

MAGNTS

Thanic Nur Samin

November 21, 2025

Saturday, 3/29/2025

The algebraic theory of diff eqs by Bjorn Poonen

Review of linear DEs

Existence and uniqueness theorem for linear ODE:

Theorem 1. Let \mathcal{U} be a simply connected subset of \mathbb{C} . Let $\mathcal{O}(\mathcal{U})$ be ring of holomorphic functions $\mathcal{U} \rightarrow \mathbb{C}$

$a \in \mathcal{O}(\mathcal{U}), u \in \mathcal{U}, b \in \mathbb{C}$.

Then, $\exists! f \in \mathcal{O}(\mathcal{U})$ such that $f' = af$ and $f(u) = b$.

We also have a version for system (n -tuple of functions). In that case, we change it to:

$A \in M_n(\mathcal{O}(\mathcal{U}))$

$\exists! f \in \mathcal{O}(\mathcal{U})^n$ such that $f' = Af$ and $f(u) = b$.

Remark. • Can replace holomorphic with C^∞, \mathbb{C} with \mathbb{R}

• Not algebraic: solutions to $f' = z^2 f, f(0) = 1$. There exists unique solution: $f(z) = e^{z^2/3}$. But it is not a polynomial.

• \exists nonlinear version but solutions only in a small neighborhood of u . eg $f' = f^2$ with $f(0) = 1$ on \mathbb{C} , solution is $\frac{1}{1-z}$.

• ‘Simply Connected’ is necessary. Consider $f' = \frac{1}{2z}f$. Separating variables: $d(\log f) = \frac{1}{2}d(\log z)$. Has nonzero solution on any simply connected $\mathcal{U} \subset \mathbb{C}^\times$ [a branch of \sqrt{z} , eg] but no non-zero holomorphic solution on \mathbb{C}^\times .

• We can do higher-order differential equations. We convert it into systems of first order differential equation. eg a branch of $\log z$ on an open subset of \mathbb{C}^\times is a solution to $(zf')' = 0$ which we can rewrite as $f'' + \frac{1}{2}f' = 0$. This is second

order, but we can introduce $g = f'$ to get the system $\begin{cases} f' = g \\ g' = -\frac{1}{2}g \end{cases}$. In other

words, $\begin{bmatrix} f \\ g \end{bmatrix}' = \begin{bmatrix} 0 & 1 \\ 0 & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} f \\ g \end{bmatrix}$

• PDEs: \exists version for functions of ≥ 2 variables but it requires an extra ‘integrability’ hypothesis.

Nonlinear Example: $F(x, y)$ on \mathbb{C}^2 such that $\frac{\partial F}{\partial x} = y, \frac{\partial F}{\partial y} = -x$. There is going to be no solution to this! The y derivative of $\frac{\partial F}{\partial x}$ should be equal to x derivative of $\frac{\partial F}{\partial y}$.

Linear Example: No nonzero $f(x, y)$ satisfies $\frac{\partial f}{\partial x} = yf, \frac{\partial f}{\partial y} = -xf$. Proof: If we had a solution, on any open ball where f is non-vanishingg we can takke a branch of $\log f$ [call it F] and this would be a solution to the previous system! Only solution is the 0 function.

Local Systems

Let X be a topological space.

$\mathbb{C}_{X,\text{pre}}^n$ is the presheaf such that:

Definition. i) For every open $\mathcal{U} \subset X$, $\mathbb{C}_{X,\text{pre}}^n(\mathcal{U}) = \mathbb{C}^n$

ii) The restriction maps are the identity maps

Definition. $\mathbb{C}_X^n :=$ the sheafification of $\mathbb{C}_{X,\text{pre}}^n$.

$\mathbb{C}_X^n(\mathcal{U}) \equiv \{\text{locally constant functions } \mathcal{U} \rightarrow \mathbb{C}^n\}$

An automorphism of \mathbb{C}_X^n as a sheaf of \mathbb{C} -vector spaces is given by a locally constant function $X \rightarrow \text{GL}_n(\mathbb{C})$ [locally constant change of variable]

If $\phi : Y \rightarrow X$ then $\phi^{-1}\mathbb{C}_X^n = \mathbb{C}_Y^n$.

