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9 Thursday, 1/16/2025, Cartan Subalgebras (CSA)
by Rostyslav

Corollary 1 (15.3). Let L be semisimple. CSA’s of L are precisely the maximal
toral subalgebras of L.

Proof. = : Let H be a maximal toral subalgebra.

= H-abelian = H-nilpotent, Np(H) = H since L = H + | | .4 Lo with
[H,L,] = L, for « € & = H-CSA.

<= Let H-CSA. z = x4, + x5 by Jordan decomposition.

= Lo(adzs) C Lo(ad ) for x € L semisimple.
Lo(ad z,) = CL(xs) since ad x is diagonal.
H- minimal Engel.
By defintion, = Lo(adzs) = Cr(zs) = H.
But C(z4) contains maximal toral subalgebra which is CSA. Thus it itself is minimal
Engel. H-maximal toral.
Detaills:
LCH. His CSA < H is nilpotent, N, (H) = H.
Lo(ad(zs)) C Lo(ad(z)).
Lo(ad(zs)) = {y € L | ad(zs)(y) =0} = {y € L | [xs,y] = 0}
[z,y] = [zs,y] +[zn, Y]

—r
ad(z)™(y) = ad(z,)™(y) = 0 for m > 0.
O

Lemma 2 (15.4.B). Let ¢ : L — L’ [epimorphism]. Let H' be CSA of L’. Then, any
CSA of ¢~ 1(H') is also a CSA of L.



Definition. z € L is callled strongly ad-nilpotent if 3y € L and Ja # 0 eigenvalue of
ady such that z € L,(ady).

[La(ady), Ly(ad y)] C Lap(ady)

Remark. By Lemma 15.1 if z is strongly ad-nilpotent then x is ad-nilpotent.
Recall: z € Ly(ady) means Im > 0: (ady —a-id)™(x) = 0.
This implies that ad z is nilpotent after some calculation.

Definition. N(L) is the set of strongly ad-nilpotent elements.

Definition. &(L) < Int L := (exp(ad z) | « is ad-nilpotent) generated by Vexpad
where z € N'(L).

Remark. N(L) is stable under Vx € Aut(L).
Thus, &(L) < Aut(L).

KCL = N(K)CN(L).

Then,

Definition. &(L, K) is generated by expad aVx € &(K)

Then, &(K) = &(L, K).
If ¢ : L — L' is an epimorphism then ¢(L,(ady)) = L, (ad &(y)).
= oWN(L)) =N(L).

Lemma 3 (16.1). Let ¢ : L — L' be an epimorphism. If 0’ € &(L') = Jo € &(L)
such that:

Proof. If o' =expada’ 2’ € N(L') Fz s.t. ¢(x) =
e € L ooty £)(2) ~ (s o o)+ o D) = 602) + . 6+ [ )
= (expadr 2’)(¢(2)) = QED.

O

Theorem 4 (16.2). Let L be solvable. Let Hy, Hy be CSA’s of L.
Then, H; is conjugate with Hs by an element of &(L).
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Proof. Induction on dim L.

Base case: suppose dim L = 1. Since L is nilpotent L must be trivial.

Assume that L is not nilpotent. L-solvable = L has non-zero abelian ideals. eg
least non-zero term of the derived series. Choose such A of least possible dimension.
Set L'’ = L/A. We have ¢ : L — L/A = L' given by x — a’.

Lemma 15.4(image of CSA is CSA) implies Hj, H} are CSAs of the solvable algebra
L’. By induction 3o € &(L’) such that o(H]) = Hj.

Lemma 16.1(the commutative diagram) implies Jo € & (L) such that the diagram
commutes. So, o maps K; = ¢~ 1(H}) to ¢~ (HS) = Ky

But now Hs and o(Hj) are both CSA”s of K.

If K5 is smaller than L induction allows us to find 7" € &(K>) such that 70 (H;) = Hs.
But &(K3) consists of restrictions of &(L, K3) to K.

37 such that 7o (Hy) = Hs for 7 € &(L) = done.

Otherwise L = Ky = 0(L).

K2:K1 andL:H2+A:H1+A

Theorem 15.3 = CSA Hy = Lo(ad x) for suitable x € L.

A being ad x stable, so by lemma 15.1,



A= Ap(adz) @ As(adx)

and each summand is stable under Hy + A.
Since A is minimal, A = Ap(adz) or A = A, (ad )
A cannot be equal to Ag(ad x) since in that case A C Hy, L = Ho.
But since L is not nilpotennt we have a contradiction.
Thus, A = A.(adz) = A = L.(adx). Since L = H; + A we can write t =y + z
with y € Hy,z € A.(ad ).
Since ad x is invertible on L.(ad x) we can write z = [z, 2] where 2’ € L,(ad x).
A-abelian = (ad z’)? = 0.
Thus, expad 2’ = 1, +ad 2’.
Applying to x we have, x — z = y.
— Hy = Lo(ady) must also be a CSA of L. Since y € Hy,H D H; and both
minimal Engel, H = H;.
H; is conjuate to Hs using exp ad 2’.
We only need to show that, expad 2z’ € &(L).
z' can be written as sum of strongly ad-nilpotent elements of A = L, (ad x)
= A-abelian so expad z’ = [[expad z; € &(L).
So we’re done.
O

Consider B = upper triangular matrices. It is a lie algebra. What is a CSA of this?
Attempt: we have H = upper triangular matrices with 0 diagonal. Ng(H) = B. But
it is not nilpotent so it doesn’t work.

