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1 Introduction

We are interested in non-commutative algebras of finite dimension over a field.
Reference: Lorenz Algebra Vol. 2, chapters 28 and following.

General convention:

i) Rings will always assumed to be associative and unital.

ii) Modules are always left modules [unless stated otherwise]. Even when philosophically it’s better to consider
them as right modules we will turn them into the opposite ring.

R = commutative unital ring.
A = unital R-algebra, not necessarily commutative.

Recall: this means that A is an R-module, and one has Vz € R,Va,b € A,z - (ab) = (za) - b= a - (zb).
Remark 1.1. 1) ¢ : R — A,z +— x -1, is a ring homomorphism with image in Z(A) = {a € A | Vb €
A ab = ba}.
(x-1)-a=z-(1-a)=x-a=z-(a-a)=a-(x-14)

2) Conversely, if ¢ : R — B [where B is any unital ring] is an unital ring homomorphism with im(y) C Z(B),
then the multiplication z - b := ¢ (z)b gives B the structure of an R-module and B becomes an R-algebra.

3) The map ¢ in (1) need not be injective. Z = R,Z/nZ = A is allowed.

4) Subalgebras of an algebra contain the unit element by convention.



5) By an ideal in A we always mean a 2-sided ideal. We have left ideals and right ideals defined in the usual
way.

6) A division algebra is an R-algebra A such that Va € A\ {04}3b € A such that ab = ba = 14. It is often
also called a skew field. The center of a division algebra is a field.

Modules over a division algebra will also be called vector spaces.
7) A-Mod denotes the category of (left) A-modules.

Proposition 1.2. Let A be an R-algebra and M, N € A-Mod. Set H = Hom 4 (M, N). Then H is an R-module
with the following action: R x H — H,(x, f) — [m — z - f(m)]. This gives H the structure of an R-module.

We need R to be commutative, because otherwise am — x f(am) = xzaf(m) which is not necessarily az f(m).

If N =M then H = Ends(M) is in fact an R-algebra w.r.t. the same module structure and composition of
maps as multiplication.

Proof. HW1 O
Remark 1.3. For M € A-Mod we can regard it also as a module over Endg(M).
Notation 1.4. 1) A, = A considered as an A-module by left multiplication A x A, — Ay, (a,b) — ab.

2) A° = opposite algebra of A = A, but with multiplication defined by AA~Ob = bAa. A° is still an R-algebra.
We set A, = (A°),. This is just A but with A°-module structure.

A°x A, — A (a,b)—a - b=1ba

Ao

The R-algebra M, (A)

M, (A) denotes the R-module of n x n-matrices with entries in A.

Multiplication: (aij)lgi’jgn . (bj)igi,jgn = (ZZ:l aikbkj)lgi,jgn'

Proposition 1.5. i) The map A : A — Endg(A),a(a) = [b — ab] is injective and induces an isomorphism
of R-algebras A % Ends.(A) C Endgr(A4).

ii) The map p : A° — Endg(A4),p(a) = [b — ba] is injective and induces an isomorphism of R-algebras
A° = End4(A) C Endg(A).
P

We will discuss this later.

Proposition 1.6. i) The map End4(A7™) =5 M, (A°), given by f — (aij)i,; where f(e;) = Y i aije; is
an isomorphism of R-algebras.

ii) The map End 40 (AP™) = M, (A), given by f ~ (a;;);; where f(e;) = > i, a;je; is an isomorphism of
R-algebras.

Proof. i) Suppose f — (ai;)i,j,9 + (aiz)i;- Then (fog)(e;) = fgle;)) = f (3T bije;) = 2o bijfles) =
Dia big 2o awer = 25y (07 bijan,) er = 34, (ZL ki bz‘j) er. Note that 370, aki . bij is
simply the entry in position (k,j) of (a;;) - (bi;) where they’re elements of M, (A°).

Hence, fo g+ (a;;) v &AO) (big)-



ii) Is identical.

O

Now we generalize. Let N € A-Mod and consider N™ [which is a shorthand for N®"| as an A-Mod by diagonal
multiplication of A.

Let ¢; : N — N be the inclusion of the j’th summand,  — (0,---,0,2,0,---,0) where z is in the j’th
position.

Let m; : N — N be the projection onto #’th direct summand, (z1,- -, z,) — ;.
Proposition 1.7. The map Ends(N™) = M, (Enda(N)) where f — (fij)i<ij<n,fij = mio foy; is an

isomorphism of R-algebras. Concretely, (21, ,2,) — (2?21 fij (xj))

i=1,,n

Moreover setting C' = Enda(N), N’ = N",C" = End4(N’) then the inclusion End¢(N) = Endgpa, (v (V) N

Ende(N') = EndEndA(N)(Nn) >~ M, (Endg(N)).
Here A : g — [(x1, - ,2n) = (g(21), -+, 9(z0))]-

This induces an isomorphism (of R-algebras) Endc(N) — Enderer(N') = Endgyg , vy (N™).
Note that End4(As) = A°, so this is sort of a generalization to the previous proposition.

Proof. The first assertion is an easy exercise.

Let ¢ € Endg(N) and let g : N™ — N" be (z1, - ,2n) = (g(x1), - ,9(z,)). We want to show that g
commutes with elements of C’.

Let f € C' = Enda(N').
o) =3 (S ful@)) = (9 (S ful@)) = (90 @))

= f((g(1), -+ g(zn))).

