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1 Introduction

We are interested in non-commutative algebras of finite dimension over a field.

Reference: Lorenz Algebra Vol. 2, chapters 28 and following.

General convention:

i) Rings will always assumed to be associative and unital.

ii) Modules are always left modules [unless stated otherwise]. Even when philosophically it’s better to consider
them as right modules we will turn them into the opposite ring.

R = commutative unital ring.

A = unital R-algebra, not necessarily commutative.

Recall: this means that A is an R-module, and one has ∀x ∈ R, ∀a, b ∈ A, x · (ab) = (xa) · b = a · (xb).

Remark 1.1. 1) φ : R → A, x 7→ x · 1A is a ring homomorphism with image in Z(A) = {a ∈ A | ∀b ∈
A, ab = ba}.

(x · 1) · a = x · (1 · a) = x · a = x · (a · a) = a · (x · 1A)

2) Conversely, if ψ : R→ B [where B is any unital ring] is an unital ring homomorphism with im(ψ) ⊂ Z(B),
then the multiplication x · b := ψ(x)b gives B the structure of an R-module and B becomes an R-algebra.

3) The map ψ in (1) need not be injective. Z = R,Z/nZ = A is allowed.

4) Subalgebras of an algebra contain the unit element by convention.
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5) By an ideal in A we always mean a 2-sided ideal. We have left ideals and right ideals defined in the usual
way.

6) A division algebra is an R-algebra A such that ∀a ∈ A \ {0A}∃b ∈ A such that ab = ba = 1A. It is often
also called a skew field. The center of a division algebra is a field.

Modules over a division algebra will also be called vector spaces.

7) A-Mod denotes the category of (left) A-modules.

Proposition 1.2. Let A be an R-algebra andM,N ∈ A-Mod. Set H = HomA(M,N). Then H is an R-module
with the following action: R×H → H, (x, f) 7→ [m 7→ x · f(m)]. This gives H the structure of an R-module.

We need R to be commutative, because otherwise am 7→ xf(am) = xaf(m) which is not necessarily axf(m).

If N = M then H = EndA(M) is in fact an R-algebra w.r.t. the same module structure and composition of
maps as multiplication.

Proof. HW1

Remark 1.3. For M ∈ A-Mod we can regard it also as a module over EndR(M).

Notation 1.4. 1) Aℓ = A considered as an A-module by left multiplication A×Aℓ → Aℓ, (a, b) 7→ ab.

2) Ao = opposite algebra of A = A, but with multiplication defined by A ·
Ao
b := b ·

A
a. Ao is still an R-algebra.

We set Ar = (Ao)ℓ. This is just A but with Ao-module structure.

Ao ×Ar → Ar, (a, b) 7→ a ·
Ao
b = ba

The R-algebra Mn(A)

Mn(A) denotes the R-module of n× n-matrices with entries in A.

Multiplication: (aij)1≤i,j≤n · (bj)i≤i,j≤n := (
∑n

k=1 aikbkj)1≤i,j≤n
.

Proposition 1.5. i) The map λ : A → EndR(A), α(a) = [b 7→ ab] is injective and induces an isomorphism

of R-algebras A
∼=−→
λ

EndAo(A) ⊂ EndR(A).

ii) The map ρ : Ao → EndR(A), ρ(a) = [b 7→ ba] is injective and induces an isomorphism of R-algebras

Ao
∼=−→
ρ

EndA(A) ⊂ EndR(A).

We will discuss this later.

Proposition 1.6. i) The map EndA(A
⊕n
ℓ )

∼=−→ Mn(A
o), given by f 7→ (aij)i,j where f(ej) =

∑n
i=1 aijei is

an isomorphism of R-algebras.

ii) The map EndAo(A⊕n
r )

∼=−→ Mn(A), given by f 7→ (aij)i,j where f(ej) =
∑n

i=1 aijei is an isomorphism of
R-algebras.

Proof. i) Suppose f 7→ (aij)i,j , g 7→ (aij)i,j . Then (f ◦g)(ej) = f(g(ej)) = f (
∑n

i=1 bijej) =
∑n

i=1 bijf(ej) =∑n
i=1 bij

∑n
k=1 aki

ek =
∑n

k=1 (
∑n

i=1 bijaki
) ek =

∑n
k=1

(∑n
i=1 aki ·

Ao
bij

)
ek. Note that

∑n
i=1 aki ·

Ao
bij is

simply the entry in position (k, j) of (aij) · (bij) where they’re elements of Mn(A
o).

Hence, f ◦ g 7→ (aij) ·
Mn(Ao)

(bij).
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ii) Is identical.

Now we generalize. Let N ∈ A-Mod and consider Nn [which is a shorthand for N⊕n] as an A-Mod by diagonal
multiplication of A.

Let ιj : N → Nn be the inclusion of the j’th summand, x 7→ (0, · · · , 0, x, 0, · · · , 0) where x is in the j’th
position.

Let πi : N
n → N be the projection onto i’th direct summand, (x1, · · · , xn) 7→ xi.

Proposition 1.7. The map EndA(N
n)

∼=−→ Mn(EndA(N)) where f 7→ (fij)1≤i,j≤n, fij = πi ◦ f ◦ ιj is an

isomorphism of R-algebras. Concretely, (x1, · · · , xn) 7→
(∑n

j=1 fij(xj)
)
i=1,··· ,n

.

Moreover setting C = EndA(N), N ′ = Nn, C ′ = EndA(N
′) then the inclusion EndC(N) = EndEndA(N)(N)

∆−→
EndC(N

′) = EndEndA(N)(N
n) ∼=Mn(EndC(N)).

Here ∆ : g 7→ [(x1, · · · , xn) 7→ (g(x1), · · · , g(xn))].

This induces an isomorphism (of R-algebras) EndC(N) → EndC′′C′(N ′) = EndEndA(Nn)(N
n).

Note that EndA(Aℓ) ∼= Ao, so this is sort of a generalization to the previous proposition.

Proof. The first assertion is an easy exercise.

Let g ∈ EndC(N) and let g̃ : Nn → Nn be (x1, · · · , xn) 7→ (g(x1), · · · , g(xn)). We want to show that g̃
commutes with elements of C ′.

Let f ∈ C ′ = EndA(N
′).

g̃(f(x1, · · · , xn)) = g̃
((∑n

j=1 fij(xj)
))

i
=

(
g
(∑n

j=1 fij(xj)
))

i
=

(∑
j g(fij(xj))

)
i

= f ((g(x1), · · · , g(xn))).

Here fij ∈ C.

Surjectivity of EndC(N) → EndC′(N ′): given h ∈ EndC′(N ′)[⊂ EndC(N
′) ∼=Mn(EndC(N))], we need to show

that it is diagonal. Which means we have to show that ∀i ̸= j : πi ◦ h ◦ ιj = 0 and πi ◦ h ◦ ιi = πj ◦ h ◦ πj .

h ∈ EndC′(Nn) =⇒ h commutes with ιj ◦ πi : Nn → Nn. Note that ιj ◦ πi ∈ C ′ = EndA(N
n).