Definition. A local system \mathcal{L} on X is basically a locally constant sheaf of finite dimensional \mathbb{C} -vector spaces that,

$\exists (U_i)$ open covering on X , $n_i \in \mathbb{Z}_{\geq 0}$, $\phi_i : \mathbb{C}_{U_i}^{n_i} \xrightarrow{\sim} \mathcal{L}|_{U_i}$
We have $\oplus, \otimes, \text{Hom}$. Get rigid tensor category.

Example: $\mathcal{L} \simeq \mathbb{C}_X^n$ for some n . Call \mathcal{L} constant.

Example $X = \mathbb{C}^\times$. For $\mathcal{U} \subset X$,

$$\mathcal{L}(\mathcal{U}) := \{\text{solutions to } f' = \frac{1}{2z}f\}$$

Claim: \mathcal{L} is a 1-dim local system.

Proof. 1) If $\mathcal{U} \subset X$ is simple connected, \exists branch of \sqrt{z} on \mathcal{U} .

$$\mathcal{L}|_{\mathcal{U}} \simeq \mathbb{C}_{\mathcal{U}} \cdot \sqrt{z}$$

2) X is covered by such \mathcal{U} .

□

Claim: $\mathcal{L} \not\simeq \mathbb{C}_X$

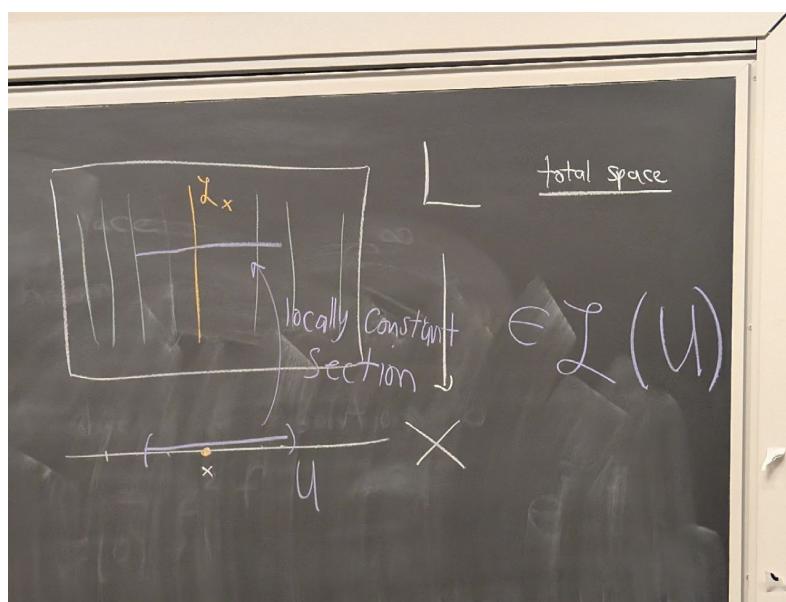
Proof. \nexists solution on all of X .

□

Proposition 2. For any system of linear ODES $f' = Af$ as in the uniqueness theorem on an open subset of \mathbb{C} , the sheaf of solutions form an n -dim local system.

\mathcal{L} local system. Then,

fiber of \mathcal{L} at $x \in X$:= \mathcal{L}_x which is n -dim \mathbb{C} -vector space.



Example (Relative Betti Cohomology)

X compact C^∞ -manifold.

$\Gamma(X, -)$

$H^q(X, -)$

$H^q(X, \mathbb{C})$ fin dim \mathbb{C} -vector space.

$X \rightarrow B$ proper submersion of C^∞ manifolds.

