 1.3.2. iy is surjective and ker(ir/x) = Nr/x (U(L)).

Hence we have a canonical basis:

) () = aw/r),
L/K /K

If L/K is a subextension of a finite abelian exztension L'/ K one has a commu-
tative diagram:

10



U(K) i K ,
No@@y o GE

L

U(K) iL/K
Nr/x(U(L)) LK)

[Use Nk (Ur') = Npyx(Npry(U(L'))) € Npyx(U(L))]-
Taking the limit over all finite abelian extensions of K inside a fixed maximal
abelian extension K gives:

Proposition 1.3.3. The homomorphisms ik for varying finit eabelian L/K

induce canonicall isomorphism:

~ |im ﬂ ~ lim _ ab nr

L/K

Preliminaries Let K be a local field with perfect residue field k. Given a finite Galois
extension L/K, we set K, = maximal unramified subextension of L/K, = LN K"".
We have an exact sequence:

1—-G(L/KL) - GL/K) = G(kr/k) = 1
=G(L/K)o

Set Ky, = K", L, = L"" = L.K,,. The maps:

G(Lpy/Kpy) — G(L™ /K™ = G(L/KL)
res =G(L/LNK"™) res

Proposition 1.3.4. i) Let K be alocal field with algebraically closed residue field
k and L/K a finite extension. Then, Ny x : L* — K* and N,k : U(L) —
U(K) are both surjective.

ii) Let K be a local field with finite residue field and L/K a finite unramified
extension. Then, Nk : U(L) — U(K) is surjective.

Proof. HW3 O

The Decomposition Theorem

Fix an algebraically closed field €2 containing K,, = Knr. All composite fields are
taken in ).

Theorem 1.3.5. Let K be a local field with finite residue field and L/K a finite
Galois extension. Then 3 a totally ramified extension L'/K inside L/K such that,

L/Kn’l‘ — LKTLT — L’I’L’I’

(L) pr = L' Ky = LKy = Ly

If G(L/K)p is contained in the center Z(G(L/K)) then G(L/K) is abelian and L'/ K
is abelian

We have, K% = (totally ramified extension).K™"

11
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Proof. Let K1,/K C L/K be maximal unramified subextension.

1— G(L/K)g — G(L/K) —— G(kp/k) —— 1
G(L/KL) G(KL/K)

e

QP ———— VK, /K

s=[KL: K] =[kr : k] = ord(¢k, k). 7 = ord(p) thus s | r.

Note: K7, is the unique unramified extension of K in Q) of degree s.
Let K, = unique unramified extension of K in € of degree 7.

K; C K, since s | 7.

Claim: The canonical homomorphism,

G(L.K,/K) ) (LK) x G(K,/K)
G(LNK,/K)

=T
LNK,

={(o,7) | o

}

LNK,

is an isomorphism.

The proof of claimm is Exercise (HW3).

Claim = 3 € G(LK,/K) such that 1/J’L = ¢ and 1/}|Kr = QK. /K-

Set L' := (L.K,){¥

Note: the maximal unramified subextension of L.K,./K:

L'NK, =K = L'/K is totally ramified.

Note: ord(v)) =r = |(¢)| = [I/: K|r =[L': K|[LK, : L'| = [LK, : K].

Since this has the right degree, we deduce that L'.K, = LK,.

= L'K" = (L'K,)K" = (LK,)K™ = L. K" = L"".

Same argument goes for the completion.

Note that G(L/K) is generated by ¢ and G(L/K)g. The last point follows from
this. O

Corollary 1.3.6. Let K be the maximal abelian extension of K . Then, 3 a totallly
ramified extension L/K such that K% = L.K"".

Proof. Choose a splitting of G(K®/K) — G(K" /K) = Z. We have ¢ : G(K"") —
G(K%/K).

Set H =imo, L = (K®)H. Then L is totally ramified.

Because of the restriction, G(K**/K) — G(L/K) has H as kernel.

Thus G(K®/L) = H. This concludes the proof. O

ab nry — 1; nr
Corollary 1.3.7. G(K*/K"") = @M/KHH finite, M/K abelian G(M/K"™)

- @L/K finite abelian G(LK”T/KNT)

- @L/K finite abelian G(L/KL)

- @L/K finite O (L/ K)o

Local Fields with Algebraically Closed Residue Field
For example, K = K, K = C((t)).

Proposition 1.3.8. Let K have algebraically closed residue field k and L/K finite
abelian. Then we have,

15 QLK) & V(UL(;‘)K) M g (K) 1 (+)

12



Goal is to show that (%) is exact.
Recall: V(L/K) = {o(u)/u:u e U(L),0 € G(L/K)}.

Lemma 1.3.9. i is well-defined and a group homomorphism.

Proof. Let 7 be a uniformizer of L. Then, i(o) = @ mod V(L/K), clearly well

defined.
(or)(m) _ o(r(m)) 7(m) (7

T 7(m) T T

mod V(L/K). O

Lemma 1.3.10. Let G be a finite abelian group and g € G an element. Then,
JH < G (subgroup) such that:

i) G/H is cyclic.
ii) ord(¢gH) = ord(g)
Proposition 1.3.11. i: G(L/K) — U(L)/V(L/K) is injective.

Proof. Set G = G(L/K).g € G\ {1}. Let H < G be as 1.3.10.
3f€G:G/H={f),f=fH = g=f"-ho,ho € H. 0 <r < s:=ord(f).
Suppose i(g) € V(L/K).
Write m = mp,.
SR TC W S .0 B Y S P Co ) Mo S (o W XTC R V(LK)
™ T ™ 1.3.9 T T T T T :
——
=i(fr)=i(f)"
By assumption, this is an element of the subgroup.
So, it can be written as:

[ o) 1)
0<i<s v

For some hjinH,v;; € U(L).
Next: let h € H be any element.

(f'M@) _ (f'h)w) (fh)(w)  (fh)(w) h(u)
w o (PR (2R () h(u)w

)
)W) f

((F=2h)(w) | fh(w) h(w) o)
(f=th)(u)  (f772R)(u) h(u) — u
E S =v;
_ flne ) h(u) _ f() h(u)
IIRERE Y U u’ u

land 2 = {0k _ S Alu)

" ™ (3) Up
Let M = LH and apply N = Nr./m to both sides of 3.
== f(7 M) f(w) ;v = Npy(m), w =nNg y(w) € UM).

= f(7r wil) = ﬂMw*1 € M and fixed by f.
(f,Hy=Gsorhyu'tekK.
= [M:K]|r. But [M: K|=|G(M/K)|=|G/H| =s.
We have chosen r < s
O

Theorem 1.3.12 (Hilbert 90). Let E/F be any finite cyclic Galois extension, o €
G =G(E/F). Then, if Ng,p(z) =1forz € EX = Jye EX :x=o(y)y "
Proof. Let n=[E : F]. For any a € E set:

y=yla)=a+o(a)z ' +o*(a)o(z Nz +--- + 0" Ha)o" 2(z™ ) o(z" !

13



= J(y) = U(Q) + 02(61)0(.%71) + 4 U”(a) O.nfl(mfl) ) "U(xil)x .

= (o(a)z~t + o (a)o(z ™t + - +a)r = ya.
Let (a1, - ,a,) be a K-basis of L.

a a; o(a1) " (a) E
y(2) B a; 0'(&2) Un_l(ag) U(xfl)lx_l
y(an) an o(an) - 0" an) "2 (zh) .:.o(xfl)xﬂ

0 + disc(ay, - - ,an) = det(mat)” since E/F is separable.
= 31 < ¢ < n such that y(a;) # 0.
Then, « = o(y(a:))y(a;) " O

Remark. Hilbert 90 is equivalent to H'(G(E/F), E*) = {1}.
If E/F is any finite Galois extension and n any positive integer,
H'(G(E/F),GL,(E)) = {1}.

Tuesday, 2/4/2025

ker(yx) = U(K)

i U(Lnr N
1 — G(L/K)O V(Ly(LT/I(?7lT) U(

K
J{m—ﬂ }” J{ K
L —— G(L/K)y —= pip ity ——— UK

G(L/K)

Connecting homomorphism: ny,/x : U(K) — G(L/K)g
Then theorem 1.3.2 is: 1 /x is surjective and kerny x = N(U(L)).

Proposition 1.3.13. Suppose k = k and L/K is finite cyclic. Then,

i U(L) Np/k

1 - G(L/K) = UK) — 1
is exact.
Proof. Exactness on left: 1.3.11.
Exactness on right: 1.3.4(i) [Haven’t seen yet, HW4].
For exactness on the middle,
Set N = NL/K

, o(mr) o(mr)

(Noir/x)(o) ( i ) H T( p—

TEG(L/K)

Now suppose N(x) =1,z € U(L).
Hilbert 90 (1.3.12) implies Jy € L*: 2 = o(y)y 1, (0) = G(L/K).
Write y = vn}, v € U(L).
Then, o = 2 — 20 (b)) = (20)" mod V(L/K) = ipac(o)” "2 in xc(0”)
Thus, 2V(L/K) € im(iy k).
O

14



Lemma 1.3.14. Suppose k¥ = k and L/K finite Galois extension (not necessarily
abelian).
Let M/K C L/K [Galois] be such that L/M is cyclic. Then,

is cyclic.

Proof. Let G = G(L/K) and H = G(L/M) and consider F(v)v~! € V(M/K).
veUM),7y=~H € G(M/K).

1.3.4i = Np,n:U(L) — U(M) is surjective.

Thus, Jw € U(L) such that u = N, /p(w).

y(w)\  FNpm(w)  F(v)
— NL/M( >_ Np(w) v

O

Lemma 1.3.15. Assume k = k. Let L/K be finite abelian and M/K C L/K such
that H := G(L/M) is cyclic. Then the sequence:
o _UL)
1= GL/M) S ——~ 5 U(K) —1
is exact.
Here j is given by the composition canonically:

) dex UL)  New, UM

G(L/M) — G(L/K AN T OMTE

—1

Proof. 1.3.11 implies:

i U(L)

G(L/K) =5

(L/K) V(L/K)
is injective. Then trivially j is injective from definition.
Also, N/ o j is the trivial homomorphism (trivially).
1.3.4i = Nyp s is surjective.
Only nontrivial part is exactness in the middle.
Supose NL/IL[('U) = 1U(M)/V(IW/K) - NL/A{<U) =w e V(M/K)
1.3.14 = 3w € (V k) such that Ny (w) = w.
Thus, NL/M(’UI,D_I) = 1U(]\/I) - % — vw ' mod V(L/M) = iL/JV[(U)~
cyclic
— )= k(o) = o) V(L/K) == vV (L/K) = uV (L/K).
eU(L)/V(L/K) eU(L)/V(L/M)

= uV(L/K) € imj.

Theorem 1.3.16. Assume k = k and L/K is finite abelian. Then,

15 G(LJK) 255 U(L))V(L/K) = U(K) — 1
is exact.

Proof. Induction on [L : K]. Case L = K is trivial. Assume [L: K] > 1.
L/K cyclic = by 1.3.13 we’re done. Assume L/K not cyclic.

Choose subextension M/K C L/K a subextension such that L/M is cyclic.
Consider the following commutative diagram:

15



L/ K

(2) 1 — G(L/K) U(L)/V(L/K) RLTLN UK) —1

l lNL Y lid

3) 1 —— GIM/K) M5 (M) V(M/E) 225 7(K) —— 1

| |

1 1

(1) is exact by 1.3.15, (3) is exact by induction, (2) is exact on the left [1.3.11] and
on the right [1.3.4i]. Diagram chase implies exactness of 2 in the middl.
O

Remark. If L/K is any totally ramified Galois extension one still has an exact
sequence:

1 —— G(L/K)® L/ 0 U(K) —— 1

o / v

G(L/K)

Almost the Reciprocity Homomorphism

Suppose now that K has finite residue field k£ and |k| = q.
Let L/K be a totally ramified finite abelian extension.
Then the map:

G( Ln [Kn) = GL"/K™) 2 G(L/K)
= S——— =

=L Knr =G(L/(LNK""=K))

Define ¢x : U(Kpr) = U(Knr) by ¥i(a) = <pKM/K(a)a_1 and similarly 1y, :
U(Lyn.) = U(Ly,). Consider the commutative diagram:

ker(v;,) — ker(vk)

| |

11— G(L/K) = G(Lnr/Knr)iLnr/K(wV(gif;w) U(Knr) — 1
lm—ﬂ

1 is the induced map on U(Ly,.)/V (Lpy/Kny)
Note: 1. 9 (i, /1, (0)) = v (Z222) =1

2. <PL,”,/L|KM = ¢K,./K, hence:

16



N, /Ko 0VL =YK o N /K,

These two points show the commutativity of this diagram.

Lemma 1.3.17. i) ¢x : U(K,,) — U(K,,) is surjective and ¢% : Ok, —

ii)

iii)

OKTLT7 w‘;{(a’) = <)0K7;,7-/K(a) —a.
Up : V(Lpr/Knr) = V(Lpy /Kpy) is surjective.
ker g = U(K)

Proof. Set U™ =147} 0k, < U(Kp,)

i)

ii)

iii)

nr —

One has ¥ (a) = a?~! mod U' = ¢ mod U! is surjective since kg, =
€]

k., . Also,

Y Ut UM s U Uttt

1+ar™ mod U™ 14 (a? —a)r™ mod U™!

(1+a%7™)(1 4+ ar™)™t =1+ (a? — a)7"
1 _
And since a — a? — a is surjective on kg, this map is surjective.
By HW3/1 ¢k : U(Kyn,) — U(Kp,) is surjective. Same reasoning gives that
Y% : Ognr = Ok, is surjective.

For 0 € G(L/K) = G(Lyn,/Kny),x € U(Ly,) consider o(x)z™ € V(L /Knr).

By i we can choose y € U(Ly,) such that z = ¢r(y). L™ /K = L.K™ /K is
abelian.

Thus, ©L,,./LOT =00QL. /L

= L (%) =o(x)x=! € V(Ly,/Ky,). This shows ii.

u € ker e, Write u =Y o0 a;m’, a; € p(K™) U{0}, a0 # 0.
= Yg(u) = ¢k, /k(wut =1 mod m.al™' =1 mod 7. ag is a root of
unity = ag_l =1. = ag € pg—1(K""). By Hensel’s lemma, ag € p1q4—1(K).

By induction, assume ag, -+ ,a,-1 € p(K)U{0},n > 1. Jw € U(K) : uw™ ! =
1+ an™ where a € Ok,,,..

u=ag+a1m™+- -+ ap_17" + br"

:(a0+_._+an_1ﬂ,n—1) (1_|_ b )

ap+a1m+-Fan_17n1

= 1=9g(u) = Yr(uw™") = wﬁ% =1+ (a? —a)7™ mod 7!
Therefore, a? = a mod 1 = a = ¢, + b,7 with ¢, € pg—1(K)U{0},b, €
Ok,

Thefefore, a,, € pq—1(K) U {0}.

