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9 Thursday, 1/16/2025, Cartan Subalgebras (CSA)
by Rostyslav

Corollary 1 (15.3). Let L be semisimple. CSA’s of L are precisely the maximal
toral subalgebras of L.

Proof. =⇒ : Let H be a maximal toral subalgebra.
=⇒ H-abelian =⇒ H-nilpotent, NL(H) = H since L = H +

⊔
α∈Φ Lα with

[H,Lα] = Lα for α ∈ Φ =⇒ H-CSA.
⇐= : Let H-CSA. x = xs + xh by Jordan decomposition.
=⇒ L0(adxs) ⊂ L0(adx) for x ∈ L semisimple.
L0(adxs) = CL(xs) since adx is diagonal.
H- minimal Engel.
By defintion, =⇒ L0(adxs) = CL(xs) = H.
But CL(xg) contains maximal toral subalgebra which is CSA. Thus it itself is minimal
Engel. H-maximal toral.
Detaills:
L ⊂ H. H is CSA ⇐⇒ H is nilpotent, NL(H) = H.
L0(ad(xs)) ⊂ L0(ad(x)).
L0(ad(xs)) = {y ∈ L | ad(xs)(y) = 0} = {y ∈ L | [xs, y] = 0}.
[x, y] = [xs, y]︸ ︷︷ ︸

=0

+[xn, y].

ad(x)m(y) = ad(xn)
m(y) = 0 for m≫ 0.

Lemma 2 (15.4.B). Let ϕ : L→ L′ [epimorphism]. Let H ′ be CSA of L′. Then, any
CSA of ϕ−1(H ′) is also a CSA of L.
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Definition. x ∈ L is callled strongly ad-nilpotent if ∃y ∈ L and ∃a ̸= 0 eigenvalue of
ad y such that x ∈ La(ad y).

[La(ad y), Lb(ad y)] ⊂ La,b(ad y)

Remark. By Lemma 15.1 if x is strongly ad-nilpotent then x is ad-nilpotent.
Recall: x ∈ La(ad y) means ∃m > 0 : (ad y − a · id)m(x) = 0.
This implies that adx is nilpotent after some calculation.

Definition. N (L) is the set of strongly ad-nilpotent elements.

Definition. E (L) < IntL := ⟨exp(adx) | x is ad-nilpotent⟩ generated by ∀exp adx
where x ∈ N (L).

Remark. N (L) is stable under ∀x ∈ Aut(L).
Thus, E (L) ⊴ Aut(L).
K ⊂ L =⇒ N (K) ⊂ N (L).
Then,

Definition. E (L,K) is generated by exp adx∀x ∈ E (K)

Then, E (K) = E (L,K).
If ϕ : L→ L′ is an epimorphism then ϕ(La(ad y)) = L′

a(adϕ(y)).
=⇒ ϕ(N (L)) = N (L′).

Lemma 3 (16.1). Let ϕ : L→ L′ be an epimorphism. If σ′′ ∈ E (L′) =⇒ ∃σ ∈ E (L)
such that:

L L′

L L′

ϕ

σ σ′

ϕ

Proof. If σ′ = exp adx′ x′ ∈ N (L′) ∃x s.t. ϕ(x) = x′.
∀z ∈ L, (ϕ ◦ exp adL x)(z) = ϕ(z+ [x, z] + [x, [x, z]]) = ϕ(z)+ [x′, ϕ(z)] + [x′, [x′, ϕ(z)]]
= (exp adL x′)(ϕ(z)) =⇒ QED.

Theorem 4 (16.2). Let L be solvable. Let H1, H2 be CSA’s of L.
Then, H1 is conjugate with H2 by an element of E (L).

10 Thursday, 1/23/2025, Cartan Subalgebra (CSA)
by Rostyslav

Proof. Induction on dimL.
Base case: suppose dimL = 1. Since L is nilpotent L must be trivial.
Assume that L is not nilpotent. L–solvable =⇒ L has non-zero abelian ideals. eg
least non-zero term of the derived series. Choose such A of least possible dimension.
Set L′ = L/A. We have ϕ : L→ L/A = L′ given by x 7→ x′.
Lemma 15.4(image of CSA is CSA) implies H ′

1, H
′
2 are CSAs of the solvable algebra

L′. By induction ∃σ ∈ E (L′) such that σ(H ′
1) = H ′

2.
Lemma 16.1(the commutative diagram) implies ∃σ ∈ E (L) such that the diagram
commutes. So, σ maps K1 = ϕ−1(H ′

1) to ϕ−1(H ′
2) = K2

But now H2 and σ(H2) are both CSA”s of K2.
IfK2 is smaller than L induction allows us to find τ ′ ∈ E (K2) such that τ ′σ(H1) = H2.
But E (K2) consists of restrictions of E (L,K2) to K2.
∃τ such that τσ(H1) = H2 for τ ∈ E (L) =⇒ done.
Otherwise L = K2 = σ(L1).
K2 = K1 and L = H2 +A = H1 +A.
Theorem 15.3 =⇒ CSA H2 = L0(adx) for suitable x ∈ L.
A being adx stable, so by lemma 15.1,
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A = A0(adx)⊕A∗(adx)

and each summand is stable under H2 +A.
Since A is minimal, A = A0(adx) or A = A∗(adx)
A cannot be equal to A0(adx) since in that case A ⊂ H2, L = H2.
But since L is not nilpotennt we have a contradiction.
Thus, A = A∗(adx) =⇒ A = L∗(adx). Since L = H1 + A we can write x = y + z
with y ∈ H1, z ∈ A∗(adx).
Since adx is invertible on L∗(adx) we can write z = [x, z′] where z′ ∈ L∗(adx).
A-abelian =⇒ (ad z′)2 = 0.
Thus, exp ad z′ = 1L + ad z′.
Applying to x we have, x− z = y.
=⇒ H0 = L0(ad y) must also be a CSA of L. Since y ∈ H1, H ⊃ H1 and both
minimal Engel, H = H1.
H1 is conjuate to H2 using exp ad z′.
We only need to show that, exp ad z′ ∈ E (L).
z′ can be written as sum of strongly ad-nilpotent elements of A = L∗(adx)
=⇒ A-abelian so exp ad z′ =

∏
exp ad zi ∈ E (L).

