

NT Reading 2

Thanic Nur Samin

Contents

9 Thursday, 1/16/2025, Cartan Subalgebras (CSA) by Rostyslav	1
10 Thursday, 1/23/2025, Cartan Subalgebra (CSA) by Rostyslav	2
11 Thursday, 1/30/2025, Cartan Subalgebra (CSA) by Rostyslav	4
12 Thursday, 2/6/2025, Universal Enveloping Algebra by Hechi	6
13 Thursday, 2/13/2025, Universal Enveloping Algebra by Hechi	9
14 Thursday, 2/27/2025, Representation Theory by Zoia	10
15 Thursday, 3/13/2025, Representation Theory by Zoia	12
16 Thursday, 3/27/2025, Representation Theory by Zoia	13
17 Thursday, 4/3/2025	14
18 Thursday, 4/10/2025 by Hyeonmin	14
19 Thursday, 4/17/2025	17

9 Thursday, 1/16/2025, Cartan Subalgebras (CSA) by Rostyslav

Corollary 1 (15.3). Let L be semisimple. CSA's of L are precisely the maximal toral subalgebras of L .

Proof. \implies : Let H be a maximal toral subalgebra.

$\implies H$ -abelian $\implies H$ -nilpotent, $N_L(H) = H$ since $L = H + \bigsqcup_{\alpha \in \Phi} L_\alpha$ with $[H, L_\alpha] = L_\alpha$ for $\alpha \in \Phi \implies H$ -CSA.

\Leftarrow : Let H -CSA. $x = x_s + x_h$ by Jordan decomposition.

$\implies L_0(\text{ad } x_s) \subset L_0(\text{ad } x)$ for $x \in L$ semisimple.

$L_0(\text{ad } x_s) = C_L(x_s)$ since $\text{ad } x$ is diagonal.

H - minimal Engel.

By defintion, $\implies L_0(\text{ad } x_s) = C_L(x_s) = H$.

But $C_L(x_g)$ contains maximal toral subalgebra which is CSA. Thus it itself is minimal Engel. H -maximal toral.

Detaills:

$L \subset H$. H is CSA $\iff H$ is nilpotent, $N_L(H) = H$.

$L_0(\text{ad}(x_s)) \subset L_0(\text{ad}(x))$.

$L_0(\text{ad}(x_s)) = \{y \in L \mid \text{ad}(x_s)(y) = 0\} = \{y \in L \mid [x_s, y] = 0\}$.

$[x, y] = \underbrace{[x_s, y]}_{=0} + [x_n, y]$.

$\text{ad}(x)^m(y) = \text{ad}(x_n)^m(y) = 0$ for $m \gg 0$.

□

Lemma 2 (15.4.B). Let $\phi : L \rightarrow L'$ [epimorphism]. Let H' be CSA of L' . Then, any CSA of $\phi^{-1}(H')$ is also a CSA of L .

Definition. $x \in L$ is called strongly ad-nilpotent if $\exists y \in L$ and $\exists a \neq 0$ eigenvalue of $\text{ad } y$ such that $x \in L_a(\text{ad } y)$.

$$[L_a(\text{ad } y), L_b(\text{ad } y)] \subset L_{a,b}(\text{ad } y)$$

Remark. By [Lemma 15.1](#) if x is strongly ad-nilpotent then x is ad-nilpotent.

Recall: $x \in L_a(\text{ad } y)$ means $\exists m > 0 : (\text{ad } y - a \cdot \text{id})^m(x) = 0$.

This implies that $\text{ad } x$ is nilpotent after some calculation.

Definition. $\mathcal{N}(L)$ is the set of strongly ad-nilpotent elements.

Definition. $\mathcal{E}(L) < \text{Int } L := \langle \exp(\text{ad } x) \mid x \text{ is ad-nilpotent} \rangle$ generated by $\forall \exp \text{ad } x$ where $x \in \mathcal{N}(L)$.

Remark. $\mathcal{N}(L)$ is stable under $\forall x \in \text{Aut}(L)$.

Thus, $\mathcal{E}(L) \trianglelefteq \text{Aut}(L)$.

$K \subset L \implies \mathcal{N}(K) \subset \mathcal{N}(L)$.

Then,

Definition. $\mathcal{E}(L, K)$ is generated by $\exp \text{ad } x \forall x \in \mathcal{E}(K)$

Then, $\mathcal{E}(K) = \mathcal{E}(L, K)$.

If $\phi : L \rightarrow L'$ is an epimorphism then $\phi(L_a(\text{ad } y)) = L'_a(\text{ad } \phi(y))$.

$$\implies \phi(\mathcal{N}(L)) = \mathcal{N}(L').$$

Lemma 3 (16.1). Let $\phi : L \rightarrow L'$ be an epimorphism. If $\sigma'' \in \mathcal{E}(L')$ $\implies \exists \sigma \in \mathcal{E}(L)$ such that:

$$\begin{array}{ccc} L & \xrightarrow{\phi} & L' \\ \downarrow \sigma & & \downarrow \sigma' \\ L & \xrightarrow{\phi} & L' \end{array}$$

Proof. If $\sigma' = \exp \text{ad } x' x' \in \mathcal{N}(L')$ $\exists x$ s.t. $\phi(x) = x'$.

$$\begin{aligned} \forall z \in L, (\phi \circ \exp \text{ad}_L x)(z) &= \phi(z + [x, z] + [x, [x, z]]) = \phi(z) + [x', \phi(z)] + [x', [x', \phi(z)]] \\ &= (\exp \text{ad}_L x')(\phi(z)) \implies \text{QED.} \end{aligned}$$

□

Theorem 4 (16.2). Let L be solvable. Let H_1, H_2 be CSA's of L .

Then, H_1 is conjugate with H_2 by an element of $\mathcal{E}(L)$.

10 Thursday, 1/23/2025, Cartan Subalgebra (CSA) by Rostyslav

Proof. Induction on $\dim L$.

Base case: suppose $\dim L = 1$. Since L is nilpotent L must be trivial.

Assume that L is not nilpotent. L -solvable $\implies L$ has non-zero abelian ideals. eg least non-zero term of the derived series. Choose such A of least possible dimension. Set $L' = L/A$. We have $\phi : L \rightarrow L/A = L'$ given by $x \mapsto x'$.

Lemma 15.4(image of CSA is CSA) implies H'_1, H'_2 are CSAs of the solvable algebra L' . By induction $\exists \sigma \in \mathcal{E}(L')$ such that $\sigma(H'_1) = H'_2$.

Lemma 16.1(the commutative diagram) implies $\exists \sigma \in \mathcal{E}(L)$ such that the diagram commutes. So, σ maps $K_1 = \phi^{-1}(H'_1)$ to $\phi^{-1}(H'_2) = K_2$

But now H_2 and $\sigma(H_1)$ are both CSA's of K_2 .

If K_2 is smaller than L induction allows us to find $\tau' \in \mathcal{E}(K_2)$ such that $\tau' \sigma(H_1) = H_2$.

But $\mathcal{E}(K_2)$ consists of restrictions of $\mathcal{E}(L, K_2)$ to K_2 .

$\exists \tau$ such that $\tau \sigma(H_1) = H_2$ for $\tau \in \mathcal{E}(L)$ \implies done.

Otherwise $L = K_2 = \sigma(L_1)$.

$K_2 = K_1$ and $L = H_2 + A = H_1 + A$.

Theorem 15.3 \implies CSA $H_2 = L_0(\text{ad } x)$ for suitable $x \in L$.

A being $\text{ad } x$ stable, so by lemma 15.1,

$$A = A_0(\text{ad } x) \oplus A_*(\text{ad } x)$$

and each summand is stable under $H_2 + A$.

Since A is minimal, $A = A_0(\text{ad } x)$ or $A = A_*(\text{ad } x)$

A cannot be equal to $A_0(\text{ad } x)$ since in that case $A \subset H_2, L = H_2$.

But since L is not nilpotent we have a contradiction.

Thus, $A = A_*(\text{ad } x) \implies A = L_*(\text{ad } x)$. Since $L = H_1 + A$ we can write $x = y + z$ with $y \in H_1, z \in A_*(\text{ad } x)$.

Since $\text{ad } x$ is invertible on $L_*(\text{ad } x)$ we can write $z = [x, z']$ where $z' \in L_*(\text{ad } x)$.