Here f;; € C.

i

Surjectivity of Ende(N) — Ender (N'): given h € Ende: (N')[C Ende(N') & M, (Endc(N))], we need to show
that it is diagonal. Which means we have to show that Vi # j: m;ohov; =0and m;ohoy =mjohom;.

h € Ende/(N™) = h commutes with ¢; om; : N* — N™. Note that tj om; € C’ = Ends(N").
Then hotj =hojom o,

Compose with m; on the left: m;0hot; =m01;wmohoy =0.

=0

Compose with 7; on the left: mjohov; =m0hoy;.
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Corollary 1.8. i) End4(A4™) =N M, (A°).

i) A= Endgna, (an)(A™).
iii) A°= Endyyg,a)(A").

iv

i)
i)
) (EndA(A )) = Z(AO) . idAn = Z(A) . idAn.
)

v) Z(M,(A)) = Z(A) - 1,, where 1,, = n x n identity matrix.

Proof. i) Follows from 1.7 and 1.5.

i) Take N = A in 1.7 and C = End(A4) = 4°,

Endc(N) = Enda.(4,) = A f;7> Endpna, (az) (A7)

iii to v are exercises. O

Definition (Anti-isomorphism). « is an anti-isomorphism if it is an isomorphism of R-modules sending 14 to
14 and Va,b € A: afab) = a(b)a(a).

Proposition 1.9. i) Supppose 3 anti-isomorphism « : A — A. Then « is an isomorphism A — A°.
ii) The map M, (A) — M, (A°)° given by z +— 2T is an isomorphism of algebras.

ili) If A & A° [as R-algebras], then M, (A) = M,,(A)°. In particular, matrix algebras over fields are isomorphic
to their opposite.

Proof. HW1. O

Example. 1) H=R1®Ri®R;jPRk the Hamilton Quaternions are isomorphic to H° has an anti-isomorphism
given by a + bi +¢j + dk — a — bi — cj — dk.

a b

2) LetRbeaﬁeldandA:{{O 4

} ta,b,de R}. Then A° 2 A.
Definition. 1) A module N is called simple (or irreducible) if N # 0 and the only submodules of N are 0
and N.

2) A module N is called semisimple if it is isomorphic to a direct sum of (not necessarily finitely many)
simple modules. Formally, we allow the empty direct sum. As a consequence, 0 is a semisimple module.

3) A submodule N C M is called minimal (resp. mazimal) if it is minimal (resp. maximal) among all
non-zero submodules (resp. among all proper submodules). 0 doesn’t have any minimal or maximal
submodule.

Example. Let R = K be a field. The simple K-modules are just the 1-dimensional vector spaces, and they’re
all isomorphic to K itself.

Recall that every vector space has a basis [assuming axiom of choice]. Therefore, every K-module is semisimple.

Same is true for division algebras.

Proposition 1.11. Let M be a finitely generated (f.g.) A-module, and Ny C M a proper submodule. Then
M has a maximal submodule N containing Nj.



Proof. We use Zorn’s Lemma.
Let # ={N C M : N submodule, N D Ny}.
No € M — M +# 2.

Let Ny C Ny C --- C an ascending chain in .#. Define N= Ui21 N;.

Let my,msa,--- ,m, be generators of M. If N = M then there exists i > 1 such that mq,---,m, € N;. But
that would imply N; = M. This is a contradiction.

Now we apply Zorn’s Lemma. .# contains a maximal element N. This N is maximal among all proper
submodules. Therefore, N O Ny is maximal. O

Proposition 1.12. Let 0 ## N € A-Mod. TFAE:

i) N is simple.
ii) Ve e N\ {0} : Az = N.
iii) 3 maximal (left) ideal I C A: N % A/l
Proof. Consider the map A — N given by a — az. Let I = Anny(x) N simple, 1 s maximal. O

Proposition 1.13. Let n > 0 and V be an n-dimensional vector space over a division algebra D, and set
A =Endp(V). Regard V as an A-module. Then,

i) V is simple as an A-module.

il) Ap 2 V™. In particular Ay is a semisimple A-module.

Proof. i) We use the fact that if vy, -+ , v, is a basis of V over D, then the map Endp(V) -V &.--- @V =
—_———

V™ given by a — (a(v1),--- ,a(vy)) is a bijection of abelian groups.

It is not necessarily a bijection of D-vector spaces.

Given any v; € V' \ {0} and any w € V, we can extend {v1} to be a basis of V and find a € A such that
a(vy) =w. Then Avy =V == V is simple.

ii) Note that the map A = Endp(V) — V™ in (i) is A-linear, hence an isomorphism of A-modules.

Remark. Take in 1.13 V = D™. Then Endp(D™) 1%; M, (D°).

Then, 1.13 says M, (D°) =2 D" @ --- @ D" where the D™ are columns of the matrices in the LHS.
| ——

n

Definition. 1) An algebra A is called semisimple if A, is a semisimple A-module.
2) A is called simple, if A # 0 and does not contain any (2-sided) ideals other than 0 and A.

Example. M, (D) where D is a division ring is a semisimple algebra by 1.13. This algebra is also simple.

Note that not every semisimple algebra is simple. Let A and B be semisimple. Exercise: A x B with compo-
nentwise addition and multiplication is semisimple.

Let Ki,---, K, be fields (or skew fields). Then K; x --- x K, is semisimple.



Caution: There are simple algebras which are not semisimple (HW1).