17



Thursday, 2/6/2025

Theorem 1.3.18. Suppose k = kg is finite. For any abelian totally ramified extten-
sion L/K, there is a canonical homomorphism:

ne/r: U(K) = G(L/K)
Which is surjective and has kernel Ny g (U(L)).
Hence 7,k induces an isomorphism:
U(K) NL/K
Ni/r(U(L))

N1 K is functorial in the sense that if M/K C L/K is a subextension then there is a
commutative diagram:

G(L/K)

1 —— Np(U(L) —— UK) =5 G(L/K) —— 1

I P

1 —— Nayx(UM)) — U(K) 25 GM/K) — 1

Proof. From the diagram we considered before the snake lemma gives us an exact
sequence:

UL NV (Lpyr/Kny) U(L) ker(;) —— ker(¢k)
| |
l——m G(L/K) = G( nr/Knr)ZLm/K@rv(Uifnr) ~ N U(Knr) — 1

[

1 G(L/K/ (miiomy UlKn) — 1

G(L/K) ————— coker(¢y)

|

1

) 1.3.174% NL/K

ker(vr) — ker(x U(K) —= G(L/K) — coker(¢,
Let U = uV (L, /Kny) € ker(¥r) = p(u) € V(Lnr/Knyr)-
1.3.1711 = Jw € V(Lyp,/Ky,) such that ¢y (w) = ¢ (u).
Thus, ¥ (uw™!) = 1.
1.3.171 = ww~! € U(L).
Therefore we can deduce that ker(1z) = U(L)V (L, / Knr).
= m(ker(i;) = ker(xe) = U(K)) = Niyxe(U(L)).
—> G(L/K)

) 1'3il7i 1

Hence, W

The functorlahty of nr,x follows from the functoriality of the connecting homomor-

phism of the snake lemma.
O

Theorem 1.3.19. For every finite abelian extension L/K (not necessarily totally
ramified), there is a canonical isomorphism

U(K)

NL/K - m — G(L/K)o

which is functorial w.r.t. subextensions M /K as in the previous theorem.
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Proof. We use the decomposition theorem [1.3.5].

dL’ ¢ L™ such that L'/K is finite abelian [since L™ = L.K™" the compositum of
two abelian extensions| such that (L/)"" = L' . K"" = L.K"" = L"".

Then, Gal(L'/K) = G((L')""/K™) =2 G(L™ /K"") 2 G(L/K)y.

1.3.18 = % ~ G(L'/K) = G(L/K)o.

We can pass to the completion.

Since L' K, W L.K, for some unramified K, /K (prooof of 1.3.5).

and Npge 0 (U(L'K,)) 2 U(L') by 1.3.4i
Nik,n(U(LK,) € U(L) by 1.3.41

2
=54 NL//K(U(L/)) (:) NL’/K(NL’KT/L’(U(L/KT)>)
= Ny, x(U)L'K,

1
& Nrk,/k(U(LK,))

= NL/K(NLK,,/L(U(LKT)))

Y Ny (L))

—> we get an isomorphism:

U(K) NnL/K
Npyr(U(L)) =

G(L/K)o

Goal: we want to prove that there is a canonical isomorphism:

K*/Np(L*) = G(L/K)

for any finite abelian extension L/K.
We want to do something with uniformizers, and uniformizers should roughly corre-
spond to frobenius elements.

Norm Groups of Lubin-Tate Extensions

Let 7 be a uniformizer of K, |kx| = q = p/,0 = Ok, e € & aka a LT series for 7.
Let F, be an LT O-module for e, and L,, = Lr,, = K(F.[r™]) aka the series
generated by 7" torsion points. This is independent of the choice of e but does
depend on 7.

We know that L,, /K is totally ramified abelian Galois extension of degree (¢—1)q
where m > 1. Recall that Ly = K.

Set U(K) =1+ 7"(K) <U(K),U°(K) =U(K).

We now have two description of G(L,/K).

m—1

1) Via LT theory: the map U(K)/U

m(K) = G(Lm/K) defined by aU™(K) < o
if for all @ € F.[n™],0(a) = [a]p, («)

2) Viankx : U(K)/Ng, )k (U(Lm)) — G(Lm/K) [we don’t need to put ramifi-
cation since it is totally ramified].

Natural questions:
i) Is Np,, )k (U(Lp)) = U™(K)? Answer is yes, but not obviously so.

ii) If the answer to i is yes [which it is] then are these two maps the same? [Answer
is no, but kind of close! Va € U(K),Ya € Fe[r™],n1,, /k(a)(a) = [a](a)]

Lemma 1.3.20. Given a monic polynomial f(z) € O[z] \ {0} with degree n with
p 1 n, there exists s € Zso and r(z) € Oz] with 7(0) = 1,degr < s such that the
mod 7 reduction of h(x) := a®f(x) + r(x) is separable.

Proof. HW4 O
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Theorem 1.3.21. Ni, /x(U(Lp)) =Um(K)

Proof. We show first N(U(L)) c U™(K)
Set L, = L and writew € U(L) asw = Cu withu € U'(L) and ¢ € u(L)L totally ramified =

W) = pig1 (K.

— N(w) = N(Cu) = (HFIN () = o1
Suffices to show that Ny, (U'(L)) C U™(K).

Case m =1 is easy.

Assume m > 2, set n = m(q — 1)¢™ "' —1 = p{n. Let X be a uniformizer of L.
Write U'(L) Su=1+aiA+ -+ a,\" +z,v(x) > n+1=uv(xm).

v = vz, = normalized valuation on L,v,(A) = 1( = v(7) = (¢ — 1)¢™ ).

Consider f(z) = 2" +a;2" 1+ -+a, € Olx]. Since p { n we can apply 1.3.20 and get
h(z) = z°f(x) +r(x),h mod 7 separable. Then h has s + n =t = deg(h) = deg(h)
distinct roots in k = ]ITq Hensel’s lemma implies roots of h in K are actually in K.
Let z1,- -+, 2 be the roots of h(z) in K,,.

Since h is monic, they actually lie on Ok .. 2; € Ok,,,..

Recall that ~(0) = r(0) =1 so [[ z; = £1.

Thus, z; € O = U(Kpy).

m—1

N(u) = N(u).

Tuesday, 2/11/2025

Moreover:

1=z N1 —2A) - (1 =2\ =1— (Zz) A

)

:1+al>\+a2/\2+"'+an>\n+xlva(II) ZTL-"-l

!
:1+a1/\+---+an)\”+x+(x’—m):v<1+x I)
v

Let y := =2 So vy (y) > n+ 1.

Therefore, °

NA+y) =1+ > o)+ =14y 0(y)2n+ 1=
ccG(L/K)
Thus, ' € O = ¢’ € 7" Ok.
Therefore, N(1+y) =1 mod 7™.
Therefore, N(u) € U™(K) <= N (H§:1(1 - zi)\)) € U™(K) (2)
NOTE: UNUSED: Then, STS: V1 <i < t: Ny, (1 — 2)) € U™(K).
Since Ly, /K is totally ramified, G(Ly,/Kpn,) = G(L/K).
Therefore, Ny, /i (1 — 2zA) = N, k.. (1—2zA) = Np,_ k., (zi(z7 " = X))
= 2/Np, /K, (5" = A)
Setting ¢; = z; 1 e () = [7™] £,
Npp /50, (G = A) = seqn/x) (G — (X)) = min. poly of A(G;).
From here WLOG assume that e(z) = mz+29. We can further assume that e,,(\) = 0
but €,,—1(A\) # 0.

Then, the minimal polynomial of X is

™

em ()
em—1(x)"

Thus, Np,, /., (G —A) = ( Ean ) (¢:). Since ¢; is not a root of these, = <%

em—1 em—1(Ci) "

Hence,

N (H(l - m)) =TIva-=n= (1) [ING -2 = (IT zi)d [ING=»

%
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Since d is even,

= R — L(C") — HZ em((i) B Hz em—l(Ci)
B H N(CZ )\) 1;[ em—l(é)i ! * Hz em—l(Ci)

Note that [, em—1(¢i), []; €m(¢) have v, = 0.

Then it suffices to show that []; €, (&) — [, em—1(&G) =0 mod 7™ (3).
Note: e((;) = ¢! mod 7. It is the same as applying the frobenius. Note that the
frobenius must permute the roots.

Thus, e((;) = (;(;) where T is some permutation of {1,--- ,t}.

Lifting the Expontent? = ¢({;)? = (r;) mod 2

= e2(¢;) = e1(¢ry) mod 72

Inducting, €m(¢;) = em—1((r@y) mod 7™

Product = T[], em(Gi) =11, em-1(¢r)) mod 7™

This shows (3) = (2) = (1).

This ends Step 1.

Proof of Step 2 |G(L m/K)‘ = |U( )/NU(L))| = |UK)/U™(K)
inequality since N(U(Ly,)) C

U (K) from step 1.
L/K

However, |U(K)/U™| = |G( )| from LT Theory theorem 1.1.2 [as discussed in

Fall].
]

Local Class Field Theory

Let K be a field. Then we have a correspondence:

{/\/CKX

N open | [K* : N] < oo} < {L/K C K"/K finite exts}

N+ Ly = class field assoc. to N/
Here Ny, /x(LY) =N and KX /N =5 G(Ly/K).

NL/K(LX) «—~ L

Ly is called the class field corresponding to N.
Let K be as above, |k| < co. Let K% C K be the maximal abelian extension of K.

G(K/K)y = ker(G(K®/K) — G(kga /k) = G(k/k))

TEeS

Recall if we have M/K C L/K we indeed have G(L/K )y — G(M/K)p. This is not

true for lower numbering for larger numbers!!!

Theorem 1.3.22. i) The isomorphisms 7, : U(K)/N(U(L)) =N G(L/K)o
from 1.3.19 for L/K finite abelian induce an isomorphism:

U(K) — G(K*/K)o
nK
ii) The exact sequence:
1= GEK®/K)y = GEY/K)— Gk/k) —1

splits continuous (but not canonically).

Proof. i) Let </ be the set of all finite subestensions L/K C K% /K. Set N} =
Np,k(U(L)). Then (11/x)rew induces an isomorphism:

lim U(K)/N 5 lm G(L/K)y = G(K™/K)o
Led Leo
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Given L € &/, U(L) is compact. Since Ny k is continuous, N,k (U(L)) is
compact. A compact subset in a Hausdorff space is closed. Thus, N} is closed.
N? has finite index in U(K). It is also complement of union of finitely many
cosets thus it is also open..

Thus, Im > 0: U™(K) C N?.

1321 = Np, /k(U(Lp)) =U™(K) = the system (N})Leco is equivalent
to the system (U™ (K))m>0 but the profinite completion

This proves i.

ii) HW 3
O

Theorem 1.3.23. With L, =J,,, Lx,m as in section 1.1 we have Kab = K",
Proof. Consider the commutative diagram with exact rows:
U(K)
1.3.22\%%

l — GK*K)y ——— G(K*/K) —— G(k/k) —— 1

la:res lﬁ:rcs i’sz@S:id

1 —— GULK"/K)y —— G(L, K" |K) — G(k/k) —— 1

lim G(Ly K™ /K)o

Note: a = id == f is an isomorphism, thus G(K%®/L,K"") = {1} = L,K"" =
Kab O

Thursday, 2/13/2025

Lemma 1.3.24. Let 7 be a uniformizer of K,e € &, a LT series, L, ,, = Lubin
tate extension associated to F,. [which is independent of choice of e¢]. Then, © €

NL‘lr,m/K(L;:,m :)’

Proof. WLOG we may assume e(z) = wx + 7. Set ep,(z) = (e0---0e)(x).

m

efﬂ"fjl) € Ok]lz] is irreducible polynomial over K of degree (¢ — 1)q

This is not only irreducible, but also Eisenstein. Since we’re adjoining root A, of an
Eisenstein polynomial, \,, must be a uuniformizer.

m—1

We’ve seen
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Now note that,

™= (e:iji)) 0) = [T(~o)) = [To(-Am) = Ny )

Definition of the norm residue symbol

Let L'/K be a totally ramified finite abelian extension. Let A € L’ be a uniformizer
and set T = Ny /x()). Since it is totally ramified, 7 must be a uniformizer of K. Let
K, /K be the unramified extension of degree n. Set L := L'.K,,. This is abelian over
K. Then the exact sequence:

1— G(L/K)y — G(L/K) — (i(é((g//lk{)) — 1

The exact sequence splits since the canonical map G(L/K) — G(L'/K) x G(K,,/K)
is an isomorphism.
Hence, there exists a unique ¢y, /7, € G(L/K) such that ¢y, /7

Kn

o =idp and ¢p

PK, /K-
Then we define r7,x : K* — G(L/K) such that,

a*lﬂ,v(a) v(a)

rr/x(a) =Nk YL/

cU(K)
Where v : K* — Z given by 7 + 1 is the normalized valuation and 7/ : U(K) —
G(L/K) is the surjective homomorphism in 1.3.19 with kker(n,x) = Np,x(U(L)).
Note: rp,k is a homomorphism.
Set NL = NL/K(LX),NO = NL/K(U(L)>
71k (a) is also written as (a, L/K) and is alled the norm residue symbol.

Proposition 1.3.25. Let L'/K and L = L'.K,,A € L’ a uniformizer and = =
Npi/p(A) be as above. Then, 71,/ is surjective and its kernel is Nz. Hence, rp,x
induces an isomorphism which by abuse of notation we can also denote as 7,k

KX o
— —— G(L/K
N, o LK)

Proof. We have L* = U(L) - AZ since L/L' is unramified. Applying the norm, N7, =
NP Npyg\* = NPNp e (Npy(N)* = NP - Ny (AP = N - a2
Write a € K* as a = un™ so that v € U(K),m € Z.

L . m .
Thus, 71/k(a) = nr/x (W)@, =id <= np/x(u) =id and ¢}, =id

L319. e D, | m (ord(pr)rr) = ord(¢k, /i) =n) <= a € Ny.

1.3.19: np /i : U(K) — G(L/K)q is surjective, and since G(L/K) = G(L/K)o-ap%/L,
we deduce that rp g is surjective. O]

Next goals:
1) Show that r1,,x is independent of the choice L' C L.
2) To show that for any subextension M/K C L/K,
ker(K* — G(L/K) - G(M/K)) = Ny
Lemma 1.3.26. If L/K is an arbitrary finite abelian extension, then [K* : N7 ] =

[L: K].
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Proof. Let K;, C L be the maximal unramified subextension. Then L/Kj, is totally
ramified and if A is a uniformizer of L, then 7 := Nk, ()) is a unfiromizer of K.

Hence, upto an element of U(K ) also a unfirmozer of K = |K[|=|K*| = |x|%.
= lal= 157 lmic
NL N HINg (V)7
P2 |G(L/K)o ’WZ =|G(L/K)o ﬂm
| Nicr, /i (7)) m|tFe K]

= |G(L/K)ol|[Ky : K] = e(L/K)f(L/K) = [L : K]
O

Proposition 1.3.27. Let L', L,\ € L' be as in the beginning of this section. Let
L}, C L be another totally ramified extension of K such that L5.K,, = L. Then,

TL/K

ker(K G(L/K) = G(Ly/K)) = Ny, C K*

Proof. Set r =1y, : K* = G(L/K). Recall r(a) = nL/K(aflﬂ'”( ))gpz(/aL), Let 7o
be the composite homomorphism:

72

T

K* —/— G(L/K) —— G(L}/K)
ro is surjective by 1.3.25. ro induces an isomorphism:
K*/ker(ry) — G(Ly/K)

If we show that N7, C ker(ry) == surjection K*/Np, — K*/ker(ry) =N
————
order [L}:K]
G(Ly/K)
Hence N, = kerrs.
STS: Ny, C ker(rg).
Npy = ./\/’O,QJ\/L/Z/K (A2)Z for any uniformizer Ay of L.
Since U(L}) = {)\Q(Xg)_l | A2, A2 uniformizer of L’2}, it suffices to show Nz, /x(A2) €
ker(r9) for any unformizer Ay of L.
Note: L/L% is unramified sicne L = L).K,,. Therefore, G(L/L}) is cycic and if we
restrict this to G(K,,/K) we get an isomorphism. Since G(K,/K) is generated by
the frobenius (¢x, /x) and or, 1/

K, — PK./K:

Let ¢z, be the unique element with |<PL/L/2 =id. Then, ¢ /1, © ‘pZ/lL' o = id and

PL/LY | e = PKn/K

_ 1.3.19
= Yr/L O@L/IL/ €G(L/K)o =" nu/x(U(K))

Thus ¢r,/, = r(u)er, s for some u € U(K).