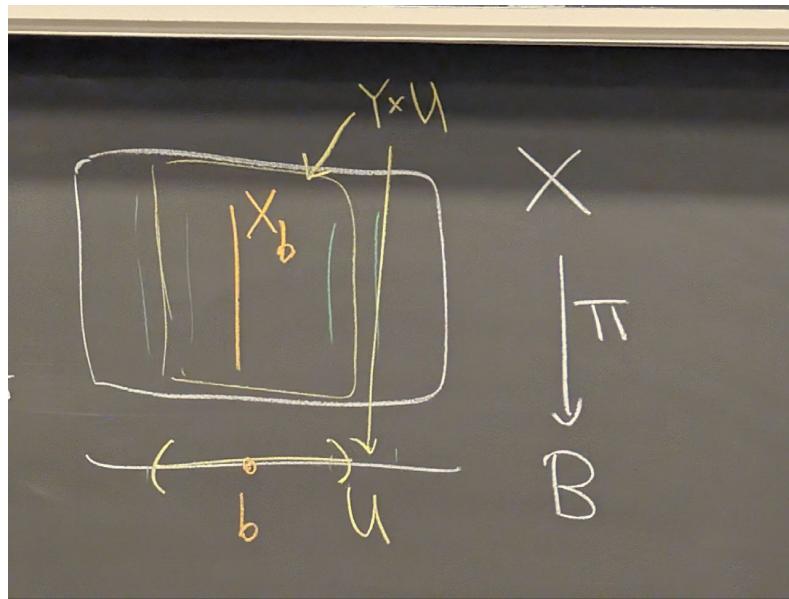
π_*

$R^q\pi_*$

$(R^q\pi_*)\mathbb{C}_X$ sheaf of \mathbb{C} -vector spaces on B .

This is a local system on B .

$(R^q\pi_*\mathbb{C}_X)_b = H^q(X, \mathbb{C})$



Question: What does a local system on $[0, 1]$ look like?

Proposition 3. Let \mathcal{L} be a local system on $[0, 1]$. Then,

- a) \mathcal{L} is constant [proof: open cover to finite subcover, these overlap, we keep changing variables by GL_n on overlaps and get a constant function on the whole thing.]
- b) $\mathcal{L}_0 \simeq \mathcal{L}_1$ [we can naturally identify fibers on 0 to fibers at 1].

Local systems and reps of π_1

$\gamma : [0, 1] \rightarrow X$ path from x to y .

If we have local system \mathcal{L} on X we can pull it back to the interval. Then, $\gamma^{-1}\mathcal{L}$ is constant. Fibers of 0, 1 [meaning fibers of x, y] gives us isomorphism $\mathcal{L}_x \simeq \mathcal{L}_y$.

If we deform the path into a homotopic one then we get the same isomorphism. This gives us:

$$\frac{\{\text{paths from } x \text{ to } y\}}{\text{homotopy}} \times \mathcal{L}_x \rightarrow \mathcal{L}_y$$

Take $y = x$. Then our paths are loops.

We get $\pi_1(X, x)$ action on \mathcal{L}_x in this case. This is a representation of this group. This is called the monodromy representation: \mathcal{L}_x with action of $\pi_1(X, x)$

We also have monodromy group: $\text{im}(\pi_1(X, x) \rightarrow GL(\mathcal{L}_x))$

If we go back to the square root example, take $X = \mathbb{C}^\times, x = 1$

$\pi_1(\mathbb{C}^\times, 1) = \mathbb{Z}$

Then \mathcal{L} = solutions to $f' = \frac{1}{2z}f$.

The we have $\pi_1(\mathbb{C}^\times, 1) \rightarrow \mathrm{GL}(\mathcal{L}_x) = \mathbb{C}^\times$

$$[\gamma] \mapsto -1$$

So, the monodromy group would be ± 1 .

Theorem 4. Let X connected, locally simply connected topological space. Then, the functor

$$\{\text{local systems on } X\} \rightarrow \{\text{fin dim reps of } \pi_1(X, x)\}$$

$$\mathcal{L} \mapsto \mathcal{L}_x \text{ with its } \pi_1(X, x)\text{-action}$$

is an equivalence of tensor categories.

Idea of proof: Pull back the local system of the universal cover and a bunch of other stuff.