However, attempt 2: we can take H = diagonal matrices.

In fact, if g C gl,, is a subalgebra and g contains a diagonal matrix with all entries
different, then the subalgebra § of g containing all diagonal matrices on g is a CSA.

Definition. A maximal solvable subalgebra of a lie algebra L is called a Borel
subalgebra.

Lemma 5 (16.3.A). If B is a borel subalgebra of L then B = N (B). Aka, Borel
subalgebras are self normalizing.

Proof. Let & € Np(B). Then, B 4+ Fx is a subalgebra of L. It is solvable since
[B+ Fx, B+ Fz] C B. Since B is maximal, we must have = € B. O

Lemma 6 (16.3.B). If Rad L # L then there is a bijection between the sets of Borel
subalgebras of L and Borel subalgebras of L/ Rad L.

Proof. Rad L is a solvable ideal of L.
Therefore, B 4+ Rad L is a solvable subalgebra of L.
—> by maximality, we’re done. O

Definition. Let H be a CSA in a semisimple lie algebra L, ® a root system of L
relative to H. Fix a base A and a set of positive roots.

Set B(A) = H Uy>0 Lo

And N(A) = UaxoLa.

Then B(A) is the standard Borel subalgebra relative to H.

N(A) is the derived algebra of B(A).

Lemma 7 (16.3.C.1). N(A) is nilpotent.

If x € Lo(a > 0) then,

Application of ad z to root vector increases the height by at least 1.
— decreasing central series goes to zero.

Thus, B(A) is solvable.

Let K D B(A). Then, K is stable under ad H.

Then K must include some L, with o < 0.

Thus, simple S, C K = K is not solvable.

Note: Sy = (Lo, L_o, H)



Lemma 8 (16.3.C2). All standard Borel subalgebras of L relative to H are conjugate
under &(L).

Proof. By 14.3 the reflection o, acting on H may be extended to an inner automor-
phism 7, of L which is, by construction, in &(L).
To would send B(A) to B(cA).
The Weyl Group is generated by those reflections, so we see that & (L) will act tran-
sitively on standard Borel subalgebras relative to H.

O

Theorem 9 (16.4). The Borel subalgebras of an arbitrary Lie algebra L are all
conjugate under &(L).

We omit the proof for now.
Corollary 10. All the CSAs of lie algebra L are all conjugate under &(L).

Proof. Let H, H be CSAs. They’re nilpotent by definition. Therefore, they’re solv-
able.

Therefore, H C B, H' C B’ where B, B’ are some borel subalgebra.

By the previous theorem, Jo € &(L) such that o(B) = B'.

Thus, o(H) and H' are CSAs of B'.

By theorem 16.2, 37" € &(B’) such that 7'0(H) = H'.

But 7’ is a restriction of some 7 € &(L, B’) C &(L). Therefore,

to(H)=H' 10 € &(L)
O
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We prove theorem 16.4.

Proof. First induction hypothesis dim L upwards.

base: dim L =1 is trivial.

WLOG by lemma 16.1 and 16.3B, we can assume that L is semisimple.

Fix a standard borel subalgebra relative to some CSA.

Suffices to shwo that VB’ -other borel subalgebra is conjugate to B under &(L).
If B'N B = B then B’ = B by maximality (both are borel).

Second induction hypothesis

dim(B N B’) downwards for all larger dimension are conjugate.

(1) Suppose that BN B’ #£ 0.

Case i: set N’ of nilpotent elements of B N B’ is nonzero.