A -abelian $\implies (\text{ad } z')^2 = 0$.

Thus, $\exp \text{ad } z' = 1_L + \text{ad } z'$.

Applying to x we have, $x - z = y$.

$\implies H_0 = L_0(\text{ad } y)$ must also be a CSA of L . Since $y \in H_1, H \supset H_1$ and both minimal Engel, $H = H_1$.

H_1 is conjugate to H_2 using $\exp \text{ad } z'$.

We only need to show that, $\exp \text{ad } z' \in \mathcal{E}(L)$.

z' can be written as sum of strongly ad-nilpotent elements of $A = L_*(\text{ad } x)$

$\implies A$ -abelian so $\exp \text{ad } z' = \prod \exp \text{ad } z_i \in \mathcal{E}(L)$.

So we're done. □

Consider B = upper triangular matrices. It is a lie algebra. What is a CSA of this?

Attempt: we have H = upper triangular matrices with 0 diagonal. $N_B(H) = B$. But it is not nilpotent so it doesn't work.

However, attempt 2: we can take H = diagonal matrices.

In fact, if $\mathfrak{g} \subset \mathfrak{gl}_n$ is a subalgebra and \mathfrak{g} contains a diagonal matrix with all entries different, then the subalgebra \mathfrak{h} of \mathfrak{g} containing all diagonal matrices on \mathfrak{g} is a CSA.

Definition. A maximal solvable subalgebra of a lie algebra L is called a Borel subalgebra.

Lemma 5 (16.3.A). If B is a borel subalgebra of L then $B = N_L(B)$. Aka, Borel subalgebras are self normalizing.

Proof. Let $x \in N_L(B)$. Then, $B + Fx$ is a subalgebra of L . It is solvable since $[B + Fx, B + Fx] \subset B$. Since B is maximal, we must have $x \in B$. □

Lemma 6 (16.3.B). If $\text{Rad } L \neq L$ then there is a bijection between the sets of Borel subalgebras of L and Borel subalgebras of $L/\text{Rad } L$.

Proof. $\text{Rad } L$ is a solvable ideal of L .

Therefore, $B + \text{Rad } L$ is a solvable subalgebra of L .

\implies by maximality, we're done. □

Definition. Let H be a CSA in a semisimple lie algebra L , Φ a root system of L relative to H . Fix a base Δ and a set of positive roots.

Set $B(\Delta) = H \sqcup_{\alpha > 0} L_\alpha$

And $N(\Delta) = \sqcup_{\alpha \neq 0} L_\alpha$.

Then $B(\Delta)$ is the standard Borel subalgebra relative to H .

$N(\Delta)$ is the derived algebra of $B(\Delta)$.

Lemma 7 (16.3.C.1). $N(\Delta)$ is nilpotent.

If $x \in L_\alpha (\alpha > 0)$ then,

Application of $\text{ad } x$ to root vector increases the height by at least 1.

\implies decreasing central series goes to zero.

Thus, $B(\Delta)$ is solvable.

Let $K \supset B(\Delta)$. Then, K is stable under $\text{ad } H$.

Then K must include some L_α with $\alpha < 0$.

Thus, simple $S_\alpha \subset K \implies K$ is not solvable.

Note: $S_\alpha = \langle L_\alpha, L_{-\alpha}, H \rangle$

Lemma 8 (16.3.C2). All standard Borel subalgebras of L relative to H are conjugate under $\mathcal{E}(L)$.

Proof. By 14.3 the reflection σ_α acting on H may be extended to an inner automorphism τ_α of L which is, by construction, in $\mathcal{E}(L)$.

τ_α would send $B(\Delta)$ to $B(\sigma\Delta)$.

The Weyl Group is generated by those reflections, so we see that $\mathcal{E}(L)$ will act transitively on standard Borel subalgebras relative to H .

□

Theorem 9 (16.4). The Borel subalgebras of an arbitrary Lie algebra L are all conjugate under $\mathcal{E}(L)$.

We omit the proof for now.

Corollary 10. All the CSAs of lie algebra L are all conjugate under $\mathcal{E}(L)$.

Proof. Let H, H' be CSAs. They're nilpotent by definition. Therefore, they're solvable.

Therefore, $H \subset B, H' \subset B'$ where B, B' are some borel subalgebra.

By the previous theorem, $\exists \sigma \in \mathcal{E}(L)$ such that $\sigma(B) = B'$.

Thus, $\sigma(H)$ and H' are CSAs of B' .

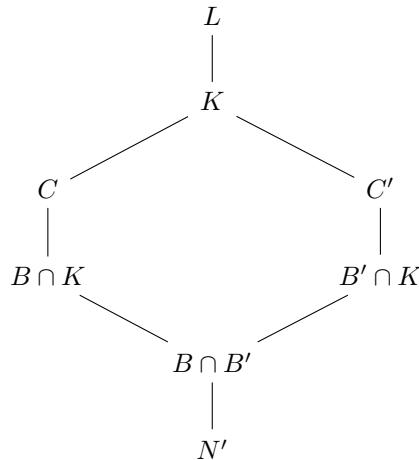
By theorem 16.2, $\exists \tau' \in \mathcal{E}(B')$ such that $\tau' \sigma(H) = H'$.

But τ' is a restriction of some $\tau \in \mathcal{E}(L, B') \subset \mathcal{E}(L)$. Therefore,

$$\tau \sigma(H) = H', \tau \sigma \in \mathcal{E}(L)$$

□

11 Thursday, 1/30/2025, Cartan Subalgebra (CSA) by Rostyslav



We prove theorem 16.4.

Proof. First induction hypothesis $\dim L$ upwards.

base: $\dim L = 1$ is trivial.

WLOG by lemma 16.1 and 16.3B, we can assume that L is semisimple.

Fix a standard borel subalgebra relative to some CSA.

Suffices to shwo that $\forall B' \text{ -other borel subalgebra is conjugate to } B \text{ under } \mathcal{E}(L)$.

If $B' \cap B = B$ then $B' = B$ by maximality (both are borel).

Second induction hypothesis

$\dim(B \cap B')$ downwards for all larger dimension are conjugate.

(1) Suppose that $B \cap B' \neq 0$.

Case i: set N' of nilpotent elements of $B \cap B'$ is nonzero.

B -standard $\implies N'$ subspace derived alg of $B \cap B'$ consists of nilpotent elements.
 $\implies N'$ -ideal of $B \cap B'$.

N' -not an ideal of $L \implies K = N_L(N)$ is proper.

Consider the action of N' on $B/(B \cap B')$ induced by ad for all $x \in N'$ acts nilpotently on this vector space.

Theorem 33 $\implies \exists y$ such that $y + (B \cap B')$ killed by $\forall x \in N$. ie st $[xy] \in B \cap B'$, $y \notin B \cap B'$ but $[xy]$ is also $[B, B] \implies [xy]$ is nilpotent $\implies [xy] \in N'$ or $y \in N_R(N')$.
 $y \notin B \cap B' = B \cap K$

Same way $B \cap B' \subsetneq B' \cap K$.

$B \cap K, B' \cap K$ solvable subalgebra.

C, C' borel subalgebra containing them $K \neq L$ by induction $\exists \sigma \in \mathcal{E}(L, K) \subset \mathcal{E}(L)$ such that $\sigma(C') = C$.

Since $B \cap B \subsetneq C$ and $B \cap B' \subseteq C'$ second induction hypothesis implies $\exists \tau \in \mathcal{E}(L)$ such that $\tau \sigma(C') \subset B$

$B \cap \tau \sigma(B') \supset \tau \sigma(C') \cap \tau \sigma(B') \supset \tau \sigma(B' \cap K) \supsetneq \tau \sigma(B \cap B')$

\implies Second induction hypothesis

B is conjugate under $\mathcal{E}(L)$ to $\tau \sigma(B')$ so we have proved case i.

Case ii: There are no non-zero nilpotent elements in $B \cap B'$.

Then, 4.2.c and 16.3.a implies that $B \cap B' = T$ = toral (semisimple).

B is standard: $B(\Delta) = H + N$, $N(\Delta) = N$.

$[B, B] = N$, $T \cap N = 0$.

Thus, $N_B(T) = C_B(T)$.

Let C be a CSA of $C_B(T)$. By (one of the) definitions of CSA we know it is self normalizing and N -nilpotent.