Then, G(L/L5) = (¢r/1)

Fix a uniformizer Ay of L} which is a uniformizer of L. Then Ay = z\ where X €

L',z € U(L). Therefore,

™= Np k(A =Np/k,(A) = Npk, (@ )Npr,(A2) = Ny, (27 )Np g (A2) € K

Therefore, Ny, /k, (z) € U(K).

Further, (r(u)er/r)(A2) = @1/, (A2) = Aa.
Now we compute in U(Ly,) = U((L)nr) = U((Ly)nr)-



‘PL/L'Z

—_——~
noyx(w DA )N (e )N (r(u)en) (@ )

A DY A z7 o

(r(wer/)@ ) (r@er/)Xe) _ ()o@ A (r@)er/p) @)
1)\ =1\ -1

—1 —1 -1
()L (ﬂf1 ) pr/L (f ) _ $L/L (f ) od V(L. /K
or/p(r71) z= o

O

Corollary 1.3.28. The definition of 77,/ is independent of the choice of L’ C L and
he uniformizer A of L'.

Theorem 1.3.29. For any finite abelian extension Ln/K choose an unramified ex-
tension K,,/K such that LK, = L'K,, for L'/K totally ramified. Then,

ker(rLKn/K KX — G(LKn/K) — G(L/K)) = NL
and induces an isomorphism:

KX o
— —— G(L/K
Ny o G
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Tuesday, 2/18/2025

2 Tate’s Article: p-divisible Groups

Let R be a complete discrete valuation ring (CDVR) with m = maximal ideal, k =
R/m, K = Frac(R).

Convention: R is not a field ( <= m # 0).

Futher Assumption: k is perfect of char(k) = p > 0 and char(K) = 0 (this is applicable
in most settings we want to use this in).

Example: R = Z, or the ring of integers in a finite extension K/Q, =. Then K = Q,
or a finite extension of Q.

Example: K = @g\Tp D (’)@,k =F,.

Example: k any perfect fielld of char(k) = p and R = W (k) [Witt Vectors]. Then
m = pR.

Goal: To study certain continuous representation of 9% = Gal(K /K) on finite dimen-
sional Q,-vector spaces. Here we (implicitly) mean continuity by the Krull Topology
Krull Topology on Gal(K/F) is defined as follows:

Let F = {L | L finite galois subextension of K over F'} and N' = {Gal(K/L) | L €
F}. Then a subset X of Gal(K/F') is open if X = @ or X = |J, ¢;N; with g; €
G, N; € N. This makes Gal(K/F) a topological group.

The Prototypical Example is the p-adic cyclotomic character given by:

ch:fﬁ;g—)Z;qu:V

Xeye(0) = a € Ly <= V(€ pp (K) : 0(¢) = (*

This is meant as follow: if (" =1 and a =b mod p™ for some b € Z then ¢* = ¢.
Equivalently, x¢yc is obtained as the composition of:

G X% lim (K () /K) — m (Z/p"Z)* —— L

Note: if K = Q,, (or @g\r ) then Xy is surjective by the irreducibility of the cyclotomic
polynomials. If K/Q, is finite then x.y.(¥x) is open.
Note: E/K elliptic curve, E[p"|(K) = {a: € E(K) | [p"e(z) = OE} >~ (Z/p™) @
(Z/p™) v Yk . Therefore,
S — lim Aut(E[p"](K)) = Aut(lim E[p"](K)) = Aut(lm(Z/p")?2) = Aut(ZE2) =
This gives us a Z,-linear action of ¥x on T, E = lim £ [p"](K) called the p-adic Tate
module of E, and also on V,F = T,E ®z, Q, which is a 2-dimensional Q, vector
space.
Final: Let K/Q, finite and 7 = uniformizer. Then, e = &; a LT series for m, F, =
LT Ok module.
Y ~TpF. =lim F. [7"](K) = Ok as Og-module.

—_———

non-canonically
>0k (7™)

Thus, 1m(§¢K — TpFe) = O]X( = Aut@K (OK)

Thus, ¥k ~ V,F, = T,F, ®z, Q, is a vector space of dimension [K : Q,].

LCFT tells us this factors through the abelianization: ¥x — 9% ~ V,,F..

Question: Why p-adic representatons? Why not continuous representations ¥x —
GL,(C)? Why not 9x — GL(Q;),! # p? Why not ¥x — GL,(Aqg) = H;<Oo GL,(Q)
where Q. = R?

Answer: We can study them, but the p-adic representations are especially interesting
for the following reason: Continuous representations ¥x — GL,,(C) have finite image!
The topologies are incompatible.
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For 9x — GL,(Q:),l # p have finite image when restricted to the wild inertial
subgroup Zx = 92° = U,.,¥; [upper numbering of ramification groups].

Yk — GL, (Ag) are put together from representations into GL,,(Q;),! < oco.

About ¥k : There are two fundamental exact sequence:

1 — Ik — Y — Gal(k/k) — 1

Sy is the inertia subgroup. It is closed, and we can write . = 42.
Let m € K be a uniformizer. Then Vn € Zs( \ pZ,Vo € Ik,

o(/m)
Y
is independent of the choince of /7 and also independent of the choice of 7. Hence
one obtains a homomorphism t : S — @n>0,p’m wn (K) = Z\P)(1).
superscript (p) since we’re not taking the p divisible powers. ‘Twist’ by (1) since we're
taking the roots of unity.
It is non-canonically isomorphic to %ianm Z/nZ =111z, Zu-

€ pin(K)

Then, Pk = ker(t). We have the following exact sequence:

1— Px — Ik —>2(”)(1) —1
Theorem 2.0.1. P is a pro-p group, is maximal with this property, and is normal

in ¥x. One has Py = G(K /K, (¥Y/7 | n>0,ptn)).

Ky (/7 | m > 0,p { n) is the maximal tamely ramified extension K*™¢. We have
the following exact sequence:

1 2P (1) = GK"“™ /K) = G(Kpy /K) = G(k/k) — 1

We can be more precise: it is in fact a semidirect product.

Motto: p-adic vector spaces are the natural environment for representations of ¥y
(which is ‘close to being a pro-p group’, meaning it has a very large pro-p subgroup).
Plan: 2.1: Finite Group Schemes.

2.2: p—diviﬁible groups.

2.3: C = K. In case of Qp we denote this by C,.

2.4: Theorems on Galois Representations attached to p-divisible groups.

2.1 Finite Group Schemes

2.1.1

Let R be a commutative ring. An affine group scheme over R is an affine scheme

G = Spec(A) 15 5= Spec(R) equipped with:

e a multiplication m : G . G — G,S = Spec(A®gr A).

e A unit sectione: S — G
e An inversioni: G — G

These are required to be morphisms over S.

Thursday, 2/20/2025

We redo:
Let R be a commutative ring. An affine group scheme over R is an affine scheme

G = Spec A Fo, g - Spec R, equipped with morphisms over S:
m:mngéG:Spec(A%A)%G

i =1i¢: G — G [inverse]
e = eq unit section so that:
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such that the following diagrams are commutative:

1) Associativity:

GxG i G

exid

G=SxG=Gx — GxG

S S
2) lidxe \ Jm

GxG ——— G

G ixid GxQa
Pg
3) idxi S m
GxG n G

1-3 can be reformulated in terms of A.

e Pg makes A into an R-algebra.

e m corresponds to a morphism of R-algebras u: A — A®pr A, co-multiplication

e j corresponds to the morphism ¢ : A — A inverson.

e ¢ corresponds to € : A — R called the co-unit

(A, p,t,€) has the property that the diagrams:

(AR A)@r A= A®gr (A®gr A) o A®rA

U) id®uT MT

ARprA m A

Rop A= A®RR<—A®RA

2’) zd®eT \ T

A®RA<—A

A+— AQrA +——— ARr A

1 1®id
|

3) A A "
id®LT
A®A . A

Here § : A®r A — A is multiplication, G ? G >S< S
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This means that (A4, u,¢,€) is a Commutative Hopf Algebra.
The group scheme G = Spec(A) is called commutative if:

GG 25 G
(9,h)

l id
(h.g) m
GeG@ — G
commutes. Equivalently,

b®a
P
a®b

commutes. In this case A is called co-commutative.
Examples:

1) The additive group (scheme) G, g over R : G, g = Spec(4),A = Rlz],u :
R[z] = R[z]®r Rlz] by z » 1@z + 2 ® 1.
e:Rlx] &> Rby e(x) =0,¢: R[z] = R[z] by 2 — —=z.

2) The multiplicative group (scheme) G,,, g over R: G,, r = Spec(A), A = Rz, 2z~ '] =
Rlz,t]/(tx — 1).
p:A—Ap A u(z)=rr,uz"t) =2 t@r
e: A= Re(z)=clal)=1uz) =27 (z7t) = 2.

3) The group scheme of n’th roots of unity p . = Spec(A4), A = R[z]/(z" — 1).
Then pu(Z) =2 T,e(T) = 1,u(x) =7 L =7""1

The quotient map R[z,z7'] — R[z]/(z" — 1) = R[z,271]/(z™ — 1) given by
z +— T is a morphism of Hopf algebras over R.

This induces a closed immertion B p = Gm,R-

4) Let T’ be any finite group of order m. Set A = R' (set of maps f : I' — R)
equipped with pointwise addition and multiplication. Then,

A =R Xx---x R product of rings,

Comultiplication p: A - A®@p A= RV>Y f@g= [(v,0) — f(7)g()]
n(f)(v,0) = f(v9).

e: A= R,e(f) = f(1p).

v A= Auf)(n) = F(rh).

Exercise: This makes (A, p,t,¢) a commutative Hopf algebra, which is co-
commutative if and only of I is commutatie.

We set I'j; = Spec(R") and call it the constant group scheme associated to T.

One can think of ', as m copies of S labeled by the elements of T

5) GLyn,r = Spec(A), A — Rlz;; | 1 <i,j < n][t]/(tdet —1). SLy, g is closed inside
GL,,g. SLy r = Spec(A4/I), A as above, det = det((x;;)), ] = (t—1) = (det —1).

Caution: If G is a group scheme over S then |G| = underlying set (topological space)
is in general not a group.

For example, G = G, ¢ = Spec(C[z]) which is bijective with C U {n} where 7 is a
generic point associated to (0), the zero ideal.

Note: |G X o G| = [Spec(Clx, y)| # | Spec(Clz])| x | Spec(Cly])|

pec(
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Points If 7 25 S is a scheme over S = Spec(R) eg T = Spec(R’) and G — S is a
group scheme, then G(T') := Morgcheme (T, G). In the affine scheme it is the same
as Homp. a1g(A, R') if G = Spec(A),T = Spec(R’).
G(T) is naturally a group, called the group of T-valued points of G.

7 —m G

Given z,y : \ /
S

There is a commutative diagram:

T G
S
o# —y#*(b) «a®b
A®p A
R’ A
N |
A+—R

Then define z -y :=mo(z,y): T — G.
N
R popada
This gives G(T') the structure of a group with unique element eg o f where T ENFEN

the structure map.
For example,

1) Gor(R) = (R, +).
Homp aig (R[], R') & R with © = p(x).

2) Gmr(R') = ((R)*,"),Homp az(R[z,271], R') with ¢ — ¢(z) € (R)*.
B, p(R') ={a € R | a™ = 1} is not necessarily finite if R’ is not an integral
domain. Sometimes we also have very few roots of unity.

For example, if n = p™,p prime and R = F, and R’ an integral domain (and
also F,, algebra), then,

L (R'). This is because (zP" — 1) = (z — 1)P".
—p™"Ep
Definition. Let S = Spec(R). Let G = Spec(A), H = Spec(B) two (affine) group

schemes over S. A homomorphism f: H — G over S is a morphism of schemes over
S such that the following diagram commutes:

HxH- 22, g

lef gf

GxG 2%
If G and H are affine (as indicated) then f corresponds to f# : A — B a morphism

of R algebras and f is a homomorphism if and only if f# is a homomorphism of Hopf
Algebras.
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Example Suppose p prime, R = F,, algebra, o, rp = Spec(4),A = Rlz]/(«P) with
co-multiplication u(Z) =1 ® 7 + Z ® 1 and inversion +(Z) = —% and (%) = 0.
Then R[z] — A gives a morphism:

Qp R — Ga,R

Question: Is «, g isomorphic to up r?
Example 2: Suppose R is a k-algebra and k is a field containing a primitive n’th root
of unity. Then char k { n. In this case, - Z/nZR.

Tuesday, 2/25/2025

Note that, in the previous question, even though as schemes a), p = Ky o they are
not isomorphic as group schemes over R.

Definition. A group scheme G % § = Spec(R) is called finite, if pg is a finite
morphism (G = Spec(A) is affine and pﬁ : R — A makes A into a finitely generated
R-module).

A finite group scheme G/R [here G = Spec(A)] is called flat (resp. locally free) if A
is flat (resp. projective) R-module.

We denote by Gpsp, the category of (affine) group schemes /R and Gps /P category
of finite locally free free group schemes /R and Grpsf};cn category of finite group schemes
/R.

Example from LT Theory: Let K/Q, be finite, F. = LT Ok module attached to the
LT series e € &y, Fe[n™] := Spec(Ok|[[z]]/([7™]F, (x))).

Fact (HW7): A, = Ok[[z]]/([7™]F.(x)) is a free Og-module of rank ¢ where
q = |kxkl.

Hence, the co-multiplication A,, = Am ®o, Am is given by the formal module struc-
ture: @ = Fo(x,22) € Ok[lwy, x2]]/([7™](21), [7™"](22)) = Okl[z1]/([7™"](21)) ®ox
Ok [[za]]/([7™](x2))-

Inversion map is given by inversion on Fe.

Augmentation (<> unit section) A, = Ok, x +— 0.

Remark. If M is a finitely generated projective R-module then VP € Spec(R) the
localization Mp is a finitely generated free Rp-module. This is a consequence of
Nakayama’s Lemma.

The function Spec(R) — Z>q,rk(M)(P) := rankg, (Mp) is locally constant.

If G is in Gpsiy*™ then we let rk(G) = rk(A) where G = Spec(A4). We call it the
rank or order of G.

2.1.2 Carter Duality

From now on all group schemes are assumed to be commutative. Given an affine
group scheme G = Spec(A) over R we set O(G) = A. So, O(G) is the corresponding
affine algebra of G.

Let n: A — A®p A be the co-multiplication, and §4 : AQr A — A the multiplication.
Then, d4(a ® b) = ab.

Let AY = Hompg mod(A4, R). Now assume that A is f.g. projective ( <= G is finite,
locally free).

Then we have the following:

(A QR A)V = HomR-mod (A QR A7 R) = HomR—mod(A7 HomR—mod (Aa R))

= HomR_mod(A, R) KRRr HomR_mod(A, R) = Av ®r Av.