So we’re done.

Consider B = upper triangular matrices. It is a lie algebra. What is a CSA of this?
Attempt: we have H = upper triangular matrices with 0 diagonal. NB(H) = B. But
it is not nilpotent so it doesn’t work.
However, attempt 2: we can take H = diagonal matrices.
In fact, if g ⊂ gln is a subalgebra and g contains a diagonal matrix with all entries
different, then the subalgebra h of g containing all diagonal matrices on g is a CSA.

Definition. A maximal solvable subalgebra of a lie algebra L is called a Borel
subalgebra.

Lemma 5 (16.3.A). If B is a borel subalgebra of L then B = NL(B). Aka, Borel
subalgebras are self normalizing.

Proof. Let x ∈ NL(B). Then, B + Fx is a subalgebra of L. It is solvable since
[B + Fx,B + Fx] ⊂ B. Since B is maximal, we must have x ∈ B.

Lemma 6 (16.3.B). If RadL ̸= L then there is a bijection between the sets of Borel
subalgebras of L and Borel subalgebras of L/RadL.

Proof. RadL is a solvable ideal of L.
Therefore, B +RadL is a solvable subalgebra of L.
=⇒ by maximality, we’re done.

Definition. Let H be a CSA in a semisimple lie algebra L, Φ a root system of L
relative to H. Fix a base ∆ and a set of positive roots.
Set B(∆) = H ⊔α>0 Lα

And N(∆) = ⊔α̸>0Lα.
Then B(∆) is the standard Borel subalgebra relative to H.
N(∆) is the derived algebra of B(∆).

Lemma 7 (16.3.C.1). N(∆) is nilpotent.
If x ∈ Lα(α > 0) then,
Application of adx to root vector increases the height by at least 1.
=⇒ decreasing central series goes to zero.
Thus, B(∆) is solvable.
Let K ⊃ B(∆). Then, K is stable under adH.
Then K must include some Lα with α < 0.
Thus, simple Sα ⊂ K =⇒ K is not solvable.

Note: Sα = ⟨Lα, L−α, H⟩
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Lemma 8 (16.3.C2). All standard Borel subalgebras of L relative to H are conjugate
under E (L).

Proof. By 14.3 the reflection σα acting on H may be extended to an inner automor-
phism τα of L which is, by construction, in E (L).
τα would send B(∆) to B(σ∆).
The Weyl Group is generated by those reflections, so we see that E (L) will act tran-
sitively on standard Borel subalgebras relative to H.

Theorem 9 (16.4). The Borel subalgebras of an arbitrary Lie algebra L are all
conjugate under E (L).

We omit the proof for now.

Corollary 10. All the CSAs of lie algebra L are all conjugate under E (L).

Proof. Let H,H ′ be CSAs. They’re nilpotent by definition. Therefore, they’re solv-
able.
Therefore, H ⊂ B,H ′ ⊂ B′ where B,B′ are some borel subalgebra.
By the previous theorem, ∃σ ∈ E (L) such that σ(B) = B′.
Thus, σ(H) and H ′ are CSAs of B′.
By theorem 16.2, ∃τ ′ ∈ E (B′) such that τ ′σ(H) = H ′.
But τ ′ is a restriction of some τ ∈ E (L,B′) ⊂ E (L). Therefore,

τσ(H) = H ′, τσ ∈ E (L)

11 Thursday, 1/30/2025, Cartan Subalgebra (CSA)
by Rostyslav

L

K

C C ′

B ∩K B′ ∩K

B ∩B′

N ′

We prove theorem 16.4.

Proof. First induction hypothesis dimL upwards.
base: dimL = 1 is trivial.
WLOG by lemma 16.1 and 16.3B, we can assume that L is semisimple.
Fix a standard borel subalgebra relative to some CSA.
Suffices to shwo that ∀B′ -other borel subalgebra is conjugate to B under E (L).
If B′ ∩B = B then B′ = B by maximality (both are borel).
Second induction hypothesis
dim(B ∩B′) downwards for all larger dimension are conjugate.
(1) Suppose that B ∩B′ ̸= 0.
Case i: set N ′ of nilpotent elements of B ∩B′ is nonzero.
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B-standard =⇒ N ′ subspace derived alg of B ∩B′ consists of nilpotent elements.
=⇒ N ′-ideal of B ∩B′.
N ′-not an ideal of L =⇒ K = NL(N) is proper.
Consider the action of N ′ on B/(B∩B′) induced by ad for all x ∈ N ′ acts nilpotently
on this vector space.
Theorem 33 =⇒ ∃y such that y+(B ∩B′) killed by ∀x ∈ N . ie st [xy] ∈ B ∩B′, y /∈
B ∩ B′ but [xy] is also [B,B] =⇒ [xy] is nilpotent =⇒ [xy] ∈ N ′ or y ∈ NR(N

′).
y /∈ B ∩B′ = B ∩K
Same way B ∩B′ ⊊ B′ ∩K.
B ∩K,B′ ∩K solvable subalgebra.
C,C ′ borel subalgebra containing them K ̸= L by induction ∃σ ∈ E (L,K) ⊂ E (L)
such that σ(C ′) = C.
Since B ∩ B ⊊ C and B ∩ B′ ⊆ C ′ second induction hypothesis implies ∃τ ∈ E (L)
such that τσ(C ′) ⊂ B
B ∩ τσ(B′) ⊃ τσ(C ′) ∩ τσ(B′) ⊃ τσ(B′ ∩K) ⊋ τσ(B ∩B′)
=⇒ Second induction hypothesis
B is conjugate under E (L) to τσ(B′) so we have proved case i.
Case ii: There are no non-zero nilpotent elements in B ∩B′.
Then, 4.2.c and 16.3.a implies that B ∩B′ = T = toral (semisimple).
B is standard: B(∆) = H +N , N(∆) = N .
[B,B] = N,T ∩N = 0.
Thus, NB(T ) = CB(T ).
Let C be a a CSA of CB(T ). By (one of the) definitions of CSA we know it is self
normalizing and N -nilpotent.
Thus, T ⊂ NCB(T )(C) = C.

