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The algebraic theory of diff eqs by Bjorn Poonen

Review of linear DEs

Existence and uniqueness theorem for linear ODE:

Theorem 1. Let U be a simply connected subset of C. Let O(U) be ring of holo-
morphic functions U → C
a ∈ O(U), u ∈ U , b ∈ C.
Then, ∃!f ∈ O(U) such that f ′ = af and f(u) = b.

We also have a version for system (n-tuple of functions). In that case, we change it
to:
A ∈Mn(O(U))
∃!f ∈ O(U)n such that f ′ = Af and f(u) = b.

Remark. • Can replace holomorphic with C∞,C with R

• Not algebraic: solutions to f ′ = z2f, f(0) = 1. There exists unique solution:

f(z) = ez
2/3. But it is not a polynomial.

• ∃ nonlinear version but solutions only in a small neighborhood of u. eg f ′ = f2

with f(0) = 1 on C, solution is 1
1−z .

• ‘Simply Connected’ is necessarry. Consider f ′ = 1
2z f . Seperating variables:

d(log f) = 1
2d(log z). Has nonzero solution on any simply connected U ⊂ C× [a

branch of
√
z, eg] but no non-zero holomorphic solution on C×.

• We can do higher-order differential equations. We convert it into systems of
first order differential equation. eg a branch of log z on an open subset of C× is
a solution to (zf ′)′ = 0 which we can rewrite as f ′′ + 1

2f
′ = 0. This is second

order, but we can introduce g = f ′ to get the system

f ′ = g

g′ = −1

2
g
. In other

words,

[
f
g

]′
=

[
0 1
0 − 1

2

] [
f
g

]
• PDEs: ∃ version for functions of ≥ 2 variables but it requires an extra ‘integra-
bility’ hypothesis.

Nonlinear Example: F (x, y) on C2 such that ∂F
∂x = y, ∂F

∂y = −x. There is going

to be no solution to this! The y derivative of ∂F
∂x should be equal to x derivative

of ∂F
∂y .

Linear Example: No nonzero f(x, y) satisfies ∂f
∂x = yf, ∂f

∂y = −xf . Proof: If
we had a solution, on any open ball where f is non-vanishingg we can takke a
branch of log f [call it F ] and this would be a solution to the previous system!
Only solution is the 0 function.
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Local Systems

Let X be a topological space.
Cn

X,pre is the presheaf such that:

Definition. i) For every open U ⊂ X,Cn
X,pre(U) = Cn

ii) The restriction maps are the identity maps

Definition. Cn
X := the sheafification of Cn

X,pre.
Cn

X(U) ≡ {locally constant functions U → Cn}

An automorphism of Cn
X as a sheaf of C-vector spaces is given by a locally constant

function X → GLn(C) [locally constant change of variable]
If ϕ : Y → X then ϕ−1Cn

X = Cn
Y .

Definition. A local ystem L on X is basically a locally constant sheaf of finite
dimensiotnal C-vector spaces that,
∃(Ui) open covering on X,ni ∈ Z≥0, ϕi : Cni

Ui

∼−→ L
∣∣
Ui

We have ⊕,⊗,Hom. Get rigid tensor category.

Example: L ≃ Cn
X for some n. Call L constant.

Example X = C×. For U ⊂ X,

L(U) := {solutions to f ′ =
1

2z
f}

Claim: L is a 1-dim local system.

Proof. 1) If U ⊂ X is simple connected, ∃ branch of
√
z on U .

L
∣∣∣∣
U
≃ CU ·

√
z

2) X is covered by such U .

Claim: L ̸≃ CX

Proof. ̸ ∃ solution on all of X.

Proposition 2. For any systtem of linear ODES f ′ = Af as in the uniquness theorem
on an open subset of C, the sheaf of solutions form an n-dim local systtem.

L local system. Then,
fiber of L at x ∈ X := Lx which is n-dim C-vector space.
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Example (Relative Betti Cohomology)
X compact C∞-manifold.
Γ(X,−)
Hq(X,−)
Hq(X,C) fin dim C-vector space.
X → B prooper submersion of C∞ manifolds.
π∗
Rqπ∗
(Rqπ∗)CX sheaf of C-vector spaces on B.
This is a local system on B.
(Rqπ∗CX)b = Hq(X,C)

Question: What does a local system on [0, 1] look like?

Proposition 3. Let L be a local system on [0, 1]. Then,

a) L is constant [proof: open cover to finite subcover, these overlap, we keep
changing variables by GLn on overlaps and get a constant function on the whole
thing.]

b) L0 ≃ L1 [we can naturally identify fibers on 0 to fibers at 1].