Proposition 1.14 (Schur’s Lemma). Let M, N € A-Mod. Set H = Homu4 (M, N).

i) If M is simple, any non-zero f € H is injective. If N is simple, any non-zero f € H is surjective.
ii) If M, N are simple, then M =2 N or H = 0.

iii) If M is simple, then End 4 (M) is a division algebra.

Proof. Straightforward.

Lemma 1.15. Suppose M = > ._; N; is the sum of a family (V;);er of simple submodules.

iel
Let N C M be any submodule. Then 3J C I such that,

M=No@N,
jeJ

Proof. Let &/ = {JCI:s.t. M+3 e, N; :NEBEBjEJNj}. Note that @ € ¥ — " # @.

If J CJy C ---is a chain in .% and J = Ure; Jx then [exercise] J € .7.
Zorn’s lemma implies that .¥ has a maximal element J.

Check: J works.
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Proposition 1.16. For M € A-Mod. TFAE:

i) M is the sum of simple submodules.

ii) M is semisimple.

iii) Every submodule is a direct summand of M.
Proof. i = ii: take N =0 in 1.15.
ii = iii: Apply 1.15 with the submodule as N.
ilii = i: Let x € M \ {0} and consider the ‘cyclic submodule’ C' = Az C M. Note that z € C = 0 # C.
1.11 implies 3 maximal submodule L C C. Since L is a maximal submodule, C'/L must be simple.
By assumption, 3N C M such that M = L @& N. Since L C C' it follows that C' = L & (C N N).
Therefore, C/L =2 CNN = CNN is a simple module.

It follows that every non-zero submodule of M contains a simple submodule.



Set M’ = 37N s simple V- Let M C M be the summand, i.e. M = M' & M".
If M # 0, it contains a simple submodule Ny € M”. But then Ny € M’. This is a contradiction.

Thus, M"” = 0. Which means M = M’ = sum of simple submodules. O

Remark. Given any M € A-Mod, the socle of M, soc(M) is defined to be the largest semisimple submodule
of M.

By 1.16, SOC(M) = ZNcM simple N.

Proposition 1.17. Suppose M is the sum of simple submodules (N;);c;. Then,

i) Every submodule or quotient module is isomorphic to @@ jed N; for some J C I. Note that it need not be

A
directly equal, just isomorphic. Consider K — K & K.

ii) Any simple submodule N C M is isomorphic to one of the V;.

Proof. ii follows from i.

For i: Let M — M" be a quotient of M. Then, N; := 7(N;) is zero or simple.

Set I := {ieI|N;#0}.
= M" =3,.7N;i. Applying 1.15, 3J C I so that M" = @jejﬁj%‘ D7 N;-

If M’ C M is a submodule, 1.16 = IN C M : M = N @ M'. Then M’ =2 M/N, which is a quotient of
M. O

Corollary 1.18. i) Every submodule or a quotient module of a semisimple module is semisimple.

ii) If A is semisimple, any simple A-module is isomorphic to a submodule of Ay, and so is isomorphic to a
minimal left ideal of A.

Proof. i) Directly follows from 1.17.

ii) Suppose A is semisimple. Then by definition, 4, = ,.; N; where N; are simple. If NV is a simple module,
1.12 implies N = A;/I where I C A is a maximal submodule.

1.17 implies that N = N; for some i.

Note that each N; is a left ideal. Since it is simple, it must be minimal among the non-zero submodules.

O
Proposition 1.19. For an algebra A TFAE:

i) A is semisimple.
ii) Every A-module is semisimple.
Proof. ii = 1i is direct.

i = ii: Suppose (m;)ics is a set of generators of M as an A-module. Consider AEI) = @,c; Ae - M given
by (ai)ier = >_; aimi.

Thus M must be a quotient of a semisimple module. The statement follows from 1.18. O



Definition. Denote by 7 (A) the set of isomorphism classes of simple A-modules.
We call a simple module N of type 7 € T(A) if the isomorphism class of N is 7.

Given M € A-Mod, 7 € T(A), we set M; = >N a/ simple of type + 2V [ROte that it must be a direct sum of some
submodules of type 7.] M, is called the 7-isotypic component.

If M = M., then we say that M is isotypic of type 7.

Remark. By 1.12, {I C A, | maximal left ideal} — T (A) given by I — isomorphism class of A/I is surjective.
Thus T (A) is a set.

Exercise: This map is bijective (HW2).
Notation. A-Mod®® = category of semisimple A-modules.

Corollary 1.20. Let M € A-Mod*. Then,

i) M =@, cra M-

ii) V submodule M' C M : M" =D cq(a)(M' N M;).

Proof. i) M semisimple —> M = Y, My. Fix7. 1.18 implies that M" = M, (32,.., My ) is semisimple.
If M’ # 0 then 3N C M’ which is simple. N C M, implies N must be of type 7. However, N C
ZT,;éT M.,,, which implies that N must not be of type 7. This is a contradiction. Therefore, M’ = 0.
This means the sum is direct, i.e. M =@ M,.

ii) 1.18 implies that M’ must be semisimple. Therefore M’ = @_M..
Clearly M. C M' N M,.

Conversely, M'N M is semisimple by 1.18. Therefore, M'NM; ="y crram
N is of type 7. Thus M' N M, = M_.

N. Note that each

+,N simple

Proposition 1.21. If M, M’ € A-Mod™, then Homa (M, M") =[], c7(4) Homa (M-, M7).