Then h ◦ ιj = h ◦ ιj ◦ πi ◦ ιi.

Compose with πi on the left: πi ◦ h ◦ ιj = πi ◦ ιj︸ ︷︷ ︸
=0

ωπi ◦ h ◦ ιi = 0.

Compose with πj on the left: πj ◦ h ◦ ιj = πi ◦ h ◦ ιi.

3



Thursday, 1/15/2026

Corollary 1.8. i) EndA(A
n)

∼=−→Mn(A
o).

ii) A
∼=−→ EndEndA(An)(A

n).

iii) Ao ∼= EndMn(A)(A
n).

iv) Z (EndA(A
n)) = Z(Ao) · idAn = Z(A) · idAn .

v) Z(Mn(A)) = Z(A) · 1n where 1n = n× n identity matrix.

Proof. i) Follows from 1.7 and 1.5.

ii) Take N = Aℓ in 1.7 and C = EndA(A)
1.5
= Ao.

EndC(N) = EndAo(Aℓ) = A
∼=−−→
1.7

EndEndA(An
ℓ )
(An

ℓ ).

iii to v are exercises.

Definition (Anti-isomorphism). α is an anti-isomorphism if it is an isomorphism of R-modules sending 1A to
1A and ∀a, b ∈ A : α(ab) = α(b)α(a).

Proposition 1.9. i) Supppose ∃ anti-isomorphism α : A→ A. Then α is an isomorphism A→ Ao.

ii) The map Mn(A) →Mn(A
o)o given by x 7→ xT is an isomorphism of algebras.

iii) If A ∼= Ao [as R-algebras], thenMn(A) ∼=Mn(A)
o. In particular, matrix algebras over fields are isomorphic

to their opposite.

Proof. HW1.

Example. 1) H = R1⊕Ri⊕Rj⊕Rk the Hamilton Quaternions are isomorphic toHo has an anti-isomorphism
given by a+ bi+ cj + dk 7→ a− bi− cj − dk.

2) Let R be a field and A =

{[
a b
0 d

]
: a, b, d ∈ R

}
. Then Ao ̸∼= A.

Definition. 1) A module N is called simple (or irreducible) if N ̸= 0 and the only submodules of N are 0
and N .

2) A module N is called semisimple if it is isomorphic to a direct sum of (not necessarily finitely many)
simple modules. Formally, we allow the empty direct sum. As a consequence, 0 is a semisimple module.

3) A submodule N ⊂ M is called minimal (resp. maximal) if it is minimal (resp. maximal) among all
non-zero submodules (resp. among all proper submodules). 0 doesn’t have any minimal or maximal
submodule.

Example. Let R = K be a field. The simple K-modules are just the 1-dimensional vector spaces, and they’re
all isomorphic to K itself.

Recall that every vector space has a basis [assuming axiom of choice]. Therefore, every K-module is semisimple.

Same is true for division algebras.

Proposition 1.11. Let M be a finitely generated (f.g.) A-module, and N0 ⊊ M a proper submodule. Then
M has a maximal submodule N containing N0.
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Proof. We use Zorn’s Lemma.

Let M = {N ⊊M : N submodule, N ⊇ N0}.

N0 ∈ M =⇒ M ̸= ∅.

Let N1 ⊂ N2 ⊂ · · · ⊂ an ascending chain in M . Define Ñ =
⋃

i≥1Ni.

Let m1,m2, · · · ,mr be generators of M . If Ñ = M then there exists i ≥ 1 such that m1, · · · ,mr ∈ Ni. But
that would imply Ni =M . This is a contradiction.

Now we apply Zorn’s Lemma. M contains a maximal element N . This N is maximal among all proper
submodules. Therefore, N ⊃ N0 is maximal.

Proposition 1.12. Let 0 ̸= N ∈ A-Mod. TFAE:

i) N is simple.

ii) ∀x ∈ N \ {0} : Ax = N .

iii) ∃ maximal (left) ideal I ⊂ A : N ∼=
A
A/I.

Proof. Consider the map A↠ N given by a 7→ ax. Let I = AnnA(x)
N simple−−−−−−→ I is maximal.

Proposition 1.13. Let n > 0 and V be an n-dimensional vector space over a division algebra D, and set
A = EndD(V ). Regard V as an A-module. Then,

i) V is simple as an A-module.

ii) Aℓ
∼= V n. In particular Aℓ is a semisimple A-module.

Proof. i) We use the fact that if v1, · · · , vn is a basis of V over D, then the map EndD(V ) → V ⊕ · · · ⊕ V︸ ︷︷ ︸
n

=

V n given by a 7→ (a(v1), · · · , a(vn)) is a bijection of abelian groups.

It is not necessarily a bijection of D-vector spaces.

Given any v1 ∈ V \ {0} and any w ∈ V , we can extend {v1} to be a basis of V and find a ∈ A such that
a(v1) = w. Then Av1 = V =⇒

1.12
V is simple.

ii) Note that the map A = EndD(V ) → V n in (i) is A-linear, hence an isomorphism of A-modules.

Remark. Take in 1.13 V = Dn. Then EndD(Dn) ∼=
1.8

Mn(D
o).

Then, 1.13 says Mn(D
o) ∼= Dn ⊕ · · · ⊕Dn︸ ︷︷ ︸

n

where the Dn are columns of the matrices in the LHS.

Definition. 1) An algebra A is called semisimple if Aℓ is a semisimple A-module.

2) A is called simple, if A ̸= 0 and does not contain any (2-sided) ideals other than 0 and A.

Example. Mn(D) where D is a division ring is a semisimple algebra by 1.13. This algebra is also simple.

Note that not every semisimple algebra is simple. Let A and B be semisimple. Exercise: A × B with compo-
nentwise addition and multiplication is semisimple.

Let K1, · · · ,Kn be fields (or skew fields). Then K1 × · · · ×Kn is semisimple.
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Caution: There are simple algebras which are not semisimple (HW1).

Proposition 1.14 (Schur’s Lemma). Let M,N ∈ A-Mod. Set H = HomA(M,N).

i) If M is simple, any non-zero f ∈ H is injective. If N is simple, any non-zero f ∈ H is surjective.

ii) If M,N are simple, then M ∼= N or H = 0.

iii) If M is simple, then EndA(M) is a division algebra.

Proof. Straightforward.

Lemma 1.15. Suppose M =
∑

i∈I Ni is the sum of a family (Ni)i∈I of simple submodules.

Let N ⊂M be any submodule. Then ∃J ⊂ I such that,

M = N ⊕
⊕
j∈J

Nj

Proof. Let S =
{
J ⊂ I : s.t. M +

∑
j∈J Nj = N ⊕

⊕
j∈J Nj

}
. Note that ∅ ∈ S =⇒ S ̸= ∅.