Consider the maps: dav =604 : AY —» (AQr A)Y =2 AV @r AY

Hav

Proposition/Definition 2.1.2.1. Let G € Gpsih" " A = O(G). Then AY
equipped with the multiplication is given by d4v = pY is a commutative ring with
unit €4 : A — R(e4 € AY).

If we define:
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EAV . AV — R,EAV(f) = f(O)

Lav = Lz\{‘ AV — AV,LAv(f) = f olLAg

Then AV, pav,tav,e4v is a co-commutative Hopf algbra of the same rank as fcs on
Spec(R).

Furthermore, the map A — (AY)Y given by a — (f — f(a)) is an isomorphism
of Hopf Algebras. We set G¥ : Spec(AY) and call it the Carter Dual of G. Then,
(GV)Y = G.

Example: let G =p . A= R[z]/(a" —1),1a(T) =T 7.

A = @) Rf fi (S5 a7 ) = a; € R,
Then, (f; - f;)(z*) can be evaluated as follows:
Recall AY @ AV — AV is given by f @ g — [a — (f ® g)(ppa(a))]. Then,

(fi- [ER) = (fi @ [)(na (@) = (fi © £;)(@ @ 7°) = fi(@") £;(@")
1, ifi=j=k;
Therefore, (- fj)(jk) - 0, ;t;erviise.

Therefore, flfj = 5i,jfi-

Thus, fo, -, fn—1 are pairwise orthogonal idempotents. Furthermore, fy + --- +
fnfl = 1av.

Therefore, as an R-algebra,

n—1
A =[] Rf:2Rx - x R=RM"™
1=0

Then, the co-multiplication on AY =2 RZ/(") is given by:

R/ _y RE/(n) o RE/(n) _ RE/(m)XZ/(n)

f—= (6 modn,j modn)— f(i+j modn)
Fe R o [Tt a o XI5 auf ()
Therefore, (p )" = WR

Example: Assume p is prime and R an F, algebra. Then, (gp’ R
Note that this proves that a,, p % JI for any ring R # 0.

)\/ = gp,Fi’,'

Sketch of proof of 2.1.2.1. Check Associativity of multiplication d4v. It comes from
the associativity of the comultiplication.

Let a € A. Write pa(a) =), a; ® b;.

pa(bi) =2, bij®dij, pralai) =3 ain®cix = 32, 1 ai@cik®b; = 32, 5 a;@b;;@d;;.
For all f,g,h € A" : ((f - g) - h){a) = ((f - 9) ® h)(uala)) = ,(F- 9)(as)hlby) =
> flair)g(cin)h(bi) = (fRgRR) (3 aik ® cir ® b)) = (f@gRR) (3 a; ®bi; @ dij) =
> flai)(gh)(bi) = (f - (g - h))(a).

Similarly one proves the associativity of co-multiplicatin p4v and verify the other
axioms.

O

Functorial Description of the Carter Dual

Let G = Spec(A4) € C%ps?;’proj for R’ € R-alg (= cattegory of comm. R-algebras) we
define:

HOiTD(G, Gm)(R/) = HOHIGPSR/ (GR'7 Gm,R’)

= HomR’—Hopfalg(O(Gm,R’)a O(GR’)) = HomR/-Hopfalg (R/ [CL’, x_l]; A ®R Rl)

This is a functor: R-alg — (Groups) into the category of abstract groups.
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If we have o,8 : G — Gy, g7 we can multiply them, o - 5 : G — G, g is a
homomorphism.
Proposition 2.1.2.2 If G € Grpsﬁn’lDrOJ then GV = Hom(G,G,,).

can

Thursday, 2/27/2025

Notation: Given a ring R we denote by Abg the category of affine commutative group
schemes over R, and Ab%n(Ab%n’ Pr1) the categoory of objects which are finite (resp.
finite and locally free ( <= O(G) is projective)) over R.

For R’ € R-alg we defined Hom(G,G,,)(R') = Homay,,, (Gr',Gp,r).

Proposition 2.1.2.2. For G € Ab™P™) we have G¥ (=Carter dual) = Hom(G, G,,).

Sketch. R' € R-alg. Then,

G(R) = HomR_alg(Oz(%), R) — HomR_mOd(pf(l)j, R’) = Homp med(A,R) ®r R =

AV @r R'.

Where 44:/ = Hompg mod(4, R). Consider ¢ : A — R’ € G(R’), an R-algebra homo-
AY,

morphism. We can then make ¢ into R'-linear in the obvious way: A ®z R’ % R’

with a @ r — p(a) @ r.

KAy,

pay, A%/ — Aﬁ, — AJY%, QR Aﬁ, >~ (Ap Qg AR/)V

Therefore, (jay, (¢))(a & b) = ¢(a ® by ring homp(a)¢(b) = (¢ @ ) (a & b)

Therefore, 4y, (p) =9 ® .

Remark. An element ¢ of a Hopf algebra H over R’ is called group-like if the
comultiplication pg(¢) = ¢ ® @.

So, ¢ is group-like.

On the other hand, any element ® of Hom(GY,G,,)(R') = Hom(GY/,Gu r) =
Homp/ aig(R'[z,2'], AY @ R’') is completely determined by ®(x) € A},. Let this be
LG

Then we have ¥(ab) = fay, (V)(a®b) = (?® P)(kg,, (2))(a®b) = (2@ P)(z®
z)(a®b) = V(z) @ U(r)(a®b) = V(a)¥(b).

Moreover W - ®(z71) = ®(2)®(z7 1) = &(1) =

Therefore, ¥ € (AY,)*.

Check: the element ¢ from before is a unit in AY, .

Thereforea M(Gvu Gm)(R/) = Hom(Hopf algs/R’) (R/ [iE, x71]7 A%’)

= {p e (Ap)" | (ab) = p(a)p(b)}

= Homp/.as(A, R') = G(R’).

= Hom(GY,G,,) 2 G

Replace G by GV and use the fact that GVV = G.

Therefore, G¥ = Hom(G, G,,).

Example: (o, g)¥ = a, r [from HW7]
()" = 20T

2.1.3 Short Exact Sequences
fin,proj
Let G,G',G" € Abp ™.
Definition. A sequence 0 — G’ LG % @7 5 0 s called exact if:

i) fisa closed immersion (<= f# : O(G) — O(G’) is surjective) which identifies
(G, f) with the categorical kernel of g in Abg.
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If H € Abg and h: H\, —— _ G has the property that goh = eqr opy
™~ s—spec(r) <
=Spec

[here py is the map H — S] then there is a unique A’ : H — G’ such that
h=foh').

ii) g is faithfully flat (<= g% : O(G") — O(Q) is faithfully flat).

Propositon 2.1.3.1. Let 0 - G’ - G — G — G"” — 0 be an exact sequence in
fin,proj
Abg . Then,

i) 1k(G) = rk(G’) tk(G") as functions on Spec(R).
ii) The dual sequence 0 — (G")Y — GY — (G')¥ — 0 is exact.

Reference: Demazure, Gabriel Groupes Algebriques, SGA 3

Remark. 1) If0 — H — G — @Q — 0 is exact sequence of affine commutative
group schemes /R, then the sequence of R’ valued points:

0= H(R') — GR)Q(R') — 0

need not be exact for R’ € R-alg. Usually surjectivity is the problem.
Example: We take G = Resg (G, c) = Spec(R[z,y, 2]/ (2(x? + y?) — 1)) D H =
Spec(R[z, y]/(a? +y* — 1)).

Fact: The morphism G = Spec(R|[z, 3] [r}r?ﬁ}) — Q : G, g = Spec(R[t, t71])
A t
12+y2
is the quotient of G by H := we have an exact sequence of algebraic groups
1— H=258"=Resg(Gpc) = Gnr — 1.
(z,y) T a2ty?

Take R-valued points: 1 - H(R) = S! — C* — R* —1
CCx (zyy) = a?+y?

Note that (z,y) — 22 + y? is not surjective!
2) If R = K is a field and G € Abpg has the property that V field extensions

L/K : G(L) = {1} then this does not imply that G is the trivial group scheme
over R.

Example: char K = p > 0 and G = B = VL/K field extensions,

i (L) = {1},
Prototypical Examples of Exact Sequences:

(—— (¢ at a?
1] —— e L ) I s 1
1)
R[t)/(t? — 1) «—— Rlz]/(2"" 1) Rly)/(y" " ~1)

t¢———— 7T 7P

'y
2) If F =F, is a LT Og-module for a uniformizer 7 then,
a ———— [n](a)
0 Finm] F[r™ —— F[r™ 1] —— 0
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3) If R=k = k is a field of charp > 0 and F an ordinary elliptic curve over k [so
E[pl(k) = E(k)[p] = Z/p] then,

0— E[p° — Elp] = E[p)* = Z/p_—0

E[p]° is connected component of rank p.
E[p] has rank p?
E[p)® is the Etale quotient.

2.1.4 Connected and étale groups
In this section (R, m) is a local complete noetherian ring (in particular, R <% R/m"
fin,loc free

is an isomorphism). Let G € Gpsp = proj, G = Spec(A), A finite projective
R-module.

Remark. In such a case A is a free R-module [since R is local] [HW7].

i ; fin, loc. f
There is an exact sequence in Gpsp” *¢ "

055G >G >G>0

where G is connected [ie the underlying topological space is connected] and Gt is
étale, O(G®) is an étale R-algebra.

Definition. Let A 2 B be a finitely generated A-algera. Then B is called étale over
A, if

1) B is a flat A-module, meaning B ® 4 (—) is an exact functor.
2) Vq € Spec(B) the homomorphism A, — B, where p = ¢~ !(q) is unramified.

i.e:

* wq(pAp) - By =q- By
o r(q) == Bq/qBq(= Frac(B/q)) is a separable (finite) extension of s(p) =
Frac(A/p)

Example:
1) [T| < oo = Ly = Spec(RY) is étale.
2) If A, B/R is étale then A x B is étale over R.

3 Z/nZR is étale over R

)
)
)
4) If n € R* then p, , is étale (HWT)

Proposition. (Milne, Et. Coh. I, Prop 3.2) Let A be an R-algebra of finite
type. Then A is unramified over R <= Vp € Spec(R) and any separably
closed extension k/k(p) = Frac(R/p), the k-algebra

A®rk = (AR K(P)) D k

Is unramified over E, ie a finite product of copies of k.

For us, étale = flat + unramified. We generally already have flat since we're
working in the local case.

(ﬁn’R X Spec(R) SPGC(H(P))) X Spec(u(p)) Spec(k) = B

5) R is a field of charp > 0 then B g and a,, p are not étale over R, but they are

connected: | o gl = n{*} = |, | where || denotes the underlying topological
space.
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6) Suppose (R,m) is local and char(R/m) = p > 0 and n = p°m,e > 0,p { m.
Then the connected-étale sequence for Ko g is:

B 0 ¢ _ ét
0= Bpe rp = (’un,R) - Hor Hr = (Hn,R) —0

This sequence actually splits. By g = Boe g XSpec(R) Ky g
Boe g = Spec(R[z]/(xP" — 1)): show that R[z]/(zP" — 1) is a local ring. It is
known that spec of local rings are connected.

More facts:

G is connected <= G = G. Then the order of G is a power of p = char(R/m).

In particular, G is étale if char(R/m) = 0.

G is étale iff G = G®. One has an equivalence of categories:

The category of finite affine étale commutative and co-commutative Hopf algebras
over RR.

The category of finite abelian groups I' together with a continuous action of the
absolute galois group Gy, x I' = T' by group automorphisms [here k = R/m].

Note that if R is local noetherian then f.g. flat <= f.g. proj. <= f.g. free.

The equivalence is given as follows: A — Homp(A, k5P).

If G = Spec(A) then G — G(k5°P).

There is a maximal étale extension Rgg, called the strict Henselization, which is local
and whose residue field is kP (= separable closure of k), an done has an isomorphism
of groups:

Aut(Rst/R) =Nyeh

And (Re)% = R

Given (I, G — Aut(I")) one sets Ar := Mapg, (T, Rs;) [Galois Equivariant Map].
= Ar is a finite free R-module, and étale as R-algebra and Ar has a Hopf-algebra
structure, and then I', = Spec(Ar) is a commutative finite locally free étale group
scheme over R.

Remark. If (I', G, — Aut(T")) then Vo € G, 0(0r) = Op. Thus,

Mapg, (I', R¢t) = Mapg, ({0r}, Rst) x Mapg, (I'\ {0}, Ret)

= R x Mapg, (I'\ {0}, Re)

=ker(ear), kernel of co-unit

Note that ker(e4..) is itself a ring, so Ar = R X ker(e 4,.) is itself a product ring.
Therefore, ', = Spec(Ar) = Spec(R) 11 Spec(ker(ea,.)).
———

image of unit section

Upshot: If I" # 0 then 'y is not connected.
A finite locally free étale group scheme is never connected unless it is the trivial group
scheme (assumption R is local).

2.2 p-divisible groups
p always denotes a prime number.

Definition. An (abstract) abelian group I is callled p-divisible if [p]p : ' = T';a —
pa = a+ ---+ a is surjective.

In particular, every element of I' can be ‘divided’ by p. Note that the result of the
division need not be unique. Meaning, [p]r need not be injective.

Example. 1) I' = Q is uniquely p-divisible: [p]g is a bijection.
2) T = Qp/Zy = Uy~ = /Z. It is surjective but not injective: [plg, z, has a

v=0 ?
kernel.
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In (arithmetic) algebraic geometry, ‘p-divisible’ has a more specific meaning. These
are also called Barsotti-Tate groups.

Grothendieck, Groupes de Borsotti-Tate et eristaux de Dreudonné (1974)

Messing, The crystal associated to Borsotti-Tate groups

Berthelot-Breen-Messing

Demazure-Gabriel

Zink’s Display Theory

2.2.1 Definitions

Let R be a ring, h € Z>o. A p-divisible group over R of height h is an inductive
system G = (G, 4, : G, = Gp11)u>0 where:

e (3, is a finite loc. free comm. group scheme of order p** over R.

e for each v > 0 the sequence:

P, 11

0— G, 2 Gy Gy

ie exact. i, : G, — G, 41 is the categorical kernel of [p¥] : G411 — GL41.

We have the following commutative diagram:

. P’ g
iy v+l
0 Gl/ Gl/+1 GV+1

Y.
- 7 ea,
e T +1T

H —"" Spec(R)

If G, would be ordinary abelian groups then G, would have order p** and it would
be annihilated by p”.

Thus, G1 = (Z/p)" and G, = @;_, Z/p™ and Y.;_, m; = vh.

Thus, G,[pl = @®;_, p™ Z/p"Z = s=h = Vi,m; = .

Upshot: G, = (Z/p*)".

Thursday, 3/6/2025

If the G, would be just finite abelia= n groups = G, = (Z/p")" = G =
(Qp/Zp)".

Examples of more p-divisible groups:

1) ((Z/p")hR)l, = ((;Z/Z) ) is the constant p-divisible group of ht h over R.
— A /R

v

2) (H?"}tl%)” is a p-divisible group over R of ht h.

Question: Are there any other p-divisible groups over Z other than (Q, /Zp)hZ
or H;?o}-} ,Z?
We don’t know the answer.
See Fontaine (1980’s) Ji n’ya pas de courbes elliptiques sur Z

3) F = LT Formal Og-module, [K : Q,] < oo, [kx| = ¢ = p’ then (F[p”]),>0 is a
p-divisible over O of height h = [K : Q).
Question: F[p”] = (pr OK)@h, h =K :Qp]? Answer is no if h > 1.