In n ∈ NB(C
′)(ad t)kn = 0. t ⊂ T ⊂ C.

ad t-semisimple =⇒ k = 1, n ∈ CB(T )
ad t · n = [t, n].
=⇒ NB(C) = NCB(T )(C) = C.
=⇒ C is self-normalizing not only in the centralizer, but also in B. It is also

nilpotent.
Therefore, C is a CSA of B.
C-maximal toral of L is conjugate under E (B) =⇒ under E (L).
Thus, WLOG we can assume that T ⊂ H.
Suppose T = H. Then, B′ ⊋ H.
=⇒ B′ includes at least on e Lα with α < 0 relative to ∆.
τα(B

′) = B′′, B′′ ∩B ⊃ H + Lα

=⇒ second induction hypothesis
B′′ is conjugate to B under E (L)
Let T ⊊ H.
B′ ⊂ CL(T )
By first induction hypothesis we know it will have less degree.
dimCL(T ) < dimL.
H ⊂ CL(T ) we can find a boorel subalgebra B′′ of CL(T ) that will contain H.
=⇒ B′ and B′′ are conjugate under E (L,CL(T )) ⊂ E (L).
B′ ⊊ CL(T ), T = B ∩B′.
We can find an eigenvector x ∈ B′ for adT and t ∈ T such that [t, x] = ax. a ∈ Q+.
S := H + ⊔α∈ΦLα

α(t) ∈ Q+.
S is subalgebra of L.
Similarly to llemma 16.3.c.2, S is solvable.
B′′ ⊃ C - Borel subalgebra.
B′′ ∩B′ ⊃ T + Fx ⊋ T = B ∩B′ here x is eigenvector
dimB′′ ∩B′ > dimB ∩B′

Second induction hypothesis =⇒ B′′ is conjugate to B.
Similarly, we can prove that B′′ is conjugate to B′

Thus, B is conjugate to B′.
(2) B ∩B′ = 0
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Then dimL ≥ dimB + dimB′.
B is standard so dimB ≥ 1

2 dimL.
Let T -maximal toral subalgebra of B′.
Assume T = 0 =⇒ B only has nilpotent elements =⇒ by Engel’s theorem, B has
to be nilpotent.
By lemma 16.3.A, since B is borel, it is self normalizing B = NL(B).
Then B is a CSA of L.
15.3 =⇒ all of CSAs of L are toral.
Being toral and nilpotent is a contradiction.
Thus, T ̸= 0.
T ⊂ H0-maximal toral of L
=⇒ B ∩B′′ ̸= 0 =⇒ B′ is conjugate to B.
dimB′ = dimB′′ > 1

2 dimL =⇒ we have a contradiction.

There’s a relationship between E (L) and the inner automorphisms.
Suppose L is semisimple lie algebra, H-CSA of L, ∆-base, Φ-root system
Let τ ∈ AutL. We can see that τ(B) is conjugate to B by σ1 ∈ E (L).
We can find σ2 ∈ E (L,B) ⊂ E (L) that sends σ1τ(H) to H by 16.2.
σ2σ1τ preserves H and B =⇒ it induces an automorphism on Φ. Leave ∆ invariant.
Let ρ be such automorphism. It is not unique, but ρσ2σ1τ(xα) = cαxα [α > 0],
ρσ2σ1τ(yα) = c−1

α yα
ρσ2σ1τ(hα) = hα

τ differes from E (L) · Γ(L) by a diagonal automorphism.
And diagonal automorphisms are inner automorphisms.
Therefore, Aut(L) = Inn(L).Γ(L).
Note: in the semidirect case, E (L) = Inn(L).

12 Thursday, 2/6/2025, Universal Enveloping Al-
gebra by Hechi

Notation:
F = field, L/F lie algebra, V/F vector space.

Definition (Tensor Algebra). TmV = V ⊗m.

T 0V = F, T 1V = V,

TmV = V ⊗ · · · ⊗ V︸ ︷︷ ︸
m copies

T (V ) =
∐∞

i=0 T
iV

Multiplication by Tensor Product.

Universal Property:

V T (V )

A

i

ρ

A is an F-algebra with 1.
Symmetric Algebra:
Let I ⊂ T (V ) be the two-sided ideal generated by all elements of the form:

x⊗ y − y ⊗ x, x, y ∈ V

We define S(V ) = T (V )/I.
We can write:
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S(V ) =

∞∐
i=0

SiV

By writing it as a direct sum of terms of a degree.
S0V = F, S1V = V [since I contains deg ≥ 2 terms, they remain unchanged].
We can wrie:

I =

∞∐
i=2

Ii, Ii = I ∩ T i

This also enjoys a Universal Property: when A is commutative:

T T (V )

A

i

ρ

If V is a finite dimensional vector space then S(V ) are polynomials!

Definition (Universal Enveloping Algebra). An universal enveloping algebra is the
pair (U, i) where U is an algebra and i : L → U such that:

i([xy]) = i(x)i(y)− i(y)i(x) ∗

We also must have a universal property: suppose A is an F-algebra with 1. Then, if
j : L → A satisfies (∗) then,

L U

A

i

j
ϕ

From this we also know that (U, i) is unique upto isomorphism.

Construction of the Universal Enveloping Algebra

Let J ⊂ T (L) be the 2-sided ideal generated by elements x⊗ y − y ⊗ x− [xy].
Define U(L) := T (L)/J . Then U(L) satisfies (∗).
But this is not very explicit. We can explicitly construct it using the PBW theorem.
From now on let T := T (L), S := S(L), U = U(L). We have a canonical projection
π : T → U .
Let Tm = TmL, Sm = SmL.
We also define the following filtrations:

Tm = T 0 ⊕ · · · ⊕ Tm

Um = π(Tm) ⊂ U,U−1 = 0

Facts: UmUp ⊂ Um+p. Um ⊂ Um+1.
Thus it makes sense to define Gm = Um/Um−1. This is a F-vector space.
The multiplication on U induces a well defined map:

Gm ×Gp → Gm+p

Since lower degree terms just become 0.
We can extend this to G =

∐∞
i=0 G

i

Then, we have multiplication on G:

G⊗G→ G

This gives G an F-algebra structure. The algebra is abelian.
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We can define the map:

ϕm : Tm → Um → Gm

Combining all the m, we have a surjective homomorphism:

ϕ : T ↠ G

Lemma 11 (17.3). ϕ(I) = 0 and therefore ϕ induces a surjective map ω : S ↠ G.