Thus, $T \subset N_{C_B(T)}(C) = C$.

In $n \in N_B(C)(\text{ad } t)^k n = 0$. $t \subset T \subset C$.

$\text{ad } t$ -semisimple $\implies k = 1, n \in C_B(T)$

$\text{ad } t \cdot n = [t, n]$.

$\implies N_B(C) = N_{C_B(T)}(C) = C$.

$\implies C$ is self-normalizing not only in the centralizer, but also in B . It is also nilpotent.

Therefore, C is a CSA of B .

C -maximal toral of L is conjugate under $\mathcal{E}(B) \implies$ under $\mathcal{E}(L)$.

Thus, WLOG we can assume that $T \subset H$.

Suppose $T = H$. Then, $B' \supsetneq H$.

$\implies B'$ includes at least one L_α with $\alpha < 0$ relative to Δ .

$\tau_\alpha(B') = B'', B'' \cap B \supset H + L_\alpha$

\implies second induction hypothesis

B'' is conjugate to B under $\mathcal{E}(L)$

Let $T \subsetneq H$.

$B' \subset C_L(T)$

By first induction hypothesis we know it will have less degree.

$\dim C_L(T) < \dim L$.

$H \subset C_L(T)$ we can find a borel subalgebra B'' of $C_L(T)$ that will contain H .

$\implies B'$ and B'' are conjugate under $\mathcal{E}(L, C_L(T)) \subset \mathcal{E}(L)$.

$B' \subsetneq C_L(T), T = B \cap B'$.

We can find an eigenvector $x \in B'$ for $\text{ad } T$ and $t \in T$ such that $[t, x] = ax$. $a \in \mathbb{Q}_+$.

$S := H + \sqcup_{\alpha \in \Phi} L_\alpha$

$\alpha(t) \in \mathbb{Q}_+$.

S is subalgebra of L .

Similarly to lemma 16.3.c.2, S is solvable.

$B'' \supset C$ - Borel subalgebra.

$B'' \cap B' \supset T + Fx \supsetneq T = B \cap B'$ here x is eigenvector

$\dim B'' \cap B' > \dim B \cap B'$

Second induction hypothesis $\implies B''$ is conjugate to B .

Similarly, we can prove that B'' is conjugate to B'

Thus, B is conjugate to B' .

(2) $B \cap B' = 0$

Then $\dim L \geq \dim B + \dim B'$.

B is standard so $\dim B \geq \frac{1}{2} \dim L$.

Let T -maximal toral subalgebra of B' .

Assume $T = 0 \implies B$ only has nilpotent elements \implies by Engel's theorem, B has to be nilpotent.

By lemma 16.3.A, since B is borel, it is self normalizing $B = N_L(B)$.

Then B is a CSA of L .

15.3 \implies all of CSAs of L are toral.

Being toral and nilpotent is a contradiction.

Thus, $T \neq 0$.

$T \subset H_0$ -maximal toral of L

$\implies B \cap B'' \neq 0 \implies B'$ is conjugate to B .

$\dim B' = \dim B'' > \frac{1}{2} \dim L \implies$ we have a contradiction. \square

There's a relationship between $\mathcal{E}(L)$ and the inner automorphisms.

Suppose L is semisimple lie algebra, H -CSA of L , Δ -base, Φ -root system

Let $\tau \in \text{Aut } L$. We can see that $\tau(B)$ is conjugate to B by $\sigma_1 \in \mathcal{E}(L)$.

We can find $\sigma_2 \in \mathcal{E}(L, B) \subset \mathcal{E}(L)$ that sends $\sigma_1\tau(H)$ to H by 16.2.

$\sigma_2\sigma_1\tau$ preserves H and $B \implies$ it induces an automorphism on Φ . Leave Δ invariant.

Let ρ be such automorphism. It is not unique, but $\rho\sigma_2\sigma_1\tau(x_\alpha) = c_\alpha x_\alpha$ [$\alpha > 0$],

$$\rho\sigma_2\sigma_1\tau(y_\alpha) = c_\alpha^{-1} y_\alpha$$

$$\rho\sigma_2\sigma_1\tau(h_\alpha) = h_\alpha$$

τ differs from $\mathcal{E}(L) \cdot \Gamma(L)$ by a diagonal automorphism.

And diagonal automorphisms are inner automorphisms.

Therefore, $\text{Aut}(L) = \text{Inn}(L) \cdot \Gamma(L)$.

Note: in the semidirect case, $\mathcal{E}(L) = \text{Inn}(L)$.

12 Thursday, 2/6/2025, Universal Enveloping Algebra by Hechi

Notation:

\mathbb{F} = field, \mathcal{L}/\mathbb{F} lie algebra, V/\mathbb{F} vector space.

Definition (Tensor Algebra). $T^m V = V^{\otimes m}$.

$$T^0 V = \mathbb{F}, T^1 V = V,$$

$$T^m V = \underbrace{V \otimes \cdots \otimes V}_{m \text{ copies}}$$

$$T(V) = \coprod_{i=0}^{\infty} T^i V$$

Multiplication by Tensor Product.

Universal Property:

$$\begin{array}{ccc} V & \xrightarrow{i} & T(V) \\ & \searrow \rho & \downarrow \\ & & A \end{array}$$

A is an \mathbb{F} -algebra with 1.

Symmetric Algebra:

Let $I \subset T(V)$ be the two-sided ideal generated by all elements of the form:

$$x \otimes y - y \otimes x, x, y \in V$$

We define $S(V) = T(V)/I$.

We can write:

$$S(V) = \coprod_{i=0}^{\infty} S^i V$$

By writing it as a direct sum of terms of a degree.

$S^0 V = \mathbb{F}, S^1 V = V$ [since I contains $\deg \geq 2$ terms, they remain unchanged].

We can write:

$$I = \coprod_{i=2}^{\infty} I^i, I^i = I \cap T^i$$

This also enjoys a Universal Property: when A is commutative:

$$\begin{array}{ccc} T & \xrightarrow{i} & T(V) \\ & \searrow \rho & \downarrow \\ & & A \end{array}$$

If V is a finite dimensional vector space then $S(V)$ are polynomials!

Definition (Universal Enveloping Algebra). An universal enveloping algebra is the pair (U, i) where U is an algebra and $i : \mathcal{L} \rightarrow U$ such that:

$$i([xy]) = i(x)i(y) - i(y)i(x) \quad *$$

We also must have a universal property: suppose A is an \mathbb{F} -algebra with 1. Then, if $j : \mathcal{L} \rightarrow A$ satisfies $(*)$ then,

$$\begin{array}{ccc} \mathcal{L} & \xrightarrow{i} & U \\ & \searrow j & \downarrow \phi \\ & & A \end{array}$$

From this we also know that (U, i) is unique upto isomorphism.

Construction of the Universal Enveloping Algebra

Let $J \subset T(\mathcal{L})$ be the 2-sided ideal generated by elements $x \otimes y - y \otimes x - [xy]$.

Define $U(\mathcal{L}) := T(\mathcal{L})/J$. Then $U(\mathcal{L})$ satisfies $(*)$.

But this is not very explicit. We can explicitly construct it using the PBW theorem. From now on let $T := T(\mathcal{L}), S := S(\mathcal{L}), U = U(\mathcal{L})$. We have a canonical projection $\pi : T \rightarrow U$.

Let $T^m = T^m \mathcal{L}, S^m = S^m \mathcal{L}$.

We also define the following filtrations:

$$T_m = T^0 \oplus \cdots \oplus T^m$$

$$U_m = \pi(T_m) \subset U, U_{-1} = 0$$

Facts: $U_m U_p \subset U_{m+p}$. $U_m \subset U_{m+1}$.

Thus it makes sense to define $G^m = U_m / U_{m-1}$. This is a \mathbb{F} -vector space.

The multiplication on U induces a well defined map:

$$G^m \times G^p \rightarrow G^{m+p}$$

Since lower degree terms just become 0.

We can extend this to $G = \coprod_{i=0}^{\infty} G^i$

Then, we have multiplication on G :

$$G \otimes G \rightarrow G$$

This gives G an \mathbb{F} -algebra structure. The algebra is abelian.