7
Lubin-Tate Theory provides us with p-divisible groups that are not obvious!
A homomorphism of p-divisible groups f : G = (G,) — H = (H,) is a system of

morphisms of group schemes f, : G, — H, which are compatible with the transition
maps:
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GV%HV

l l

fr41
Gu+1 — Hu+1

For v,p0 > 0 let iy, : G, LN Gui1 L”—l% -+ = Gy4, be the composition of 7; where
v<j<v+p.

Then, we have G, ~ G\, = ker ([p"] : Guip — Gusp)

= [p"] : Gy4p — G4y, has the property that [p¥] o [p#] = 0. Indeed,

Pl Gupp —— Gugyp
Ju, 'J,H' / J{[p ]
V+H
Thus we have an exact sequence:
V+/1
. T

0 G 2% Gt 0

eg 0= p Z)7 — p2Z)7 5 p~'Z)7 — 0

2.2.2 Relations with Formal Lie Groups

R is assumed to be noetherian, local with maximal m, complete with residue field k
of charp > 0.
An n-dimensional commutative formal Lie group F' over R is given by:

F(.’t,y) = (Fl(xay)v' o ,Fn(x,y)) € R[[l’,y]]n
Here R[[z,y]] = R[[x1, - s Zn, Y1, 5 Yn]]
Satisfying,

i) F(z,y) = F(y, )
111) F(F(‘T7y)7z) = F(‘TaF(va))

We write x—;y = F(z,y) then we have [p](z) = x—}— e —}—x = ([pl1(x), -, [p]n(x)).

F' is called p divisible if [p](z) is an isogeny, i.e. the map R[[z]] — R[[z]] sending
x; = [pli(x),1 <4 < nturns R[[z]] into a module over itself which is finitely generated
and free.

Example: We look at dimension 1.

1) F(z,y) = x+y = [p](z) = px, then R][x]] is not a finite R[[z]]-module
via x — pzx. Recall that k has charp so the mod m reduction of this map is
E[[z]] — k[[z]] sending x +— 0.

2) Fz,y) =a+y+ay = [pl(z) = (1+2)’ —1=pr+ (§)z°+ - +pa?~" +aP
which is regular of order p in the terminology given in the HW.
HW7 = R][[z]] a free R[[z]]-module of rank p.

3) If F is a Lubin-Tate Ox module, it is p-divisible when K/Q, is finite.

If F is p-divisible, then not only multiplication by p is an isogeny, but iterations [p¥]

is an isogeny.
For any v > 0,4, = ([pv]l(x),nﬂ;[;]]]n(a:))}z[[x}] is finite free over R, and the power

series F'(z,y) defines a co-multiplication A, — A, ®r A, given by T; — F;(z,y)
mod ([py]j);‘lzr
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Then A, becomes a commutative and co-commutative Hopf-algebra /R and thus
G, = Spec(A,) is a finite free commutative group scheme /R.

Upshot: G = (G,,G, — G,41) is p-divisible over R and each A, is a local ring
v - A,+1
—> (@, is connected.

Proposition 2.2.2.1. Let R be a ccomplete noetherian local ring with residue field k
of charp > 0. Then, F ~» G is an equivalence of the categories of p-divisible formal
Lie groups and category of connected p-divisible groups over R.

Remark. A p-divisible group G = (G,) is called connected if all (G,) are connected.

Example:

1) F:@m’g (so F(z,y) =c+y+ay = GF:HPOO r)

2) F=LT Og-module, [K : Q)] <00 = Gr = (F[p"])..

Going from connected p-divisible groups to formal Lie Groups:

Given G = (G, i,) where G, = Spec(A,) connected p-divisible group over R and i,
corresponds to morphisms of Hopf algebras A, 11 — A,.

Theorem. A :=1lim A, is isomorphic to R[[x1,- - ,x,]] and the co-multiplications
A, — A, ® A, give a ring homomorphism:

A— @u AV by Au = R[[flv s Ty Y1, ayn]](g A®RA)

Complete w.r.t. the ideal m® A + A @ m.

Proof. Sending z; to Fi(x,y) and F(x,y) = (Fi(z,y), -+, Fa(z,y)) is a formal lie
group over R as define dbefore.
O

Proposition - Definition. Given a p-divisible group G = (G,), over R, the systems
G° = (GY), and G = n(G%), are p-divisible groups. One has ht(G) = ht(G°) =
ht(G®). If F is the formal lie group associated to G° by proposition 2.2.2.1 then we
set dim(G) := dim(G°) := dim(F).

Example:

—

1) dim(p ) = 1 recall that Hooo g < Gm

Epo R
2) dim(Qp/Zp ) =0

3) &/R elliptic curve, &[p>=] = (&[p*]), ~ 0 — E[p™]° — Ep>] = EP=]* —
0

Either &[p>®]® =0 = dim(&[p>]) = 1 and ht(&[p>=]°) = ht(&[p>]) = 2 supersin-
gular case.

Ordinary: &[p™]¢ #0 = ht(&[p>]¢*) = 1 and ht(&[p=]°) =1

dim(&[p>=]%) = 0 and dim(&[p>]°) =1

In general ht(.7[p>=]°) € [g,- -, 2g]. Everything can be achieved inbetween. 2g is the
supersingular case, which is extreme in the sense that the étale part is 0.

dim | %4 x & =a+b
|

T supersing
connected part

— 0 \a b

- (gord) X édsuper

So, ht(&[p>]°) = a + 2b.
This shows we can achieve any number between g and 2g.
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Tuesday, 3/11/2025

The Discriminant

Let R be any ring, and A a commutative R-algebra which is f.g. and free as R-module.
Then we have the trace map Tr = Try /g : A — R defined as,
Tr(a) = trace(mult. by a : A — A) choose basis ~» matrix X, € M,(R),n =
rankp A = tr(X,).

b=ba,r

The trace form of A/R is the R-bilinear map A x A ——— R, by gr(a,a’) = Tr(aa’).
Definition (Discriminant). 1) The discriminant of A/R, called disc(A/R), is the
discriminant of the trace form, which is the ideal generated by the discriminant
of any basis (e1,--- ,e,) of A as an R-module. The latter is defined to be:
det ((ba/r(ei e;))1<ij<n) = det 0 ((Tra,gleie;))1<ij<n)
This ideal is independent of the choice of a basis.

2) If G = Spec(A) is a finite group scheme over R with a free R-module, we set
disc(G@) = disc(A/R) C R.

Examples:

1) Suppose G = By g = Spec (R[z]/(xP — 1)), e; = 2,0 < i < p— 1, then e;e; =
Fiti — zi+j modp.

Then, Tra z(z°) = Tra r(1) = p, Tra,r(@7°) = 0.

Thus, if i 45 =0 mod p, Tra/r(eie;) = p, otherwise 0. Then, the discriminant
is generated by (example: p = 5)

p

Therefore, disc (Hp,R) =pP-R.
2) If G is étale then disc(G) =1- R.

Proposition 2.2.2.2. If G = (G,), is a p-divisible group over R, R complete local

noetherian of height & and dimension n, then disc(G,) = " LR,
Proof is involved.

2.2.3 Duality for p-divisible groups

Let G = (G,), be a p-divisible group over R, R not necessarily local.
Then we have an exact sequence:

0*>G1—>GV+1J,[1L]>GV*>O

Applying Cartier Duality we get:

0*>Gl\,/—>jv Gy — GY — 0
1,v
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Check: (G, j1v7 ) form a p-divisible group over R, called the Cartier dual of G.
Note: Since ord(GY) = ord(G,) = p*", h = ht(G) hence ht(GV) = ht(G).

Standard Example: (pr,R)v _ ((MPWR)V> _ (;%Z/Z)u = Qp/ZpR
Proposition 2.2.3.1. Suppose R is a complléte local noetherian ring with residue
vield k of charp. Then, dim(G) + dim(G") = ht(G).

Example: Let [K : Q,] = d,F = LT O module, then we know F[p>] = (F[p¥])
has height d and dimension 1.

Then, 2.2.3.1 = dim (F[p>=]Y)=d -1

v

2.3 Frobenius and Verschiebung

Let k be a field of charp > 0. (This should also work for any F,, algebra).

Let ¢ : k — k, A — AP be the (absolute) Frobenius.

If G = Spec(A) is a group scheme /k then we can form A®) = k®, ; A which we con-
sider as a k-algebra via the left ®-factor and G(P) := Spec(A®)) = Spec(k) X e Spec(k)
Spec(A) = Spec(k) X y6q,5pec(k) G

Which is again a group scheme over k via

pry GWP = Spec(k) X pe spec(k) G — Spec(k)

#
The morphism of k-algebras A®) =k Rpk A F—G> A

A®a— Aa? is well defined:

A® pa — ApPaP

= \P. ® a — AuPaP

and is a morphism of Hopf algebras over k (check) and corresponds to a morphism
Fg : G — G of group schemes over k, called the Frobenius of G.

Question: How do we think about A®)?

We write A = k[z1, - ,x,)/(f1, , fr)-

Then, Claim: k ®, 1 A =N klz]/(ff, -+, f¢) where f¥ is the polynomial obtained
from f by applying ¢ to all coefficients.

This map sends A @ ™ - - 2l = Az]™ -zl

Well defined: Using multi index: suppose fj(z) =, amz™, am € k = 1®f;(x) =
S @b, @2 > 3, ala = f7(z)

Hence G®) = Spec(A®)) is obtained by applying the Frobenius to the coefficients of
the defining equations of G.

Question: How do we think of Fg? Again write A = k[z]/(f1,--- , fr)-

— = k[z] ®
AP = k@A 77 5
©, -
R
I FY
A ® af 1@z —— 7
£7(@=P)
id k J
A = (fl’[a.c]’fr) = (fj(x))p

Example:

1) G =p,  fanynl, (u, )@ = Spec ((klz]/(e" — 1))*) = Spec (k[z]/ (=" — 1)) =
Hn,k

—n

Foop = (1 k)(P) =p,, ,, hence Fj, = 12 . is multiplication by p, with
ZP +~+Z. This is multiplication by p. If p{n then Fg is invertible.
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2) If G is finite étale then Fi : G — G®) is an isomorphism.

Verschiebung G/ K finite group scheme, k field of char p or F-algebra.
Fov : GV — (GV)®) = (G®)V [check], dualize again and get:

can

Vg : GP) = ((GP)V)V — (GY)Y = G which is a morphism of group schemes over k.

can

Proposition. Vg o Fo = [pla, Fo o Vo = [plaw -

Thursday, 3/13/2025

Recall: Forbenius and Verschiebung: R = k = field of charp > 0.
G®) =G  x  Spec(k),p:k— kX N
Spec(k),p®
= Spec(AP) AP) = A @ k
k.o

G G

L Ve=Ee) (@)Y 2 60 5 (6Y)Y =6

Spec(k)
Lemma: Fg o Vg = [plaw and Vg o Fg = [pla.
Sketch of Proof of 2.2.3.1. [dim(G)+dim(GY) = ht(G)] Note: If I C R is an ideal and
G mod I = GS X RSpec(R/I), then Fo mod 1 = Fg mod I € (R/I)[[x1, - ,xn]] =

pec

dim(G mod I) = dim G where Fg moq 1 and Fg are the associated formal groups.
Hence we may take I = mp ~~ reduced to the statement for R = k is a field of char p.
We have universal property:

Gy
Previous lemma = 3 exact sequence:
Frt
0 — ker(Fg,) Gy = ker (Vg,) — 0
\FGl
Ve,
Ggp)
Ve, o Fa, = [ple, -
Similarly,
() Ve
0 — ker(Vg,) Gy ker(Fg,) —— 0
2.1.4 implies,
0 &Y G GSt 0

F& is an isomorphism (HW9) = ker(Fg,) < G = Spec (M)
(@], 20)

= ord(ker(Fg,)) = p",ord(G;) = p"* = ord(ker(Vg,)) =p"™.

One has: ker(Vg,)" = ker(Fgy).

Therefore, dim(G") = log, ord(ker(Fgy)) = log,(ord(ker(Vg,)")) =

log,, (ord(ker(Ve, ))) = log, p"~™ = h —n.

Explcit description = ker(Fg, ) = Spec (M)
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2.4 S-valued points and the Galois modules ®(G) and T'(G)

(R,m) = CDVR (complete discrete valuation ring) with uniformizer @ and residue
field k of charp > 0, K = Frac(R), L = completion of a Galois extension inside K =

fixed alg. closure => L C K .
S = Oy is a valuation ring, not necessarily noetherian, not necessarily PID.
Example:

1) L= K" = $ is noetherian and its maximal ideal is generated by w.

2) L = completion of K (jpe) if char(K) =0 = L is not discretely valued, S is
not PID.

3) L=K" = S is not a PID.

Definition. Let G be a p-divisible group over R.
G(9) = @G(S/wiS)

where G(S/w?) = lim | G, (S/w)
Caution: In general, G(S) # lim G, (S5).

S/ttt S/wt
Note: \ = o ~ G, (S/m") = G, (S/=).

0(G.)
G(S/w ) =lim G,(S/='t) — lim G, (S/@') = G(S/=")
—v . . v

These are the maps in this proj. system.
Example: K/Q, finite, w uniformizer of K,G = 1,

—A
L =EK'(=Cy).

G.(S/w") = Homp.uyg (Rla] /(27" = 1), 5/5") D iy (L) = iy (K.
LN {g €S/w |¢* =1 S/wi}

= (=1 mod mg.
Claim: Va € mgVi > 03 > 0:1+a mod @'S € G, (S/w=").

Proof. Choose v >> 0 such that V1 < j < p", (pjy)aj € w'S.

Reason: (p;) = py(pufl)']i;(pu =i+ 56 for v > 0 the numerator is highly divisible by
p and thus w.

Exercise: such v exists.

Therefore, 1 +a € G, (S/w"). The claim is proved.

The claim implies, Va € mg,1 + a mod @' € G(S/w") = lim G, (S/w") [we can
think about the inductive limit as union)].

This gives us a coherent system mod w’ therefore we have,

l1+ae @G(S/wi) =G(9)
Conclusion: JAut(L/K) = ¥k-equivariant isomorphism of groups I =(9) <
(mg, +) where S = O, = Oc,. The map is ( — ¢ — 1 € mg.
Gm
Also, multiplication <> a + b=a + b+ ab.

G’"l
This has more points than we would naively expect.

Upshot: G(S) may not be a torsion group. In G, note that [p™](a) = (1 +a)?" — 1.
1+ a is not necessarily a root of unity!

Similarly, G(S) might not be equal to hﬂGy(S).

In fact, the p¥ torsion points G(S)[p”] = Y&li(G(S/wi)[p”]).

We have the exact sequence:
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0 —— G, —>GV+HL>G — 0

This induces,

p”]

0 —— G, (S/w i) —— Guiu(S/w@') — G (S/w') —— 0
Therefore, GU+“(S/wl)[p”] G, (S/=w")
Note that G(S = L (S/=")[p*]) = Jim, G, (S/=).

Thus, G(S/w" )[P”} =lim G.(S/=")[p"] =
= r&li HOmR_alg(O(Gy), S/w’) — HomR—alg
= HomR—alg(O(Gu)v S) = GU(S)

This inclusion is bijective because O(G,) is a f.g. S-algebra.

Caution: Hom%%(R[[z]], S) # Homp.aigs(R[[z]], S) where S is given the usual val-
uation topology and R[[z]] the topology defined by (w, x).