Random Walks in NT by Koukoulopoulos

- $\omega(n) = \#\{p \mid n\} = \sum_p \mathbb{1}_{p|n} \implies 2^{\omega(n)} \approx \tau(n) = \#\{d \mid n\}$
- $\log(\zeta(s)) \approx \sum_p \frac{1}{p^s} \cdot e^{\log \zeta(s)} = \zeta(s)$

Think of them as RVs.

- $\{n \leq x\}$ probability space equipped with the uniform counting measure.
- Fix σ , vary $t \in [T, 2T]$ equippe wiith lebesgue measure.

$$B_p(n) = \mathbb{1}_{p|n} \text{ Bernoulli RV.}$$

$$\mathbb{P}(B_p = 1) = \frac{\#\{n \leq x, p|n\}}{\#\{n \leq x\}} = \frac{\lfloor x/p \rfloor}{\lfloor x \rfloor} = \frac{1}{p} + O(1/x) \sim \frac{1}{p}$$

$$p^{-it} \in S^1 \rightsquigarrow \text{unifirom dist on } S^1$$

$e^{-it \log p}$ is $\frac{1}{\log p}$ -periodic.

$$= e^{-i\{t \log p\}}$$

$$\text{meas}(t \in [T, 2T]) = t \log p \in [a, b] \pmod{2\pi} \approx \frac{b-a}{2\pi} \cdot T$$

We want to take k different primes $p_1 < \dots < p_k$ and want to understand what is the joint distribution of B_{p_1}, \dots, B_{p_k} .

$$\mathbb{P}(B_{p_1} = \dots = B_{p_k} = 1) \sim \frac{1}{p_1 \cdots p_k} \sim \prod_{j=1}^k P(B_{p_j}) = 1.$$

Thus, B_{p_1}, \dots, B_{p_k} are approximately independent of each other.

$$\mathbb{E}[B_p] \sim \frac{1}{p}$$

$$\text{Var}[B_p] = \frac{1}{p} - \frac{1}{p^2}$$

$$\text{Thus, } \mathbb{E}[\sum_{p \leq x} B_p] \sim \sum_{p \leq x} \frac{1}{p} \sim \log_2 x$$

$$\text{Var}[\sum_{p \leq x} B_p] = \sum_{p \leq x} \frac{1}{p} - \frac{1}{p^2} \sim \log_2 x$$

Theorem 5 (Erdös-Kac Theorem).

$$\frac{\omega(n) - \log_2 x}{\sqrt{\log_2 x}} \xrightarrow{d} \mathcal{N}(0, 1)$$

Definition. $X_n \xrightarrow{d} X \iff \forall \phi \in C_c^\infty(R), \mathbb{E}[\phi(X_n)] \rightarrow \mathbb{E}[\phi(X)] \iff \mathbb{P}(X_n \leq a) \rightarrow \mathbb{P}(X \leq a) \forall u$ that is a point of the continuity of the latter.

$$\forall u \in \mathbb{R}, \# \left\{ n \leq x : \frac{\omega(n) - \log_2 x}{\sqrt{\log_2 x}} \leq u \right\} \sim x \cdot \frac{1}{\sqrt{2\pi}} \int_{-\infty}^u e^{-t^2/2} dt$$

Let $p_1 < \dots < p_k$. let $m_1, \dots, m_k \in \mathbb{Z}$ Then,

$$\frac{1}{T} \int_T^{2T} (p_1^{it})^{m_1} \cdots (p_k^{it})^{m_k} dt$$

$$= \frac{1}{T} \int_T^{2T} e^{\underbrace{it(m_1 \log p_1 + \cdots + m_k \log p_k)}_{\theta}} dt$$

Use the fact: $\int_T^{2T} e^{i\theta t} dt = \frac{e^{i\theta 2T} - e^{i\theta T}}{i\theta} = O(\frac{1}{|\theta|})$

$$= \begin{cases} 1, & \text{if } m_1 \log p_1 + \cdots + m_k \log p_k = 0; \\ \frac{1}{T} \frac{1}{|m_1 \log p_1 + \cdots + m_k \log p_k|}, & \text{otherwise.} \end{cases}$$