Proof. By definition of J ,

π(x⊗ y − y ⊗ x︸ ︷︷ ︸
deg 2

) = π([xy]︸︷︷︸
deg 1

)

Thus, ϕ(x⊗ y − y ⊗ x) ∈ U1/U1 ⊆ U2/U1 thus ϕ(x⊗ y − y ⊗ x) = 0.
Hence the result.

Theorem 12 (Poincaré-Birkhoff-Witt, 17.3). ω : S
∼=−→ G.

Corollary 13 (17.3A). We want to give a basis of U . If W ⊂ Tm is a subspace such

that Tm → Sm sends W
∼=−→ Sm then π(W ) is a complement of Um−1 in Um

Proof. The following diagram commutes by construction

Um

Tm Gm

W Sm

πm

∪

ϕm

∼=

∼=

∼=

Bottom map gives W
∼=−→ Gm. Top map, then ϕm(W ) must be complement of Um−1

Corollary 14 (17.3B). i : L → U is injective.

Proof. Take W = T 1.

Corollary 15 (17.3C). This is traditionally known as the PBW theorem. Assume L
has a countable basis (x1, · · · ). Then,
{xσ(1) · · ·xσ(m)},m ∈ Z≥0, σ permutation so that σ(1) ≤ σ(2) ≤ · · · ≤ σ(m) is a basis
for U .

Proof. Let W = span
{
xξ(1) ⊗ · · · ⊗ xσ(m) : σ(1) ≤ · · · ≤ σ(m)

}
⊆ Tm.

Clearly W
∼=−→ Sm. Then we use corollary 17.3A.

Proof of PBW. By well-ordering-principle we can define (χλ, λ ∈ Ω) be an ordered
basis of L. This gives isomorphism S ∼= F[zλ]λ∈Ω where zλ are just variables indexed
by Ω.
Let Σ = (λ1, · · · , λm) index with length m. Then zΣ = zλ1

· · · zλm
∈ Sm.

xσ = xλ1 ⊗ · · · ⊗ xλm ∈ Tm.
We say Σ is increasing if λ1 ≤ · · · ≤ λm or ∅.
We define z∅ = 1.
{zΣ : Σ is increasing} is a basis of S.
We say λ ≤ Σ if λ ≤ µ∀µ ∈ Σ.
The idea is to give S a structure of L-module.
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Lemma 16 (17.4A). Fix m ∈ Z>0. Then there exists a unique linear map fm :
L ⊗ Sm → S with the following properties:
Am: fm(χλ ⊗ zΣ) = zλzΣ∀λ ≤ Σ, zσ ∈ Sm.
Bm: fm(χλ ⊗ zΣ)− zλzΣ ∈ Sk∀k ≤ m, zΣ ∈ Sk

Cm: fm(χλ ⊗ fm(xµ ⊗ zτ )) = fm(xµ ⊗ fm(χλ ⊗ zτ )) + fm([χλxµ]⊗ zτ )∀zτ ∈ Sm−1.

Proof of Lemma: induction.

Lemma 17 (17.4B). ∃ representation ρ : L → gl(S) with:

a) ρ(χλ)zΣ = zλzσ, ∀kλ ≤ Σ

b) similar

c) similar

Proof of Lemma: Comining Am, Bm, Cm for all m.

Lemma 18 (17.4C). Let t ∈ Tm ∩ J , then tm (homogeneous degree m part of t) is
in I.

Proof of Lemma: Can be seen from the commutative diagram:

L gl(S)

U

T

ρ

J ⊂ ker(T → gl(S)) so ρ(t) = 0. Then we can write tm as linear combination of xΣ,Σ
has length m.
Then look at the highest deggree term of ρ(t). It is a linear combination of zΣ. But
this term is 0. So tm ∈ I.
We’re done with all the lemma. We finally prove PBW.
Apply 17.4C to t− t′.
Let t ∈ Tm such that π(t) ∈ Um−1.
Then ∃t′ soo that π(t) = π(t′). Note that t′ has degree strictly smaller than t.
Then, t− t′ ∈ J .
Thus it satisfies the condition of 17.4C.
Therefore the m-degree part of t− t′ must be t [since t ∈ Tm].
Thus, by C, t ∈ I.

13 Thursday, 2/13/2025, Universal Enveloping Al-
gebra by Hechi

Definition. Given a set X a lie algebra J is free on X if:

X J

L

∃!

Construction: Let V be the vector space with a basis labeled by X, so V = F(X).
Let T (V ) be the tensor algebra. Then L is the lie subalgebra generated by X.
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Serre’s Theorem

Let L be a lie algebra over an algebraically closed characteristic 0 field. L, H,∆ =
{α1, · · · , αl}. xi ∈ Lαi

, yi ∈ Lαi
, hi ∈ H where,

S1: [hihj ] = 0
S2: [xiyi] = hi, [xiyj ] = 0, i ̸= j
S3: [hixj ] = ⟨;αj .αi⟩xj , [hiyj ] = −⟨αj , αi⟩uj

S+
ij , S

−
ij

Theorem 19 (Serre’s Theorem). Given root system Φ with basis ∆, there exists L
generated by {xi, yi, hi} satisfying S1, S2, S3, S

±
ij and L has root system Φ. (L has

CSA H etc).

Idea: use the free Lie algebra and quotient by relations.
By the classification of root systems, there are only:
Al(l ≥ 1)
Bl(l ≥ 2)
Cl(l ≥ 3)
Dl(l ≥ 4)
E6

E7

E8

F4

G2

The first four are given in the first chapter.
Only thing needed to show is that they are semisimple!
From now we assume dimL <∞.