We can define the map:

$$\phi_m : T^m \rightarrow U_m \rightarrow G^m$$

Combining all the m , we have a surjective homomorphism:

$$\phi : T \twoheadrightarrow G$$

Lemma 11 (17.3). $\phi(I) = 0$ and therefore ϕ induces a surjective map $\omega : S \twoheadrightarrow G$.

Proof. By definition of J ,

$$\pi(\underbrace{x \otimes y - y \otimes x}_{\deg 2}) = \pi(\underbrace{[xy]}_{\deg 1})$$

Thus, $\phi(x \otimes y - y \otimes x) \in U_1/U_1 \subseteq U_2/U_1$ thus $\phi(x \otimes y - y \otimes x) = 0$.

Hence the result. \square

Theorem 12 (Poincaré-Birkhoff-Witt, 17.3). $\omega : S \xrightarrow{\cong} G$.

Corollary 13 (17.3A). We want to give a basis of U . If $W \subset T^m$ is a subspace such that $T^m \rightarrow S^m$ sends $W \xrightarrow{\cong} S^m$ then $\pi(W)$ is a complement of U_{m-1} in U_m

Proof. The following diagram commutes by construction

$$\begin{array}{ccccc} & & \phi_m & & \\ & \nearrow \pi_m & & \searrow & \\ T^m & & U_m & & G^m \\ \downarrow \cup & & \cong & & \cong \\ W & \xrightarrow{\cong} & S^m & \xrightarrow{\cong} & \\ & & \cong & & \end{array}$$

Bottom map gives $W \xrightarrow{\cong} S^m$. Top map, then $\phi_m(W)$ must be complement of U_{m-1} \square

Corollary 14 (17.3B). $i : \mathcal{L} \rightarrow U$ is injective.

Proof. Take $W = T^1$. \square

Corollary 15 (17.3C). This is traditionally known as the PBW theorem. Assume \mathcal{L} has a countable basis (x_1, \dots) . Then, $\{x_{\sigma(1)} \cdots x_{\sigma(m)}\}, m \in \mathbb{Z}_{\geq 0}, \sigma$ permutation so that $\sigma(1) \leq \sigma(2) \leq \cdots \leq \sigma(m)$ is a basis for U .

Proof. Let $W = \text{span} \{x_{\xi(1)} \otimes \cdots \otimes x_{\xi(m)} : \sigma(1) \leq \cdots \leq \sigma(m)\} \subseteq T^m$.

Clearly $W \xrightarrow{\cong} S^m$. Then we use corollary 17.3A. \square

Proof of PBW. By well-ordering-principle we can define $(\chi_\lambda, \lambda \in \Omega)$ be an ordered basis of \mathcal{L} . This gives isomorphism $S \cong \mathbb{F}[z_\lambda]_{\lambda \in \Omega}$ where z_λ are just variables indexed by Ω .

Let $\Sigma = (\lambda_1, \dots, \lambda_m)$ index with length m . Then $z_\Sigma = z_{\lambda_1} \cdots z_{\lambda_m} \in S^m$.

$x_\sigma = x_{\lambda_1} \otimes \cdots \otimes x_{\lambda_m} \in T^m$.

We say Σ is increasing if $\lambda_1 \leq \cdots \leq \lambda_m$ or \emptyset .

We define $z_\emptyset = 1$.

$\{z_\Sigma : \Sigma \text{ is increasing}\}$ is a basis of S .

We say $\lambda \leq \Sigma$ if $\lambda \leq \mu \forall \mu \in \Sigma$.

The idea is to give S a structure of L -module.

Lemma 16 (17.4A). Fix $m \in \mathbb{Z}_{>0}$. Then there exists a unique linear map $f_m : \mathcal{L} \otimes S_m \rightarrow S$ with the following properties:

- A_m : $f_m(\chi_\lambda \otimes z_\Sigma) = z_\lambda z_\Sigma \forall \lambda \leq \Sigma, z_\sigma \in S^m$.
- B_m : $f_m(\chi_\lambda \otimes z_\Sigma) - z_\lambda z_\Sigma \in S_k \forall k \leq m, z_\Sigma \in S_k$
- C_m : $f_m(\chi_\lambda \otimes f_m(x_\mu \otimes z_\tau)) = f_m(x_\mu \otimes f_m(\chi_\lambda \otimes z_\tau)) + f_m([\chi_\lambda x_\mu] \otimes z_\tau) \forall z_\tau \in S_{m-1}$.

Proof of Lemma: induction.

Lemma 17 (17.4B). \exists representation $\rho : \mathcal{L} \rightarrow \mathfrak{gl}(S)$ with:

- a) $\rho(\chi_\lambda)z_\Sigma = z_\lambda z_\Sigma, \forall k\lambda \leq \Sigma$
- b) similar
- c) similar

Proof of Lemma: Comining A_m, B_m, C_m for all m .

Lemma 18 (17.4C). Let $t \in T_m \cap J$, then t_m (homogeneous degree m part of t) is in I .

Proof of Lemma: Can be seen from the commutative diagram:

$$\begin{array}{ccc} \mathcal{L} & \xrightarrow{\rho} & \mathfrak{gl}(S) \\ & \searrow & \uparrow \\ & & U \\ & \uparrow & \\ T & & \end{array}$$

$J \subset \ker(T \rightarrow \mathfrak{gl}(S))$ so $\rho(t) = 0$. Then we can write t_m as linear combination of x_Σ, Σ has length m .

Then look at the highest deggree term of $\rho(t)$. It is a linear combination of z_Σ . But this term is 0. So $t_m \in I$.

We're done with all the lemma. We finally prove PBW.

Apply 17.4C to $t - t'$.

Let $t \in T^m$ such that $\pi(t) \in U_{m-1}$.

Then $\exists t'$ so that $\pi(t) = \pi(t')$. Note that t' has degree strictly smaller than t .

Then, $t - t' \in J$.

Thus it satisfies the condition of 17.4C.

Therefore the m -degree part of $t - t'$ must be t [since $t \in T^m$].

Thus, by C, $t \in I$.

□

13 Thursday, 2/13/2025, Universal Enveloping Algebra by Hechi

Definition. Given a set X a lie algebra J is free on X if:

$$\begin{array}{ccc} X & \longrightarrow & J \\ \downarrow \exists! & \nearrow & \\ L & & \end{array}$$

Construction: Let V be the vector space with a basis labeled by X , so $V = \mathbb{F}^{(X)}$. Let $T(V)$ be the tensor algebra. Then \mathcal{L} is the lie subalgebra generated by X .

Serre's Theorem

Let \mathcal{L} be a lie algebra over an algebraically closed characteristic 0 field. $\mathcal{L}, H, \Delta = \{\alpha_1, \dots, \alpha_l\}$. $x_i \in \mathcal{L}_{\alpha_i}, y_i \in \mathcal{L}_{\alpha_i}, h_i \in H$ where,

$$S_1: [h_i h_j] = 0$$

$$S_2: [x_i y_i] = h_i, [x_i y_j] = 0, i \neq j$$

$$S_3: [h_i x_j] = \langle \alpha_j, \alpha_i \rangle x_j, [h_i y_j] = -\langle \alpha_j, \alpha_i \rangle y_j$$

$$S_{ij}^+, S_{ij}^-$$

Theorem 19 (Serre's Theorem). Given root system Φ with basis Δ , there exists \mathcal{L} generated by $\{x_i, y_i, h_i\}$ satisfying $S_1, S_2, S_3, S_{ij}^\pm$ and \mathcal{L} has root system Φ . (\mathcal{L} has CSA H etc).

Idea: use the free Lie algebra and quotient by relations.

By the classification of root systems, there are only:

$$A_l (l \geq 1)$$

$$B_l (l \geq 2)$$

$$C_l (l \geq 3)$$

$$D_l (l \geq 4)$$

$$E_6$$

$$E_7$$

$$E_8$$

$$F_4$$

$$G_2$$

The first four are given in the first chapter.

Only thing needed to show is that they are semisimple!

From now we assume $\dim L < \infty$.

Theorem 20. L is called reductive if $\text{rad}(L) = Z(L)$. If L is reductive then,

$$L = [LL] \oplus Z(L)$$

Proof. Note that $[L/Z(L), L/Z(L)] = L/Z(L)$ since $Z(L) = \text{rad}(L)$. Thus, $[LL]$ maps surjectively to $L/Z(L)$ by the canonical projection.