If $\exists m_i \neq 0$ then $m_1 \log p_1 + \cdots + m_k \log p_k = \log \frac{a}{b}$. $a, b \in \mathbb{N}$

$a, b \leq p_1^{|m_1|} \cdots p_k^{|m_k|} \leq y^{kM}$ if $|m_i| \leq M, p_i \leq y$

$$|\log \frac{a}{b}| \gg \frac{1}{y^{kM}}$$

$$y = T^{\frac{1}{\log_2 T}}, k, M \leq (\log_2 T)^{1/3}$$

$$\mathbb{E} \left[\frac{p^{it}}{p^\sigma} \right] = 0, \text{Var} \left(\frac{p^{it}}{p^\sigma} \right) = \frac{1}{p^{2\sigma}} = \begin{cases} \sum_p \frac{1}{p^{2\sigma}} = \infty, & \text{if } \sigma = \frac{1}{2}; \\ \sum_p \frac{1}{p^{2\sigma}} < \infty, & \text{if } \sigma > \frac{1}{2}; \end{cases}$$

Small primes are too important, so we don't have CLT.

Theorem 6 (Selben's CLT).

$$\frac{\log \zeta(\frac{1}{2} + it)}{\sqrt{\log_2 T}} \xrightarrow{d} N_{\mathbb{C}}(0, 1) = N_{\mathbb{R}}(0, \frac{1}{2}) + i N_{\mathbb{R}}(0, \frac{1}{2})$$

$$\forall u \in \mathbb{R} \text{ meas} \left(t \in [T, 2T] : \log \left| \frac{1}{2} + it \right| \leq u \sqrt{\frac{1}{2} \log_2 T} \right) \sim \frac{T}{\sqrt{2T}} \int_{-\infty}^u e^{-v^2/2} dv$$

Detour to Probability Theory

Suppose X_1, X_2, \dots are ind real RVs

$$\mu_1 = \mathbb{E}[X_i], \sigma_i^2 = \text{Var}[X_i]$$

$$s_n^2 = \sigma_1^2 + \cdots + \sigma_n^2 = \text{Var}(X_1, \dots, X_n)$$

Lindeberg Condition:

$$\frac{1}{s_n^2} \sum_{j=1}^n \mathbb{E} [(X_j - \mu_j)^2 \cdot \mathbb{1}_{|X_j - \mu_j| > \epsilon s_n}] \rightarrow 0$$

Then $\frac{X_1 + \cdots + X_n - \mu_1 - \cdots - \mu_n}{s_n} \xrightarrow{d} \mathcal{N}(0, 1)$

We use method of moments, see Billingsley.

Now we prove Erdös-Kac

Proof. Consider perfect random walk.

$\forall p, B_p^{\text{Model}}$ is Bernoulli, $\mathbb{P}(B_p^{\text{Model}} = 1) = \frac{1}{p}$ i.i.d. of each other.

$$\text{CLT} \implies \frac{\sum_{p \leq y} B_p^{\text{Model}} - \log \log p}{\sqrt{\log_2 y}} \xrightarrow{d} \mathcal{N}(0, 1) \text{ as } y \rightarrow \infty$$

$$\omega(n) = \#\{p \mid n, p \leq x\} = \#\{p \mid n, p \leq x\} + O\left(\frac{\log x}{\log y}\right).$$

$$\sum_{n \leq x} \omega(n)^2 = \sum_{n \leq x} \sum_{p_1 p_2 \mid n} = \sum_{p_1 p_2 \leq x} \#\{n \leq x, p_1 p_2 \mid n\}$$

p_2, p_2 could be too large $p_1, p_2 \approx x^{\frac{2}{3}}$.

Idea: choose y cleverly in $\omega(n) = \#\{p \mid n, p \leq x\} = \#\{p \mid n, p \leq x\} + O\left(\frac{\log x}{\log y}\right)$.