Theorem 20. L is called reductive if rad(L) = Z(L). If L is reductive then,

L = [LL]⊕ Z(L)

Proof. Note that [L/Z(L), L/Z(L)] = L/Z(L) since Z(L) = rad(L). Thus, [LL] maps
surjectively to L/Z(L) by the canonical projection.
We also know that L′ = L/Z(L) acts on L by the adjoint action. Thus, L = M⊕Z(L)
for some M . We want to show that M = [LL].
[LL] = [M ⊕Z(L),M ⊕Z(L)] = [MM ] ⊆M . But [LL] maps surjectively to L/Z(L),
which isn’t possible if it is properly contained.
Therefore, M = [LL]. Thus we have the isomorphism.

Theorem 21. If L ⊆ gl(V ) and L acts irreducibly on V , then L is reductive and
dimZ(L) ≤ 1.

Corollary 22.

If moreover L ⊆ sl(V ) then L is semisimple.

Definition. Suppose L is semisimple. L is called simply-laced if it’s Dynkin diagram
has only simple edges.

This is equivalent to, if α, β ∈ ∆ : ⟨α.β∧⟩ = 2 (α,β)
(β,β) ∈ {0,−1,−2}.

Then, the simply laced are: Al, Dl, E6, E7, E8.
The letters here are A,D,E. This gives us the ‘A-D-E’ classification which is very
common in algebra.

14 Thursday, 2/27/2025, Representation Theory by
Zoia

Notation:
L-Semisimple Lie Algebra over F -algebraically closed field of char 0.
H-fixed CSA of L
H∗-dual space of the CSA H.

10



Φ: the root system, ∆ = {α1, · · · , αl}, base of Φ.
W- the Weyl Group.
Weight Spaces:
V - finite dim L-module.
H acts diagonally on .
V =

⊕
λ Vλ where λ runs over H∗.

Vλ = {v ∈ V | h · v = λ(h)v∀h ∈ H}.
If Vλ ̸= 0 we call Vλ a weight space. λ is the weight of H on V .
V ′- the sum of all weight spaces Vλ [always direct].
Examples:

1) Consider L as an L-submodule via adjoint representation.

Weights are the roots of α ∈ Φ with weight spaces Lα of dim 1.

If L = sl(2, F ) then a linear functional λ on H is completely defined by λ(h) at
the basis vector h.

Exercise 1: If V is an arbitrary L-module, then the sum of its weight space is direct.

Lemma 23. Let V be an arbitrary L-module. Then,

a) Lα maps Vλ into Vλ+α with λ ∈ H∗, α ∈ φ.

b) The sum V ′ =
∑

λ∈H∗ Vλ is diret, and V ′ is an L-submodule of V .

c) If dimV <∞ then V = V ′ [ex1]

d) If x ∈ Lα, v ∈ Vλ, h ∈ H,

h · × · v = x · h · v + [hx] · v = (λ(h) + α(h))xv

Thus, Lα sends Vλ to Vλ+α.

e) Lα, α ∈ Φ permutes the weight spaes.

Standard Cyclic Modules

Definition. A maximal vector (of weight λ) in an L-module V is a nonzero v+ ∈ Vλ

is killed by all Lα(α ∈ Φ+), α ∈ ∆.
Meaning, xαv

+ = 0∀xα ∈ Lα

Example: If L is simple and β is the maximal root in Φ relative to ∆ then any nonzero
element from Lβ is a maximal vector (for the adjoint representation of L).
Note that the following fact about the Borel Subalgebra

B(∆) = H +
⊕
α≻0

Lα

has a common eigenvector: which is a maximal vector.

Definition. If V = U(L) · v+ for v+ maximal vector of weight λ then we say V is
standard cyclic.
Then λ is the highest weight on V .

Example: If V is an arbitrary A-module, then the sum of its weight spaces is direct.
Structure of such a submodule:
Fix nonzero xα ∈ Lα, α ≻ 0 and choose yα ∈ Lα uniquely so that [xαyα] = hα.
Recall we have a partial order:
λ ≻ µ ⇐⇒ λ− µ is a sum of positive roots.

Theorem 24. Consider V, v+ ∈ Vλ,Φ
+ = {β1, · · · , βm}. Then,

a) V is spanned by vectors yi1β1
· · · yimβm

· v+ where ij ∈ Z≥0.

11



b) The weights of of V are of the form:

µ = λ−
l∑

i=1

kiαi λ− µ ≻ 0∀λ

c) ∀µ ∈ H∗, dimVµ <∞ and dimVλ = 1.

d) Each submodule of V is the direct sum of its weight spaces.

e) V is indecomposable with a unique maximal submodule and unique irreducible
quotient.

f) Every nonzero homo-c image of V is also standard cyclic of weight λ.

Proof. a) L = B(∆)+
⊕

α≺0 Lα. Then by the PBW theorem, it holds that U(L) ·
v+ = U

(⊕
α≺0 Lα

)
U (B(∆)) · v+ = U

(⊕
α≺0 Lα

)
·Fv+ [recall v+ is a common

eigenvector for B].

b) Consider the vector yi1β1
· · · yimβm

· v+ has weight λ−
∑

ijβj Rewrite β as a non-
negative Z-linear combination of simple roots.

c) ∃ only finite number of polynomials
∑

ijβj from part b. These span the weight
space Vµ, if µ = λ −

∑
i kiαi. The only vector of the form

∑
j ijβj which has

weight µ = λ is v+.

d) Let W be a submodule of V and w ∈ W such that w is a sum of vi such that
vi ∈ Vµi and all the weights µi are distinct. We want to show that all vi ∈W .

Let w = v1 + · · · + vn. We apply contradiction. WLOG suppose there exists
v2 /∈W .

Suppose h ∈ H such that µ1(h) ̸= µ2(h).

h · w =
∑

i µi(h)vi ∈ W =⇒ (h − µ1(h) · L) · w = (µ2(h) − µ1(h))v2 + · · · +
(µn(h)− µ1(h)) · vn ̸= 0

Then v2 ∈W . Contradiction.

e) By c and d each proper submodule of V lies in the sum of lies in the sum of
weight spaces other than Vλ. Then the sum W of all submodule is still proper.

Thus V has a unique maximal submodule and unique irreducible quotient.

Thus, V cannot be the direct sum of two proper submodules since each of them
are contained in W .