We also know that $L' = L/Z(L)$ acts on L by the adjoint action. Thus, $L = M \oplus Z(L)$ for some M . We want to show that $M = [LL]$.

$[LL] = [M \oplus Z(L), M \oplus Z(L)] = [MM] \subseteq M$. But $[LL]$ maps surjectively to $L/Z(L)$, which isn't possible if it is properly contained.

Therefore, $M = [LL]$. Thus we have the isomorphism. \square

Theorem 21. If $L \subseteq \mathfrak{gl}(V)$ and L acts irreducibly on V , then L is reductive and $\dim Z(L) \leq 1$.

Corollary 22.

If moreover $L \subseteq \mathfrak{sl}(V)$ then L is semisimple.

Definition. Suppose L is semisimple. L is called simply-laced if it's Dynkin diagram has only simple edges.

This is equivalent to, if $\alpha, \beta \in \Delta : \langle \alpha, \beta^\wedge \rangle = 2 \frac{\langle \alpha, \beta \rangle}{\langle \beta, \beta \rangle} \in \{0, -1, -2\}$.

Then, the simply laced are: A_l, D_l, E_6, E_7, E_8 .

The letters here are A, D, E . This gives us the 'A-D-E' classification which is very common in algebra.

14 Thursday, 2/27/2025, Representation Theory by Zoia

Notation:

L -Semisimple Lie Algebra over F -algebraically closed field of char 0.

H -fixed CSA of L

H^* -dual space of the CSA H .

Φ : the root system, $\Delta = \{\alpha_1, \dots, \alpha_l\}$, base of Φ .

\mathcal{W} - the Weyl Group.

Weight Spaces:

V - finite dim L -module.

H acts diagonally on V .

$V = \bigoplus_{\lambda} V_{\lambda}$ where λ runs over H^* .

$V_{\lambda} = \{v \in V \mid h \cdot v = \lambda(h)v \forall h \in H\}$.

If $V_{\lambda} \neq 0$ we call V_{λ} a weight space. λ is the weight of H on V .

V' - the sum of all weight spaces V_{λ} [always direct].

Examples:

- 1) Consider L as an L -submodule via adjoint representation.

Weights are the roots of $\alpha \in \Phi$ with weight spaces L_{α} of dim 1.

If $L = \mathfrak{sl}(2, F)$ then a linear functional λ on H is completely defined by $\lambda(h)$ at the basis vector h .

Exercise 1: If V is an arbitrary L -module, then the sum of its weight space is direct.

Lemma 23. Let V be an arbitrary L -module. Then,

- L_{α} maps V_{λ} into $V_{\lambda+\alpha}$ with $\lambda \in H^*, \alpha \in \varphi$.
- The sum $V' = \sum_{\lambda \in H^*} V_{\lambda}$ is direct, and V' is an L -submodule of V .
- If $\dim V < \infty$ then $V = V'$ [ex1]
- If $x \in L_{\alpha}, v \in V_{\lambda}, h \in H$,

$$h \cdot x \cdot v = x \cdot h \cdot v + [hx] \cdot v = (\lambda(h) + \alpha(h))xv$$

Thus, L_{α} sends V_{λ} to $V_{\lambda+\alpha}$.

- $L_{\alpha}, \alpha \in \Phi$ permutes the weight spaces.

Standard Cyclic Modules

Definition. A maximal vector (of weight λ) in an L -module V is a nonzero $v^+ \in V_{\lambda}$ is killed by all $L_{\alpha} (\alpha \in \Phi^+), \alpha \in \Delta$.

Meaning, $x_{\alpha}v^+ = 0 \forall x_{\alpha} \in L_{\alpha}$

Example: If L is simple and β is the maximal root in Φ relative to Δ then any nonzero element from L_{β} is a maximal vector (for the adjoint representation of L).

Note that the following fact about the Borel Subalgebra

$$B(\Delta) = H + \bigoplus_{\alpha \succ 0} L_{\alpha}$$

has a common eigenvector: which is a maximal vector.

Definition. If $V = \mathcal{U}(L) \cdot v^+$ for v^+ maximal vector of weight λ then we say V is standard cyclic.

Then λ is the highest weight on V .

Example: If V is an arbitrary A -module, then the sum of its weight spaces is direct.

Structure of such a submodule:

Fix nonzero $x_{\alpha} \in L_{\alpha}, \alpha \succ 0$ and choose $y_{\alpha} \in L_{\alpha}$ uniquely so that $[x_{\alpha}y_{\alpha}] = h_{\alpha}$.

Recall we have a partial order:

$\lambda \succ \mu \iff \lambda - \mu$ is a sum of positive roots.

Theorem 24. Consider $V, v^+ \in V_{\lambda}, \Phi^+ = \{\beta_1, \dots, \beta_m\}$. Then,

- V is spanned by vectors $y_{\beta_1}^{i_1} \cdots y_{\beta_m}^{i_m} \cdot v^+$ where $i_j \in \mathbb{Z}_{\geq 0}$.

b) The weights of of V are of the form:

$$\mu = \lambda - \sum_{i=1}^l k_i \alpha_i \lambda - \mu \succ 0 \forall \lambda$$

- c) $\forall \mu \in H^*, \dim V_\mu < \infty$ and $\dim V_\lambda = 1$.
- d) Each submodule of V is the direct sum of its weight spaces.
- e) V is indecomposable with a unique maximal submodule and unique irreducible quotient.
- f) Every nonzero homo-c image of V is also standard cyclic of weight λ .

Proof. a) $L = B(\Delta) + \bigoplus_{\alpha \prec 0} L_\alpha$. Then by the PBW theorem, it holds that $\mathcal{U}(L) \cdot v^+ = \mathcal{U}(\bigoplus_{\alpha \prec 0} L_\alpha) \mathcal{U}(B(\Delta)) \cdot v^+ = \mathcal{U}(\bigoplus_{\alpha \prec 0} L_\alpha) \cdot Fv^+$ [recall v^+ is a common eigenvector for B].

- b) Consider the vector $y_{\beta_1}^{i_1} \cdots y_{\beta_m}^{i_m} \cdot v^+$ has weight $\lambda - \sum i_j \beta_j$. Rewrite β as a non-negative \mathbb{Z} -linear combination of simple roots.
- c) \exists only finite number of polynomials $\sum i_j \beta_j$ from part b. These span the weight space V_μ , if $\mu = \lambda - \sum_i k_i \alpha_i$. The only vector of the form $\sum_j i_j \beta_j$ which has weight $\mu = \lambda$ is v^+ .
- d) Let W be a submodule of V and $w \in W$ such that w is a sum of v_i such that $v_i \in V_{\mu_i}$ and all the weights μ_i are distinct. We want to show that all $v_i \in W$.
Let $w = v_1 + \cdots + v_n$. We apply contradiction. WLOG suppose there exists $v_2 \notin W$.
Suppose $h \in H$ such that $\mu_1(h) \neq \mu_2(h)$.
 $h \cdot w = \sum_i \mu_i(h) v_i \in W \implies (h - \mu_1(h) \cdot L) \cdot w = (\mu_2(h) - \mu_1(h)) v_2 + \cdots + (\mu_n(h) - \mu_1(h)) \cdot v_n \neq 0$
Then $v_2 \in W$. Contradiction.
- e) By c and d each proper submodule of V lies in the sum of lies in the sum of weight spaces other than V_λ . Then the sum W of all submodule is still proper. Thus V has a unique maximal submodule and unique irreducible quotient.
Thus, V cannot be the direct sum of two proper submodules since each of them are contained in W .

□

15 Thursday, 3/13/2025, Representation Theory by Zoia

Existence and Uniqueness of Standard Cyclic Modules

WTS: $\forall \lambda \in H^*, \exists!$ irreducible cyclic L -module of highest weight λ [which can be infinite dimensional].

Theorem 25. Let V, W be standard cyclic modules of highest weight λ . If V, W are irreducible, then they are isomorphic.

Proof. Consider their sum: the L -module X such that $X = V \oplus W$ such that v^+ and w^+ represent the maximal vectors if weight λ in V, W respectively.

Let $x^+ = (v^+, w^+) \in X$. Then, x^+ is the maximal vector of weight λ .

Let's consider Y the L -submodule of X generated by x^+ . Then Y is standard cyclic as well.

