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The algebraic theory of diff eqs by Bjorn Poonen

Review of linear DEs

Existence and uniqueness theorem for linear ODE:

Theorem 1. Let U be a simply connected subset of C. Let O(U) be ring of holo-
morphic functions Y — C

acOU),uel,beC.

Then, 3'f € O(U) such that [/ = af and f(u) = b.

We also have a version for system (n-tuple of functions). In that case, we change it
to:

A€ M,(0OWU))

lf € O(U)™ such that f' = Af and f(u) =b.

Remark. e Can replace holomorphic with C*°, C with R

e Not algebraic: solutions to f' = 22f, f(0) = 1. There exists unique solution:
f(z) = e*/3. But it is not a polynomial.

e I nonlinear version but solutions only in a small neighborhood of u. eg f' = f?
with f(0) =1 on C, solution is 1.

e ‘Simply Connected’ is necessarry. Consider f/ = é f- Seperating variables:
d(log f) = %d(log z). Has nonzero solution on any simply connected i C C* [a
branch of 1/z, eg] but no non-zero holomorphic solution on C*.

e We can do higher-order differential equations. We convert it into systems of
first order differential equation. eg a branch of log z on an open subset of C* is
a solution to (zf’) = 0 which we can rewrite as f” + 1 = 0. This is second

f'=g

order, but we can introduce g = f’ to get the system , 1 . In other

g = —59
vrts, 1] <[ 4] 3

e PDEs: J version for functions of > 2 variables but it requires an extra ‘integra-
bility” hypothesis.

Nonlinear Example: F(z,y) on C? such that %—i =y, %—5 = —z. There is going

to be no solution to this! The y derivative of ‘3—5 should be equal to x derivative
oF

of YR

Linear Example: No nonzero f(z,y) satisfies g—i = yf, % = —xf. Proof: If

we had a solution, on any open ball where f is non-vanishingg we can takke a
branch of log f [call it F] and this would be a solution to the previous system!
Only solution is the 0 function.



Local Systems

Let X be a topological space.
CX pre 1s the presheaf such that:

Definition. i) For every open U C X,C%  (U) =C"
i) The restriction maps are the identity maps

Definition. C’ := the sheafification of C% ..
C% (U) = {locally constant functions & — C™}

An automorphism of C% as a sheaf of C-vector spaces is given by a locally constant
function X — GL,,(C) [locally constant change of variable]
If ¢:Y — X then ¢~ 'C% = C%.

Definition. A local ystem £ on X is basically a locally constant sheaf of finite
dimensiotnal C-vector spaces that,

3(U;) open covering on X, n; € Z>q, ¢; : (C& = E!Ui

We have &, ®, Hom. Get rigid tensor category.

Example: £ ~ C% for some n. Call £ constant.
Example X = C*. For U C X,

1
L(U) = {solutions to f' = 5f}
Claim: £ is a 1-dim local system.

Proof. 1) If U C X is simple connected, 3 branch of /z on U.

L ~ (Cu . \/E
u
2) X is covered by such Y.
O
Claim: £ # Cx
Proof. A solution on all of X. O

Proposition 2. For any systtem of linear ODES f’ = Af as in the uniquness theorem
on an open subset of C, the sheaf of solutions form an n-dim local systtem.

L local system. Then,
fiber of £ at € X := L, which is n-dim C-vector space.
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Example (Relative Betti Cohomology)

X compact C'°°-manifold.

X, —)

HY(X,—)

H9(X,C) fin dim C-vector space.

X — B prooper submersion of C'*° manifolds.
T

R,

(Rm,)Cx sheaf of C-vector spaces on B.
This is a local system on B.

(Rqﬂ*CX)b = Hq(X, (C)

Question: What does a local system on [0, 1] look like?

Proposition 3. Let £ be a local system on [0, 1]. Then,

a) L is constant [proof: open cover to finite subcover, these overlap, we keep
changing variables by GL,, on overlaps and get a constant function on the whole
thing.]

b) Lo ~ L1 [we can naturally identify fibers on 0 to fibers at 1].

Local systems and reps of m;

~:[0,1] = X path from z to y.

If we have local system £ on X we can pull it back to the interval. Then, v~ 'L is
constant. Fibers of 0,1 [meaning fibers of z,y| gives us isomorphism £, ~ L,,.

If we deform the path into a homotopic one then we get the same isomorphism.
This gives us:

{paths from z to y}
homotopy

x Ly — Ly

Take y = . Then our paths are loops.

We get 71 (X, z) action on L, in this case. This is a representation of this group. This
is called the monodromy representation: £, with action of m (X, z)

We also have monodromy group: im (71 (X, z) — GL(L,))

If we go back to the square root example, take X = C*,z =1

T ((CX, ].) =7

Then £ = solutions to f' = o= f.

z



The we have 7 (C*,1) - GL(L,;) = C*
[y] = -1
So, the monodromy group would be +1.

Theorem 4. Let X connected, locally simply connected topological space. Then,
the functor

{local systems on X} — {fin dim reps of 71 (X, z)}

L — L, with its 1 (X, z)-action
is an equivalence of tensor categories.