Proof. Suppose f € Hom 4 (M, M’). Consider f|M : M, — f(M;)C M'.

Note that f(Mr) = > Ncas simple of type + / (V). Thus f(M;) C M]. O
Proposition 1.22. M € A-Mod®*®. For a submodule U C M TFAE:

i) Vf € Enda(M), f(U) C U.

ii) U is a direct sum of some M., 7 € T(A).

Proof. ii = 1iis a direct consequence of 1.21.
i = 1ii: 1.20 and 1.18 imply U = @, U;.
ItU, ¢ M,, 115 = M, =U, ®i61 N; where the sum is non-zero and each N; is of type .

Then one finds f : U — M such that f(U) ¢ U. Can extend f to a homomorphism f: M — M. O
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Corollary 1.23. Let A be semisimple. For a subset U C A TFAE:

i) U is an ideal of A. (By convention we mean a two-sided ideal).

ii) U is a direct sum of isotypic components of Ay.

Proof. i = ii: U is an ideal = U is a submodule of Ay, and U is stable under ‘right multiplication by a’.
We denote this right multiplication by a map to be ga: Ay — Ay, aa(b) = ba. So U is stable under all 4a.

1.6 = EndA(Ag) = A°.
Therefore, Vf € Enda(Ay) : f(U) C U. Statement ii follows from 1.22.

ii <= 1i: same argument in reverse order. O

Corollary 1.24. Let A be semisimple.

i) The isotypic components of A, are precisely the minimal ideals of A, and every ideal is a direct sum of
minimal ideals.

ii) A has only finitely many minimal ideals.

iii) [7(A)] < oc.

Proof. i) I C Ay a direct sum of isotypic components ﬁ) I is an ideal.
Therefore, I is an isotypic component <= [ is a minimal ideal.

ii) Write A =@, c7(4)(Ar)-. Then we can write 1 = 3°_a, where a, € (4,), and all but finitely many a,
are zero.

Then, A = Znaﬁéo Aa, C @aTio(Ag)T C A

iii) 1.18: any simple A-module N is isomorphic to a submodule of Ay. Suppose 7 is the type of N. Then,
(AZ)T 2 N.

Since there are only finitely many isotypic components, there are only finitely many 7 € T (A).

O

Example. 1) Let Ky,---, K, be fields. Then, A = K; x --- x K, is semisimple, and K; = {0} x --- x {0} x
K; x {0} x --- x {0} is a simple module, and these exhaust all of T (A).

2) Suppose K is a field, and let A = M, (K). We can write A, as a direct sum of columns, i.e. Ay =
Ae1 @ --- @ Ae,.

Here, A, % K™ is up to isomorphism the only simple A-module. Denote by 7 this type. (Ay);, is the only

isotypic component.
3) A= M, (K1) x -+ x M,_(K;) has s isotypic components.

Lemma 1.25. Let M € A-Mod® and suppose M = @
N;, NI C M.

ier Ni and M = P, ; N; with simple submodules

Then 3 bijection ¢ : I — J such that Vi € I : Né_(i) % N;. In particular, I and J must have the same cardinality.



Proof. WLOG we may assume M = M,. Let N be a fixed simple module of type 7.

Then N = N; = N forallie l,j € J.

Put D = Enda(N)°. 1.44 = D is a division algebra.

Then, the map D x Hom 4 (N, M) — Homy4 (N, M) given by (d, f) — fod makes Hom 4 (N, M) into a D-module.

Moreover, Hom (N, M) = @, ; Hom4 (N, N;).

iel
However, Hom 4 (N, N;) 2 Hom 4 (N, N) = End 4 (N) = D°. Therefore, Hom4 (N, N;) is free of rank 1 over D.
Then, dimp Hom 4 (N, M) = |I|.

By the same argument, dimp Hom4 (N, M) = |J| using the other decomposition. O

Definition. If we write M € A-Mod® as M = @
length of M (as an A-module).

ser Ni where N; are simple, then £4(M) = |I] is called the

The length of a semisimple algebra A is by definition ¢4 (Ayp).

Given a simple module N of type 7 we also use the notation:

M:17=M:N:=/04(M;)
Remark. If N is simple and D = Enda(N)?, then M : N = dimp Hom (N, M) and €a(M) =3 M : 7

Theorem 1.26 (Jacobson Density Theorem). Let M € A-Mod™ and C' = End 4 (M) and consider the canonical
map:

(1) A— Ende(M),a— apr = [m — am]. Note that this map is not necessarily A-linear. But it is C-linear.

Then, the image of (1) is ‘dense’ in Ende (M) in the following sense:
Vf € Ende(M) and Va1, -+ , 2, € M,3a € A such that V1 <i<n: f(x;) =a-z; (2).

If M is finitely generated as a C-module, the map (1) is surjective.

Proof. Consider M’ .= M®" € A-Mod® and z := (z1,-+- ,x,) € M.
1.16 = IM" C M’ with the property M’ = M" @& Ax.

Then we can define a projection p as follows: p: M’ — M’ as follows: every element of M’ = M" 4+ Az can be
written as m” + ax where m” € M". Then, p(m” + ax) = ax € M.

Then, p € Enda(M') = C".

Now define f: M’ — M’ as follows: f(yl, cyn) = (fyr), s flyn))-
1.7 = Endc(M) = Ender (M) given by f +— f is a C'-linear bijection.
Thus, fop:pof

Therefore, (f(z1),--- , f(22)) = f(z) = f(p(x)) = p(f(z)) = a- x for some a € A [since imp = Ax].