Let's consider the projection maps $P : Y \rightarrow V, P' : Y \rightarrow W$.

In this case, P, P' are L -module homomorphisms.

Since $P(x^+) = v^+, P'(x^+) = w^+$ we can conclude that $\text{im } P = V, \text{im } P' = W$.

Since V, W are irreducible quotients of a standard cyclic module Y , V and W must be isomorphic by the previous theorem. \square

Construction of $Z(\lambda)$ by generators and relations

Also sometimes called Verma Modules.

Note that construction directly proves existence!

We define:

$$Z(\lambda) = U(L) \otimes_{U(B)} D_\lambda$$

where D_λ is a one dimensional vector space having v^+ as basis, and define action of B on D_λ by $(h + \sum_{\alpha \succ 0} X_\alpha) \cdot v^+ = h \cdot v^+ = \lambda(h)v^+$ for fixed $\lambda \in H^*$.

Choose nonzero element $x_\alpha \in L_\alpha$ where $\alpha \prec 0$.

Let $I(\lambda)$ be the left ideal in $U(L)$ generated by all such x_α along with $h_\alpha - \lambda(h_\alpha) \cdot 1$ ($\alpha \in \Phi^+$).

These generators annihilate v^+ of $Z(\lambda) \implies I(\lambda)$ also annihilates $Z(\lambda)$.

\exists a canonical homomorphism of left $U(L)$ -modules $U(L)/I(\lambda) \rightarrow Z(\lambda)$ sending the coset of 1 onto v^+ .

Meaning, $\bar{W} = W + I(\lambda) \mapsto W \otimes 1$.

PBW basis of $U(L) \implies$ we can see that this map sends the cosets of $U * B()$ onto $Fv^+ \implies$ this is one-to-one.

Thus, $Z(\lambda) \cong U(L)/I(\lambda)$.

Theorem 26 (Existence). Let $\lambda \in H^*$ then \exists an irreducible standard cyclic module $V(\lambda)$ of weight λ .

Proof. $Z(\lambda)$ is standard cyclic of weight λ and has a unique maximal submodule $Y(\lambda)$, and by the theorem in previous recitation. Then $V(\lambda) \cong Z(\lambda)/Y(\lambda)$ is an irreducible and standard cyclic module of weight λ . \square

Finite Dimensional Moddules

Necessary Conditions for finite dimensiona:

Let V be a finite dimensional irreducible L -module. Thus, $V \cong V(\lambda)$.

$\forall \alpha_i$ set $s_i(s_{\alpha_i})$ be the corresponding $\mathfrak{sl}(2, F)$ in L . Then, $s_i = L_{\alpha_i} \oplus L_{-\alpha_i} \oplus [L_{\alpha_i}, L_{-\alpha_i}]$. We have $x_i \in L_{\alpha_i}, y_i \in L_{-\alpha_i}$ and set $h_i = [x_i, y_i]$. Then $[h_i, x_i] = 2x_i, [h_i, y_i] = -2y_i$. This is how we get the copy: this subalgebra is isomorphic to $\mathfrak{sl}(2, F)$.

Then, $\lambda(h_i)$ determines completely $H_i \subset s_i$. By the theorem from 7.2, $\lambda(h_i)$ is a non-negative integer.

Theorem 27. If V is a finite dimensional irreducible L -module of highest weight λ then $\lambda(h_i)$ is a non-negative integer $1 \leq i \leq l$.

16 Thursday, 3/27/2025, Representation Theory by Zoia

Sufficient Condition for Finite Dimension

Lemma 28. Fix standard generators $\{x_i, y_i\}$ of L . Then the identities hold in $U(L)$ for $k \geq 0; i \leq i, j \leq l$.

- a) $[x_j, y_i^{k+1}] = 0$ if $i \neq j$
- b) $[h_j, y_i^{k+1}] = -(k+1)\alpha_i(h_j)y_i^{k+1}$
- c) $[x_i, y_j^{k+1}] = -(k+1)y_i^k(kj - h_i)$

Proof. a is by 10.1 $\alpha_j - \alpha_i$ not a root.

b, c induction. \square

Theorem 29. If $\lambda \in H^*$ is dominant integral then the irreducible L -module $V = V(\lambda)$ is finite dimensional, and its set of weights $\Pi(\lambda)$ is permuted by W , the weyl group with $\dim V_\mu = \dim V_{\sigma\mu}$ for $\sigma \in W$.

Proof. Denote by $\varphi : L \rightarrow gl(V)$. Fix a maximal vector v^+ of V of weight λ and $m_i = \lambda(h_i)$, $1 \leq i \leq l$

1. WTS: $y_i^{m_i+1} \cdot v^+ = 0$.

Denote $\omega = y_i^{m_i+1} \cdot v^+$.

$x_j \cdot \omega = 0$

$x_i y_i^{m_i+1} \cdot v^+ = y_i^{m_i+1} x_i v^+$

$(m_i + D y_i^{m_i}) \cdot (m_i v^+ - m_i v^+) = 0$.

$\implies x_i \omega = 0$. If $\omega \neq 0$ then ω is a max vector in V with weight of $\lambda - (m_i + 1)\alpha_i \neq \lambda$

\implies contradition in 20.2.

$\implies \omega = 0$

2. For $1 \leftarrow i \leq l$ V contains a nonzero fin. dimensional S_i module. The subspace spanned by $v^+, y_i v^+, y_i^{e_i} v^+, y_i^{m_i} v^+$ is stable under y_i according to 1. It is also stable under h_i sine each generator belongs to a weighr space of V . Thus, it is stable under h_i since ech belongs to a weight space of V . By c it is stable under x_i .

3. V is the sum of finite dimensional S_i -submmmodules. Denote by V' the sum of all other submodules of V .

by 2 V' is nonzero. On the other hand, let W be any finite dimensional S_i -module of V . The span of all subspaces $x_\alpha (\alpha \in \Phi)$ is finite dimensional and S_i is stable under L .

Since V is stable under L , $V' = V$ by irreducibility.

4. For $1 \leq i \leq l$, $\varphi(x_i)$ and $\varphi(y_i)$ are locally nilpotent endomorphim of V .

If $v \in V \implies \delta$ is in finite sum of fin dim S_i submodules, $\varphi(x_i)$ and $\varphi(y_i)$ are nilpotent.

5. $S_i = \exp \varphi(x_i)$, $\exp \varphi(-y_i) \exp \varphi(x_i)$ is a well defined automorphism of V by 4.

6. If μ is any weight of V then $S_i(V_\mu) = V_{\sigma\mu}$ where σ_i is reflect by d_i . V_μ lies in a fin. dim S_i -submodule V' and $S_i|_{V'}$ is the same as automorphism τ from 7.2.

7. The set of weights $\Pi(\lambda)$ is stable under W and $\dim V_\mu = \dim V_{\sigma\mu} [\mu \in \Pi(\lambda), \sigma \in W]$. Since W is generated by $\sigma_1, \dots, \sigma_L$ this follows from 6.

8. $\Pi(\lambda)$ is finite \implies the set of W -conjugates of all dominant integral linear functions $\mu \prec \lambda$ is finite and $\Pi(\lambda)$ is in this set.

9. $\dim V$ is finite. by 20.2c, $\dim V_\mu$ is finite $\forall \mu \in \Pi(\lambda)$.

\square

17 Thursday, 4/3/2025

Skipped

18 Thursday, 4/10/2025 by Hyeonmin

Convention

\mathfrak{G} a semisimple lie algebra over an algebraically closed field F of char 0, $F = \mathbb{C}$.

\mathfrak{h} a CSA, $\dim \mathfrak{h} = \ell$, $|\Phi^+| = m$, $\Phi \not\ni 0$.

$\mathfrak{n} = \bigoplus_{\alpha > 0} \mathfrak{G}_\alpha$, $\mathfrak{b} = \mathfrak{h} \oplus \mathfrak{n}$, $\mathfrak{n}^- = \bigoplus_{\alpha < 0} \mathfrak{G}_\alpha$.

$\Lambda_r = \mathbb{Z}\Phi$.

$Z(\mathfrak{G})$ = the center of $U(\mathfrak{G})$.