Conclusion: G(S)[p”] = G.(S) hence the torsion subgroup G(S)torsion = ligGu(S).
Also, if G is étale then G(S) = G(5)torsion since the connected part of the group is
trivial.

If G is connected and F' is the corresponding formal group then,

G(Ogr) = <m§3@,;>

K

n = dimG. O

Q

,(5/w)
O(G,), lim, S/

—~

G(S) has all the information needed to define ®(G) = |, G.(5),T(G) im G, (S).
But these are nicer.

T'(G) is something like Z”.

G(S)torsion = ®(G) if S = Oc,.

Tuesday, 3/25/2025

Recall” R is a CDVR, k = R/mp, K = Frac(R), char(k) = p, we most often assume
k is perfect. @ = uniformizer of R.

L = completion of a Galois extension of K inside K.

S = valuation ring of L D mg = maximal ideal of S.

Set G(S) = @iG(S/wi), G(S/w') = hﬂu G, (S/=")

For example, G = B g = G(S) =2 1+mg D pp=(K) = G(S)tors- So G(5) in
this case contains more than the torsion points.

Proposition.

1) G(S)[p"] = Gu(S), hence G(S)tors = lg v(9).
2) G étale = G(S) = G(S)tors-

3) If G is commutative with associated formal group F = F(z1, -+ , Zn, Y1, " ,Yn)
of dimn, then 3% (= Gal(K*?/K)) equiv. isom. G(S) = (m&", ) On G(5)

the identity element is 1, but in m&” the identity element is (0, - - ,0).

4) If dim(G®) = n then 3%x-equivariant exct sequence
0— (mg", ;) — G(S) = G(S) =0

and G = (Q,/Z,)"" if L = K and h' = height(G®).

Proposition 2.2.4.1. If k is perfect then G — G¢* has a formal section in the sense
that O(G,) = O(G%) @ O(GY) and these isom. can be chosen such that

lin O(G,) 2 (jim O(GE)(lim O(GY))
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~ AR ce T
BRlfzr, ]

= lim (Aét & RHxh T axn]]/(xlv U 7xn)i>
The sequence

0— G°S) = G(S) = G¥(S) = 0

is exact.
Corollary 2.2.4.2. Assume k is perfect. Vx € G(S)3 finite extension L'/L and
y € G(S) such that x = [p](y).

Proof. (Sketch) Reduce to the case of a connected and an étale grup using 2.2.4.1.
We check them individually.
Etale case: we only need to enlarge the residue field k. In other words, we replace

L by an unramified extension (at most), simply because in this case G x k over a
k

finite Galois extension k'/k = G¢ x R’ is constant for an unramified extension
R

R’/R with residue field &’.
Connected case:

wi —— [pli(w1, - wn)

[p)*

Jm O(G,) = R, ,z)] —— R[[z1, - ,zn]]

J/wi —a;Emg J/

S(—>S/:OL/

Here R[[z1,- -+ ,xy]] = finitely generated module over R[[z1,- -+ ,xy]], use the theory
of integral extensions. O

Corollary 2.2.4.3. If L is algebraically closed (eg char(K) = 0,L = %) then G(S)
is divisible, ie Vn € Zsq, the multiplication-by-n map on G(S) is surjective.

Proof. If p { n then [n]g, : G, — G, is an isomorphism: choose m such that m -n =

1(p¥) then [n] : G(S) = G(Y) is an isomorphism.

2.2.4.2 = multiplication by p is surjective == multiplication by p™ is surjective.
O

The logarithm From now on we assume char(K) = 0 and k is separable.

Definition. The tangent space tg of GG is defined to be the tangent space of the
formal group F associated to G [which is the same as the formal group associated to
GY, the connected component].

If AY = O(GY) and A° = @Ag = Rl[z1, - ,20]] D U° = (21, ,2,) = ker(e :

AY — R). We have Spec(R) N GY. Corrrespondingly, we have R <EG—3 AY and also
the zero section R < A°.

Choosing the coordinates is non-canonical!

Then, tg = Hompg(1°/(1)%, R). This is sometimes called the Zariski tangent space.

Remark. 1) If Aisany ring and P € Spec(A) =: X then the Zariski tangent space
of X at P is defined to be Homy, (PAp/(PAp)?, kp) where kp = Ap/PAp =
Frac(A/P).

45



2) 3 canonical isomorphism tg(L) = Derg(A°, L)
={7: A% = L|7is R-linear, Vf,g € A% : 7(fg) = e(f)T(9) + e(9)7(f) }
= 7€ Derg(A° L) and f,g € I' = 7(fg) = 69;)7(9) +e gO)T(f) =0

- T‘(IO)Q =0.

Also: T()=7(1-1)=1-7(1)+7(1)-1 = 27(1) =7(1) = 7(1) =0.

= VYa € R:7(a) =0 = 7 is uniquely determined by its restriction to
IO/(IO)Q.

Note that 1°/(1°)? = R, @ . - ®Rx,, = R®".
= dimg(t¢(L)) = dim(F) = dim(G).

Conclusion: Since I°/(1°)? & R¥" — dimy,(tg(L)) = dim(F) = dim(G)
The Logarithm Map log = log : G(S) — tg(L) is defined by:

log<es>( f )= lim f(W]G(a)) — £(0)

€ A0 i—00 ok

If f = z; then f([p]'(a)) = [p];( a ) = p'(linear term in az) +

p*higher order terms
So the limit exists in this case.
Note:

1) For a € G*(S) one has p'a = 0 for i > 0. Hence p'a € G°(S).
2) If G is étale then tg(L) = 0 and log is the zeron map.

3) G(S) is a Zp-module: if n; € Z converges p-adically to n € Z,, then Va € G(9) :
n; - a converges in G(S5) = @G( S/w" )
——

equipped with discrete top

Thursday, 3/27/2025

The Galois modules ® and T

G is a p-div gp over R, R = CDVR of mixed char with perfect residue field k of
charp > 0, K = Frac(R), ¥k = Gal(K/K).
CDVR of mixed characteristic means K and k have different characteristic.

O(G) = lim G ,(K) with transition map G, % G, 1,

T(G) = lim G, (K) with transition map j, such that:

G+ b, Gy

]

Fact(HW 10): A finite group scheme over a field of char0 is étale.
Consequence: G, (K) = (G, ®x K)(K) = (G®x K) (K) = (Z)p" ) =
— —_—— —_————

as abstract grp

étale const fin alg grp/K
(p~z/z)" = (p~ ¥~ VZ/Z)"
= as groups ®(G) = (Q,/Z,)" and T(G) % &n (p~vZ)Z)" =

trans map are given by mult by p
Zh
In im(Z/p™) trans. maps are mod p" 1.

Important: In this description, the Galois action has been neglected. But it is there
by transport of structure.

Checkk: ®(G) = T(G) @z, (Qy/Zy), T(G) = Homg, (Qy/Zy, (G))
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Tp—( T, )y ® 1%, (zy)y — {p% +Z,— z:n}
€G,(K)

T(G) @z Z/p" = T(G)/p"T(G) = Gn(K)
These isomorphisms are obviously ¥k-equivariant!
Moreover: G(O%)tors = ®(G)

(=1im, G(Ox/p"))

Tate

Section 1: Introduction
Section 2: Group scheme preliminaries
Section 3: Number theoretic preliminaries

2.5 2.3 The completion of the algebraic closure of K

R = CDVR of mixed char with perfect residue field k of char p > 0, K = Frac(R),r =
uniformizer of K,p- R = p°R, e = absolute ram. index of K over Q.

v=vg: KX = Z,v(r) = 1,v(p) = e. Extend to K and C :== K,v: C* — Q
Absolute value on K : |z| = |7|*®). Similarly, Va € C, |z| = |x|*®)

Recall: if M/L is a finite extension of cdvfs (complete discretely valued field) we have
the codifferent:

DJ;}/L ={a€M|Vbe Oy :Tryyp(ab) € OL} D Op

D;;/ 1, is a fractional ideal: it is nonzero and finitely generated.

We have the different: Dy;/p, = (D]T/[l/K)’1 generated by a~! if D;;/L = a0y as
Os-module.

Suppose L/K finite.

Given a fractional ideal I C Of, we set v(I) = vk (a),a € L*, I =a-Of.

Recall HW4 1vi: if vy, is the normalized valuation attached to L we have:

oo

v (Dp/k) = Z(|G(L/K)z‘\ —1)
=0
If L/K is totally ramified, hence [L : K] = e(L/K) = |G(L/K)o| and G(L/K)y =
G(L/K) = G(L/K)
= vx(Dr/x) = [ar ) LicoIGEL/K)i| = 1)

o0

1 1
- Z ([G(L/K)o :G(L/K);] [L: K]>

2.3.1. Study of certain totally ramified extensions:

Let Koo/K be an infinite Galois extension of K which is totally ramified with € :
Gal(K~ /K) isomorphic to Z, as a profinite group.

Hence ¥ has a unique closed subgroup of index p™ for any n > 0 and any finite
indexed closed subgroup %(n) of index p™ of ¥ and any finite index closed subgroup
of € is one of €¥(n). Set K,, = KZ™ . Set K, = KZ™. Then K, /K is Galois and
G(Ko/K) =% )%(n) = L, /p"Z, = ) (p").

Proposition 2.3.1.1. 3¢ € Q3 bounded sequence (a,,), in Q such that:

n

v (Dk, k) =e-n+c+p "a,
e being the absolute ramification index of K over Q,,p- R =7°- R.

= VgD o n A
e(K,/K)=p» Kn( Kn/K) e-p"-n+cp”+a
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Tuesday, 4/1/2025

For simplicity let K = Q,(1p) = K, = Qp(ppn+1). Then Gal(K, /K) = Z/p™.
In fact, Gal( K,/K)=(1+pZ,)/(1+p""'Z,) = Z/p"Z. [p odd].

G( n/K) p" L p" L, p . < i< p™ [follows from G(Q(ppn)/Qp)il-

= vKn<DK,L/K> AL S (IG(K/K)i|~1) = p =140, (p—p™ 1) (pn 1 —

1) =(p—1)np"
Normalized means we have to divide by the ramification index. The ramification
index in this case is equal to the degree p™ so:

vxc (D, i) = piK (D, x) = (p — Dn = e(K/Qy)n

Reminder: Herbrand function and upper ramification filtration

Let L/K be any finite Galois etension of local fields with G = G(L/K), G, =
G [z],T = —1

Herbrand function ¢p/k : [-1,00) = [~1,00)

(s) = 5 dx
P / (Go : Gl

This is a bijection.

We define ¢, /i == @Z}K.

The upper ramification numbering is a restatement: G* = GwL/K(t)~

Theorem 2.5.1 (Herbrand). If L D M D K and M/K is Galois, then,

G(M/K)' = im(G(L/K)' — G(L/K) — G(M/K))

=G(L/K)'G(L/M)/G(L/M)
Theorem 2.5.2 (Hasse-Arf). If L/K is abelian and n € [—1,00) is a break of the
upper ramification filtration [G(L/K)" < G(L/K)™Vt > n] then n€ Z>;.

t
Upper filtration of: f;ff
K

Proposition 2.5.3. L/K finite Galois and L/K separable (hence is Galois). Then,

o(ui) = [ (1= (o) o

P)roof. Set G =G(L/K),¢ = ¢r/r,% =%/ k. HW4 = vp(Dr/k) = 2 o(|Gi| —
1).
Go =ker(G — Aut(L/K)),ef =n = |Go| =e(L/K)

_ _ \"o© |Gil _ [®
— wDix) = smyor (Pu) = X5 (168 - ) = I3 (ke — ) do

Set o =(t) = do =¢/(t)dt, (poy){t) = P EROWE) =1 = ¢'(t) =
@’ (P(1)

=[Go: Gy(t)] = vk(Dr/K) = [;° (m ﬁ) [Go 65| dt

oo 1 o 1
— 1——— ) at :/ (1 ) dt
/0 ( IGw(t)|> 0 |G|

O
Let Ko = UnZO K, be as in the beginning of 2.3.1. ¢, = G(K,,/K)
€ (i) = G(K/K;) = p'e(= p'e) which is unique closed subgroup of index p’ of €.
Lemma 2.5.4. Let v_; = —1 < vg < v1 < .- be the sequence of breaks (ncessarily

integers by Hasse-Arf) of (€");>_1 so that Vi > 0: € = €(i) for v;_1 <t < v;.
Then there is ig € Z>¢ such that Vi > iy : v; = e + v;_1. Hence v; = (i —ig)e + vy,
for all i > iy
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Sketch. Assume K is locally compact, hence K/Q, is finite. Write & = G(K*/K)
which is 2 K* the profinite completion and .&7° = J'glG(L/K)O, L/K finite abelian.
= lmy e seen O/ K0 MET U(K) = OF. Also, LCFT tells us o/t
Ut(K):].-i-ﬂ'tOK WhentEZZ(MUO( ): ( )

Easy: Jtg € Z-oVt € [tg,00) NZ : <t i) 'Ok [is even on an isometry of Z,-
modules.]

Choose iy minimal such that v;, > to

= G(ion+1) = Py = pE (ig) = p€io = pres(afio).

= res((&/V0)P) the subgroup of p’th powers / p-multiples.

> res(o/Vio )

So we need:

pitOr = menT O = 71Ok

It follows by definition: v; 41 < vy, =e.

Need to show: v;,+1 = v;, + €. Repeat the argument with any 7 > io.

O
Sketch of 2.3.1.1. Let 6, = G(K,/K).
D ) = dt
ok (D, 1) 2 / ( W)
and €L = €€ (n)/€(n) =€(i)/€(n) for 0 <i<n,v;_1 <t <.
Note: €'(i)/%(n) has order p"~*.
— [ ey dt+ Z / ( ) at
/0 i=ig+1 7 Vi-1 |C€t
vig n—1 pi a
:/ () dt+e- Z (1—n):en+c+z
0 i=ig+1 p p
N—— 0
:C/+;% n+c”+2—2
O
Thursday, 4/3/2025
Lemma: Let v_; = —1 <0 <wp < v1 < --- be the breaks of the upper ramification
filtration (€");>1 so that €' = € (i) = p'€ for v;_1 <t < wv; for all i > 0. Recall that

C = Lp.
Then Jig € Z>( such that Vi > ig : v; = e(i — io) + vy, -
Complement to the proof of the Lemma: we had seen: Vi > i,

cgui “+e — pcgvi

This implies v;41 > v; + e.

EVitl = p€Y since v; is a break.

v; +e is a break so v 11 = v; +e if €Vitett = pgvite, But this is true. Namely, since
v; is a break, €Vt = pEvi

Therefore, VTt = res(@/Vitetl) = res(Uvit¢T1(K)) where &/ denotes the maxi-
mal abelian extension.

=res(1 + 7viTe 1 Ok) = res(1 + pr¥it1O0k) = res((1 + 7 T1OK)P)

= res((VitHP) = pres(/Vitl) = pEVitl = ppE?i = pEite.

Thus, v; is a break = v;41 = v; + e. This ﬁnishes the proof of the lemma.
Proposition 2.3.1.1. vk (Dg,/x) = en +c + o for some constant ¢ and some
bounded sequence a,,.

Proof. vk(Dk, k) = f (1 -7 t ) dt and use the lemma. O

n
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Corollary 2.3.1.2. 3 bounded sequence (by,),, of real numbers b,, such that ¥n >0 :

v(Dgyy /i) =€+ by

Proof. v, (D, ., /x,) = fo° (1 — m) dt. Now use the lemma and de-

termine the unique break of (G(K,41/Kn)t)i>—-1

Caution: the upper numbering of ramification groups is not compatible with passing
to subgroups.