Therefore, V1 < ¢ < n: f(z;) = ax;. O

10



Corollary 1.27. Let N € A-Mod be simple and D = Enda(N). Consider N as a D-vector space. Let
Z1, -+, Ty, be linearly independent over D. Then for any y1,--- ,y, € Nda € AV1 < i < n:y; = az;.

Proof. We apply 1.26 with C' = End4(N) = D.

We extend (z1,---,2,) to a D-basis of N. Then we can choose f € Endp_¢(N) such that f(z;) = y; for all
1< <n. O
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Noetherian and Artinian Modules (E. Artin, 1898-1962, IU 1938-1946)

Definition. A module M is called:

i) Noetherian if every non-empty subset of submodules of M has a maximal element.

ii) Artinian if every non-empty subset of submodules of M has a minimal element.

An algebra A is called artinian (resp. artinian) if A, is noetherian (resp. artinian).

Remark 1.28. i) M is noetherian (resp. artinian) iff every increasing (resp. decreasing) (countable) chain
is stationary (i.e. all members are the same from some index on).

ii) For a division ring D and V' a D-Mod, TFAE:
V is noetherian <= V is artinian <= dimp(V) < oo.

iii) If M = @,c; M; with all M; non-zero and |I| = oo, then M is neither noetherian nnor artinian.
iv) Z is not artinia: (2) 2 (6) 2 (24) 2 (120) D - --. Z is noetherian, as is any PID.

v) Q/Z (as a Z-module) is not noetherian: 17/Z C %Z/Z CHZ|ZC -

: Cian _ 1 1 1

Q/Z is also not artinian: M =3 . . EZ/Z 2D 2 EZ/Z 2 ,s3 EZ/Z D
But for Z, [the localization of Z at p], the module Q/Z,) is artinian.

vi) If K is a field, then any finite dimensional K-algebra A is noetherian and artinian.

vii) 3 noetoherian and artiniain K-algebra A such that A° is neither noetherian nor artinian.

viii) We’ll prove: A artinian = A is noetherian.

Proposition 1.29. M is noetherian iff every submodule is finitely generated.

Proof. = : given N C M set S={N'C N|N'isfg.}.

0 €S = S # @, and by assumption S has a maximal element Ny C N. It is easy t show that Ng = N = N
is f.g.

<=: Let N; C Ny C --- be submodules of M. By assumption we can show that N = |J, N; is finiely generated.
Let my,--- ,m, be generators of N. Then Jig : my,--- ,ms € N;,. Thus N = N;, = Njy41 = -. O

Remark. For M to be noetherian it does not suffice that M is finitely generated.

If A is noetherian and M is finitely generated, then M is noetherian.

Proposition 1.30. Let M be a module and N C M be a submodule.

11



i) N and M/N are noetherian <= M is noetherian.

ii) N and M/N are artinian <= M is artinian.

Proof. HW3 O

Corollary 1.31. Let p be the property ‘noetherian’ or ‘artinian’.

i) Suppose M = @;_, M;. Then M is p iff all M; are p.

i) If an algebra A is p, every M € A-Mod"® is p.
Suppose,

0—>N<—M-—M/N—0

say: M is an extension of M/N by N.

Proof. i) Reduce to the case n = 2 and apply 1.30.

ii) Aisp = Agisp o, AP is p1.30 = AP"/L is p for any submodule L C AP". Any finitely
generated module is of this form which implies the assertion.

O
Proposition 1.32. Let M € A-Mod®*. TFAE:

i) M is finitely generated.

ii) M is a finite direct sum of simple submodules.

ili) M is artinian.

1v

)
)
)
) M is noetherian.

Proof. Write M = @Z—GI N; where N; are simple. Assume i, and let mq,--- ,ms be generators. Vj : 1 < j <
s3I; C I such that |I;]| < oo such that m; € @,¢;, Ni-

Then, my,--- ,ms € GBi€U§:1 1; Ni = M which implies ii.
ii = iii, iv is implied by 1.31.
iv. = 1i: Noetherian implies finitely generated.

To complete the full circle, assume iii. Use remark 1.28. HW3. O

Corollary 1.33. Every semisimple algebra A is noetherian and artinian.

Proof. Ay is semisimple and f.g., A, = A-14. Apply 1.32. O

12



Thursday, 1/29/2026

Remark. The study of Semisimple Algebras has very little overlap with Commutative Algebras, namely finite
product of fields.

There is a generalization: Azumaya algebras.

Goro Azumaya: IU (1968-1992)
Proposition 1.34 (Definition of Composition Series). For M € A-Mod TFAE:

i) M is both artinian and noetherian.

ii) M has a composition series: a chain of submodules:

M:Mn_'D‘_Mn_lggMO =0
where M;/M;_; is simple for 1 <i <n[n=01if M =0].

n is called the length of the composition series.

Proof. ii = i: Suppose M has a composition series of some length. Then M; must be simple. If there is an
My, Ms/M; must be simple. We have the exact sequence:

0—>M1 —)Mg—)Mg/Ml

1.30 then implies that Mj is noetherian and artinian. The fact that M must be both noetherian and artinian
follows from induction.

i = ii: HW3. O

Theorem 1.35 (Jordan-Holder Theorem for Modules). If M has to composition series:

then m = n. Furthermore, the simple quotient are the same under permutation: Jdo € S,, such that V1 < i <
n:Li/Li_1 f Mo (iy/Mg(i)—1-

Definition. A module M is called of finite length if M satisfies the equivalent conditions of 1.34.