If J1 ⊂ J2 ⊂ · · · is a chain in S and J̃ =
⋃∞

k=1 Jk then [exercise] J̃ ∈ S .

Zorn’s lemma implies that S has a maximal element J .

Check: J works.

Tuesday, 1/20/2026

Proposition 1.16. For M ∈ A-Mod. TFAE:

i) M is the sum of simple submodules.

ii) M is semisimple.

iii) Every submodule is a direct summand of M .

Proof. i =⇒ ii: take N = 0 in 1.15.

ii =⇒ iii: Apply 1.15 with the submodule as N .

iii =⇒ i: Let x ∈M \ {0} and consider the ‘cyclic submodule’ C = Ax ⊂M . Note that x ∈ C =⇒ 0 ̸= C.

1.11 implies ∃ maximal submodule L ⊊ C. Since L is a maximal submodule, C/L must be simple.

By assumption, ∃N ⊂M such that M = L⊕N . Since L ⊂ C it follows that C = L⊕ (C ∩N).

Therefore, C/L ∼= C ∩N =⇒ C ∩N is a simple module.

It follows that every non-zero submodule of M contains a simple submodule.
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Set M ′ =
∑

N⊂M simpleN . Let M ′′ ⊂M be the summand, i.e. M =M ′ ⊕M ′′.

If M ′′ ̸= 0, it contains a simple submodule N0 ⊆M ′′. But then N0 ⊂M ′. This is a contradiction.

Thus, M ′′ = 0. Which means M =M ′ = sum of simple submodules.

Remark. Given any M ∈ A-Mod, the socle of M , soc(M) is defined to be the largest semisimple submodule
of M .

By 1.16, soc(M) =
∑

N⊂M simpleN .

Proposition 1.17. Suppose M is the sum of simple submodules (Ni)i∈I . Then,

i) Every submodule or quotient module is isomorphic to
⊕

j∈J Nj for some J ⊂ I. Note that it need not be

directly equal, just isomorphic. Consider K
∆
↪−→ K ⊕K.

ii) Any simple submodule N ⊂M is isomorphic to one of the Ni.

Proof. ii follows from i.

For i: Let M ↠
π
M ′′ be a quotient of M . Then, Ni := π(Ni) is zero or simple.

Set I := {i ∈ I | Ni ̸= 0}.

=⇒ M ′′ =
∑

i∈I Ni. Applying 1.15, ∃J ⊂ I so that M ′′ =
⊕

j∈J Nj
∼=

⊕
j∈J Nj .

If M ′ ⊂ M is a submodule, 1.16 =⇒ ∃N ⊂ M : M = N ⊕M ′. Then M ′ ∼= M/N , which is a quotient of
M .

Corollary 1.18. i) Every submodule or a quotient module of a semisimple module is semisimple.

ii) If A is semisimple, any simple A-module is isomorphic to a submodule of Aℓ, and so is isomorphic to a
minimal left ideal of A.

Proof. i) Directly follows from 1.17.

ii) Suppose A is semisimple. Then by definition, Aℓ =
⊕

i∈I Ni where Ni are simple. If N is a simple module,
1.12 implies N ∼= Aℓ/I where I ⊂ A is a maximal submodule.

1.17 implies that N ∼= Ni for some i.

Note that each Ni is a left ideal. Since it is simple, it must be minimal among the non-zero submodules.

Proposition 1.19. For an algebra A TFAE:

i) A is semisimple.

ii) Every A-module is semisimple.

Proof. ii =⇒ i is direct.

i =⇒ ii: Suppose (mi)i∈I is a set of generators of M as an A-module. Consider A
(I)
ℓ :=

⊕
i∈I Aℓ ↠ M given

by (ai)i∈I 7→
∑

i aimi.

Thus M must be a quotient of a semisimple module. The statement follows from 1.18.
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Definition. Denote by T (A) the set of isomorphism classes of simple A-modules.

We call a simple module N of type τ ∈ T (A) if the isomorphism class of N is τ .

Given M ∈ A-Mod, τ ∈ T (A), we set Mτ =
∑

N⊂M simple of type τ N [note that it must be a direct sum of some
submodules of type τ .] Mτ is called the τ -isotypic component.

If M =Mτ then we say that M is isotypic of type τ .

Remark. By 1.12, {I ⊂ Aℓ | maximal left ideal} → T (A) given by I 7→ isomorphism class of A/I is surjective.
Thus T (A) is a set.

Exercise: This map is bijective (HW2).

Notation. A-Modss = category of semisimple A-modules.

Corollary 1.20. Let M ∈ A-Modss. Then,

i) M =
⊕

τ∈T (A)Mτ .

ii) ∀ submodule M ′ ⊂M :M ′ =
⊕

τ∈T (A)(M
′ ∩Mτ ).

Proof. i) M semisimple =⇒ M =
∑

τ Mτ . Fix τ . 1.18 implies thatM ′ :=Mτ∩
(∑

τ ′ ̸=τ Mτ ′

)
is semisimple.

If M ′ ̸= 0 then ∃N ⊂ M ′ which is simple. N ⊂ Mτ implies N must be of type τ . However, N ⊂∑
τ ′ ̸=τ Mτ ′ ,, which implies that N must not be of type τ . This is a contradiction. Therefore, M ′ = 0.

This means the sum is direct, i.e. M ′ =
⊕

τ Mτ .

ii) 1.18 implies that M ′ must be semisimple. Therefore M ′ =
⊕

τ M
′
τ .

Clearly M ′
τ ⊂M ′ ∩Mτ .

Conversely, M ′∩Mτ is semisimple by 1.18. Therefore, M ′∩Mτ =
∑

N⊂M ′∩Mτ ,N simpleN . Note that each
N is of type τ . Thus M ′ ∩Mτ =M ′

τ .

Proposition 1.21. If M,M ′ ∈ A-Modss, then HomA(M,M ′) =
∐

τ∈T (A) HomA(Mτ ,M
′
τ ).

Proof. Suppose f ∈ HomA(M,M ′). Consider f
∣∣
Mτ

:Mτ ↠ f(Mτ ) ⊂M ′.

Note that f(Mτ ) =
∑

N⊂M simple of type τ f(N). Thus f(Mτ ) ⊂M ′
τ .

Proposition 1.22. M ∈ A-Modss. For a submodule U ⊂M TFAE:

i) ∀f ∈ EndA(M), f(U) ⊂ U .

ii) U is a direct sum of some Mτ , τ ∈ T (A).

Proof. ii =⇒ i is a direct consequence of 1.21.

i =⇒ ii: 1.20 and 1.18 imply U =
⊕

τ Uτ .

If Uτ ⊊Mτ , 1.15 =⇒ Mτ = Uτ

⊕
i∈I Ni where the sum is non-zero and each Ni is of type τ .