Local systems and reps of π1

γ : [0, 1]→ X path from x to y.
If we have local system L on X we can pull it back to the interval. Then, γ−1L is
constant. Fibers of 0, 1 [meaning fibers of x, y] gives us isomorphism Lx ≃ Ly.
If we deform the path into a homotopic one then we get the same isomorphism.
This gives us:

{paths from x to y}
homotopy

× Lx → Ly

Take y = x. Then our paths are loops.
We get π1(X,x) action on Lx in this case. This is a representation of this group. This
is called the monodromy representation: Lx with action of π1(X,x)
We also have monodromy group: im (π1(X,x)→ GL(Lx))
If we go back to the square root example, take X = C×, x = 1
π1(C×, 1) = Z
Then L = solutions to f ′ = 1

2z f .
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The we have π1(C×, 1)→ GL(Lx) = C×

[γ] 7→ −1
So, the monodromy group would be ±1.

Theorem 4. Let X connected, locally simply connected topological space. Then,
the functor

{local systems on X} → {fin dim reps of π1(X,x)}

L 7→ Lx with its π1(X,x)-action

is an equivalence of tensor categories.

Idea of proof: Pull back the local system of the universal cover and a bunch of other
stuff.

Random Walks in NT by Koukoulopoulus

• ω(n) = #{p | n} =
∑

p 1p|n =⇒ 2ω(n) ≈ τ(n) = #{d | n}

• log(ζ(s)) ≈
∑

p
1
ps . e

log ζ(s) = ζ(s)

Think of them as RVs.

• {n ≤ x} probability space equipped with the uniform counting measure.

• Fix σ, vary t ∈ [T, 2T ] equippe wiith lebesgue measure.

Bp(n) = 1p|n Bernoulli RV.

P(Bp = 1) = #{n≤x,p|n}
#{n≤x} = ⌊x/p⌋

⌊x⌋ = 1
p +O(1/x) ∼ 1

p

p−it ∈ S1 ⇝≈ unfirom dist on S1

e−it log p is 1
log p -periodic.

= e−i{t log p}

meas(t ∈ [T, 2T ]) = t log p ∈ [a, b]( mod 2π) ≈ b−a
2π · T

We want to take k different primes p1 < · · · < pk and want to understand what is the
joint distribution of Bp1

, · · · , Bpk
.

P(Bp1
= · · · = Bpk

= 1) ∼ 1
p1···pk

∼
∏k

j=1 P (Bpj
) = 1.

Thus, Bp1
, · · · , Bpk

are approximately independent of each other.
E[Bp] ∼ 1

p

Var[Bp] =
1
p −

1
p2

Thus, E[
∑

p≤x Bp] ∼
∑

p≤x
1
p ∼ log2 x

Var[
∑

p≤x Bp] =
∑

p≤x
1
p −

1
p2 ∼ log2 x

Theorem 5 (Erdös-Kac Theorem).

ω(n)− log2 x√
log2 x

d
=⇒ N (0, 1)

Definition. Xn
d

=⇒ X ⇐⇒ ∀ϕ ∈ C∞
c (R),E[ϕ(Xn)] → E[ϕ(X)] ⇐⇒ P(Xn ≤

a)→ P(X ≤ a)∀u that is a point of the continuity of the latter.

∀u ∈ R,#

{
n ≤ x :

ω(n)− log2 x√
log2 x

≤ u

}
∼ x · 1√

2π

∫ u

−∞
e−t2/2 dt

Let p1 < · · · < pk. let m1, · · · ,mk ∈ Z Then,

1

T

∫ 2T

T

(pit1 )
m1 · · · (pitk )mk dt
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=
1

T

∫ 2T

T

e

it(m1 log p1 + · · ·+mk log pk︸ ︷︷ ︸
θ

)

dt

Use the fact:
∫ 2T

T
eiθt dt = eiθ2T−eiθT

iθ = O( 1
|θ| )

=


1, if m1 log p1 + · · ·+mk log pk = 0;

1

T

1

|m1 log p1 + · · ·+mk log pk|
, otherwise.

If ∃mi ̸= 0 then m1 log p1 + · · ·+mk log pk = log a
b . a, b ∈ N

a, b ≤ p
|m1|
1 · · · p|mk|

k ≤ ykM if |mi| ≤M,pi ≤ y
| log a

b | ≫
1

ykM

y = T
1

log2 T , k,M ≤ (log2 T )
1/3

E
[
pit

pσ

]
= 0,Var(p

it

pσ ) =
1

p2σ =


∑
p

1

p2σ
=∞, if σ =

1

2
;

∑
p

1

p2σ
<∞, if σ >

1

2
;

Small primes are too important, so we don’t have CLT.