The length of any composition series is called the length of M, denoted by £(M).

Remark. i) If M is of finite length and N is a submodule, then N is of finite length. Furthermore,

(M) = 6(N) + ((M/N).

We use the exact sequence:

0—-N—M— M/N.

13



ii) M semisimple of finite length, i.e. M = " ; N; where N; are simple = (M) = n.

M is not always the direct sum of the simple quotients. For example, suppose K is a field and A =

{n x n upper triangular K-matrices} acting on K™. Then Ke; is a submodule but Kes is not one.
K'DOKey® - Kepn12Ke1r®---®Kepo2---2 Key 20.

Hence ¢(K™) = n.

Definition. A module N is called indecomposable if N # 0 and N has no direct summand other than 0 and
N.

i.e. We cannot write N = A® B where A, B are non-zero submodules. For example, K™ in the previous example
is indecomposable as an A-module.

Example. i) Again, suppose K is a field and A = {n x n upper triangular K-matrices} acting on K™.
Then K™ is indecomposable as an A-module.

ii) Any simple module is indecomposable.

iii) Suppose K is a field, and A = K[z] acting on K™ where z — [jordan block]. Then

o o ©

o

K™ is indecomposable as an A-module.

Proposition 1.36. If M is artinian or noetherian, then it is a direct sum of finitely many indecomposable
modules.

Proof. Assume M is artinian. Suppose M # 0 and M is decomposable. Then, 3 non-zero submodules M;, My
such that M = M; & M>.

Consider S(M) ={0C N C M : N is a direct summand of M} My € S(M) = S(M) # @.

M is artinian. Therefore, S(M) must have a minimal element Ny. Ny must be indecomposable, since any
non-trivial decomposition of Ny contraditcs its minimality.

Write M = Ng & M.
Consider ' ={M' C M : IMy C M : M = My ® M’ and M, is a finite direct sum of indecomposables}.
Then, M € S’. Thus, S’ # @. Therefore S’ contains a minimal element which we claim is M’.

Suppose M’ # 0. If M’ is indecomposable then M = (My @ M’) & 0 which contradicts the minimality of M’,
since 0 € S".

Hence M’ is indecomposable. Therefore, S(M') # &. M’ must also be artinian, therefore S(M’) has minimal
element N) which is indecomposable. We write M’ = Ny & M" = M = (My ® Ny) & M" where M" is

minimal in S’, which is a contradiction.

Noetherian case: HW3. O
Lemma 1.37. Let M € A-Mod and g € End4(M).

i) If g is surjective and M is noetherian = g¢ is injective.

ii) If g is injective and M is artinian = g is surjective.

14



Proof. HW3. O

Lemma 1.38. Let M be of finite length and f € Ends(M). Then 3 decomposition M = U @& N such that
fU)CU, f(N)C N and f’U is bijective and f|N is nilpotent, (f|N)k =0.

Proof. HW3. O

Lemma 1.39. Let M be of finite length and indecomposable. Then every endomorphism f € C := End4 (M)
is either bijective or nilpotent.

Moreover, I = {f € C': f is nilpotent} is the unique maximal (2-sided) ideal of C.

Proof. Suppose f is not bijective. 1.39 implies that M = U @& N where f(U) C U, f(N) C N, f‘U is bijective,
f|N is nilpotent. Since f is not bijective, M # U. Therefore, N # 0. Since M must be indecomposable, U = 0
and M = N. Therefore, f must be nilpotent.

Now we prove that I must be an ideal.

fel,heC = ker(hof)#0 = hofel.

fel,heC = im(foh)C M = fohisnot bijective = fohel.

We need to show I is closed under addition. Suppose f,g € I but f + g ¢ I. Then f + g must be invertible.

h(f+g)=1 = hg=1—hf. Since hf is nilpotent it follows that hg is invertible, which is a contradiction. [

Theorem 1.40 (Krull-Remak-Schmidt). Let M be a module of finite length. Suppose M = N1 & --- @& N,,, =
N{ @ ---@® N/ with indecomposable submodules N, N;. Then m =n and 3o € S,, such that V1 <i <n: N/ =
No’(l)

Proof. By induction on ¢(M). If ¢(M) = 1 there is nothing to show. Let (M) > 1 and suppose the sttement
is true for all modules of length < ¢(M).

Let ¢; : N; < M be the inclusion and 7; : M — N; the projection onto IN;.

Let p; = ¢j om; € Enda(M). Then p; is an idempotent, p; o p; = p; and p; op; = 0 if ¢ # j. Furthermore
p1+ -+ pm = idy.

We can do the same for the other decomposition: we get p} where p| +--- + p;, = idys ete.

Consider: Enda(Ny) > f; =m Op;- ot : Ny = M SEN NJ’» <1> M — Nj.

f1+f2_|_..._|_fn:ﬂlo(pll—&—-u—l—p;)OLl:ile.
| S —

id s
1.39 implies that 31 < j < n such that f; is bijective. After renumbering, we may assume that f; is bijective.
Consider g = pj op; : M — M. Note that m o g = f1 o7my.

Seth=g+ps+--+pm: M— M. Then pjoh=piog=1t10m0g =110 f1 om;. We want to show that h is
bijective.

Suppose € M such that h(z) = 0.
= 0 =pi1(h(z)) = p1(g(z)) = t1(fi(m1(z))) = 0. Since ¢; and f; are injective, it follows that m(x) = 0.