Then one finds f : U →M such that f(U) ̸⊂ U . Can extend f to a homomorphism f :M →M .
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Corollary 1.23. Let A be semisimple. For a subset U ⊆ A TFAE:

i) U is an ideal of A. (By convention we mean a two-sided ideal).

ii) U is a direct sum of isotypic components of Aℓ.

Proof. i =⇒ ii: U is an ideal =⇒ U is a submodule of Aℓ, and U is stable under ‘right multiplication by a’.
We denote this right multiplication by a map to be Aa : Aℓ → Aℓ, Aa(b) = ba. So U is stable under all Aa.

1.5 =⇒ EndA(Aℓ) = Ao.

Therefore, ∀f ∈ EndA(Aℓ) : f(U) ⊂ U . Statement ii follows from 1.22.

ii ⇐= i: same argument in reverse order.

Corollary 1.24. Let A be semisimple.

i) The isotypic components of Aℓ are precisely the minimal ideals of A, and every ideal is a direct sum of
minimal ideals.

ii) A has only finitely many minimal ideals.

iii) |T (A)| <∞.

Proof. i) I ⊆ Aℓ a direct sum of isotypic components ⇐⇒
1.23

I is an ideal.

Therefore, I is an isotypic component ⇐⇒ I is a minimal ideal.

ii) Write A =
⊕

τ∈T (A)(Aℓ)τ . Then we can write 1 =
∑

τ aτ where aτ ∈ (Aℓ)τ and all but finitely many aτ
are zero.

Then, A =
∑

τ,aτ ̸=0Aaτ ⊆
⊕

aτ ̸=0(Aℓ)τ ⊆ A.

iii) 1.18: any simple A-module N is isomorphic to a submodule of Aℓ. Suppose τ is the type of N . Then,
(Aℓ)τ ⊇ N .

Since there are only finitely many isotypic components, there are only finitely many τ ∈ T (A).

Example. 1) Let K1, · · · ,Kn be fields. Then, A = K1×· · ·×Kn is semisimple, and Ki = {0}× · · ·×{0}×
Ki × {0} × · · · × {0} is a simple module, and these exhaust all of T (A).

2) Suppose K is a field, and let A = Mn(K). We can write Aℓ as a direct sum of columns, i.e. Aℓ =
Ae1 ⊕ · · · ⊕Aen.

Here, Aei
∼=
A
Kn is up to isomorphism the only simple A-module. Denote by τ this type. (Aℓ)τ is the only

isotypic component.

3) A =Mn1
(K1)× · · · ×Mns

(Ks) has s isotypic components.

Lemma 1.25. Let M ∈ A-Modss and suppose M =
⊕

i∈I Ni and M =
⊕

j∈J N
′
j with simple submodules

Ni, N
′
j ⊂M .

Then ∃ bijection σ : I → J such that ∀i ∈ I : N ′
σ(i)

∼=
A
Ni. In particular, I and J must have the same cardinality.
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Proof. WLOG we may assume M =Mτ . Let N be a fixed simple module of type τ .

Then N ∼= Ni
∼= N ′

j for all i ∈ I, j ∈ J .

Put D = EndA(N)o. 1.44 =⇒ D is a division algebra.

Then, the map D×HomA(N,M) → HomA(N,M) given by (d, f) 7→ f ◦d makes HomA(N,M) into a D-module.

Moreover, HomA(N,M) =
⊕

i∈I HomA(N,Ni).

However, HomA(N,Ni) ∼= HomA(N,N) = EndA(N) ∼= Do. Therefore, HomA(N,Ni) is free of rank 1 over D.

Then, dimD HomA(N,M) = |I|.

By the same argument, dimD HomA(N,M) = |J | using the other decomposition.

Definition. If we write M ∈ A-Modss as M =
⊕

i∈I Ni where Ni are simple, then ℓA(M) = |I| is called the
length of M (as an A-module).

The length of a semisimple algebra A is by definition ℓA(Aℓ).

Given a simple module N of type τ we also use the notation:

M : τ =M : N := ℓA(Mτ )

Remark. If N is simple and D = EndA(N)o, then M : N = dimD HomA(N,M) and ℓA(M) =
∑

τ∈T (A)M : τ

Theorem 1.26 (Jacobson Density Theorem). LetM ∈ A-Modss and C = EndA(M) and consider the canonical
map:

(1) A→ EndC(M), a 7→ aM = [m 7→ am]. Note that this map is not necessarily A-linear. But it is C-linear.

Then, the image of (1) is ‘dense’ in EndC(M) in the following sense:

∀f ∈ EndC(M) and ∀x1, · · · , xn ∈M, ∃a ∈ A such that ∀1 ≤ i ≤ n : f(xi) = a · xi (2).

If M is finitely generated as a C-module, the map (1) is surjective.

Proof. Consider M ′ :=M⊕n ∈ A-Modss and x := (x1, · · · , xn) ∈M ′.

1.16 =⇒ ∃M ′′ ⊂M ′ with the property M ′ =M ′′ ⊕Ax.

Then we can define a projection p as follows: p :M ′ →M ′ as follows: every element of M ′ =M ′′ +Ax can be
written as m′′ + ax where m′′ ∈M ′′. Then, p(m′′ + ax) := ax ∈M ′.

Then, p ∈ EndA(M
′) =: C ′.

Now define f̃ :M ′ →M ′ as follows: f̃(y1, · · · , yn) = (f(y1), · · · , f(yn)).

1.7 =⇒ EndC(M)
∼=−→ EndC′(M ′) given by f 7→ f̃ is a C ′-linear bijection.

Thus, f̃ ◦ p = p ◦ f̃ .

Therefore, (f(x1), · · · , f(xn)) = f̃(x) = f̃(p(x)) = p(f̃(x)) = a · x for some a ∈ A [since im p = Ax].

Therefore, ∀1 ≤ i ≤ n : f(xi) = axi.

10



Corollary 1.27. Let N ∈ A-Mod be simple and D = EndA(N). Consider N as a D-vector space. Let
x1, · · · , xn be linearly independent over D. Then for any y1, · · · , yn ∈ N∃a ∈ A∀1 ≤ i ≤ n : yi = axi.

Proof. We apply 1.26 with C = EndA(N) = D.

We extend (x1, · · · , xn) to a D-basis of N . Then we can choose f ∈ EndD=C(N) such that f(xi) = yi for all
1 ≤ i ≤ n.

Tuesday, 1/27/2026

Noetherian and Artinian Modules (E. Artin, 1898-1962, IU 1938-1946)

Definition. A module M is called:

i) Noetherian if every non-empty subset of submodules of M has a maximal element.

ii) Artinian if every non-empty subset of submodules of M has a minimal element.

An algebra A is called artinian (resp. artinian) if Aℓ is noetherian (resp. artinian).