15 Thursday, 3/13/2025, Representation Theory by
Zoia

Existence and Uniqueness of Standard Cyclic Modules

WTS: ∀λ ∈ H∗, ∃! irreducible cylic L-module of highest weight λ [which can be infinite
dimensional].

Theorem 25. Let V,W be standard cyclic modules of highest weight λ. If V,W are
irreducible, then they are isomorphic.

Proof. Consider their sum: the L-module X such that X = V ⊕W such that v+ and
w+ represent the maximal vectors if weight λ in V,W respectively.
Let x+ = (v+, w+) ∈ X. Then, x+ is the maximal vector of weight λ.
Let’s consider Y the L-submodule of X generated by x+. Then Y is standard cyclic
as well.
Let’s consider the projection maps P : Y → V, P ′ : Y →W .

12



In this case, P, P ′ are L-module homomorphisms.
Since P (x+) = v+, P ′(x+) = w+ we can conclude that imP = V, imP ′ = W .
Since V,W are irreducible quotients of a standard cyclic module Y , V and W must
be isomorphic by the previous theorem.

Construction of Z(λ) by generators and relations

Also sometimes called Verma Modules.
Note that construction directly proves existence!
We define:

Z(λ) = U(L)⊗U(B) Dλ

where Dλ is a one dimensional vector space having v+ as basis, and define action of
B on Dλ by (h+

∑
α≻0 Xα) · v+ = h · v+ = λ(h)v+ for fixed λ ∈ H∗.

Choose nonzero element xα ∈ Lα where α ≺ 0.
Let I(λ) be the left ideal in U(L) generated by all such xα along with hα − λ(hα) · 1
(α ∈ Φ+).
These generators annihilate v+ of Z(λ) =⇒ I(λ) also annihilates Z(λ).
∃ a canonical homomorphism of left U(L)-modules U(L)/I(λ) → Z(λ) sending the
coset of 1 onto v+.
Meaning, W = W + I(λ) 7→W ⊗ 1.
PBW basis of U(L) =⇒ we can see that this map sends the cosets of U ∗ B() onto
Fv+ =⇒ this is one-to-one.
Thus, Z(λ) ∼= U(L)/I(λ).

Theorem 26 (Existence). Let λ ∈ H∗ then ∃ an irreducible standard cyclic module
V (λ) of weight λ.

Proof. Z(λ) is standard cyclic of weight λ and has a unique maximal submodule Y (λ),
and by the theorem in previous recitation. Then V (λ) ≡ Z(λ)/Y (λ) is an irreducible
and standard cyclic module of weight λ.

Finite Dimensional Moddules

Necessary Conditions for finite dimensiona:
Let V be a finite dimensional irreducible L-module. Thus, V ∼= V (λ).
∀αi set si(sαi) be the corresponding sl(2, F ) in L. Then, si = Lαi⊕L−αi⊕[Lαi , L−αi ].
We have xi ∈ Lαi , yi ∈ L−αi and set hi = [xi, yi]. Then [hi, xi] = 2xi, [hi, yi] = −2yi.
This is how we get the copy: this subalgebra is isomorphic to sl(2, F ).
Then, λ(hi) determines completely Hi ⊂ si. By the theorem from 7.2, λ(hi) is a
non-negative integer.

Theorem 27. If V is a finite dimensional irreducible L-module of highest weight λ
then λ(hi) is a non-negative integer 1 ≤ i ≤ l.

16 Thursday, 3/27/2025, Representation Theory by
Zoia

Sufficient Condition for Finite Dimension

Lemma 28. Fix standard generators {xi, yi} of L. Then the identities hold in U(L)
for k ≥ 0; i ≤ i, j ≤ l.

a) [xj , y
k+1
i ] = 0 if i ̸= j

b) [hj , y
k+1
i ] = −(k + 1)αi(hj)y

k+1
i

c) [xi, y
k+1
j ] = −(k + 1)yki (kj − hi)

13



Proof. a is by 10.1 αj − αi not a root.
b, c induction.

Theorem 29. If λ ∈ H∗ is dominant integral then the irreducible L-module V =
V (λ) is finite dimensional, and its set of weights Π(λ) is permuted by W , the weyl
group with dimVµ = dimVσµ for σ ∈W .

Proof. Denote by φ : L → gl(V ). Fix a maximal vector v+ of V of weight λ and
mi = λ(hi), 1 ≤ i ≤ l
1. WTS: ymi+1

i .v+ = 0.
Denote ω = ymi+1

i · v+.
xj · ω = 0
xiy

m+1
i · v+ = ymi+1

i xiv
+

(mi +Dymi
i ) · (miv

+ −miv
+) = 0.

=⇒ xiω = 0. If ω ̸= 0 then ω is a max vector in V with weight of λ− (mi+1)αi ̸= λ
=⇒ contradition in 20.2.
=⇒ ω = 0
2. For 1 ← i ≤ l V contains a nonzero fin. dimensional Si module. The subspace
spanned by v+, yiv

+, yeii v+, ymi
i v+ is stable under yi according to 1. It is also stable

under hi sine each generator belongs to a weighr space of V . Thus, it is stable under
hi since ech belongs to a weight space of V . By c it is stable under xi.
3. V is the sum of finite dimensional Si-submmodules. Denote by V ′ the sum of all
other submodules of V .
by 2 V ′ is nonzero. On the other hand, let W be any finite dimensional Si-module of
V . The span of all subspaces xα(α ∈ Φ) is finite dimensional and Si is stable under
L.
Since V is stable under L, V ′ = V by irreducibility.
4. For 1 ≤ i ≤ l, φ(xi) and φ(yi) are locally nilpotent endomorphim of V .
If v ∈ V =⇒ δ is in finite sum of fin dim Si submodules, φ(xi) and φ(yi) are
nilpotent.
5. Si = expφ(xi), expφ(−yi) expφ(xi) is a well defined automorphism of V by 4.
6. If µ is any weight of V then Si(Vµ) = Vσµ where σi is reflect by di. Vµ lies in a fin.
dim Si-submodule V ′ and Si

∣∣
V ′ is the same as automorphism τ from 7.2.