Idea of proof: Pull back the local system of the universal cover and a bunch of other
stuff.

Random Walks in NT by Koukoulopoulus
o wn)=#{p|n} =3, 1 = 2°0 =7(n) =#{d|n}
o log(¢(s)) = X0, g €95 = ((s)

Think of them as RVs.

e {n <z} probability space equipped with the uniform counting measure.

e Fix o, vary t € [T, 2T equippe wiith lebesgue measure.
By(n) = 1,, Bernoulli RV.

P(B, =1) = *gredt = HiH = 5+ 0(/a) ~ 3

p~ € S1 ~s~ unfirom dist on S*
e~'tloer js —L__periodic.
&P
— ¢—i{tlogp}
meas(t € [T,27]) = tlogp € [a,b]( mod 27) ~ &2 . T
We want to take k different primes p; < --- < pr and want to understand what is the
joint distribution of By, -, By,.

P(Bp, =+ =By, =1)~ pl..l.pk ~ H§:1 P(Bpj) =1

Thus, By,,--- , By, are approximately independent of each other.
E[Bp] ~ %

Var[B,| = % - I%

Thus, B[}, Bpl ~ > p<s % ~ logy =

Va’r[ZpSz BP] = Zpgx % - pi2 ~ 1Og2 €T
Theorem 5 (Erdés-Kac Theorem).

wn) —logexz 4

1

Definition. X, == X <= V¢ € C¥(R),E[¢(X,)] — E[¢(X)] < P(X, <
a) = P(X < a)Vu that is a point of the continuity of the latter.

—1] 1 u
VueR #in<q. YW lomr Nx.i/ /2 g
v/logs x Vor J_ o

Let p1 < --- < pg. let mq,--- ,my € Z Then,

1 2T '
7 mar



o it(malogpy + -+ my logpy)

1
=7 0 dt
T /)y ©
Use the fact: f;T 0t dt = % = O(ﬁ)
L if mylogpy + - -+ 4 my logpg, = 0;
otherwise.

T |my logpy + - - + my, log pr,|’
If 3m; # 0 then my logpy + -+ + mylogpy =log 7. a,b €N
a,b < py™ e <M | < Mp; <y
|log §1 > g
y=T%=7 kM < (log, T)'/?

1 1

S -

B[] —ovar(®) = = { 7 2
po‘ - ? arp(r - p20 T Zl < f >1
1 : .

p20- m’ 0. 27

Small primes are too important, so we don’t have CLT.

Theorem 6 (Selben’s CLT).

log ¢(% + it 1 1
logcGHM) d N 0,1) = Na(0, L)+ iNR(0, 1)
v/logy T 2 2

Yu € R
meas (t € [T,2T) : log |% +it] < u\/%loﬁ) ~ \/% ffoo e—v%/2 du

Detour to Probability Theory

Suppose X1, Xo, - are ind real RVs
M1 = E[XJ, J'£2 = Var[Xl]

s2 =0} +---+02=Var(Xy, -, X,)
Lindeberg Condition:

1 n
?2 :E (X - 1i)? - 1|Xj—ﬂj\>€3n] —0
n j*l

Then X1+"'+X"S_“1_'”_“" RN N(0,1)
We use method of moments, see Billingsley.
Now we prove Erdos=Kac

Proof. Consider perfect random walk.
Vp, B};/bdel is Bernoulli, }P’(B}l;/h)d91 =1)= % i.i.d. of each other.

Model __
CLT — ZemaBolosloer 4 5o 1) oy o
\/10g2y
w(n)=#{p|n,p<a}=3{p|np<z}+0 (%),
Yowm)P=3 > = > #n<zpp|n
nsw n<zpipaln  pip2<z

pa2, p2 could be too large p1, ps =~ z3.
Idea: choose y cleverly in w(n) =#{p |n,p<z}=#{p|n,p<z}+0 Gggz)
We choose y = x!/ 1983 ®

dowlmy)t=> > 1

n<z n<x p1, ,pE<Y,p1,0PE|N




- T (g row)

P1, PESY

total error y* = o(x)

= zE[B)"*%]

O
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Vector Bundles

X complex manifold
m = dim X
O = Oy, sheaf of holomorphic functions.

Definition. Vector bundle on X := locally free O-modules that is locally of finite
rank.

Vector Bundle ‘ Rank
O 1
Tangent Bundle T m

Sheaf of 1-forms Q! :== Hom(7,0) | m

Table 1: Rank of Vector Bundles

For each x € X we get:
e The stack V(*) which is a finite free O(,) module
o Thee fiber V, =V ®p ky = V(*)/m*V(*) which form a fin. dim C-vector space.

Example: L local system, V= 0O ®c L, L, =V,
L = sheaf of locally constant functions.
V' = sheaf of all holomorphic function.

Derivations
A is C-algebra.

Definition (Derivation of A). :A C-algebra.