B-standard = N’ subspace derived alg of BN B’ consists of nilpotent elements.
= N’-ideal of BN B'.
N’-not an ideal of L = K = Np(N) is proper.
Consider the action of N" on B/(BNB’) induced by ad for all z € N’ acts nilpotently
on this vector space.
Theorem 33 = Ty such that y+ (BN B’) killed by Vx € N. ie st [zy] € BNB',y ¢
BN B’ but [zy] is also [B,B] = [xy] is nilpotent = [zy] € N’ or y € Nr(N').
y¢ BNB =BNK
Same way BN B' C B'NK.
BN K, BN K solvable subalgebra.
C, C’ borel subalgebra containing them K # L by induction 3o € &(L, K) C &(L)
such that o(C") = C.
Since BN B € C and BN B’ C ' second induction hypothesis implies 37 € & (L)
such that 7o(C’) C B
Bnro(B')D71o(C")N10(B')D710(B'NK)2710(BNB)
—> Second induction hypothesis
B is conjugate under &(L) to To(B’) so we have proved case i.
Case ii: There are no non-zero nilpotent elements in B N B’.
Then, 4.2.c and 16.3.a implies that BN B’ = T = toral (semisimple).
B is standard: B(A)=H + N, N(A) = N.
[B,B] = N,T NN =0.
Thus, NB(T) = OB(T)
Let C be a a CSA of Cp(T'). By (one of the) definitions of CSA we know it is self
normalizing and N-nilpotent.
Thus, T C NCB(T)(C) =C.
Inn € Ng(C')(adt)kn=0. t C T C C.
ad t-semisimple — k= 1,n € Cp(T)
adt-n=[t,n].
- NB(C) = NCB(T)(C) =C.
= (' is self-normalizing not only in the centralizer, but also in B. It is also
nilpotent.
Therefore, C' is a CSA of B.
C-maximal toral of L is conjugate under &(B) = under &(L).
Thus, WLOG we can assume that 7' C H.
Suppose T'= H. Then, B’ 2 H.
= B’ includes at least on e L, with a < 0 relative to A.
ra(B')=B",B"NB>H+ L,
= second induction hypothesis
B" is conjugate to B under & (L)
Let T C H.
B’ C Cr (T)
By first induction hypothesis we know it will have less degree.
dim CL(T) < dim L.
H C CL(T) we can find a boorel subalgebra B” of C(T) that will contain H.
= B’ and B” are conjugate under &(L,C(T)) C &(L).
B ' CCL(T), T=BnNBAB.
We can find an eigenvector « € B’ for ad T and t € T such that [¢t,z] = az. a € Q4.
S =H + Uae<I>La
Oé(t) S Q.;,_.
S is subalgebra of L.
Similarly to llemma 16.3.c.2, S is solvable.
B"” > C - Borel subalgebra.
B"NB' DT+ Fxz 2T = BN B’ here x is eigenvector
dimB”"NB’' > dim BN B’
Second induction hypothesis = B’ is conjugate to B.
Similarly, we can prove that B” is conjugate to B’
Thus, B is conjugate to B’.
(2) BNB' =0



Then dim L > dim B + dim B’.

B is standard so dim B > %dim L.

Let T-maximal toral subalgebra of B’.

Assume T'= (0 = B only has nilpotent elements = by Engel’s theorem, B has
to be nilpotent.

By lemma 16.3.A, since B is borel, it is self normalizing B = N (B).

Then B is a CSA of L.

15.3 = all of CSAs of L are toral.

Being toral and nilpotent is a contradiction.

Thus, T # 0.

T C Hp-maximal toral of L

= BNB"’"#0 = B’ is conjugate to B.

dim B’ = dim B” > ; dim L = we have a contradiction. O

There’s a relationship between &(L) and the inner automorphisms.

Suppose L is semisimple lie algebra, H-CSA of L, A-base, ®-root system

Let 7 € Aut L. We can see that 7(B) is conjugate to B by o1 € &(L).

We can find o3 € &(L, B) C &(L) that sends o17(H) to H by 16.2.

09017 preserves H and B = it induces an automorphism on ¢. Leave A invariant.
Let p be such automorphism. It is not unique, but poeo17(2s) = caa [@ > 0],
po2017(Ya) = ¢ Ya

p02017(ha) = ha

7 differes from &(L) - T'(L) by a diagonal automorphism.

And diagonal automorphisms are inner automorphisms.

Therefore, Aut(L) = Inn(L).T'(L).

Note: in the semidirect case, &(L) = Inn(L).
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Notation:
F = field, £L/F lie algebra, V/F vector space.

Definition (Tensor Algebra). T™V = V®™,

TV =F, TV =V,

™V =V® - -V
—_————

m copies
T(V)=1IZ, TV
Multiplication by Tensor Product.
Universal Property:
V — T(V)

A is an F-algebra with 1.
Symmetric Algebra:
Let I C T(V) be the two-sided ideal generated by all elements of the form:

TRY—yQx,T,y€eV

We define S(V) =T(V)/I.
We can write:



S(V) = ]O_o[siv
=0

By writing it as a direct sum of terms of a degree.
SOV =T, SV =V [since I contains deg > 2 terms, they remain unchanged].
We can wrie:

sz[ﬂ,ﬂzmTi

=2

This also enjoys a Universal Property: when A is commutative:

If V is a finite dimensional vector space then S(V') are polynomials!

Definition (Universal Enveloping Algebra). An universal enveloping algebra is the
pair (U, i) where U is an algebra and i : £ — U such that:

i[zy]) = i(x)iy) —i(y)i(x) *
We also must have a universal property: suppose A is an F-algebra with 1. Then, if

j: L — A satisfies (%) then,
L—=U
X l‘z’
A
From this we also know that (U, %) is unique upto isomorphism.

Construction of the Universal Enveloping Algebra

Let J C T(L) be the 2-sided ideal generated by elements z @ y — y ® = — [zy].
Define U(L) :=T(L)/J. Then U(L) satisfies (x).

But this is not very explicit. We can explicitly construct it using the PBW theorem.
From now on let T := T(£),S := S(L£),U = U(L). We have a canonical projection
m: T —=U.

Let T =T™L, 5™ = S™L.

We also define the following filtrations:

Tm:TOEB---EBT’”

Up =7(Ty) cUU_1 =0
Facts: U,,Up, C Upyyp. Upy C Uppya.
Thus it makes sense to define G™ = U,,/U,,—1. This is a F-vector space.
The multiplication on U induces a well defined map:

G™ x GP — G™

Since lower degree terms just become 0.
We can extend this to G =[[;2, G"
Then, we have multiplication on G:

GRG—>G

This gives G an F-algebra structure. The algebra is abelian.