We choose $y = x^{1/\log_3 x}$

$$\sum_{n \leq x} \omega(n, y)^k = \sum_{n \leq x} \sum_{p_1, \dots, p_k \leq y, p_1, \dots, p_k \mid n} 1$$

$$= \sum_{p_1, \dots, p_k \leq y} \left(\frac{x}{[p_1, \dots, p_k]} + O(1) \right)$$

total error $y^k = o(x)$

$$\equiv x \mathbb{E}[B_p^{\text{Model}}]$$

□

The algebraic theory of diff eqs by Bjorn Poonen 2

Vector Bundles

X complex manifold

$m = \dim X$

$\mathcal{O} = \mathcal{O}_X$, sheaf of holomorphic functions.

Definition. Vector bundle on $X :=$ locally free \mathcal{O} -modules that is locally of finite rank.

Vector Bundle	Rank
\mathcal{O}	1
Tangent Bundle \mathcal{T}	m
Sheaf of 1-forms $\Omega^1 := \text{Hom}(\mathcal{T}, \mathcal{O})$	m

Table 1: Rank of Vector Bundles

For each $x \in X$ we get:

- The stack $V_{(*)}$ which is a finite free $\mathcal{O}_{(*)}$ module
- The fiber $V_* := V \otimes_{\mathcal{O}} k_x = V_{(*)}/m_* V_{(*)}$ which form a fin. dim \mathbb{C} -vector space.

Example: \mathcal{L} local system, $\mathcal{V} := \mathcal{O} \otimes_{\mathbb{C}} \mathcal{L}$, $\mathcal{L}_* = V_*$

\mathcal{L} = sheaf of locally constant functions.

V = sheaf of all holomorphic function.

Derivations

A is \mathbb{C} -algebra.

Definition (Derivation of A). : A \mathbb{C} -algebra.

Derivation of A : a \mathbb{C} -linear map $D : A \rightarrow A$ such that $D(fg) = D(f)g + fD(g)$ for all $f, g \in A$.

eg $\frac{\partial}{\partial x}, y^2 \frac{\partial}{\partial x}$

As sheaf of \mathbb{C} -algebras

Derivation D of A = collection $(D_u)_{u \subset X}$ such that D_u is a derivation of $A(\mathcal{U})$ compatible with the restriction.

$\text{Der}(\mathcal{A}) = \{\text{all derivations of } \mathcal{A}\}$

$\mathcal{D}\text{er}(A) = \text{the sheaf } \mathcal{U} \rightarrow \text{Der}(A|_u)$

For each vector field function $t \in \mathcal{T}$, $f \in \mathcal{O}$, $x \in X$

Let $(D_t f)(x) :=$ directional derivative of f in the direction of $t(x)$

$D_t f \in \mathcal{O}$

Get $T \xrightarrow{\sim} \mathcal{D}\text{er}$, $t \mapsto D_t$

The pairing $\mathcal{T} \times \mathcal{O} \rightarrow \mathcal{O}$ given by $t, f \mapsto D_t f$

\mathcal{O} -linear in t , \mathbb{C} -linear in f . Get:

$\mathcal{O} \xrightarrow{d} \text{Hom}(\mathcal{T}, \mathcal{O}) =: \Omega^1$

$1 \mapsto df$.

$$V \simeq \mathcal{O}_x \xrightarrow{e^z} \mathcal{O}_x$$

$$v \mapsto 1 \leftrightarrow e^z$$

To equip V with a rule for taking directional derivatives of sections of V we should specify a pairing

$$T \times V \rightarrow V, t, v \mapsto \nabla_t v, \text{Home}(T, V).$$

$$\nabla : V \rightarrow \text{Hom}(T, V) = \Omega^1 \otimes V$$

Given (γ, δ) , each $D \in \mathcal{D}\text{er}(X) = T(X) = \text{Hom}(\Omega^1, 0)$ induces:

$$\nabla_D : \mathcal{V} \xrightarrow{\nabla} \Omega^1 \otimes V \xrightarrow{D \otimes 1} \mathcal{O} \cdot V = V$$

eg d is a connection on \mathcal{O}

$$\text{eg } \omega \in \Omega^1(X)$$

$$d + \omega : \mathcal{O} \rightarrow \Omega^1, f \mapsto df + f\omega$$

Proposition 7. Every connection on \mathcal{O} is $d + \omega$ for some $\omega \in \Omega^1(X)$