Derivation of A: a C-lindar map D : A — A such that D(fg) = D(f)g + fD(g) for
all f, g € A.

g 5.4 5

As sheafs of C-algebrras

Derivation D of A = collection (D,,)ycx such that D, is a derivation of A(U) com-
patible with the restriction.

Der(A) = {all derivations of A}

PDer(A) = the sheaf U — Der(A|u)

For each vector field functiont € 7, f € O,z € X

Let (D, f)(x) := directional derivative of f in the diretion of ¢(z)

th €O

Get T = Per,t — D,

The pairing 7 x O — O given by ¢, f — D.f

O-linear in ¢, C-linear in f. Get:

0 % Hom(T, 0) = Q!



1 df.

V~0, 550,

v 141e?

To equip V with a rule for taking directional derivatives of of sections of V' we should

specify a pairing

TxV = V,t,v— Vi, Home(T,V).

V:V s Hom(T,V)=Ql oV

Given (v,d) , each D € Zer(X) = T(X) = Hom(Q!,0) induces:
Vp: VL olev 2Z2Lho v=v

eg d is a connection on O

eg w € NY(X)

d+w:0—= QY fsdf + fw

Proposition 7. Every connection on O is d + w for some w € Q(X)

Proof. Let V be a connection on O. Then,

V(fg) =dfg+ Vg

d(fg) = dfg + fdg

(V= d)(fg) = F(V —d)g

Thus, V — d is O-linear hence O — Q! f — fw for some w € N!(X)
We also have: every connection on O™ is d + w for some w € Q(X).
Fix (V, V).

v € V is called horizontal if Av = 0.

VVi=kerV CV.

subsheaf of horizontal schemes

egU CC,V=0"Ae M, (OU)),V=d— Adz

Then horizontal schems of V' = solutions f € O™ to the system f' = Af
g X=C,V=0,V=d—2?dz

Vf=df — fz%dz

SoVf=0 < f=22f

,YV =C, - e /3

Proposition 8. dim X = 1,(V,V) on X. Then, V'V is a n-dim local system on X.

Curvature

V on V induces a seq of C-lienar maps.

VY loy Yh 2@V -

Where V;(w ®v) = dwv + (—1)'w® v

The curvture of V is:

K=Vi.V: Vo502V

It turns out that K is O-linear so K is a global section of

Hom(V,Q* @ V) = Q? ® End(V)

V is an integrable connection, a flat connection if and only if K =0
eg If dim X = 1 then Q2 = 0 so K = 0 automatically.
eg If (V,V) =(0,d) then

o440 ...

is the usual de Rham complex.
eg If (V,V) = (0,d +w)



K(].) = Vl(V].) = Vlo.) =dw

So K = dw

V is integrable <= w is a closed 1-form.

eg Let X = C? with coords x,y,V = 0,w = —ydx + zdy € Q}(X)
Let V =d+ w then K = dw = 2dx Ady # 0. V is not integrable.
V'V is sheaf of solutions to df +wf = 0 so no nonzero solutions.
VvV =0
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Recall:
w(n) = Zp<m Il-pln ~ Zp<y p|nay — pl/loggx
log [C(5 +it)| = 10g[((5 + gy ) = 2,<, Zﬁ y=ToesT ¢ ¢ [T,27)]

X1, Xo, -+ ii.d. mean 0, var 1.

Htode — N(0,1)

F3(@) = 2 S X Var(fy) = 2 —a — N(0,a)
In(B) = (o) = \/NZQN<n§ﬁNX = N(0,5 - a).

fn: brownian motion.

Theorem 9 (Billingsley). If n simple uniform random from [1,z] N Z, then the
stochastic process g : [0,1] — R,

(a) = #{p | n,logyp < alogy x} — arlogy
’ V9og, @

So brouwnian motion on [0, 1].

What is the distribution of ¢ if we condition on n having r = plog, , p = constant.
Convergene to brownian bridge = brownian motion given end propbability = 0.

Maximum of (

max;cr,27] log ’C(: +it) ’ ~/3 LogTlog, T = \/logT - ,/ log, T

Conjeture (Farner-Gortek Hughes)

71“ T ‘C(Q )|2kdt gck(IOgT)

dominated by log [(|

Conj of Fyodorov-Hiary—Keating about the distribution of the local maximum.
M(t) = maxpeo,1) log[((5 +i(t + R))|
Dostrobution of M (t) when ¢ in uniform [T, 27T
Conjecture: M(t) =log, T — 3logs T + O(1) a.s

log |3+i(t+h)| ~ kY ez = S(W) = X cr Rez% where X, = Unit(S?)
mutually independent. p** ~ Uniform(S).

Xy,
E[S(h1)S(h2)] = Zp17p2§TIE [Re Trim Re 1/2+1h ]

1

*IOgQT, 1f|h17h2‘ Si;
4Zp<T< 1+1<h1 ey + 1+1<;112 hl)) =<2 logT

0, if |hy — ho| > 1,

Easier Problem:

max(Zy, -+, ZnN)

Zi ~N(0,3log, T,N = llogT).
PmaxlSiSN Zi S 12
=P(Z; < )N

— (1—PB(Z > w)"