7. The set of weights Π(λ) is stable underW and dimVµ = dimVσµ[µ ∈ Π(λ), σ ∈W ].
Since W is generated by σ1, · · · , σL this follows from 6.
8. Π(λ) is finite =⇒ the set of W -conjugates of all dominant integral linear functions
µ ≺ λ is finite and Π(λ) is in this set.
9. dimV is finite. by 20.2c, dimVµ is finite ∀µ ∈ Π(λ).

17 Thursday, 4/3/2025

Skipped

18 Thursday, 4/10/2025 by Hyeonmin

Convention
G a semisimple lie algebra over an algebraically closed field F of char 0, F = C.
h a CSA, dim h = ℓ, |Φ+| = m,Φ ̸∋ 0.
n =

⊕
α>0 Gα, b = h⊕ n, n− =

⊕
α<0 Gα.

Λr = ZΦ.
Z(G) = the center of U(G).

1.1: Axioms and Consequences

Definition. The BGG Category O is the full subcategory of ModU(G) satisfying:

O1) M ∈ O is a f.g. U(G)-module.

14



O2) M ∈ O is h-s.s., i.e. M =
⊕

λ∈h∗ Mλ where Mλ = {x ∈ M | ∀h ∈ h, h.x =
λ(h)x}.

O3) ∀v ∈M,U(n)v is finite dimensional.

Proposition 30. M ∈ O satiisfies:
O4: All weight space Mλ are finite dimensional.
O5: Π(M) := {λ ∈ h∗ |Mλ ̸= 0} is contained in the union of finitely many sets of the
form λ− Γ where λ ∈ h∗,Γ is the semigroup in Λr generated by Φ+.

Proof. O1,O2 =⇒ M has a finite generating set consisting weight vectors [from
axiom 2, we have a direct sum. So, a vector in M can be represented as a finite sum
of weight vectors by the definition of direct sum].
Thus, we may assume that M = U(G)v [M is generated by exactly one weight vector]
with a weight vector v of weight λ.
O3 =⇒ V = U(n)v is finite dimensional.
U(h) is stable on this so U(b)v is finite dimensional.
Since the action of U(n−) produces weights lower, then ∃µ ∈ h∗ : Π(M) ⊆ µ − Γ [in
fact µ− λ]. This gives us O5.
Write ∀ weight v,Mv = {u · w | u ∈ U(n−), w ∈ V,wt(u · w) = v}
Since ∀w ∈ V,∃ only finitely many monomials u = yi11 · · · yimm such that wt(u ·w) = v
and V = finite dimensional, then Mv is finite dimensional [O4].

Theorem 31 (1.1). Category O satisies:

a) O is a noetherian category.

b) O is closed under submodules, quotients, finite direct sums.

c) O is an abelian cateogry.

d) If L is finite dimensional G-module, then O L⊗C−−−−−→ O is an exact functor.

e) M ∈ O is a Z(G)-finite. i.e., ∀v ∈M, span(Z(G)v) is finite dimensional.

f) M ∈ O is finitely generated U(n−)-module.

Proof. a) U(G) is a noetherian ring. [It has a filtration which we can pass to a
graded ring. Which is isomorphic to a polynomial ring.] We can invoke O1 =⇒
O is a noetherian category.

b) Quotient and finite direct sum ok. U(G) nnoetherian so submodule f.g.

c) Since ModU(G) is an abelian cattegory, we only need to check ∃ kernels, coker-
nels, finite diret sums. (b) gives us this.

d) O2 : (L ⊗ M)ν =
⊕

µ+λ=ν(Lµ ⊗ Mλ)v. O3 ok. O1 : {v1, · · · , vn} basis of
L, {w1, · · · , wp} generating set of M . Let N := the submodule of L⊗M gener-
ated by {vi⊗wj}. WTS: L⊗M = N . We already know N ⊆ L⊗M . Now, for
any v ∈ L, since L is just a finite dimensional vector space, v ⊗wj ∈ N for any
j. ∀x ∈ G, x · (v ⊗ wj) = (x · v)⊗ wj + v ⊗ (x · wj). Since x · (v ⊗ wj) ∈ N and
(x · v)⊗ wj ∈ N =⇒ v ⊗ (x · wj) ∈ N . Iterating, ∀u ∈ U(G), v ⊗ (u · wj) ∈ N .

e) Since v ∈M is the direct sum of weight vectors, then may assume that v ∈Mλ

for some λ ∈ h∗. Then Z(G) · v ∈ Mλ. [∀z ∈ Z(G) : h · (zv) = z(hv) =
z(λ(h)v) = λ(h)(zv)]. O4 implies the result.

f) {m1, · · · ,mp} a generating set of M,N0 = span{m1, · · · ,mp}, N = U(b)N0. O3
implies U(n)N0 f.g. Thus A basis of N generates M as a U(n−)-module.

15



1.2: Highest Weight Modules

Definition. M = U(G).v+ is a highest weight module where v+ is maximal vector
of λ.

Remark. M ∈ O, ∃ a maximal vector v+ in M .

Theorem 32 (1.2). M = U(G) · v+ a highest weight module of weight λ.. Chose
yi ̸= 0 in G−αi

. Then,

a) M is spanned by yi11 · · · yimm v+(ij ≥ 0). Thus M is h-s.s.

b) All wt µ satisfies µ ≤ λ.

c) ∀ wt µ,dimMµ <∞,dimMλ = 1 =⇒ M ∈ O.

d) Each nonzero quotient is again a highest weight module of weight λ.

e) A submodule generated by a maximal vector µ < λ is proper.

f) M has a unique maximal submodule and unique simple quotient. M Mis inde-
composable.

g) All simple highest weight module M of weight λ are isomorphic. Moreover,
dimEndO M = 1

Corollary 33 (1.2). M ̸= O, nonzero. Then M has a filtration 0 ⊆ M1 ⊆ · · · ⊆
Mn = M with nonzero quotients. Each of which is a highest weight module.

Sketch. ∀V := n-submodule generated by a finite generating set of M of weight vec-
tors. O3 implies finite dimensional. Now induct on dimV .

1.3 Verma modules and Simple modules

Definition. Cλ = C a b-module:

• ∀h ∈ h, v ∈ Cλ : h · v = λ(h)v.

• ∀n ∈ n, v ∈ Cλ : nv = 0.

M(λ) := U(G)⊗U(b) Cλ: a Verma Module.