We can define the map:

G T = Uy, — G™
Combining all the m, we have a surjective homomorphism:
o:T—G
Lemma 11 (17.3). ¢(I) = 0 and therefore ¢ induces a surjective map w : S — G.
Proof. By definition of J,
Tz @y —y @) =mn(lry])

deg 2 deg 1

Thus, p(z @y —y®@z) € Uy /Uy CUz/U; thus ¢p(z®@y —y®@x) =0.
Hence the result. ]

Theorem 12 (Poincaré-Birkhoff-Witt, 17.3). w: S — G.

Corollary 13 (17.3A). We want to give a basis of U. If W C T™ is a subspace such
that T™ — S™ sends W — S™ then m(W) is a complement of U,,,_1 in U,

Proof. The following diagram commutes by construction

Bottom map gives W = am. Top map, then ¢,,(W) must be complement of U,,_;
O

Corollary 14 (17.3B). i: £L — U is injective.
Proof. Take W = T*. O

Corollary 15 (17.3C). This is traditionally known as the PBW theorem. Assume £
has a countable basis (z1,---). Then,

{Z6(1) - Zo@m) }, M € Z>0, 0 permutation so that o(1) < ¢(2) < --- < g(m) is a basis
for U.

Proof. Let W = span {xg(l) R @ T(my :0(l) <--- < o(m)} cTm™.
Clearly W =, S™. Then we use corollary 17.3A. O

Proof of PBW. By well-ordering-principle we can define (yx, A € ) be an ordered
basis of £. This gives isomorphism S 2 F[z)]yeq where z) are just variables indexed
by €.

Let ¥ = (A1, , Ayp) index with length m. Then zy, = 2z, - -+ 2y, € S™.

To =2y, @ Qaxy, €T™.

We say ¥ is increasing if A\ < --- < \,,, or &.

We define z5 = 1.

{zx : X is increasing} is a basis of S.

We say A < X if A < puVu € 3.

The idea is to give S a structure of L-module.



Lemma 16 (17.4A). Fix m € Zso. Then there exists a unique linear map f,, :
L ® S, — S with the following properties:

Am: fn(xa ® 25) = 2a25VA < X, 2z, € S™.

B fr(xa @ 25) — 2azy € SpVk < m, zx € Sk

Cn: fm(X/\ @ fm(xu ® ZT)) = fm(xu ® fm(XA Y ZT)) + fm([X)vru] ® ZT)\V/ZT € Sm-1.

Proof of Lemma: induction.

Lemma 17 (17.4B). 3 representation p : £ — gl(S) with:
a) p(xr)zs = 2220, VEA < 8
b) similar
¢) similar

Proof of Lemma: Comining A,,, By, Cy, for all m.

Lemma 18 (17.4C). Let ¢t € T), N J, then ¢, (homogeneous degree m part of t) is
in 1.

Proof of Lemma: Can be seen from the commutative diagram:

L= g[(AS)
\ :

|

T

J C ker(T — gl(S)) so p(t) = 0. Then we can write t,, as linear combination of zx, %
has length m.
Then look at the highest deggree term of p(t). It is a linear combination of zy.. But
this term is 0. So t,, € I.
We're done with all the lemma. We finally prove PBW.
Apply 17.4C to t — t'.
Let t € T™ such that 7(t) € Uyp_1.
Then 3t soo that «(t) = w(¢'). Note that ¢’ has degree strictly smaller than ¢.
Then, t —t' € J.
Thus it satisfies the condition of 17.4C.
Therefore the m-degree part of t — ¢’ must be ¢ [since t € T™].
Thus, by C, t € I.
O
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Definition. Given a set X a lie algebra J is free on X if:

X *: J
3!_.-"
.

Construction: Let V be the vector space with a basis labeled by X, so V = F(X),
Let T(V') be the tensor algebra. Then L is the lie subalgebra generated by X.



Serre’s Theorem

Let £ be a lie algebra over an algebraically closed characteristic 0 field. £, H, A =
{a1,- - ,au}. @ € Lo, yi € Lo, , hi € H where,

Sll [h,lhj] =0

So: [wiyi] = hg, [wiy;] = 0,0 # j

S3: [hﬂg] = (; o .04) 15, [hiyj] = —(ay, a;)u;
Siy S

Theorem 19 (Serre’s Theorem). Given root system ® with basis A, there exists £
generated by {z;,y;, h;} satisfying 5’173275’3,555 and £ has root system ®. (£ has
CSA H etc).

Idea: use the free Lie algebra and quotient by relations.
By the classification of root systems, there are only:
A(l>1)

Bi(l > 2)

Gl =>3)

Dy(l > 4)

Eg

E;

Eg

Fy

Ga

The first four are given in the first chapter.

Only thing needed to show is that they are semisimple!
From now we assume dim L < co.

Theorem 20. L is called reductive if rad(L) = Z(L). If L is reductive then,

L=[LL& Z(L)

Proof. Note that [L/Z(L),L/Z(L)] = L/Z(L) since Z(L) = rad(L). Thus, [LL] maps
surjectively to L/Z(L) by the canonical projection.