Proof. Let ∇ be a connection on \mathcal{O} . Then,

$$\nabla(fg) = dfg + f\nabla g$$

$$d(fg) = dfg + f dg$$

□

$$(\nabla - d)(fg) = f(\nabla - d)g$$

Thus, $\nabla - d$ is \mathcal{O} -linear hence $\mathcal{O} \rightarrow \Omega^1, f \mapsto f\omega$ for some $\omega \in \Omega^1(X)$

We also have: every connection on \mathcal{O}^n is $d + \omega$ for some $\omega \in \Omega^1(X)$.

Fix (V, ∇) .

$v \in V$ is called horizontal if $\Delta v = 0$.

$$V^\nabla := \ker \nabla \subset V.$$

subsheaf of horizontal schemes

$$\text{eg } \mathcal{U} \subset \mathbb{C}, V = \mathcal{O}^n, A \in M_n(\mathcal{O}(\mathcal{U})), \nabla = d - Adz$$

Then horizontal schemes of V = solutions $f \in \mathcal{O}^n$ to the system $f' = Af$

$$\text{eg } X = \mathbb{C}, V = \mathcal{O}, \nabla = d - z^2 dz$$

$$\nabla f = df - fz^2 dz$$

$$\text{So } \nabla f = 0 \iff f' = z^2 f$$

$$\gamma^\nabla = \mathbb{C}_x \cdot e^{z^3/3}$$

Proposition 8. $\dim X = 1, (V, \nabla)$ on X . Then, V^∇ is a n -dim local system on X .

Curvature

∇ on V induces a seq of \mathbb{C} -lienar maps.

$$V \xrightarrow{\nabla} \Omega^1 \otimes_V \xrightarrow{\nabla_1} \Omega^2 \otimes V \rightarrow \dots$$

Where $\nabla_i(\omega \otimes v) = d\omega v + (-1)^i \omega \otimes v$

The curvture of ∇ is:

$$K := \nabla_1 \cdot \nabla : V \rightarrow \Omega^2 \otimes V$$

It turns out that K is \mathcal{O} -linear so K is a global section of

$$\text{Hom}(V, \Omega^2 \otimes V) = \Omega^2 \otimes \text{End}(V)$$

∇ is an integrable connection, a flat connection if and only if $K = 0$

eg If $\dim X = 1$ then $\Omega^2 = 0$ so $K = 0$ automatically.

eg If $(V, \nabla) = (0, d)$ then

$$\mathcal{O} \xrightarrow{d} \Omega^1 \xrightarrow{d} \Omega^2 0 > \dots$$

is the usual de Rham complex.

eg If $(V, \nabla) = (\mathcal{O}, d + \omega)$

$$K(1) = \nabla_1(\nabla 1) = \nabla_1 \omega = d\omega$$

$$\text{So } K = d\omega$$

∇ is integrable $\iff \omega$ is a closed 1-form.

eg Let $X = \mathbb{C}^2$ with coords $x, y, V = 0, \omega = -y \, dx + x \, dy \in \Omega^1(X)$

Let $\nabla = d + \omega$ then $K = d\omega \equiv 2dx \wedge dy \neq 0$. ∇ is not integrable.