Remark 1.28. i) M is noetherian (resp. artinian) iff every increasing (resp. decreasing) (countable) chain
is stationary (i.e. all members are the same from some index on).

ii) For a division ring D and V a D-Mod, TFAE:

V is noetherian ⇐⇒ V is artinian ⇐⇒ dimD(V ) <∞.

iii) If M =
⊕

i∈I Mi with all Mi non-zero and |I| = ∞, then M is neither noetherian nnor artinian.

iv) Z is not artinia: (2) ⊋ (6) ⊋ (24) ⊋ (120) ⊋ · · ·. Z is noetherian, as is any PID.

v) Q/Z (as a Z-module) is not noetherian: 1
2Z/Z ⊊ 1

6Z/Z ⊊ 1
24Z/Z ⊊ · · ·.

Q/Z is also not artinian: M =
∑

p prime
1
pZ/Z ⊋

∑
p>2

1
pZ/Z ⊋

∑
p>3

1
pZ/Z ⊋ · · ·.

But for Z(p) [the localization of Z at p], the module Q/Z(p) is artinian.

vi) If K is a field, then any finite dimensional K-algebra A is noetherian and artinian.

vii) ∃ noetoherian and artiniain K-algebra A such that Ao is neither noetherian nor artinian.

viii) We’ll prove: A artinian =⇒ A is noetherian.

Proposition 1.29. M is noetherian iff every submodule is finitely generated.

Proof. =⇒ : given N ⊂M set S = {N ′ ⊂ N | N ′ is f.g.}.

0 ∈ S =⇒ S ̸= ∅, and by assumption S has a maximal element N0 ⊆ N . It is easy t show that N0 = N =⇒ N
is f.g.

⇐= : Let N1 ⊆ N2 ⊆ · · · be submodules ofM . By assumption we can show that N =
⋃

iNi is finiely generated.
Let m1, · · · ,ms be generators of N . Then ∃i0 : m1, · · · ,ms ∈ Ni0 . Thus N = Ni0 = Ni0+1 = · · ·.

Remark. For M to be noetherian it does not suffice that M is finitely generated.

If A is noetherian and M is finitely generated, then M is noetherian.

Proposition 1.30. Let M be a module and N ⊂M be a submodule.

11



i) N and M/N are noetherian ⇐⇒ M is noetherian.

ii) N and M/N are artinian ⇐⇒ M is artinian.

Proof. HW3

Corollary 1.31. Let p be the property ‘noetherian’ or ‘artinian’.

i) Suppose M =
⊕n

i=1Mi. Then M is p iff all Mi are p.

ii) If an algebra A is p, every M ∈ A-Modf.g. is p.

Suppose,

0 → N ↪→M →M/N → 0

say: M is an extension of M/N by N .

Proof. i) Reduce to the case n = 2 and apply 1.30.

ii) A is p =⇒ Aℓ is p
(i)−→ A⊕n

ℓ is p.1.30 =⇒ A⊕n
ℓ /L is p for any submodule L ⊂ A⊕n

ℓ . Any finitely
generated module is of this form which implies the assertion.

Proposition 1.32. Let M ∈ A-Modss. TFAE:

i) M is finitely generated.

ii) M is a finite direct sum of simple submodules.

iii) M is artinian.

iv) M is noetherian.

Proof. Write M =
⊕

i∈I Ni where Ni are simple. Assume i, and let m1, · · · ,ms be generators. ∀j : 1 ≤ j ≤
s∃Ij ⊂ I such that |Ij | <∞ such that mj ∈

⊕
i∈Ij

Ni.

Then, m1, · · · ,ms ∈
⊕

i∈
⋃s

j=1 Ij
Ni =M which implies ii.

ii =⇒ iii, iv is implied by 1.31.

iv =⇒ i: Noetherian implies finitely generated.

To complete the full circle, assume iii. Use remark 1.28. HW3.

Corollary 1.33. Every semisimple algebra A is noetherian and artinian.

Proof. Aℓ is semisimple and f.g., Aℓ = A · 1A. Apply 1.32.

12



Thursday, 1/29/2026

Remark. The study of Semisimple Algebras has very little overlap with Commutative Algebras, namely finite
product of fields.

There is a generalization: Azumaya algebras.

Goro Azumaya: IU (1968-1992)

Proposition 1.34 (Definition of Composition Series). For M ∈ A-Mod TFAE:

i) M is both artinian and noetherian.

ii) M has a composition series: a chain of submodules:

M =Mn ⊋Mn−1 ⊋ · · · ⊋M0 := 0

where Mi/Mi−1 is simple for 1 ≤ i ≤ n[n = 0 if M = 0].

n is called the length of the composition series.

Proof. ii =⇒ i: Suppose M has a composition series of some length. Then M1 must be simple. If there is an
M2, M2/M1 must be simple. We have the exact sequence:

0 →M1 →M2 →M2/M1

1.30 then implies that M2 is noetherian and artinian. The fact that M must be both noetherian and artinian
follows from induction.

i =⇒ ii: HW3.

Theorem 1.35 (Jordan-Hölder Theorem for Modules). If M has to composition series:

1) M =Mn ⊋Mn−1 ⊋ · · · ⊋M0 = 0.

2) M = Lm ⊋ Lm−1 ⊋ · · · ⊋ L0 = 0.

then m = n. Furthermore, the simple quotient are the same under permutation: ∃σ ∈ Sn such that ∀1 ≤ i ≤
n : Li/Li−1

∼=
A
Mσ(i)/Mσ(i)−1.

Definition. A module M is called of finite length if M satisfies the equivalent conditions of 1.34.

The length of any composition series is called the length of M , denoted by ℓ(M).

Remark. i) If M is of finite length and N is a submodule, then N is of finite length. Furthermore,

ℓ(M) = ℓ(N) + ℓ(M/N).

We use the exact sequence:

0 → N →M →M/N.

13



ii) M semisimple of finite length, i.e. M =
⊕n

i=1Ni where Ni are simple =⇒ ℓ(M) = n.

M is not always the direct sum of the simple quotients. For example, suppose K is a field and A =
{n× n upper triangular K-matrices} acting on Kn. Then Ke1 is a submodule but Ke2 is not one.

Kn ⊋ Ke1 ⊕ · · ·Ken−1 ⊋ Ke1 ⊕ · · · ⊕Ken−2 ⊋ · · · ⊋ Ke1 ⊋ 0.

Hence ℓ(Kn) = n.

Definition. A module N is called indecomposable if N ̸= 0 and N has no direct summand other than 0 and
N .

i.e. We cannot write N = A⊕B where A,B are non-zero submodules. For example, Kn in the previous example
is indecomposable as an A-module.

Example. i) Again, suppose K is a field and A = {n× n upper triangular K-matrices} acting on Kn.
Then Kn is indecomposable as an A-module.

ii) Any simple module is indecomposable.

iii) Suppose K is a field, and A = K[x] acting on Kn where x 7→



0 1 0 0 0
. . .