We also know that L' = L/Z(L) acts on L by the adjoint action. Thus, L = M & Z(L)
for some M. We want to show that M = [LL].
[LL]=M&Z(L),M®Z(L)]=[MM] C M. But [LL] maps surjectively to L/Z(L),
which isn’t possible if it is properly contained.

Therefore, M = [LL]. Thus we have the isomorphism. O

Theorem 21. If L C gl(V) and L acts irreducibly on V, then L is reductive and
dimZ(L) < 1.

Corollary 22.
If moreover L C s[(V) then L is semisimple.

Definition. Suppose L is semisimple. L is called simply-laced if it’s Dynkin diagram
has only simple edges.

This is equivalent to, if a, 8 € A : (a.f") = 2%%2; € {0,-1,-2}.

Then, the simply laced are: A;, Dy, Eg, E7, Eg.

The letters here are A, D, E. This gives us the ‘A-D-E’ classification which is very
common in algebra.

14 Thursday, 2/27/2025, Representation Theory by
Zoia

Notation:

L-Semisimple Lie Algebra over F-algebraically closed field of char 0.
H-fixed CSA of L

H*-dual space of the CSA H.

10



®: the root system, A = {ay,--- ,q;}, base of .

W- the Weyl Group.

Weight Spaces:

V- finite dim L-module.

H acts diagonally on .

V =@, V\ where A runs over H*.
Ww={veV|h-v=Ah)vWhe H}.

If V), # 0 we call V), a weight space. A is the weight of H on V.
V’- the sum of all weight spaces V) [always direct].

Examples:

1) Consider L as an L-submodule via adjoint representation.
Weights are the roots of a € ® with weight spaces L, of dim 1.
If L = sl(2, F) then a linear functional A on H is completely defined by A(h) at
the basis vector h.

Exercise 1: If V is an arbitrary L-module, then the sum of its weight space is direct.

Lemma 23. Let V be an arbitrary L-module. Then,

a) L, maps V) into Vi1, with A € H*, o € .

b) The sum V' =, . Vi is diret, and V' is an L-submodule of V.

)
)
¢) If dimV < oo then V =V’ [ex1]

)

d) If x € Ly,ve Vy\,he H,

h-x-v=x-h-v+[hz] -v=(A(h)+ a(h))zv

Thus, L, sends V) to Vaiq.

e) Ly, a € ® permutes the weight spaes.

Standard Cyclic Modules

Definition. A maximal vector (of weight A) in an L-module V is a nonzero v € V)
is killed by all Ly(a € @), € A.
Meaning, z,vt = 0Vx, € L

Example: If L is simple and (3 is the maximal root in ® relative to A then any nonzero
element from Lg is a maximal vector (for the adjoint representation of L).
Note that the following fact about the Borel Subalgebra

B(A)=H+PLa

a>0

has a common eigenvector: which is a maximal vector.

Definition. If V = U(L) - v for v maximal vector of weight A then we say V is
standard cyclic.
Then A is the highest weight on V.

Example: If V is an arbitrary A-module, then the sum of its weight spaces is direct.
Structure of such a submodule:

Fix nonzero z, € Ly, a = 0 and choose y,, € L, uniquely so that [z,ys] = ha.
Recall we have a partial order:

A= < X\ —pis asum of positive roots.

Theorem 24. Consider V,vT € V), ®" = {31, , B }. Then,

a) V is spanned by vectors yf;l e y;ﬂ -vT where i; € Z>.

11



b) The weights of of V' are of the form:

l
p=XA=Y ki A — = 0YA
i=1

c) Yu e H*,dimV, < oo and dim V} = 1.
d) Each submodule of V is the direct sum of its weight spaces.

e) V is indecomposable with a unique maximal submodule and unique irreducible
quotient.

f) Every nonzero homo-c image of V' is also standard cyclic of weight A.

Proof. a) L= B(A)+&@,~oLa- Then by the PBW theorem, it holds that ¢(L) -
vt =U (B0 La) U (B(A)) - vt =U (B~ La) - Fvt [recall v is a common
eigenvector for BJ.

b) Consider the vector y;;l e ygz -vT has weight A — >~ i;3; Rewrite § as a non-
negative Z-linear combination of simple roots.

c¢) 3 only finite number of polynomials }4;5; from part b. These span the weight
space Vy,, if i = A =3~ kja;. The only vector of the form . i;8; which has
weight = Xis vT.

d) Let W be a submodule of V' and w € W such that w is a sum of v; such that
v; € V,,, and all the weights p; are distinct. We want to show that all v; € W.

Let w = vy + -+ + v,. We apply contradiction. WLOG suppose there exists
V2 ¢ w.

Suppose h € H such that pq(h) # pa(h).
hew =73 pi(h)vi € W = (h—pa(h) - L) - w = (p2(h) — pa(h))vz + -+ +
(/J/n(h) ! (h)) *Un 7é 0
Then v, € W. Contradiction.

e) By ¢ and d each proper submodule of V lies in the sum of lies in the sum of
weight spaces other than V). Then the sum W of all submodule is still proper.
Thus V has a unique maximal submodule and unique irreducible quotient.