V^∇ is sheaf of solutions to $df + \omega f = 0$ so no nonzero solutions.

$$V^\nabla = 0$$

Random Walks in NT by Koukoulopoulos 3

Recall:

$$\omega(n) = \sum_{p \leq x} \mathbb{1}_{p|n} \approx \sum_{p \leq y} \mathbb{1}_{p|n}, y = x^{1/\log_3 x}$$

$$\log |\zeta(\frac{1}{2} + it)| \approx \log |\zeta(\frac{1}{2} + \frac{1}{\log y} + it)| \approx \sum_{p \leq y} \frac{1}{p^{\frac{1}{2}+it}} y = T^{1/l \log_3 T}, t \in [T, 2T]$$

X_1, X_2, \dots i.i.d. mean 0, var 1.

$$\frac{X_1 + \dots + X_n}{\sqrt{N}} \implies N(0, 1)$$

$$f_N(\alpha) = \frac{1}{\sqrt{N}} \sum_{n \leq \alpha N} X_n, \text{Var}(f_N) = \frac{\alpha N}{N} = \alpha \implies N(0, \alpha)$$

$$f_N(\beta) - f_N(\alpha) = \frac{1}{\sqrt{N}} \sum_{\alpha N < n \leq \beta N} X_n \implies N(0, \beta - \alpha).$$

f_N : brownian motion.

Theorem 9 (Billingsley). If n simple uniform random from $[1, x] \cap \mathbb{Z}$, then the stochastic process $g : [0, 1] \rightarrow \mathbb{R}$,

$$g(\alpha) = \frac{\#\{p \mid n, \log_2 p \leq \alpha \log_2 x\} - \alpha \log_2 x}{\sqrt{\log_2 x}}$$

So brownian motion on $[0, 1]$.

What is the distribution of g if we condition on n having $r = \rho \log_2 x, \rho = \text{constant}$. Converge to brownian bridge = brownian motion given end probability = 0.

Maximum of ζ

$$\max_{t \in [T, 2T]} \log |\zeta(\frac{1}{2} + it)| \sim \sqrt{\frac{1}{2} \log T \log_2 T} = \sqrt{\log T} \cdot \sqrt{\frac{1}{2} \log_2 T}$$

Conjecture (Farmer-Gortek Hughes)

$$\frac{1}{T} \int_T^{2T} |\zeta(\frac{1}{2} + it)|^{2k} dt \sim \frac{1}{2} C_k (\log T)^{k^2}$$

dominated by $\log |\zeta|$

Conj of Fyodorov-Hiary-Keating about the distribution of the local maximum.

$$M(t) := \max_{h \in [0, 1]} \log |\zeta(\frac{1}{2} + i(t+h))|$$

Distribution of $M(t)$ when t in uniform $[T, 2T]$

Conjecture: $M(t) = \log_2 T - \frac{3}{4} \log_3 T + O(1)$ a.s.

$$\log |\frac{1}{2} + i(t+h)| \approx k \sum_{p \leq T} \frac{1}{p^{1/2} + it + ih} \rightarrow S(h) = \sum_{p \leq T} \operatorname{Re} \frac{X_p}{p^{1/2} + ih} \text{ where } X_p = \text{Unit}(S^1)$$

mutually independent. $p^{it} \approx \text{Uniform}(S)$.

$$\begin{aligned} \mathbb{E}[S(h_1)S(h_2)] &= \sum_{p_1, p_2 \leq T} \mathbb{E} \left[\operatorname{Re} \frac{X_{p_1}}{p_1^{1/2} + ih_1} \operatorname{Re} \frac{X_{p_2}}{p_2^{1/2} + ih_2} \right] \\ &= \frac{1}{4} \sum_{p \leq T} \left(\frac{1}{p^{1+i(h_1-h_2)}} + \frac{1}{p^{1+i(h_2-h_1)}} \right) = \begin{cases} \frac{1}{2} \log_2 T, & \text{if } |h_1 - h_2| \leq \frac{1}{\log T}; \\ 0, & \text{if } |h_1 - h_2| \gg 1; \end{cases} \end{aligned}$$

Easier Problem:

$$\max(Z_1, \dots, Z_N)$$

$$Z_i \sim N(0, \frac{1}{2} \log_2 T, N = l \log T).$$

$$\mathbb{P} \max_{1 \leq i \leq N} Z_i \leq \mu$$

$$= \mathbb{P}(Z_i \leq \mu)^N$$

$$= (1 - \mathbb{P}(Z_1 > \mu))^N$$