1.1: Axioms and Consequences

Definition. The BGG Category \mathcal{O} is the full subcategory of $\text{Mod}_{U(\mathfrak{G})}$ satisfying:

$\mathcal{O}1)$ $M \in \mathcal{O}$ is a f.g. $U(\mathfrak{G})$ -module.

$\mathcal{O}2$) $M \in \mathcal{O}$ is \mathfrak{h} -s.s., i.e. $M = \bigoplus_{\lambda \in \mathfrak{h}^*} M_\lambda$ where $M_\lambda = \{x \in M \mid \forall h \in \mathfrak{h}, h \cdot x = \lambda(h)x\}$.

$\mathcal{O}3$) $\forall v \in M, U(\mathfrak{n})v$ is finite dimensional.

Proposition 30. $M \in \mathcal{O}$ satisfies:

$\mathcal{O}4$: All weight space M_λ are finite dimensional.

$\mathcal{O}5$: $\Pi(M) := \{\lambda \in \mathfrak{h}^* \mid M_\lambda \neq 0\}$ is contained in the union of finitely many sets of the form $\lambda - \Gamma$ where $\lambda \in \mathfrak{h}^*$, Γ is the semigroup in Λ_r generated by Φ^+ .

Proof. $\mathcal{O}1, \mathcal{O}2 \implies M$ has a finite generating set consisting weight vectors [from axiom 2, we have a direct sum. So, a vector in M can be represented as a finite sum of weight vectors by the definition of direct sum].

Thus, we may assume that $M = U(\mathfrak{G})v$ [M is generated by exactly one weight vector] with a weight vector v of weight λ .

$\mathcal{O}3 \implies V = U(\mathfrak{n})v$ is finite dimensional.

$U(\mathfrak{h})$ is stable on this so $U(\mathfrak{b})v$ is finite dimensional.

Since the action of $U(\mathfrak{n}^-)$ produces weights lower, then $\exists \mu \in \mathfrak{h}^* : \Pi(M) \subseteq \mu - \Gamma$ [in fact $\mu - \lambda$]. This gives us $\mathcal{O}5$.

Write \forall weight $v, M_v = \{u \cdot w \mid u \in U(\mathfrak{n}^-), w \in V, \text{wt}(u \cdot w) = v\}$

Since $\forall w \in V, \exists$ only finitely many monomials $u = y_1^{i_1} \cdots y_m^{i_m}$ such that $\text{wt}(u \cdot w) = v$ and V = finite dimensional, then M_v is finite dimensional [$\mathcal{O}4$]. \square

Theorem 31 (1.1). Category \mathcal{O} satisfies:

- a) \mathcal{O} is a noetherian category.
- b) \mathcal{O} is closed under submodules, quotients, finite direct sums.
- c) \mathcal{O} is an abelian category.
- d) If L is finite dimensional \mathfrak{G} -module, then $\mathcal{O} \xrightarrow{L \otimes \mathfrak{c} -}$ \mathcal{O} is an exact functor.
- e) $M \in \mathcal{O}$ is a $Z(\mathfrak{G})$ -finite. i.e., $\forall v \in M, \text{span}(Z(\mathfrak{G})v)$ is finite dimensional.
- f) $M \in \mathcal{O}$ is finitely generated $U(\mathfrak{n}^-)$ -module.

Proof. a) $U(\mathfrak{G})$ is a noetherian ring. [It has a filtration which we can pass to a graded ring. Which is isomorphic to a polynomial ring.] We can invoke $\mathcal{O}1 \implies \mathcal{O}$ is a noetherian category.

- b) Quotient and finite direct sum ok. $U(\mathfrak{G})$ noetherian so submodule f.g.
- c) Since $\text{Mod}_{U(\mathfrak{G})}$ is an abelian category, we only need to check \exists kernels, cokernels, finite direct sums. (b) gives us this.
- d) $\mathcal{O}2 : (L \otimes M)_\nu = \bigoplus_{\mu+\lambda=\nu} (L_\mu \otimes M_\lambda)v$. $\mathcal{O}3$ ok. $\mathcal{O}1 : \{v_1, \dots, v_n\}$ basis of $L, \{w_1, \dots, w_p\}$ generating set of M . Let $N :=$ the submodule of $L \otimes M$ generated by $\{v_i \otimes w_j\}$. WTS: $L \otimes M = N$. We already know $N \subseteq L \otimes M$. Now, for any $v \in L$, since L is just a finite dimensional vector space, $v \otimes w_j \in N$ for any j . $\forall x \in \mathfrak{G}, x \cdot (v \otimes w_j) = (x \cdot v) \otimes w_j + v \otimes (x \cdot w_j)$. Since $x \cdot (v \otimes w_j) \in N$ and $(x \cdot v) \otimes w_j \in N \implies v \otimes (x \cdot w_j) \in N$. Iterating, $\forall u \in U(\mathfrak{G}), v \otimes (u \cdot w_j) \in N$.
- e) Since $v \in M$ is the direct sum of weight vectors, then may assume that $v \in M_\lambda$ for some $\lambda \in \mathfrak{h}^*$. Then $Z(\mathfrak{G}) \cdot v \in M_\lambda$. $[\forall z \in Z(\mathfrak{G}) : h \cdot (zv) = z(hv) = z(\lambda(h)v) = \lambda(h)(zv)]$. $\mathcal{O}4$ implies the result.
- f) $\{m_1, \dots, m_p\}$ a generating set of $M, N_0 = \text{span}\{m_1, \dots, m_p\}, N = U(\mathfrak{b})N_0$. $\mathcal{O}3$ implies $U(\mathfrak{n})N_0$ f.g. Thus A basis of N generates M as a $U(\mathfrak{n}^-)$ -module.

\square

1.2: Highest Weight Modules

Definition. $M = U(\mathfrak{G}).v^+$ is a highest weight module where v^+ is maximal vector of λ .

Remark. $M \in \mathcal{O}, \exists$ a maximal vector v^+ in M .

Theorem 32 (1.2). $M = U(\mathfrak{G}) \cdot v^+$ a highest weight module of weight λ . Chose $y_i \neq 0$ in $G_{-\alpha_i}$. Then,

- a) M is spanned by $y_1^{i_1} \cdots y_m^{i_m} v^+ (i_j \geq 0)$. Thus M is \mathfrak{h} -s.s.
- b) All $\text{wt } \mu$ satisfies $\mu \leq \lambda$.
- c) $\forall \text{wt } \mu, \dim M_\mu < \infty, \dim M_\lambda = 1 \implies M \in \mathcal{O}$.
- d) Each nonzero quotient is again a highest weight module of weight λ .
- e) A submodule generated by a maximal vector $\mu < \lambda$ is proper.
- f) M has a unique maximal submodule and unique simple quotient. M is indecomposable.
- g) All simple highest weight module M of weight λ are isomorphic. Moreover, $\dim \text{End}_{\mathcal{O}} M = 1$

Corollary 33 (1.2). $M \neq \mathcal{O}$, nonzero. Then M has a filtration $0 \subseteq M_1 \subseteq \cdots \subseteq M_n = M$ with nonzero quotients. Each of which is a highest weight module.

Sketch. $\forall V := \mathfrak{n}$ -submodule generated by a finite generating set of M of weight vectors. $\mathcal{O}3$ implies finite dimensional. Now induct on $\dim V$. \square

1.3 Verma modules and Simple modules

Definition. $\mathbb{C}_\lambda = \mathbb{C}$ a \mathfrak{b} -module:

- $\forall h \in \mathfrak{h}, v \in \mathbb{C}_\lambda : h \cdot v = \lambda(h)v$.
- $\forall n \in \mathfrak{n}, v \in \mathbb{C}_\lambda : nv = 0$.

$M(\lambda) := U(\mathfrak{G}) \otimes_{U(\mathfrak{b})} \mathbb{C}_\lambda$: a Verma Module.

- Finite $U(\mathfrak{n}^-)$ -module of rank 1.
- $M(\lambda) = U(\mathfrak{G}).v^+$ where $v^+ = 1 \otimes 1$.

Remark. Let N be a finite dimensional $U(\mathfrak{b})$ -module on which \mathfrak{h} acts semisimply. Then $U(\mathfrak{G}) \otimes_{U(\mathfrak{b})} N \in \mathcal{O}$. This defines an exact functor: action of $\mathfrak{h} \rightarrow \mathcal{O}$.