Therefore x € No @ -+ - & N,,, = M’. Since g = p} o p; it follows that g(z) = 0.

15



0=h(z) =g(x) +p2(x) + - + pm(z) = x where g(x) = 0 and p;(z) € N;. Therefore h is injective.
It follows from 1.37 that h is bijective.

Since h is an automorphism and h|Nk = idy, for k > 2 it follows that M = N{ @ N2 @ -- @ N,,,. By quotienting
out Nj it follows that No @ -+ @ Ny, 2 N5 @ --- @ N/ . The theorem follows from induction.

Tuesday, 2/3/2026

2 Wedderburn Theory

Recall: An algebra A is called simple if A is non-zero and it has no ideals other than 0 and A.

Recall that by ideal we mean ideals that are both left and right ideals. There can be left ideals that are not
right ideals and vice versa. Meaning, an algebra A being simple doesn’t necessarily imply that the module A,
is simple.

Proposition 2.1. Let A be simple. TFAE:

i) A is semisimple.
ii) A is artinian.

iii) A possesses a minimal left ideal N.

Minimal ideals are by convention non-zero. This forces A to be non-zero from iii as well.

Recall by saying A is noetherian/artinian we mean A, is noetherian/artinian.

Proof. i = ii: Corollary 1.33 (because Ay is semisimple and finitely generated, hence it has finite length).

ii = iii: Trivial.

iii = i: Let 0 # N C A be the minimal left ideal. Then, 0 # NA =} _, Na is a 2-sided ideal. Since A is
simple, NA = A.

N minimal left ideal = N is simple as an A-module. Na is the image of N under the A-module map
N — Na,z — za. If Na is non-zero, it is the non-zero image of a simple module, which implies Na is
simple. Then, N A is a sum of simple modules: A = NA = ZNa;éO Na is a sum of simple modules. Therefore,
1.16 = A must be semisimple. O

Corollary 2.2. Let A be simple and semisimple and N C A a minimal left ideal. Then, A, ’f N®™ for some

m > 0, and Ay is hence isotypic.

Proof. 2.1 implies the existence of a minimal ideal N. Then, A, = ZGGA’NQ;‘&O Na where Na are simple. By
1.17, Ay = @, ; Na; for some subset {a; : i € I'} of A. WLOG we assume that Na; # 0 for all i € I.

Then, the identity 14 = ZjEJCI n;a; for some finite J C I and n; € N. Therefore, Va € A:a = ZjeJ an;a;.

Note that anja; € Naj since N is a left ideal. Therefore, A = @,.; Na;. Therefore J = I. Furthermore, for
eachi eI, Na; = N.
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Therefore, Ay = @,.; Na; = NeHl,

Proposition 2.3. Let A be a non-zero semisimple algebra. TFAE:

i) A is simple.
ii) Ay is isotypic.
iii) |7 (A)| =1. Recall that 7 (A) is the set of isomorphism classes of simple A-modules.
Proof. i = ii follows from 2.2.
ii = iii follows from 1.18: every simple module is isomorphic to a submodule of A,.

Recall 1.24 which says that minimal ideals are precisely the isotypic components of A,. in fact, A, =

@TGT(A) (AE)T'
If N is simple of type 7 == (A¢), = P,;c; N.

If N is simple Ay/L = N — N appears as a direct summand in Ay = @, c7(4)(Ae)r. (A7 # 0 for all
T T(A).

ili = iiis trivial.
ii = 1 follows from 1.24.

Summarizing,

1.24 trivial

Proposition 2.4. If D is a division algebra, then M, (D) is a simple artinian algebra for any n > 1.

Proof. Set V = (D°)®" = A := Endp.(V) 2 M,((D°)°) = M, (D).

By 1.13: A, ©y @---®V and V is simple as A-module (1.13). Then A, is isotypic and seimisimple because
—_——

n copies

of . Then by 2.3 A is simple. O

Recall: Z(A) = center of A.

Proposition 2.5. A simple = Z(A) is a field.

Proof. Pick non-zero element of the center a € Z(A) \ {0}. Note that Aa = aA must be a non-zero two-sided
ideal, and since A is simple it follows that a4 = A. aA = A = 3b € A such that ab(= ba) = 1. Therefore a
must have a two-sided inverse.

Given ¢ € A : (¢b — be)a = ¢(ba) — (ba)e = ¢l — 1¢ = ¢ — ¢ = 0. Multiplying by b on the right, it follows that
(cb—bc)ab=0 = cb—bc=0 = cb=bc for all ¢ € A. Therefore b € Z(A). O
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Theorem 2.6. A non-zero semisimple algebra A has only finitely many distinct minimal ideals Aq,--- , A,.
Each A; is a unital algebra in its own right with the induced addition and multiplication from A. Note that the
identity in A; is not equal to the identity in A if n > 1.

Moreover, A = Ay x --- x A, is the product of the algebras A;,---, A, (with componentwise addition and
multiplication), and each A; is simple and artinian.

Conversely, if Ap,---, A, are simple artinian algebras, then A :== A; x --- X A,, is semisimple and A, --- , A,
are precisely the minimal ideals of A.

Note that direct sum and product carry the same meaning in this case. We generally use direct sums when
we’re thinking about the object as a module, and products when we’re thinking about the object as a ring.

Proof. 124 — A=A ® --® A, where Ay,---, A, are the isotypic components of A,. These are precisely
the (2-sided) ideals.