Theorem 6 (Selben’s CLT).

log ζ( 12 + it)√
log2 T

d
=⇒ NC(0, 1) = NR(0,

1

2
) + iNR(0,

1

2
)

∀u ∈ R
meas

(
t ∈ [T, 2T ] : log | 12 + it| ≤ u

√
1
2 log2 T

)
∼ T√

2T

∫ u

−∞ e−v2/2 dv

Detour to Probability Theory

Suppose X1, X2, · · · are ind real RVs
µ1 = E[Xi], σ

2
i = Var[Xi]

s2n = σ2
1 + · · ·+ σ2

n = Var(X1, · · · , Xn)
Lindeberg Condition:

1

s2n

n∑
j=1

E
[
(Xj − µj)

2 · 1|Xj−µj |>ϵsn

]
→ 0

Then X1+···+Xn−µ1−···−µn

sn

d
=⇒ N (0, 1)

We use method of moments, see Billingsley.
Now we prove Erdös=Kac

Proof. Consider perfect random walk.
∀p,BModel

p is Bernoulli, P(BModel
p = 1) = 1

p i.i.d. of each other.

CLT =⇒
∑

p≤y BModel
p −log log p√
log2 y

d
=⇒ N (0, 1) as y →∞

ω(n) = #{p | n, p ≤ x} = #{p | n, p ≤ x}+O
(

log x
log y

)
.∑

n≤x

ω(n)2 =
∑
n≤x

∑
p1p2|n

=
∑

p1p2≤x

#{n ≤ x, p1p2 | n}

p2, p2 could be too large p1, p2 ≈ x
2
3 .

Idea: choose y cleverly in ω(n) = #{p | n, p ≤ x} = #{p | n, p ≤ x}+O
(

log x
log y

)
.

We choose y = x1/ log3 x∑
n≤x

ω(n, y)k =
∑
n≤x

∑
p1,··· ,pk≤y,p1,··· ,pk|n

1
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=
∑

p1,··· ,pk≤y

(
x

[p1, · · · , pk]
+O(1)

)
total error yk = o(x)

≡ xE[BModel
p ]
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Vector Bundles

X complex manifold
m = dimX
O = OX , sheaf of holomorphic functions.

Definition. Vector bundle on X := locally free O-modules that is locally of finite
rank.

Vector Bundle Rank

O 1
Tangent Bundle T m

Sheaf of 1-forms Ω1 := Hom(T , O) m

Table 1: Rank of Vector Bundles

For each x ∈ X we get:

• The stack V(∗) which is a finite free O(∗) module

• Thee fiber V∗ := V ⊗O k× = V(∗)/m∗V(∗) which form a fin. dim C-vector space.

Example: L local system, V := O ⊗C L,L∗ = V∗
L = sheaf of locally constant functions.
V = sheaf of all holomorphic function.

Derivations

A is C-algebra.

Definition (Derivation of A). :A C-algebra.
Derivation of A: a C-lindar map D : A → A such that D(fg) = D(f)g + fD(g) for
all f, g ∈ A.
eg ∂

∂x , y
2 ∂
∂x

As sheafs of C-algebrras
Derivation D of A = collection (Du)u⊂X such that Du is a derivation of A(U) com-
patible with the restriction.
Der(A) = {all derivations of A}
Der(A) = the sheaf U → Der(A

∣∣
u
)

For each vector field function t ∈ T , f ∈ O, x ∈ X
Let (Dtf)(x) := directional derivative of f in the diretion of t(x)
Dtf ∈ O
Get T

∼−→ Der, t 7→ Dt

The pairing T × O → O given by t, f 7→ Dtf
O-linear in t, C-linear in f . Get:

O d−→ Hom(T ,O) =: Ω1
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1 7→ df .

V ≃ Ox
ez

′

−−→ Ox

v 7→ 1←[ ez
To equip V with a rule for taking directional derivatives of of sections of V we should
specify a pairing
T × V → V, t, v 7→ ∇tv,Home(T, V ).
∇ : V → Hom(T, V ) = Ω1 ⊗ V
Given (γ, δ) , each D ∈ Der(X) = T (X) = Hom(Ω1, 0) induces:

∇D : V ∇−→ Ω1 ⊗ V
D⊗1−−−→ O · V = V

eg d is a connection on O
eg ω ∈ Ω1(X)
d+ ω : O → Ω1, f 7→ df + fω

Proposition 7. Every connection on O is d+ ω for some ω ∈ Ω1(X)

Proof. Let ∇ be a connection on O. Then,

∇(fg) = dfg + f∇g

d(fg) = dfg + fdg

(∇− d)(fg) = f(∇− d)g
Thus, ∇− d is O-linear hence O → Ω1, f 7→ fω for some ω ∈ Ω1(X)
We also have: every connection on On is d+ ω for some ω ∈ Ω1(X).
Fix (V,∇).
v ∈ V is called horizontal if ∆v = 0.
V ∇ := ker∇ ⊂ V .
subsheaf of horizontal schemes
eg U ⊂ C, V = On, A ∈Mn(O(U)),∇ = d−Adz
Then horizontal schems of V = solutions f ∈ On to the system f ′ = Af
eg X = C, V = O,∇ = d− z2 dz
∇f = df − fz2 dz
So ∇f = 0 ⇐⇒ f ′ = z2f
γ∇ = Cx · ez

3/3

Proposition 8. dimX = 1, (V,∇) on X. Then, V ∇ is a n-dim local system on X.