Definition. $L(\lambda)$ [resp. $N(\lambda)$] is the unique simple quotient (resp. unique maximal submodule) of $M(\lambda)$ [from theorem 1.2(f)].

Theorem 34 (1.3). Every simple module in \mathcal{O} of maximal weight λ is isomorphic to $L(\lambda)$. Moreover, $\dim \text{Hom}(L(\mu), L(\lambda)) = \delta_{\mu\lambda}$.

Proof. Let $M \in \mathcal{O}$, simple of maximal weight λ . Let $v^+ \in M_\lambda \implies U(\mathfrak{G})v^+ \in M$ highest weight module.

Theorem 1.2g implies the result.

When $\mu = \lambda$ we know that $\dim \text{End}_{\mathcal{O}} M = 1$. by 1.2g.

When $\mu \neq \lambda$ we claim that $\text{Hom}(L(\mu), L(\lambda)) = 0$.

Let $0 \neq f \in \text{Hom}(L(\mu), L(\lambda))$. These are simple modules, thus $\ker f = 0, \text{im } f = L(\lambda)$. So this is in fact an isomorphism.

$\forall m \in L(\mu)_\nu, h \cdot f(m) = f(h \cdot m) = f(\nu(h)m) = \nu(h)f(m) \implies f(m) \in L(\lambda)_\nu$.
 $f : L(\mu)_\nu \xrightarrow{\sim} L(\lambda)_\nu$.

So, μ is a weight of $L(\lambda)$. Therefore $\mu \leq \lambda$. Isomorphism implies $\lambda \leq \mu$. Thus $\mu = \lambda$. Contradiction. \square

19 Thursday, 4/17/2025

1.4 Maximal vectors in Verma modules

Proposition 35 (1.4). Given $\lambda \in \mathfrak{h}^*$ and fixed $\alpha \in \Delta$, suppose $n =: \langle \lambda, \alpha^\vee \rangle \in \mathbb{Z}_{\geq 1}$. If v^+ is a maximal vector of weight λ in $M(\lambda)$ then $y_\alpha^{n+1} \cdot v^+$ is the maximal vector of weight $\mu = \lambda - (n+1)\alpha < \lambda$.

Thus, \exists a nonzero hom $M(\mu) \rightarrow M(\lambda)$ whose image is in $N(\lambda)$.

Lemma 36 (1.4). a) $\forall i \neq j, [x_j, y_i^{k+1}] = 0$.

b) $[h_j, y_i^{k+1}] = -(k+1)\alpha i(h_j) y_i^{k+1}$

c) $[x_i, y_i^{k+1}] = -(k+1)y_i^k (k \cdot 1 - h_i)$.

Proof. maximality:

- $\alpha_i = \alpha : x_\alpha (y_\alpha^{n+1} v^+) = [x_\alpha, y_\alpha^{n+1}] v^+ + y_\alpha^{n+1} \cancel{x_\alpha v^+} = -(n+1) y_\alpha^n (n = \lambda(h_\alpha)) v^+ = 0$.
- $\alpha_i \neq \alpha : x_i (y_\alpha^{n+1} v^+) = [x_i, y_\alpha^{n+1}] v^+ = 0$
- Weight of $y_\alpha^{n+1} v^+ = \mu$: $\forall 1 \leq j \leq l, h_j (y_\alpha^{n+1} v^+) = [h_j, y_\alpha^{n+1}] v^+ + y_\alpha^{n+1} (\lambda(h_j) v^+) \stackrel{b}{=} \underbrace{(-(n+1)\alpha(h_j) + \lambda(h_j))}_{\mu(h_j)} y_\alpha^{n+1} v^+$

Consider $f : M(\mu) \rightarrow M(\lambda)$ by $v_\mu \mapsto y_\alpha^{n+1} v^+$.

Then $f(M(\mu)) = U(\mathfrak{g}) \cdot y_\alpha^{n+1} \cdot v^+$ is a proper submodule $\subseteq N(\lambda)$ \square

Corollary 37 (1.4). Let v^+ be instead a maximal vector of weight λ in $L(\lambda)$. Then $y_\alpha^{n+1} v^+ = 0$.

Proof. $L(\lambda)$ is simple so there doesn't exist maximal vector of $\mu < \lambda$. \square

1.5 $\mathfrak{sl}_2(\mathbb{C})$

Fix the standard basis $\{h, x, y\}$.

$$\dim \mathfrak{h}^* = 1 \implies h^* \xrightarrow{\cong} \mathbb{C}, \lambda \mapsto \lambda(h).$$

Identically, $\Lambda = \{\lambda \in \mathfrak{h}^* \mid \langle \lambda, \alpha^\vee \rangle \in \mathbb{Z}, \forall \alpha \in \Phi\}$ with \mathbb{Z} and identically $\Lambda_r = \mathbb{Z}\Phi$ with $2\mathbb{Z}$.

$$\text{eg } \Phi = \{\alpha, -\alpha\}; \alpha(h) = 2 \implies \rho = \frac{\alpha}{2} \implies \Lambda = \mathbb{Z}\rho, \Lambda_r = \mathbb{Z}\alpha = 2\mathbb{Z}\rho.$$

$M(\lambda)$ has weights $\lambda, \lambda - 2, \lambda - 4$ each with mul 1.

Basis vector ($i \geq 0$) for $M(\lambda)$ can be chosen so that ($v_{-1} = 0$):

- $h \cdot v_i = (\lambda - 2i) v_i$
- $x \cdot v_i = (\lambda - i + 1) v_{i-1}$
- $y \cdot v_i = (i + 1) v_{i+1}$

Claim 1: $\dim L(\lambda) < \infty$ iff $\lambda \in \mathbb{Z}_{\geq 0}$.

Note: weight of $L(\lambda) : \lambda, \lambda - 2, \dots, -\lambda$

Therefore, $N(\lambda) \cong L(-\lambda - 2)$

Claim 2: $M(\lambda)$ simple iff $\lambda \notin \mathbb{Z}_{\geq 0}$.

\implies is done. \iff : suppose $M(\lambda)$ is not simple. Then $\exists N \subsetneq M(\lambda)$ having a maximal vector w which is not in $\mathbb{C}v^+$.

Then, $\exists k \in \mathbb{Z}_{\geq 0} : w = y^{k+1} v^+$ (up to scalar). Then $0 = xw = [x, y^{k+1}] v^+ = -(k+1)y^k (k - \lambda) v^+$.

Thus $k = \lambda$.

1.6 Finite Dimensional Modules

Theorem 38 (1.6). TFAE:

- a) $L(\lambda)$ fin dim
- b) $\lambda \in \Lambda^+ = \{\lambda \in \mathfrak{h}^* \mid \forall \alpha \in \Phi, \langle \lambda, \alpha^\vee \rangle \in \mathbb{Z}_{\geq 0}\}$
- c) $\dim L(\lambda)_\mu = \dim L(\lambda)_{w\mu} \forall w \in W, \mu \in \mathfrak{h}^*$.

1.7 Action of the Center

Definition. Let $M = M(\lambda)$ be gen by v^+ . For $z \in Z(\mathfrak{g})$ define $\chi_\lambda(z) \in \mathbb{C} : zv^+ = \chi_\lambda(z)v^+$ [since $zv^+ \in M_\lambda$, $\dim M_\lambda = 1$].

Then $\chi_\lambda : Z(\mathfrak{g}) \rightarrow \mathbb{C}$ the central character associated with λ

Note: $\forall v \in M, zv = \chi_\lambda(z)v$ since $v = u \cdot v^+, u \in U(\mathfrak{n}^-)$ and $zu = uz$.

χ_λ : alg hom and $\ker \chi_\lambda$ is a maximal ideal in $Z(\mathfrak{g})$.

More generally, any alg hom $\chi : Z(\mathfrak{g}) \rightarrow \mathbb{C}$ is called a central character.

Definition. Let $pr : U(\mathfrak{g}) \rightarrow U(\mathfrak{h})$ be the projection by sending other monomials to 0.

Then $\xi = pr|_{Z(\mathfrak{g})}$ is called the Harish-Chandra homomorphism.

Note: $\forall z \in Z(\mathfrak{g}), \chi_\lambda(z) = \lambda(\xi(z))$.

Therefore $\chi_\lambda(z)v^+ = zv^+ = pr(z)v^+ = \lambda(pr(z))v^+$