Thus, V' cannot be the direct sum of two proper submodules since each of them
are contained in W.
O

15 Thursday, 3/13/2025, Representation Theory by
Zoia

Existence and Uniqueness of Standard Cyclic Modules

WTS: VA € H*, 3! irreducible cylic L-module of highest weight A [which can be infinite
dimensional].

Theorem 25. Let V, W be standard cyclic modules of highest weight A. If V, W are
irreducible, then they are isomorphic.

Proof. Consider their sum: the L-module X such that X = V @& W such that v+ and
w™ represent the maximal vectors if weight A in V, W respectively.

Let 27 = (vt,w") € X. Then, z* is the maximal vector of weight \.

Let’s consider Y the L-submodule of X generated by 7. Then Y is standard cyclic
as well.

Let’s consider the projection maps P:Y — V,P': Y — W.

12



In this case, P, P’ are L-module homomorphisms.

Since P(zt) = v, P'(#7) = wT we can conclude that im P = V,im P/ = W.

Since V, W are irreducible quotients of a standard cyclic module Y, V and W must
be isomorphic by the previous theorem. O

Construction of Z(\) by generators and relations

Also sometimes called Verma Modules.
Note that construction directly proves existence!
We define:

Z(A) = U(L) ®@u(p) Dx
where D), is a one dimensional vector space having v* as basis, and define action of
Bon Dy by (h+3 ., oXa) v =h-vt =Xh)v" for fixed X € H*.
Choose nonzero element z,, € L, where o < 0.
Let I(X) be the left ideal in U(L) generated by all such z,, along with hy — A(hg) - 1
(a € ®T).
These generators annihilate v of Z(\) = I()\) also annihilates Z(\).
3 a canonical homomorphism of left U(L)-modules U(L)/I(A) — Z()) sending the
coset of 1 onto v™.
Meaning, W =W +I(\) —» W @ 1.
PBW basis of U(L) = we can see that this map sends the cosets of U x B() onto
Fvt = this is one-to-one.
Thus, Z(\) 2 U(L)/I(N).

Theorem 26 (Existence). Let A € H* then 3 an irreducible standard cyclic module
V(A) of weight .

Proof. Z()) is standard cyclic of weight A and has a unique maximal submodule Y ()),
and by the theorem in previous recitation. Then V(A) = Z(\)/Y (A) is an irreducible
and standard cyclic module of weight . O

Finite Dimensional Moddules

Necessary Conditions for finite dimensiona:

Let V be a finite dimensional irreducible L-module. Thus, V' 2 V().

Vo set s;(sa,) be the corresponding s[(2, F) in L. Then, s; = Lo, ®L_ o, ®[La,, L_q,]-
We have z; € L,,,y; € L_q, and set h; = [x;,y;]. Then [h;, ;] = 224, [hi, yi] = —2y;.
This is how we get the copy: this subalgebra is isomorphic to sl(2, F).

Then, A(h;) determines completely H; C s;. By the theorem from 7.2, A(h;) is a
non-negative integer.

Theorem 27. If V is a finite dimensional irreducible L-module of highest weight A
then A(h;) is a non-negative integer 1 <i <.

16 Thursday, 3/27/2025, Representation Theory by
Zoia
Sufficient Condition for Finite Dimension

Lemma 28. Fix standard generators {z;,y;} of L. Then the identities hold in ¢/(L)
for k>0;i<i,5 <L

a) [xj,yf+1} =0ifi#£j
b) [hy, yf ™ = —(k + Loy (hy)ys ™

o) [z, y; ™ = —(k + 1)yf (kj — ha)

13



Proof. ais by 10.1 o;j — a; not a root.
b, ¢ induction. O]

Theorem 29. If A € H* is dominant integral then the irreducible L-module V =
V(A) is finite dimensional, and its set of weights II(\) is permuted by W, the weyl
group with dim V), = dimV,, for o € W.

Proof. Denote by ¢ : L — gl(V). Fix a maximal vector vt of V of weight A\ and
m; = Ah;),1 <3<
1. WTS: oyt = 0.

Denote w =y ot
zj-w=0
ziym oot = it gt

(m; + Dy"") - (myvT —muvt) = 0.

= 2;w = 0. If w # 0 then w is a max vector in V' with weight of A\— (m; +1)a; # A
= contradition in 20.2.

= w=0

2. For 1 < ¢ <[ V contains a nonzero fin. dimensional S; module. The subspace
spanned by vt, y;ot, yfvT, y" vT is stable under y; according to 1. It is also stable
under h; sine each generator belongs to a weighr space of V. Thus, it is stable under
h; since ech belongs to a weight space of V. By c it is stable under x;.

3. V is the sum of finite dimensional S;-submmodules. Denote by V' the sum of all
other submodules of V.

by 2 V' is nonzero. On the other hand, let W be any finite dimensional S;-module of
V. The span of all subspaces z,(a € @) is finite dimensional and S; is stable under
L.

Since V is stable under L, V' =V by irreducibility.

4. For 1 <i <1, p(z;) and ¢(y;) are locally nilpotent endomorphim of V.

If v eV = ¢ isin finite sum of fin dim S; submodules, p(x;) and ¢(y;) are
nilpotent.