. . .
. . . 0

. . .
. . . 0
. . . 1

0


[jordan block]. Then

Kn is indecomposable as an A-module.

Proposition 1.36. If M is artinian or noetherian, then it is a direct sum of finitely many indecomposable
modules.

Proof. Assume M is artinian. Suppose M ̸= 0 and M is decomposable. Then, ∃ non-zero submodules M1,M2

such that M =M1 ⊕M2.

Consider S(M) = {0 ⊊ N ⊊M : N is a direct summand of M} M1 ∈ S(M) =⇒ S(M) ̸= ∅.

M is artinian. Therefore, S(M) must have a minimal element N0. N0 must be indecomposable, since any
non-trivial decomposition of N0 contraditcs its minimality.

Write M = N0 ⊕M ′
0.

Consider S′ = {M ′ ⊂M : ∃M0 ⊂M :M =M0 ⊕M ′ and M0 is a finite direct sum of indecomposables}.

Then, M ′
0 ∈ S′. Thus, S′ ̸= ∅. Therefore S′ contains a minimal element which we claim is M ′.

Suppose M ′ ̸= 0. If M ′ is indecomposable then M = (M0 ⊕M ′) ⊕ 0 which contradicts the minimality of M ′,
since 0 ∈ S′.

Hence M ′ is indecomposable. Therefore, S(M ′) ̸= ∅. M ′ must also be artinian, therefore S(M ′) has minimal
element N ′

0 which is indecomposable. We write M ′ = N ′
0 ⊕M ′′ =⇒ M = (M0 ⊕ N ′

0) ⊕M ′′ where M ′′ is
minimal in S′, which is a contradiction.

Noetherian case: HW3.

Lemma 1.37. Let M ∈ A-Mod and g ∈ EndA(M).

i) If g is surjective and M is noetherian =⇒ g is injective.

ii) If g is injective and M is artinian =⇒ g is surjective.

14



Proof. HW3.

Lemma 1.38. Let M be of finite length and f ∈ EndA(M). Then ∃ decomposition M = U ⊕ N such that
f(U) ⊂ U, f(N) ⊂ N and f

∣∣
U

is bijective and f
∣∣
N

is nilpotent, (f
∣∣
N
)k = 0.

Proof. HW3.

Lemma 1.39. Let M be of finite length and indecomposable. Then every endomorphism f ∈ C := EndA(M)
is either bijective or nilpotent.

Moreover, I = {f ∈ C : f is nilpotent} is the unique maximal (2-sided) ideal of C.

Proof. Suppose f is not bijective. 1.39 implies that M = U ⊕N where f(U) ⊂ U, f(N) ⊂ N , f
∣∣
U

is bijective,

f
∣∣
N

is nilpotent. Since f is not bijective, M ̸= U . Therefore, N ̸= 0. Since M must be indecomposable, U = 0
and M = N . Therefore, f must be nilpotent.

Now we prove that I must be an ideal.

f ∈ I, h ∈ C =⇒ ker(h ◦ f) ̸= 0 =⇒ h ◦ f ∈ I.

f ∈ I, h ∈ C =⇒ im(f ◦ h) ⊊M =⇒ f ◦ h is not bijective =⇒ f ◦ h ∈ I.

We need to show I is closed under addition. Suppose f, g ∈ I but f + g /∈ I. Then f + g must be invertible.

h(f+g) = 1 =⇒ hg = 1−hf . Since hf is nilpotent it follows that hg is invertible, which is a contradiction.

Theorem 1.40 (Krull-Remak-Schmidt). Let M be a module of finite length. Suppose M = N1 ⊕ · · · ⊕Nm =
N ′

1 ⊕ · · · ⊕N ′
n with indecomposable submodules Ni, N

′
j . Then m = n and ∃σ ∈ Sn such that ∀1 ≤ i ≤ n : N ′

i
∼=

Nσ(i).

Proof. By induction on ℓ(M). If ℓ(M) = 1 there is nothing to show. Let ℓ(M) > 1 and suppose the sttement
is true for all modules of length < ℓ(M).

Let ιj : Nj ↪→M be the inclusion and πj :M → Nj the projection onto Nj .

Let pj = ιj ◦ πj ∈ EndA(M). Then pj is an idempotent, pj ◦ pj = pj and pj ◦ pi = 0 if i ̸= j. Furthermore
p1 + · · ·+ pm = idM .

We can do the same for the other decomposition: we get p′j where p′1 + · · ·+ p′n = idM etc.

Consider: EndA(N1) ∋ fj = π1 ◦ p′j ◦ ι1 : N1 ↪→M
π′
j−→ N ′

j

ι′j
↪−→M → N1.

f1 + f2 + · · ·+ fn = π1 ◦ (p′1 + · · ·+ p′n)︸ ︷︷ ︸
idM

◦ι1 = idN1
.

1.39 implies that ∃1 ≤ j ≤ n such that fj is bijective. After renumbering, we may assume that f1 is bijective.

Consider g = p′1 ◦ p1 :M →M . Note that π1 ◦ g = f1 ◦ π1.

Set h = g+ p2 + · · ·+ pm :M →M . Then p1 ◦ h = p1 ◦ g = ι1 ◦ π1 ◦ g = ι1 ◦ f1 ◦ π1. We want to show that h is
bijective.

Suppose x ∈M such that h(x) = 0.

=⇒ 0 = p1(h(x)) = p1(g(x)) = ι1(f1(π1(x))) = 0. Since ι1 and f1 are injective, it follows that π1(x) = 0.
Therefore x ∈ N2 ⊕ · · · ⊕Nm =:M ′. Since g = p′1 ◦ p1 it follows that g(x) = 0.
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0 = h(x) = g(x) + p2(x) + · · ·+ pm(x) = x where g(x) = 0 and pj(x) ∈ Nj . Therefore h is injective.

It follows from 1.37 that h is bijective.

Since h is an automorphism and h
∣∣
Nk

= idNk
for k ≥ 2 it follows that M = N ′

1⊕N2⊕· · ·⊕Nm. By quotienting

out N ′
1 it follows that N2 ⊕ · · · ⊕Nm

∼= N ′
2 ⊕ · · · ⊕N ′

n. The theorem follows from induction.

Tuesday, 2/3/2026

2 Wedderburn Theory

Recall: An algebra A is called simple if A is non-zero and it has no ideals other than 0 and A.

Recall that by ideal we mean ideals that are both left and right ideals. There can be left ideals that are not
right ideals and vice versa. Meaning, an algebra A being simple doesn’t necessarily imply that the module Aℓ

is simple.

Proposition 2.1. Let A be simple. TFAE:

i) A is semisimple.

ii) A is artinian.

iii) A possesses a minimal left ideal N .

Minimal ideals are by convention non-zero. This forces A to be non-zero from iii as well.