Alternatively, use that Dk, . /k = Di, /K, - (Dk, /kOK,.,)-

cf Serre, Local Fields III, S4, Prop 8. O

Corollary 2.3.1.3 3 constant a > 0 independent of n such that: Vn > 0Vx € K11 :

’T\rKn,+1/Kn,(x)‘ < ‘p|1—a/p ‘.’IJ|
Proof. Write Dy, ., /xk, = m% ; where m,41 is the maximal ideal of O, ,,, where
d= VK1 (DKn+1/Kn) = [K?H-l : K]UK(DKn+l/Kn,)
22 gt e 4 pTb,) = p" e + pby,

HW5/1/iii = Trg,,,/k, (M}, 1) = md, where j = [%J where p = K41 : K]

Suppose zf € m,_ ; \ m/ Y.
: . n+1
Then |z = |7} | = |z[/?""".
. . m d+i d 1 i bn

| Tec, i, (2)] < Jd] = [xi/P" < |5 /2" = | oot 77 Famet = e i
| |i/pn+1 ‘ |e(1+(b"]1)/e)| | | |1+(bnfnl)/e| |
T =|r » x| =|p ? x|.
(bn)n bounded, so 3a >0:¥n >0: b"—e_l > —a.

(bn=1)/ n
Thus, [p|*+ 7 < [p|i=o/P".

Thus we ultimately have:

| Tric, 0k, (2)] < p|' /" ||

O

Corollary 2.3.1.4. 3 constant ¢ > 0 independent of n such that Vn > 0Vx € K,,:

| Trr, /5 ()] < [p|™ 2]
Proof. Tterate the formula in 2.3.1.3:
2.3.1.3
| Tre, k(@) = | Trg, yx (Trge, i ()] <0 o'~ Trg, k(2]
2.3.1.3.

<[P Trgy i, (T, s ()] < o =2 pl =77 Trg, i, ()]

= |p\2*“(1+1/1’)|TrKn/KQ(x)| <... < ‘p|nfa(1+1/p+-~+1/p"‘1)|$|

We can take ¢ = ﬁ O

Il

Let o € € be a topological generator, aka ¢ mod %' (n) is a generator of /% (n)
G(K,/K) for all n > 0.
Lemma 2.3.1.5: 3¢ > 0 independent of n such that Vn > OVx € K, 41 :

< clo?" (x) — x|

|x - p71 TrK7L+1/K'rL (J")
Proof. Write 7 = o?". Then T|K’ . is a generator of G(K,4+1/K,). Then pr —
Tric, /K, (@) = Sisg (id =77) (2).

S -
' =0 if =0

I
-

s
I
=)
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Note that |77 (1 — 7)(x)| = |(1 — 7)(2)| so,

Divde by [p| and get,

o = p~ Trge, /i, (2)] < [l 7o (2) —

Can take ¢ = |p|~* O
A most crucial definition:
Definition. Define ¢t : Koo — K by t(z) = p™" Trg, /x(2) if v € K.

Remark. This is well defined. If x € K, and m > n then p~" Trg, /k(z) =
P T, i (0™ Trge, i, () = p7 " Trg, e (p™ 0 p™ )

Proposition 2.3.1.6. Let o be as above. J constant d > 0 such that Vz € K,

|z —t(z)| < dlo(x) — =

Proof. Let ¢g = 1,¢; = constant in 2.3.1.5. Hence |z —p~! Trg, /x, (z)| < c1]o(z) — 2|
for all € K [here K = Kj].

Forn > 1,¢cpy1 = |p|_“/p"cn with a as in 2.3.1.3.

Clearly, ¢, — ¢ > 0.

Consider for any n > 0,

Ve e Ky @ |z —t(x)] < cplo(x) — x| (%)

For n = 0 both sides are 0.

For n = 1 this is the statement |2 —p~! Trg, /k, (@)| < c1]o(z) — 2| which we have
above.

To be continued.

Tuesday, 4/8/2025

Assume (%) is true for n > 1. Let € K41 and set y = Trg, . /x, (2).
= ly—pt(@)| =y —p " Trr,..yx (@) = |y —p7" Trr, /i ()]

By induction, < culo(y) — yl = ea | (S50 (07 () = X1 (07" )i(a)|
>0 (@) (o (@) = 0o ( pn)z(w)} = o |Trk,,, /x, (0(2) — 2)|
by 2.3.1.3 < ¢, |p|' =% "|o(z) — 2|

Furthermore: |z — t(z)| < max{|z — p~ty|, |[p~ 1y — t(z)|} (+).

2.3.1.5 and 4 implies < max{c;|o?" (x)—x|, ca|p| =% "|o(x)—|}. cpy1 = calp| =P .
Note: |0t (z) — 2| < max{|c**!(z) — o'(2)|, |0 (z) — 2|}

— max{|o*(0(z) — )], |o* (z) — ]}

= max{|o(z) — x|, 0" () — x[}.

Iterating, < |o(x) — x|.

Thus, the thing before note < max{cy, ch41}|o(x) — x| = cpi1|o(x) — x|
Hence we have proved * for n + 1.

We end the proof by letting d = lim,, s Cp.

:CTL

O

Remark. An inspection of the proof of 2.3.1.6 shows that the statement of 2.3.1.6 is
also true, with the same constant d if we replace K by K, as base field.
Note: G(Koo/K,,) = Zy.
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Notation: set X = I/(D\O This is a K-Banach space, since the absolute value on K,
extends to X.

The action of % also extends continuously to X.

Proposition. ¢ : K, — K extends continuously to a K-linear map ¢t : X — K which
is the identtiy on K.

Proof. t extends continuously by 2.3.1.4 or 2.3.1.6. O

Set Xo = ker(t) C X. It is a closed (by continuity) K-subspace of X.
Naturally X = Xo @ K.
Proposition 2.3.1.7.

a)

b)

c)

X = Xy & K as a topological K-vector space.

o —id : X — X has kernel K and is bijective on Xy with a continuos inverse on
Xo.

Let A € R such that A = 1 (mod 7) and assume that A is not a root of unity.
Then o0 — Aid : X — X is bijective with a continuous inverse.

Proof.  a) Define pg : X — Xo by po(z) =z —t(x) = t(po(x)) = t(z) —t(t(x)) =

0.

Thus po(z) € Xo and the map X — Xo & K given by x — (po(x),t(x)) is a
conitinuous K-linear bijection with inverse Xo & K — X given by (zg,a) —
Zo + a.

Clear: ker(oc —id) D K. Write K, = K, o ® K with K,, o = ker(Trg, /x) =
ker(t’K ).

231.6 = Vz € K,o:|o(z) — 2| > Lz —t(z) = 2| = (o—id

)|Kn,0 18
bijective. Also, Vy € K, o : |(¢ —id)71(y)| < d|y| [by the previous inequality].
Therefore, (0 —id)~! extends continuously to Ups1 Kno = ker(t|K ).

By this inequality, (o —id)~! extends continuously to the closure of ker(t|

K.
inside X, which is Xj.

A # 1 thus 0 — Aid is bijective on K since o — Aid |K =(1-X)idg.

For z € Xo, (0 —id) (o —\) = (0 —id) "} (o —id +(1 = N)id) = id —(1 = \)(o —
id)~1.

If |1 — \| < d with d as in 2.3.1.6,

[N =1)(o —id)"H(y)| <IN = 1|d|y| < d'|y| with d’ == |A —1]d < 1.

Thus, (id—(1 = A) (o —id) ")~ =30 (1= A) (o —id)~H)™

Converges as a continuous K-linear operator on Xj.

Thus, (¢ — A\)7! = (o0 —id)~!(id —(1 — A)(o —id)~!)~! exists as a continuous
K-linear operator on X.

If |1 — \|d > 1 instead we replace o by ¢ and A by AP with n large enough
so that [\P" — 1]|d < 1. Replacing K by K,, and using the remark after 2.3.1.6,
|oP" — AP"| has a continuous inverse on X. Recall that A?" # 1 by assumption.
Note that:

(=N (o?" L g N =P N

Thus, 0 — A has a continuous inverse on X.
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Continuous Cohomology (in degrees < 1)

Let V be a K-Banach space. So,

Il - V — Rsy.

[Av]l = [Al[[oll, A € K

[[v + wl| < max{]|v[], [Jw]}

lv] =0 < v=0.

V is complete w.r.t. ||-|| topology.

We assume V' is equipped with a continuous action of € (= Z,).

ie. € x V — V is continuous.

i.e. For each 7 € € the map v — Tv is continuous.

Define ZY(¢,V) == ZL . (C,V) = {c: € — V,0 + ¢, | c continuous and Vo, T € € :
Cor = Coy + J(CT)} K-vector space of continuous 1-cocycles.

Map V % ZY%,V),(dv), = v — o(v).BY%,V) = BL . (€,V) = im(d : V —
ZY(€,V)) is called the K-vector space of continuous 1-coboundaries.
HY(E,V)=V? ={veV|Voe¥b: o) =uv}

Hl (%’ V) = Z&ont (%7 V)/Bgont (%’ V)

Let x : € — R* be a continuous character. Set X (y) = X (= I/(o\o) with the action
of € given by 0. i= x(0) - o(x).

Proposition 2.3.1.8.
a) H'(¢,X) = K and dimy H' (¢, X) = 1.
b) [im(x)| =00 = H°(C1x(y) =0=H' (61X (x)) =0
Proof. Let Y C X be a closed K-subspace stable under %.
Let o be a top. gen of ¥.
Then H°(€,Y (x)) = ker(o — X(U)_lly) and any ¢ € ZY(%,Y (x)) is determined by
¢ €Y.
(dy)o =y —o0.y=y—x(0)o(y) = —x(o)(e = x()"")(y)

Thus, H'(€,Y (x)) = Y/im(o — x(o)'],,).
x(o) not a root of 1.
To be continued. O

Thursday, 4/10/2025

Skipped

Tuesday, 4/15/2025

3.2 Finite extensions of K

L/KOO,RL CL Ry = RKoo D My, I = GaL(?/Kw)
Proposition 2.3.2.1. (Almost étaleness of K over K,)

Trr .. (Rr) D me

Note that Etale would mean Trp k. (RL) = R unramified.
H)(€,X(x)), Hi (€, X (x))

The ¢ stands for continuous.

Cohomology: M = abelian group, © G = pro-finite group.

Definition. M is called discrete G module if M = Ug<g m openMH ie for every
m € M3 open subgroup H < G such that H < stabg(m).

Remark. If G is a p-adic group [eg G = GL,,(Q,)] then a representation of G on a
vector space V is called smooth if V' is a discrete G-module in the previously defined
sense.
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Consider G x M — M. Then {1} x {m} — m, continuity means open pre-image.
Giving M discrete topology, an open neighborhood must contain a set of the form
U x {m} where U C G open with 1 € U.

Continuous cochains C"(G, M) = {f : C" — M? | f continuous}. Notation: M? is
M with discrete topology.

d": C"(G, M) — C™(G, M), (d" f) (g1, 1 gr+1) = g1+ f(g2, -+ gr41)

+ Z;:l(_l)lf(gla 5 9iGi+ 1, 7g’r+1) + (_1)T+1f(gl7 T 7g7‘)

these are called ‘r-cochains’. We have d"*! od” = 0

Then Z'(G, M) = ker(d"), B"(G, M) = im(d" 1), H' (G, M) =

Example: 7 = 0 gives us C°(G, M) = M,d° : M — C*(G, M).

(dm)(g) = g-m —m. B® =0 thus H*(G, M) = M% = set of elements fixed by G.
We also consider Trp/j_ : L = Koo = Z°(G(L/Kx), L) C C°(G(L/Kx),L).
Referecnce: Article on group cohomology in Cossels-Frohlich.

Serre, Galois Cohomology.

Set L% = L with discrete topology.

Corollary 2.3.2.2. Let L/K. be a finite Galois extension with group G. Fix a
real number ¢ > 1. Let 7 > 0 and f € C"(G,L). Then 3g € C"1(G,L) s.t.
If = dgll < cl|df || and [|g]| < || f]-

I/l = max{|f(g)| | g € G"} = sup(---) by compacntess of G. If r =0 then Jy € L
such that,

dy :==Trp k., (y) is such that ||f — dy|| = |f — dy| < c||df|| and |dy| < c|f].

Proof. Proposition 2.3.2.1 (almost étaleness) implies 3y € Ry, : | Try k. (y)] > ¢t
d
=dy
Consider y as a (—1)-cochain.
Define an (r — 1) cochain by yU f = yf if r = 0.
Formally, C~!(G, L) := L.

If » > 1 then
(yU f)(sl’ T 7ST*1> = <_1)T ZSTGG (Sla T ’ST)(y) f(sl,' o aST)
eL €L
Check: dy -f —d" " Y(yUf)=yU(df) (%)
Pl

Example: If r = 0 then LHS = Tr(y) - f — Tr(yf).
RHS = (yUd"f)(1) = (=1)' ¥ e s()(df)(5) = Xy sW)(s(F)—f) = e s()f -

2seasf) =Tr()f —Tr(yf). 0
Setz=dy € KX,g=x2"(yU f) [as maps G"~! — L].

Note: dg = 2~ d(y U f).

* = f—dg=ax"t(yUdf).

Note: 1. [z7! <e.

2. |lgll < l==Hlly U £1l < el £

2. |If —dgl = lla_ 'y Udf)ll < =~ lly U df|| < clldf]. .

Now we pass to K which is a discretee module for 7 = Gal(K/K).

Corollary 2.3.2.3. Fix ¢ > 1. Let r > 0 and fe C"(#, K). Let f € CT(%,fé).

Then 3g € €', K') such that ||f — dg| < |ldf|| and [lg]| < c| f].
For r = 0 the conclusion is to be replaced by: 3z € K such that |f — z| < ¢||df]|.

Proof. This is because C’T(,%”,Fé) = UL K. CR/Ka finite galoisC " (G(L/Kxs), L).
Use compactness of J7. B O

Continuous Cohomology Set C' = K endowed with the topology induced by absolute
value. # = G(K/Ks) and 4 = G(K/K) act continuously on C.

Let C"(s#,C) be the continuous map " — C.

Define d", Z"(,C), B" (A, C) as before. We call:
HI(s¢,C)=2"(s,C)/B"(s,C).

The continuous cohomology group of 7 with coefficients in C'. Similarly for ¢.
Proposition 2.3.2.4. H)(,C) = Koo = X. H.(2,C) =0 for all r > 0.
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Proof. Let Oc = {z € C | |z| < 1}. Then C = K + 7¥O¢ for any v > 0. Let
¥, : C — C/m”O¢, endow the target with the quotient topology, hence discrete
topology.

As wy‘? is surjective ¢, : C /7" Oc — e such that 1, o ¢, = id. Note that ¢, is
continuous.

Set f, = ¢, 0, o f : A" — K which is continuous.
Yvofu=vPyod,othof=19,0f = |f-full <|r[".

To be continued.