5. S; = expo(x;), exp p(—y;) exp p(z;) is a well defined automorphism of V by 4.

6. If p is any weight of V' then S;(V},) = V,,, where o; is reflect by d;. V,, lies in a fin.
dim S;-submodule V’ and S;|,,, is the same as automorphism 7 from 7.2.

7. The set of weights II(\) is stable under W and dim V}, = dim V. [1 € II(A), 0 € W].
Since W is generated by oy, - , o this follows from 6.

8. II()\) is finite = the set of W-conjugates of all dominant integral linear functions
p =< A is finite and II(A) is in this set.

9. dimV is finite. by 20.2c, dim V), is finite Vu € II(X).

O

17 Thursday, 4/3/2025

Skipped

18 Thursday, 4/10/2025 by Hyeonmin

Convention

® a semisimple lie algebra over an algebraically closed field F' of char0, F' = C.
ha CSA, dimh=1¢,|0T|=m,® F0.

n=@P,. 8., 0=bdnn" =P, ;6.

A, =78,
Z(®) = the center of U(®).
1.1: Axioms and Consequences

Definition. The BGG Category O is the full subcategory of Mod(e) satisfying:
01) M € Ois afg. U(®)-module.

14



02) M € Ois bss., ie. M = @ycy- My where My = {z € M |Vh € h,hx =
A(h)x}.

03) Yv € M,U(n)v is finite dimensional.

Proposition 30. M € O satiisfies:

O4: All weight space M) are finite dimensional.

O5: TI(M) == {\ € b* | M # 0} is contained in the union of finitely many sets of the
form A — T where A € h*, T is the semigroup in A, generated by ®+.

Proof. 01,02 = M has a finite generating set consisting weight vectors [from
axiom 2, we have a direct sum. So, a vector in M can be represented as a finite sum
of weight vectors by the definition of direct sum].

Thus, we may assume that M = U(&)v [M is generated by exactly one weight vector]
with a weight vector v of weight A.

03 = V =U(n)v is finite dimensional.

U(h) is stable on this so U(b)v is finite dimensional.

Since the action of U(n~) produces weights lower, then Ju € h* : II(M) C u— T [in
fact p — A]. This gives us O5.

Write V weight v, M, ={u-w |u e Un™),w € V,wt(u-w) =v}

Since Yw € V, 3 only finitely many monomials u = yil -+ -ybm such that wt(u-w) = v
and V' = finite dimensional, then M, is finite dimensional [O4]. O

Theorem 31 (1.1). Category O satisies:

a) O is a noetherian category.
b) O is closed under submodules, quotients, finite direct sums.

¢) O is an abelian cateogry.

d) If L is finite dimensional &-module, then O L7, 0 s an exact functor.
e) M € Oisa Z(&)-finite. i.e., Yo € M,span(Z(®)v) is finite dimensional.
f) M € O is finitely generated U(n~)-module.

Proof.  a) U(®) is a noetherian ring. [It has a filtration which we can pass to a
graded ring. Which is isomorphic to a polynomial ring.] We can invoke 01 —-
O is a noetherian category.

b) Quotient and finite direct sum ok. U(®) nnoetherian so submodule f.g.

c) Since Mody(e) is an abelian cattegory, we only need to check 3 kernels, coker-
nels, finite diret sums. (b) gives us this.

d) 02: (Lo M), = @, -, (Ly ® My)v. O3 ok. Ol : {v1,---,vn} basis of
L, {wy,--- ,wp} generating set of M. Let N := the submodule of L ® M gener-
ated by {v; @w;}. WTIS: L& M = N. We already know N C L ® M. Now, for
any v € L, since L is just a finite dimensional vector space, v ® w; € N for any
joVeedz (vw;)=(x v)Qw;+v® (- w;). Sincez- (v®w;) € N and
(z-v)@w; € N = v® (z-wj) € N. Iterating, Yu € U(&),v® (u-w;) € N.

e) Since v € M is the direct sum of weight vectors, then may assume that v € M)
for some A € h*. Then Z(8) -v € My. [Vz € Z(®) : h- (2v) = z(lw) =
z(A(h)v) = A(h)(zv)]. O4 implies the result.

t) {mq,---,mp} a generating set of M, Ny = span{mq,--- ,m,}, N = U(b)Ny. O3
implies U(n)Np f.g. Thus A basis of N generates M as a U(n~)-module.
O
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1.2: Highest Weight Modules

Definition. M = U(®).v" is a highest weight module where v is maximal vector
of A.

Remark. M € O,3 a maximal vector v* in M.

Theorem 32 (1.2). M = U(®) - vt a highest weight module of weight X.. Chose
yi # 0 in G_,,. Then,

a) M is spanned by yi' - - - yimoT(i; > 0). Thus M is h-s.s.

b) All wt p satisfies p < A.

c) Vwtu,dmM, <oco,dimMy=1 = McO.

e

)
)
d) Each nonzero quotient is again a highest weight module of weight .
) A submodule generated by a maximal vector u < A is proper.

)

f) M has a unique maximal submodule and unique simple quotient. M Mis inde-

composable.

g) All simple highest weight module M of weight A are isomorphic. Moreover,
dimEndp M =1

Corollary 33 (1.2). M # O, nonzero. Then M has a filtration 0 C M; C --- C
M,, = M with nonzero quotients. Each of which is a highest weight module.