Recall by saying A is noetherian/artinian we mean Aℓ is noetherian/artinian.

Proof. i =⇒ ii: Corollary 1.33 (because Aℓ is semisimple and finitely generated, hence it has finite length).

ii =⇒ iii: Trivial.

iii =⇒ i: Let 0 ̸= N ⊂ A be the minimal left ideal. Then, 0 ̸= NA =
∑

a∈ANa is a 2-sided ideal. Since A is
simple, NA = A.

N minimal left ideal =⇒ N is simple as an A-module. Na is the image of N under the A-module map
N → Na, x 7→ xa. If Na is non-zero, it is the non-zero image of a simple module, which implies Na is
simple. Then, NA is a sum of simple modules: A = NA =

∑
Na̸=0Na is a sum of simple modules. Therefore,

1.16 =⇒ A must be semisimple.

Corollary 2.2. Let A be simple and semisimple and N ⊂ A a minimal left ideal. Then, Aℓ
∼=
A
N⊕m for some

m > 0, and Aℓ is hence isotypic.

Proof. 2.1 implies the existence of a minimal ideal N . Then, Aℓ =
∑

a∈A,Na̸=0Na where Na are simple. By
1.17, Aℓ

∼=
⊕

i∈I Nai for some subset {ai : i ∈ I} of A. WLOG we assume that Nai ̸= 0 for all i ∈ I.

Then, the identity 1A =
∑

j∈J⊂I njaj for some finite J ⊂ I and ni ∈ N . Therefore, ∀a ∈ A : a =
∑

j∈J anjaj .
Note that anjaj ∈ Naj since N is a left ideal. Therefore, A =

⊕
i∈J Nai. Therefore J = I. Furthermore, for

each i ∈ I, Nai ∼= N .
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Therefore, Aℓ
∼=

⊕
i∈I Nai

∼= N⊕|I|.

Proposition 2.3. Let A be a non-zero semisimple algebra. TFAE:

i) A is simple.

ii) Aℓ is isotypic.

iii) |T (A)| = 1. Recall that T (A) is the set of isomorphism classes of simple A-modules.

Proof. i =⇒ ii follows from 2.2.

ii =⇒ iii follows from 1.18: every simple module is isomorphic to a submodule of Aℓ.

Recall 1.24 which says that minimal ideals are precisely the isotypic components of Aℓ. in fact, Aℓ =⊕
τ∈T (A)(Aℓ)τ .

If N is simple of type τ =⇒ (Aℓ)τ ∼=
⊕

i∈Iτ
N .

If N is simple Aℓ/L ∼= N → N appears as a direct summand in Aℓ =
⊕

τ∈T (A)(Aℓ)τ . (Aℓ)τ ̸= 0 for all

τ ∈ T (A).

iii =⇒ ii is trivial.

ii =⇒ i follows from 1.24.

Summarizing,

i ii iii

2.2 1.18

1.24 trivial

Proposition 2.4. If D is a division algebra, then Mn(D) is a simple artinian algebra for any n ≥ 1.

Proof. Set V = (Do)⊕n =⇒ A := EndDo(V ) ∼=Mn((D
o)o) =Mn(D).

By 1.13: Aℓ
(∗)
= V ⊕ · · · ⊕ V︸ ︷︷ ︸

n copies

and V is simple as A-module (1.13). Then Aℓ is isotypic and seimisimple because

of ∗. Then by 2.3 A is simple.

Recall: Z(A) := center of A.

Proposition 2.5. A simple =⇒ Z(A) is a field.

Proof. Pick non-zero element of the center a ∈ Z(A) \ {0}. Note that Aa = aA must be a non-zero two-sided
ideal, and since A is simple it follows that aA = A. aA = A =⇒ ∃b ∈ A such that ab(= ba) = 1. Therefore a
must have a two-sided inverse.

Given c ∈ A : (cb − bc)a = c(ba) − (ba)c = c1 − 1c = c − c = 0. Multiplying by b on the right, it follows that
(cb− bc)ab = 0 =⇒ cb− bc = 0 =⇒ cb = bc for all c ∈ A. Therefore b ∈ Z(A).
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Theorem 2.6. A non-zero semisimple algebra A has only finitely many distinct minimal ideals A1, · · · , An.
Each Ai is a unital algebra in its own right with the induced addition and multiplication from A. Note that the
identity in Ai is not equal to the identity in A if n > 1.

Moreover, A = A1 × · · · × An is the product of the algebras A1, · · · , An (with componentwise addition and
multiplication), and each Ai is simple and artinian.

Conversely, if A1, · · · , An are simple artinian algebras, then A := A1 × · · · × An is semisimple and A1, · · · , An

are precisely the minimal ideals of A.

Note that direct sum and product carry the same meaning in this case. We generally use direct sums when
we’re thinking about the object as a module, and products when we’re thinking about the object as a ring.

Proof. 1.24 =⇒ A = A1 ⊕ · · · ⊕ An where A1, · · · , An are the isotypic components of Aℓ. These are precisely
the (2-sided) ideals.

We also have: AiAj ⊂ A1 ∩Aj = 0 for i ̸= j.

Write 1A = e1 + · · ·+ en with ei ∈ Ai. 1A = 1A · 1A =⇒ 1A = e21 + · · ·+ e2n. Taking projections it follows that
∀1 ≤ i ≤ n : e2i = ei.

∀a ∈ Ai, a = a · 1A = ae1 + · · ·+ aei + · · ·+ aen = aei = eia.

Therefore, ei is the identity element in Ai.

If 0 ̸= I ⊂ Ai is an ideal, then I is an ideal in A. However, since Ai is minimal, it follows that I = Ai. Therefore
Ai must be simple.

If 0 ̸= I ⊂ Ai is a left ideal, then I is a left ideal in A. Since A is a semisimple algebra A must be artinian.
Thus Ai must also be artinian.

The converse is easy to check (HW4)

Corollary 2.7. Let A = A1 × · · · ×An be a semisimple algebra with simple algebras A1, · · · , An. Then,

Z(A) = Z(A1)× · · · × Z(An)

is a product of fields, by 2.5. IN particular, Z(A) is a field if and only if A is simple.

Corollary 2.8. A commutative semisimple algebra A is a product of finitely many fields: A = K1 × · · · ×Kn.

These fields are uniquely determined as subsets of A. Namely, they are the minimal ideals of A.

Remark 2.9. A commutative artinian algebra A is semisimple if and only if its nilradical {a ∈ A | ∃n > 0 :
an = 0} is zero.

=⇒ follows from 2.8.

⇐= uses the theory of redical at the end of chapter 28. Direct proof on HW4.

Corollary 2.10. Let K be a field. A finite dimensional commutative K-algebra having no non-zero nilpotent
elements is a product of finitely many field extensions Ki/K with [Ki : K] <∞.