Curvature

∇ on V induces a seq of C-lienar maps.

V
∇−→ Ω1⊗V

∇1−−→ Ω2 ⊗ V → · · ·

Where ∇i(ω ⊗ v) = dωv + (−1)iω ⊗ v
The curvture of ∇ is:
K := ∇1.∇ : V → Ω2 ⊗ V
It turns out that K is O-linear so K is a global section of

Hom(V,Ω2 ⊗ V ) = Ω2 ⊗ End(V )

∇ is an integrable connection, a flat connection if and only if K = 0
eg If dimX = 1 then Ω2 = 0 so K = 0 automatically.
eg If (V,∇) = (0, d) then

O d−→ Ω1 d−→ Ω20 > · · ·

is the usual de Rham complex.
eg If (V,∇) = (O, d+ ω)
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K(1) = ∇1(∇1) = ∇1ω = dω
So K = dω
∇ is integrable ⇐⇒ ω is a closed 1-form.
eg Let X = C2 with coords x, y, V = 0, ω = −y dx+ xdy ∈ Ω1(X)
Let ∇ = d+ ω then K = dω ≡ 2dx ∧ dy ̸= 0. ∇ is not integrable.
V ∇ is sheaf of solutions to df + ωf = 0 so no nonzero solutions.
V ∇ = 0
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Recall:
ω(n) =

∑
p≤x 1p|n ≈

∑
p≤y 1p|n, y = x1/ log3 x

log |ζ( 12 + it)| ≈ log |ζ( 12 + 1
log y + it)| ≈

∑
p≤y

1

p
1
2
+it

y = T 1/l log3 T , t ∈ [T, 2T ]

X1, X2, · · · i.i.d. mean 0, var 1.
X1+···+Xn√

N
=⇒ N(0, 1)

fN (α) = 1√
N

∑
n≤αN Xn, Var(fN ) = αN

N = α =⇒ N(0, α)

fN (β)− fN (α) = 1√
N

∑
αN<n≤βN Xn =⇒ N(0, β − α).

fN : brownian motion.

Theorem 9 (Billingsley). If n simple uniform random from [1, x] ∩ Z, then the
stochastic process g : [0, 1]→ R,

g(α) =
#{p | n, log2 p ≤ α log2 x} − α log2 x√

log2 x

So brouwnian motion on [0, 1].

What is the distribution of g if we condition on n having r = ρ log2 x, ρ = constant.
Convergene to brownian bridge = brownian motion given end propbability = 0.

Maximum of ζ

maxt∈[T,2T ] log
∣∣ζζ( 12 + it)

∣∣ ∼√
1
2 log T log2 T =

√
log T ·

√
1
2 log2 T

Conjeture (Farner-Gortek Hughes)
1
T

∫ 2T

T
|ζ( 12 + it)|2k dt ∼ 1

2Ck(log T )
k2

dominated by log |ζ|
Conj of Fyodorov-Hiary–Keating about the distribution of the local maximum.
M(t) := maxh∈[0,1] log |ζ( 12 + i(t+ h))|
Dostrobution of M(t) when t in uniform [T, 2T ]
Conjecture: M(t) = log2 T − 3

4 log3 T +O(1) a.s.

log |12+i(t+h)| ≈ k
∑

p≤T
1

p1/2+it+ih
→ S(h) =

∑
p≤T Re

Xp

p1/2+ih whereXp = Unit(S1)

mutually independent. pit ≈ Uniform(S).

E[S(h1)S(h2)] =
∑

p1,p2≤T E
[
Re

Xp1

p
1
2
+ih1

Re
Xp2

p1/2+ih2

]
= 1

4

∑
p≤T

(
1

p1+i(h1−h2) +
1

p1+i(h2−h1)

)
=


1

2
log2 T, if |h1 − h2| ≤

1

log T
;

0, if |h1 − h2| ≫ 1;
Easier Problem:
max(Z1, · · · , ZN )
Zi ∼ N(0, 1

2 log2 T,N = l log T ).
Pmax1≤i≤N Zi ≤ µ
= P(Zi ≤ µ)N

= (1− P(Z1 > µ))
N
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