Sketch. YV := n-submodule generated by a finite generating set of M of weight vec-
tors. O3 implies finite dimensional. Now induct on dim V. O

1.3 Verma modules and Simple modules

Definition. C) = C a b-module:
e VhehoeCy:h-v=Ah)v.
e VnenvelCy:nv=0.
M) :=U(®) @y(s) Cx: a Verma Module.
e Finite U(n™)-module of rank 1.
e M(\) =U(®).vt where vt =1® 1.

Remark. Let N be a finite dimensional U(b)-module on which b acts semisimply.
Then U(&) ®@yp) N € O. This defines an exact functor: action of h — O.

Definition. L(\) [resp. N(A)] is the unique simple quotient (resp. unique maximal
submodule) of M () [from theorem 1.2(f)].

Theorem 34 (1.3). Every simple module in O of maximal weight A is isomorphic to
L(X). Moreover, dim Hom(L(p), L(X)) = 0.

Proof. Let M € O, simple of maximal weight A. Let v € M), = U(&)vt € M
highest weight module.

Theorem 1.2g implies the result.

When g = A we know that dim Endp M = 1. by 1.2g.

When p # A we claim that Hom(L(u), L(A)) = 0.

Let 0 # f € Hom(L(p), L(\)). These are simple modules, thus ker f = 0,im f = L(X).
So this is in fact an isomorphism.

vm € L(p)y, h- f(m) = f(h-m) = f(v(h)m) = v(h)f(m) = f(m) € L(A)..

[ L)y — L(A)y.

So, p is a weight of L(\). Therefore u < A. Isomorphism implies A < p. Thus g = A.
Contradiction. O
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1.4 Maximal vectors in Verma modules

Proposition 35 (1.4). Given \ € h* and fixed a € A, suppose n =: (\,a") € Z>1.
If vt is a maximal vector of weight A in M()) then y?*! . v% is the maximal vector
of weight p=A—(n+1)a < A.

Thus, 3 a nonzero hom M () — M(A) whose image is in N(A).

Lemma 36 (1.4). a) Vi # j, [xj,y’.“Jrl] —=0.

?

b) [hy, yf ] = —(k + 1a)i(h;)yi !

¢) [wi,yf ™ = —(k+ D)yk(k - 1— hy).

Proof. maximality:

o 0= 0t () = a0t U et = —(ne+ Dy =
0.

o a; #a:x(ytlvt) = [,y ot = 0

o Weight of y2 10 = iz V1 < j < 1, hy(ya o) = [hyya ot +yt (A(hy)ot) £

(=(n+ Da(hy) + A(hy)) ya ot

w(hy)

Consider f: M(p) — M(X) by v, — yr ot
Then f(M(pn)) = U(g) -y ! - v+ = a proper submodule C N(\) O

Corollary 37 (1.4). Let vt be instead a maximal vector of weight A in L(\).
Then y Tty = 0.

Proof. L(\) is simple so there doesn’t exist maximal vector of p < A. O

1.5 S[Q(C)

Fix the standard basis {h,z,y}.

dimb* =1 = h* = C, A A(h).

Identically, A = {\ € b* | (\,a) € Z,Ya € ®} with Z and identically A, = Z® with
27.

eg ® ={a,—a}l;alh) =2 = p=5 = A=17Zp, A\, = Za = 2Zp.

M (X) has weights A, A — 2, A — 4 each with mul 1.

Basis vector (i > 0) for M(A) can be chosen so that (v_; = 0):

L] h’Uz:(A72Z)U1
OI'Ui:(AfZ‘+1)U7;_1
® Y-V = (Z —+ 1)1)7;4_1

Claim 1: dim L(X) < oo iff A € Zxy.

Note: weight of L(A\) : A, A —2,--+ =\

Therefore, N(\) = L(—\ — 2)

Claim 2: M (X) simple iff A ¢ Z>o.

= isdone. <= :suppose M (}) is not simple. Then AN C M () having a maximal
vector w which is not in Cvt.

Then, 3k € Z>o : w = y*Tlot (up to scalar). Then 0 = aw = [z, yF ot =
(k4 1)yE (k= Nt
Thus k = A
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1.6 Finite Dimensional Modules
Theorem 38 (1.6). TFAE:
a) L(A) fin dim
b) Ae At ={Aebh* |Vae d, (\aY) e Zso}
¢) dim L(\), = dim L(\)y,Vw € W, 1 € b*.

1.7 Action of the Center

Definition. Let M = M(\) be gen by v™. For z € Z(g) define x,(z) € C: 20T =
xXa(z)vT [since zvT € M), dim M, = 1].
Then x» : Z(g) — C the central character associated with A

Note: Yv € M, zv = xx(2)v since v = u - v, u € U(n™) and zu = uz.
Xx: alg hom and ker x is a maximal ideal in Z(g).
More generally, any alg hom x : Z(g) — C is called a central character.

Definition. Let pr : U(g) — U(h) be the projection by sending other monomials to
0.
Then & = pr| 2(s) is called the Harish-Chandra homomorphism.

Note: Vz € Z(g), xa(2) = M&(2)).
Therefore xx(z)vT = 20T = pr(z)vt = A(pr(z))v*
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