Thursday, 4/17/2025

Fix ¢ > 1 once and for all. Consider f € Z"(.,C) to be an r-cocycle. We want to
show it is a coboundary: 3g € C"~1(#,C) such that f = dg. If r = 0 we instead
mean 3g, € L, / Ko such that f =lim, o Trz, k. (90) € Koo

finite
Case r =0: f € Z°(#,C) = C. Then f, € K so we have f, — f.
t: Koo — K t(a) = #TrK"/K(a).

d: K = Ko LCK and L —2 K.
Then, for a € L,d(a) = ﬁ Trr k. (a).
2323 = 3L,/K finite, g, € L, : |f, — dg, | < ||dfv|| = cmax{c € 2 |
ot
lo(fy) = ful} = clld(fy = HIl <ellf = fIl =0 e
Thus, || f — dg, || < max{|f — f,|, fu — dg,} — 0. Therefore, f € K.
0 -0

N
Now we finish the case r > 0.

- =5

2323 = 39, € C" YA, K ) 1 ||f —dg, || < cl|df, || and ||g, || < c|| £ .
?
We want: ||g, — g.|| — 0.
. _ =6
Again, 2.3.23. = 3h,nlC" 2(H,K) : |gr41 — gr — dhy|| < cl|d(grs1 — gr)|| <
cmax{lldgy 1 — foprll [fvrr = Soll, 1fo = dgo ||} < max{|[for = fIL IS = full}-
—0 —0 —0 —0

ThllS, g:=g+ 230:1(911+1 —9v — dhu)
ecr-1(#,K°)
Converges in C"~ (7, C).
Note: dg = dgi + 3,51 d(gu+1 — 9o — dhy) = dg1 + 3, ceq1 (Agur1 — dg.)
Claim: dg converges to f.
Proof: dg = lim,_,o0(dg1+>_h_, (dgy+1—dg,)) = lim, oo dgu+1 = lim,—yo0 ((dgpu+1 —

Juv1) + fus1) = ,}Lngo(dg““ — fug1) Flimy o0 fruir = f.

=0

3.3 The action of ¥ on C

Define continuous cohomology groups H. (9, C(x)) as before. We usually droop the
subscript ¢ and K and just write H" (¢, C(x)).

Recall: ¢ is the absolute Galois group of K .

We have the following theorem.

Theorem 2.3.3.1. H%(¥4,C) = K and H'(¢,C) is a 1-dimensional K-vector space.

Proof. HY(%,C) = H(¢, H(¢,C)) "2 HO(¢, X) *2° K.

1> =GK/Kx) 9 =% — G(Kx/K) = G(K/K)=%¢ — 1

H': 3 inflation-restriction exact sequence (Weibel, Serre, Local Fields, Galois Coho-
mology)

0— HY¢,H(#,0)) - HY(9,C) == HY (7, C) 25,0

Hence the assertion follows from 2.3.1.8
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Theorem 2.3.3.2. Given a continuous homomorphism y : ¥x — R* we define
C(x) = C with ¥k action given by the twist o - a = x(0)o(a).
X

Let Koo = K" Then G(K/Ks) = ker(x). Suppose 3 finite extension Ko/K

such that K., /Ky is a purely ramified extension and G(K/Ko) = Z, as topological
groups.
Then H*(9x,C(x)) = HY(¥9x,C(x)) = 0.

Remark. G(Kuo/Ko) < G(Kuxo/K) =9k /G(K/Kx) = im(x)

7, ex
Furthermore, im(y) is abelian. Thus, Ky/K is Galois.
This excludes the case that K, is the Lubin-Tate extension associated to a LT group
over Ok (unless K = Q). (in this case G(Ko/Ko) C G(Kw/K) = OF). But
open

this includes the case of the cyclotomic class: Xcye : ¥k oben Tnase

Proof. Case H: H°(%x,C(x)) C H°(¥9k,,C (X))
Note that:

LY C R*.

15 G(R/Ky) = A — G(KKo) =G, » G(Koo/Ko) = € = 7,
Thus, H°(Yr,,C(x)) = H (¢, H(A,C(x)))

2.3.2.4 2.3.1.8b,| im x| =00
=H(¢,H°(,0)(x)) =" H(¢,X(x)) ="
Case H': Apply infl-res. sequence to:

0.

1 - G(K/Ky) - GK/K) = G(Ko/K) — 1

finite
1— gKo — Y — G(Ko/K) —1
Thus,
0 — HY(G(Ko/K), H(%r,, C(X))) = H' 9k, C(x)) = H' (%, C(X))
—_———

Kop-v.s., char 0

=0

Apply infl-res. sequence to:

1 - #=GK/Kx) =%k, —>C —1
Thus,

0— Hl(%vHO(%7C(X))) - Hl(gKoac(X)) - Hl(%,C(X)) - Hl(%ac) = 0

2.3.2.4
2.3%2,4X(X) =0
2318
O
4 Theorems on p-divisible groups
R = cdvr, k = R/mpg perfect field of char p > 0, K = Frac(R) is of char 0, C = %
Recall proposition 2.1.2.2: which says that the cartier dual G;) = Hom, ..,/ r(Gv, Gm,R)

(= VS € Algg : GY(S) = Homgpeenm/r(Gr @R S, G s) = G Xspec(r) SPeC(S))
Thus GZ(OC) = HOngpSChm/@c (GU ®gr Oc, Gm,Oc)

Easily = Homgpscn/on (Gr @R Ocs fp=,0c) (1)

Tate module TGY = m GY(K) = Homp ,,(O(G,),K) = @GX(C) = @Gl(@c) (2)
Here G¥Y = (G)),

(1) and (2) togehter imply:

TGY Homp—div gps/Oc¢c (h_l’I}lV GV QR 007 /’ch’c,(90>
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= Homp—div. gps/O¢ (G ®R OC? ,upoo,(?c) (3)
Note Hom (pipee, fipee) = Zy
T(Q,/Z,) = Z, has trivial Galois action.

Tuesday, 4/22/2025

Recall: G = (G,), is a p-divisible group /R. C = barrK D> O¢ D m¢ == mo,,.
Proposition 2.1.2.2. G = Hom, .,/ r(Gv, Gm,R)-

(GZ(S) Homgpwh/s)(G XRr S Gm S)

TGY = L Gl (K L GY(C) = @V GY(O¢) = I'&ny Homgpsen/00 (Gr @R
OC7MPOC;OC)

= Homp_div/oc (hgfly G, ®r Oc, Mp&,oc) = Homp-div gps/O¢ (G ® Oc, M;Dx,oc)
Recall: G(Oc) = lim, G(O¢/n') = lim, (IE GV((’)C/WZ))

(7é h_n}V GV(OC))

Example: G = . Claim: G(O¢/7%) =1+ me /7' Oc

a € Oc,a mod 7 € p,w (Oc /)

= a” =1 mod 7 = a” =1 mod (mc)

Thus @ = 1 where @ = a mod m¢ and O¢/m¢c = k.

Then, a mod 7 € 1+ m¢g/7'O¢.

Conversely, if a € 1 +me then Vv > 0: a?” =1 mod 7 = (a mod 7*)?" =1 in

O¢ /7.

Then a mod 7r' € ppr (Oc /7).

Then fipe = lim i (Oc /7% $(1+mc/7ri(90)=1+mc
From now on: U =1+ mc¢ considered as iy (Oc¢).. This is Z,-module.

Then [c](a) = a® —Z;’oo()(a—l)J ev.
Utors = Uy Hpv (Oc) = (l‘p )
We have a logarithm: log, . : pp=(Oc) =U = C

_ Ny (=nprt n
ar—loga) =>"" —(a—1)

n=1
Then we have exact sequence:

0 — ®(pp=) = Upers — U 28 0 =0

Recall:
TG = Hompdivgps/oc (G ® OC’ 'LLPOOVOC)

Definition. We define a pairing TG” x G(O¢) — p=(Oc) =
(1,8) = (1,€) = (1) as follows: given { € G(O¢), write £ = (§); with & €
G(O¢/7), and T € TG, we have:

To&: Spec(O¢/m') —— G @ Oc —— pip= 0c

€ pp=(Oc/")

= ee(r) = (10&)i € lim pp= (Oc/7") = pp=(Oc) = U
Check: this pairing is Z,-bilinear.

Recall: logg : G(O¢) — ta(C) = Hompg(1°/(1°)%,C)

Where I° = ker(A° — R) is the augmentation ideal. A — R is induced by the unit
section.

AV = Jm O(GY) [ R[[x1,- - ,1,]],n = dim G]

Then for a € G(O¢), f € I°,

log(a)(f) = lim f(p'la(a)) — f(a)

i—00 pi

We get an induced pairing TGY x tg(C) = t,, . (C)
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(1,log(8)) = (7,log(€)) =log,,, .. ((1,€))
Recall the exact sequence:

O —— G(Oc¢)tors = (@G) = ligGl,(Oc)

So independent of lift £ of log(&).
We have the diagram (x): ’

00— (G) = GO ors —— G(O) o8 ta(C) ———5 0

lao la lda
0 —— Homyg, (TG, ®(pps)) — HomZP(TGV,,upoc (O¢)) — Homg, (TG\/,tMpoc (C) —0
=C

A= logﬂpm oA
Here o : & — (—, &)

lo
Exactness of Bottom Row: 0 — Uiors — U &: C — 0 exact by earlier results.
TG is a free Z, module of rank h = ht(G") = ht(G). Hence it is projetive. Hence
Homyz» (TGY, —) produces an exact sequene.
Rem All groups in the diagram (x) are naturally ¥-modules. For the top row, this
action comes from the action of ¢ = Gal(K/K) on C. The & action on the modules
in the bottom row is given by (0 - \)(7) = o(A(c71(7))). 7 € TGV. g, and da are
¥-equivariant.
Check for a: a(a(€))(r) = (r,0(£)) = (7 0 o(&));
(0 a(§))(r) = o(a(§)(071(7) = oo™ H(7),€)) = o((07 (1) 0&))i = (T 0 0(&))s
Lemma 2.4.1.1. If W is a C-vector space with a semi-linear ¥-action (o(c-w) =
o(c) - o(w) for all ¢ € C and w € W), then the map C @x W9 — W,c@w — c-w is
injective.

Proof. Let {w1,--- ,w,} be a set of K-linearly independent vectors in W¥. We want
to show that for all scalars ¢,--- ,¢, € C: ), c;w; =0then¢y =--- =¢, =0.
Suppose there is a linear combination with not all ¢; = 0. WLOG assume ¢; = 1. We
may also assume 7 is minimal with this property.

Vo eb:0=0 (> cw;)=> 0(c)o(w;)=> o(c;)w; = ciw;

Therefore, Y"1 ,(o(c;) — ¢;)w; = 0.

n = 1 is impossible. For n > 2 we get a linear combination with fewer terms, unless
o(c;) = ¢ for all ¢;. This implies Vi : ¢; € K. But this contradicts the linear
independence of w; over K. O]

Proposition 2.4.1.2. In the diagram (%), «q is bijective whereas o and da are
injective.

Theorem 2.4.1.3. The maps ar : G(R) = G(O¢)? — Homg, (I'GY,U)? =
Homzp(g) (TGV, U)

dag :tq(K) = tg(c)g — HOInZP (TGV,tupoo (C))g = HOmZp[g] (TGY,C)

are bijective.

Thursday, 4/24/2025

Lemma 2.4.1.4.
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i) Vv > 0 the map G/ (C) x G, (C) = pp (C), (10,&0) — (10,&) =T, 0 &, (recall
GY(C) = Homgpsen /o (Gr®RC, G ¢) = Homgpeen /o (Gr ®@C, pipr o)) is a perfect
@-equivariant pairing, i.e. G (C) — Homyz (G, (C), uyv (C)) is bijective.

ii) The pairings in (i) induce a perfect ¥-equivariant Z,-bilinear pairing TG" x

iii) The pairings in (i) induce a 4-equivariant isomorphism ®(G) — Homgz (TGY, ®(u,_))
and this map is equal to the map ag in the diagram.

Proof. i) [y = constant gp scheme over Spec(S) associated to I' = Spec(ST).

GY(C) = Homgpsen /o (Gu®@RC, pipr o), from étaleness = HomgpSCh/R(GV(C’)C7 tpr (C)
Homz(G,,(C), ppv (C)) = Homg, (G (C), ppr (C)).

o)

ii) Follows from (i).

iii) The map ®(G) — Hom(T'GY, ®(up~)) is given by &, € G,(C) C ®(G). Then
& TGV — GY(C) -=» (ppe) is given by (7,), > Ty 0 &y

Homgz, (TGY, ®(pp)) = lim Homgz, (TGY, pp (C)) = lim Homgz, (TGY /p*TGY, py (C))
Use ®(GY) = TG ® (Qp/Zy) = lim TG @ (5 Z/Z) = lim(TG" /p"TGY)

Then, lim Homg, (TGY [p* TGV, iy (C)) = lim | Homy, (®(GY)[p"], tpr (C))

= lim Homgz, (G (C), ppr (C)) = lim | G,(C) = 2(G).

To see that this map is the same map as «q just trace through the definition.
O

Proof of Theorem 2.4.1.8. 2.4.1.2. = the maps ar and dag in 2.4.1.3. are injec-
tive.
Consider from x*:

0 — G(O¢) = Homy, (TGY,U) — coker(a) — 0

Take ¥-invariants:

0 —— G(Oc)? —£ Homg, (TGY,U)?Y —— coker(a)? —— HX(¥Y,G(0Oc))

}2‘3.3_1 |-

G(R) HOIHZP(g) (TGV, U)

— coker(ag) < coker(a)?

Note that 2.4.1.2. implies « is injective.
Similarly, we have d« is injective.

0 — te(C) day Homg, (TG",C) — coker(da) — 0

Take ¥ invariants:

0— ta(K) don, Homgz, (TG, )% — coker(da)?

Thus, coker(dag) — coker(da)?.
We have a commutative diagram.

coker(a) ——— coker(da)

J J

coker(a)? —=— coker(da)?

J J

coker(ag) —— coker(dag)
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Adding coker to * and using snake lemma, the upper horizontal map is an isomor-
phism.

It follows that coker(ag) — coker(dag) is injective.

In order to prove bijectivity, we should prove now that the cokernel vanishes.

It suffices to show coker(dapr) = 0.

Hence we need to show: n := dim(G) = dimg tg(K) = dim Homg, (TG, C)? (1)

need to show
Set W = Homg, (TG, C)
W' = Homg, (TG",C)
Then dime W = ht(G) =: h = dimg (W)
Set d := dimg (W), d" = dimg ((W')¥)
2412 =
tq(C) = Homg, (TGY,C) =W' = n<d'
tgv() = Homg (TG,C) =W = n" :=dim(GY) <d
Together they’re (2).

2281 = ntn¥ =h L oh<dta
(4

Nz

Upshot: STS: d+d' < h.
(5)

Set VG =TG®Q,,VGY =TGY @z, Q,
Qp(1) = Vipeo = Tpp~ ®z, Qp = Qp - Xeye

cyc(0) mod p"
Xeye : @ = L, 0(Gpn) = (el o0 P
Lemma 2.4.1.4. = VG 5 Homg, (T'GY,Q,(1)) = Homg, (TG",Q,)(1).
Qyp gets the trivial ¢ action.
Then VG ®q, C i Homg, (TGY,C)(1) = W'(1)
W = Homg, (VG,C) = Homg(VG ®q, C, C) = Home(W'(1),C)
= W x W'(1) — C perfect ¥-equivariant pairing = W x W’ — C(—1) perfect
¢-equivariant pairing.
Thus W% x (W")¥ — C(-1)¥ Vs
Thus, W%, (W")¥ are perpendicular w.r.t. (,)
Thus W9 @ C e W and (W)Y @ C e W' are perpendicular w.r.t. (,)

it is elementary to see now that d 4+ d’ < h hence we’re done.
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