• Finite U(n−)-module of rank 1.

• M(λ) = U(G).v+ where v+ = 1⊗ 1.

Remark. Let N be a finite dimensional U(b)-module on which h acts semisimply.
Then U(G)⊗U(b) N ∈ O. This defines an exact functor: action of h→ O.

Definition. L(λ) [resp. N(λ)] is the unique simple quotient (resp. unique maximal
submodule) of M(λ) [from theorem 1.2(f)].

Theorem 34 (1.3). Every simple module in O of maximal weight λ is isomorphic to
L(λ). Moreover, dimHom(L(µ), L(λ)) = δµλ.

Proof. Let M ∈ O, simple of maximal weight λ. Let v+ ∈ Mλ =⇒ U(G)v+ ∈ M
highest weight module.
Theorem 1.2g implies the result.
When µ = λ we know that dimEndO M = 1. by 1.2g.
When µ ̸= λ we claim that Hom(L(µ), L(λ)) = 0.
Let 0 ̸= f ∈ Hom(L(µ), L(λ)). These are simple modules, thus ker f = 0, im f = L(λ).
So this is in fact an isomorphism.
∀m ∈ L(µ)ν , h · f(m) = f(h ·m) = f(ν(h)m) = ν(h)f(m) =⇒ f(m) ∈ L(λ)ν .
f : L(µ)ν

∼−→ L(λ)ν .
So, µ is a weight of L(λ). Therefore µ ≤ λ. Isomorphism implies λ ≤ µ. Thus µ = λ.
Contradiction.
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1.4 Maximal vectors in Verma modules

Proposition 35 (1.4). Given λ ∈ h∗ and fixed α ∈ ∆, suppose n =: ⟨λ, α∨⟩ ∈ Z≥1.
If v+ is a maximal vector of weight λ in M(λ) then yn+1

α · v+ is the maximal vector
of weight µ = λ− (n+ 1)α < λ.
Thus, ∃ a nonzero hom M(µ)→M(λ) whose image is in N(λ).

Lemma 36 (1.4). a) ∀i ̸= j, [xj , y
k+1
i ] = 0.

b) [hj , y
k+1
i ] = −(k + 1)α)i(hj)y

k+1
i

c) [xi, y
k+1
i ] = −(k + 1)yki (k · 1− hi).

Proof. maximality:

• αi = α : xα(y
n+1
α v+) = [xα, y

n+1
α ]v++yn+1

α ���xαv
+ =

c
−(n+1)ynα(((((((n− λ(hα))v+ =

0.

• αi ̸= α : xi(y
n+1
α v+) = [xi, y

n+1
α ]v+ =

a
0

• Weight of yn+1
α v+ = µ: ∀1 ≤ j ≤ l, hj(y

n+1
α v+) = [hjy

n+1
α ]v++yn+1

α (λ(hj)v
+)

b
=

(−(n+ 1)α(hj) + λ(hj))︸ ︷︷ ︸
µ(hj)

yn+1
α v+

Consider f : M(µ)→M(λ) by vµ 7→ yn+1
α v+.

Then f(M(µ)) = U(g) · yn+1
α · v+ = a proper submodule ⊆ N(λ)

Corollary 37 (1.4). Let v+ be instead a maximal vector of weight λ in L(λ).
Then yn+1

α v+ = 0.

Proof. L(λ) is simple so there doesn’t exist maximal vector of µ < λ.

1.5 sl2(C)
Fix the standard basis {h, x, y}.
dim h∗ = 1 =⇒ h∗ ∼=−→ C, λ 7→ λ(h).
Identically, Λ = {λ ∈ h∗ | ⟨λ, α∨⟩ ∈ Z, ∀α ∈ Φ} with Z and identically Λr = ZΦ with
2Z.
eg Φ = {α,−α};α(h) = 2 =⇒ ρ = α

2 =⇒ Λ = Zρ,Λr = Zα = 2Zρ.
M(λ) has weights λ, λ− 2, λ− 4 each with mul 1.
Basis vector (i ≥ 0) for M(λ) can be chosen so that (v−1 = 0):

• h · vi = (λ− 2i)vi

• x · vi = (λ− i+ 1)vi−1

• y · vi = (i+ 1)vi+1

Claim 1: dimL(λ) <∞ iff λ ∈ Z≥0.
Note: weight of L(λ) : λ, λ− 2, · · · ,−λ
Therefore, N(λ) ∼= L(−λ− 2)
Claim 2: M(λ) simple iff λ /∈ Z≥0.
=⇒ is done. ⇐= : suppose M(λ) is not simple. Then ∃N ⊊ M(λ) having a maximal
vector w which is not in Cv+.
Then, ∃k ∈ Z≥0 : w = yk+1v+ (up to scalar). Then 0 = xw = [x, yk+1]v+ =
−(k + 1)yk(k − λ)v+.
Thus k = λ.
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1.6 Finite Dimensional Modules

Theorem 38 (1.6). TFAE:

a) L(λ) fin dim

b) λ ∈ Λ+ = {λ ∈ h∗ | ∀α ∈ Φ, ⟨λ, α∨⟩ ∈ Z≥0}

c) dimL(λ)µ = dimL(λ)wµ∀w ∈W,µ ∈ h∗.

1.7 Action of the Center

Definition. Let M = M(λ) be gen by v+. For z ∈ Z(g) define χλ(z) ∈ C : zv+ =
χλ(z)v

+ [since zv+ ∈Mλ, dimMλ = 1].
Then χλ : Z(g)→ C the central character associated with λ

Note: ∀v ∈M, zv = χλ(z)v since v = u · v+, u ∈ U(n−) and zu = uz.
χλ: alg hom and kerχλ is a maximal ideal in Z(g).
More generally, any alg hom χ : Z(g)→ C is called a central character.

Definition. Let pr : U(g)→ U(h) be the projection by sending other monomials to
0.
Then ξ = pr

∣∣
Z(g)

is called the Harish-Chandra homomorphism.

Note: ∀z ∈ Z(g), χλ(z) = λ(ξ(z)).
Therefore χλ(z)v

+ = zv+ = pr(z)v+ = λ(pr(z))v+

18