Proof. By the preceding remark, A is semisimple. By 2.8, it is a product of fields K1, · · · ,Kn, all of which have
finite degree over K.
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Now we state a key theorem of this course.

Theorem 2.11 (Wedderburn’s Theorem). An artinian algebra A is simple if and only if it is isomorphic (as
rings) to a matrix algebra Mn(D) for a division algebra D and n > 0:

A ∼=Mn(D)

D and n are uniquely determined by A.

Proof. By the remark, A is semisimple. By 2.8 it is a product of fields K1, · · · ,Kn, all of which have finite
degree /K.

A semisimple =⇒ A ∼=Mn1(D1)× · · · ×Mnr (Dr).

[D1] · [D2] = [D1 ⊗K D2] = [Mn(D3)] = [D3].

Thursday, 2/5/2026

Remark. Prop 2.4: Mn(D) is simple.

Notation. If K is a (skew) field then [V : K] := dimK(V ).

Theorem 2.12. Let A be a simple artinian algebra, and letN be a simple A-module (unique upto isomorphism).
Set D = EndA(N) which is a division algebra.

i) The canonical map A → EndD(N), a 7→ aN , aN (x) = ax, is an isomorphism, and r := dimD(N) is finite
and equal to ℓA(Aℓ).

Therefore, A ∼=Mr(D
o). Z(A) is a field, isomorphic to Z(D).

ii) If M is a non-zero f.g. A-module, then B = EndA(M) is simple and artinian, and B ∼= Mn(D), with D
as in (i)and n = ℓA(M). If K is a field and A is a K-algebra, then,

[M : K]2 = [A : K][B : K]

and all these dimensions are finite provided one of them is finite.

Proof. Step 1: 2.1 implies A is semisimple. 2.3 =⇒ |T (A) = 1|. Let N be a simple A-module, M a f.g.

A-module. 1.19 =⇒ M is semisimple.
1.32
=⇒ M ∼= N⊕n. n = ℓA(M).

1.7 =⇒ B := EndA(M) ∼= EndA(N
n) ∼=Mn(EndA(N))

def
= Mn(D).

Thus B is simple and artinian.

Step 2: Apply Step 1 with M = Aℓ
∼= N⊕m,m = ℓA(Aℓ).

Step 1 =⇒ EndA(Aℓ
∼=Mm(EndA(N))) =Mm(D).

Proposition 1.5 (HW1): EndA(Aℓ) = Ao.

=⇒ A ∼= EndA(Aℓ)
o ∼=Mm(D)o

HW1∼= Mm(Do).

Step 3: It remains to show: m(= ℓA(Aℓ)) = dimD(N) =: r.
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Fix an isomorphism of A-modules φ : Aℓ

∼=−→ N⊕m.

Consider the diagram:

A EndD(N)

EndAo(Ao
ℓ) = EndEndA(Aℓ)(A

o
ℓ) EndEndA(Nm)( Nm︸︷︷︸

=N ′ in 1.7

)

a7→aN

α1.5 =⇒ ∼= β1.7 =⇒ ∼=
∼=
φ∗

φ∗(τ)( x︸︷︷︸
∈N ′=Nm

) = φ(τ(φ−1(x))).

Easy to check: this diagram is commutative.

Upshot: the canonical map A→ EndD(N) is an isomorphism!

=⇒ EndD(N) is artinian.

=⇒ EndD(N) is artinian =⇒
easy (HW4)

[N : D] = dimD(N) <∞.

=⇒ N ∼=
D
D⊕r.

1.13 =⇒ EndD(N)ℓ ∼=
as EndD(N)-modules

Nr.

In the other hand, EndD(N)ℓ ∼=Mn(D
o) ∼= EndD(D).

Therefore, r = dimD(N) = ℓA(Aℓ) = m.

Consider again A
∼=−→ EndD(N) ∼=Mr(D

o).

=⇒ Z(A)
∼=−→ Z(Mr(D

o)) =
easy (HW4)

Z(Do) = Z(D).

Step 4: Let M ∈ A-Modf.g.. Assume A is a K-algebra. Write M = Nn.

Then, [M : K] = n[N : K] = n[N : D][D : K] = nr[D : K].

i =⇒ [A : K] = r2[D : K].

Step 1 =⇒ [B : K] = n2[D : K].

This shows the formula.

Theorem 2.13. Suppose D1, D2 are division algebras and Mr(D1) ∼= Ms(D2) as rings. Then r = s and
D1

∼= D2.

Proof. Step 1: Suppose N,N ′ are A-modules over A (any algebras). Then any isomorphism f: N → N ′ of
A-modules induces an isomorphism of rings EndA(N) → EndA(N

′) given by τ 7→ f ◦ τ ◦ f−1.

Step 2: If g : A → A′ is an isomorphismm of simple artinian algebras, and N ∈ A-Mod and N ′ ∈ A′-Mod are
simple, then a · x′ =: g(a) · x′ gives N ′ the structure of an A-module. Since g is an isomorphism, N ′ becomes a
simple A-module. 2.3 =⇒ N ′ ∼= N as A-modules.
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Step 1 =⇒ EndA(N) ∼= EndA(N
′) = EndA′(N ′) immediately.

Step 3: D division algebra =⇒
1.13

Dr is a simple module over A := EndD(Dr)(∼=Mn(D
o)) and EndMr(Do)(D

r) ∼=
1.8

D.

Now suppose Mr(D1) ∼=Ms(D2).

HW1 =⇒ Mr(D
o
1)

∼=
HW1

Mn(D1)
o ∼=Ms(D2)

o ∼=
HW1

Ms(D
o
2).

N := Dr
1 is a simple Mr(D

o
1)-module.

N ′ := Ds
2 is a simple Ms(D

o
2)-module.

Step 2 =⇒ D1
∼=
(∗)

EndMr(Do
1)
(N) ∼= EndMs(Do

2)
(N ′) ∼=

(∗)
D2.

Step 4: If A :=Mr(D) ∼=
rings

Ms(D) =: B then r = ℓA(Aℓ) = ℓB(Bℓ) = s.

Proof of Wedderburn’s Theorem. Combine 2.12 and 2.13.

Corollary 2.14. i) A simple algebra A is artinian if and only if Ao is artinian, in which case ℓA(Aℓ) =
ℓAo(Ao

ℓ).

ii) A is semisimple if and only if Ao is semisimple, in which case ℓA(Aℓ) = ℓAo(Ao
ℓ).

Proof. i) A simple artinian =⇒
2.13

A ∼=Mn(D) =⇒ Ao ∼=Mn(D
o).

ii) follows from 2.6 and (i).

Corollary 2.15. A unital associative algebra A is semisimple if and only if A ∼= Mn1
(D1) × · · · ×MNr

(Dr)
where D1, · · · , Dr are division algebras and n1, · · · , nr and the isomorphism classes of Dr, · · · , Dr are uniquely
determined upto permutation.
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