We also have: A;4; C Ay NA; =0 for i # j.

Write 14 =e; +---+e, withe; € A;. 14 =14-14 = 14 =e? +---+ 2. Taking projections it follows that
Vlgign:efzei.

Va € Aj,a=a-14 =ae; +---+ae;, + -+ ae, = ae; = e;a.
Therefore, e; is the identity element in A;.

If 0 #£ I C A; is an ideal, then I is an ideal in A. However, since A; is minimal, it follows that I = A;. Therefore
A; must be simple.

If0# 1 C A, is aleft ideal, then I is a left ideal in A. Since A is a semisimple algebra A must be artinian.
Thus A; must also be artinian.

The converse is easy to check (HW4) O

Corollary 2.7. Let A= A; x --- x A, be a semisimple algebra with simple algebras Ay,--- , A,. Then,

is a product of fields, by 2.5. IN particular, Z(A) is a field if and only if A is simple.

Corollary 2.8. A commutative semisimple algebra A is a product of finitely many fields: A = K7 x -+ X K,,.

These fields are uniquely determined as subsets of A. Namely, they are the minimal ideals of A.

Remark 2.9. A commutative artinian algebra A is semisimple if and only if its nilradical {a € A | In > 0 :
a™ = 0} is zero.

— follows from 2.8.

<= uses the theory of redical at the end of chapter 28. Direct proof on HW4.

Corollary 2.10. Let K be a field. A finite dimensional commutative K-algebra having no non-zero nilpotent
elements is a product of finitely many field extensions K;/K with [K; : K] < occ.

Proof. By the preceding remark, A is semisimple. By 2.8, it is a product of fields K1, -- - , K,,, all of which have
finite degree over K. O
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Now we state a key theorem of this course.

Theorem 2.11 (Wedderburn’s Theorem). An artinian algebra A is simple if and only if it is isomorphic (as
rings) to a matrix algebra M, (D) for a division algebra D and n > 0:

A= M, (D)
D and n are uniquely determined by A.

Proof. By the remark, A is semisimple. By 2.8 it is a product of fields K, .-, K, all of which have finite
degree /K. O

A semisimple = A~ M, (D) x --- x M, (D,).

[D1] - [D2] = [D1 ®k D2] = [My(Ds3)] = [Ds].

Thursday, 2/5/2026

Remark. Prop 2.4: M, (D) is simple.
Notation. If K is a (skew) field then [V : K] := dimg (V).

Theorem 2.12. Let A be a simple artinian algebra, and let N be a simple A-module (unique upto isomorphism).
Set D = End4(N) which is a division algebra.

i) The canonical map A — Endp(N),a — an,an(x) = azx, is an isomorphism, and r := dimp (V) is finite
and equal to £4(Ap).

Therefore, A = M, (D°). Z(A) is a field, isomorphic to Z (D).

ii) If M is a non-zero f.g. A-module, then B = End 4 (M) is simple and artinian, and B = M, (D), with D
as in (i)and n = £4(M). If K is a field and A is a K-algebra, then,

[M:K]*=[A:K][B:K]

and all these dimensions are finite provided one of them is finite.

Proof. Step 1: 2.1 implies A is semisimple. 2.3 —
A-module. 1.19 = M is semisimple. L2 M~ pNOn g

T(A) = 1]. Let N be a simple A-module, M a f.g.
=04(M).

1.7 = B =Endsa(M) 2 Ends(N"™) = M, (Ends(N)) = M,(D).
Thus B is simple and artinian.

Step 2: Apply Step 1 with M = A, = N9 m = L4(Ay).

Step 1 = Enda(A¢ = M,,(End4s(N))) = My, (D).

Proposition 1.5 (HW1): End(4,) = A°.

HW1
— A~Enda(A)° = My (D)° = M, (D°).

Step 3: It remains to show: ’m(: la(Ap)) =dimp(N) = r. ‘
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o

Fix an isomorphism of A-modules ¢ : 4y — N®™,

Consider the diagram:

A LN Endp(N)
1-5:>ng 1.7:»%&3
End a0 (A9) = Endgaa, a,)(A49) @i Endgaa,vey( N™ )
=N’1in 1.7

Easy to check: this diagram is commutative.
Upshot: the canonical map A — Endp(N) is an isomorphism!
— Endp(N) is artinian.

= Endp(N) is artinian = [N :D]=dimp(N) < 0.

easy (HW4)
= N D%,
D
1.13 = EndD(N)g = NT™.

as Endp (E)—modules
In the other hand, Endp(N), = M,,(D°) = Endp(D).
Therefore, r = dimp (N) = £a(Ay) = m.

Consider again A — Endp(N) = M,.(D°).

= Z(A) = Z(M,(D°)) e T Z(D°) = Z(D).

Step 4: Let M € A-Mod"®. Assume A is a K-algebra. Write M = N™.
Then, [M : K] =n[N: K| =n[N : D|[D: K| =nr[D : K].

i = [A:K]=7%D:K].

Step 1 = [B: K|=n?*D:K].

This shows the formula.

O

Theorem 2.13. Suppose Dq, Dy are division algebras and M, (D1) & M (Ds) as rings. Then r = s and
D; = Ds.

Proof. Step 1: Suppose N, N’ are A-modules over A (any algebras). Then any isomorphism f: N — N’ of
A-modules induces an isomorphism of rings End4(N) — End4(N’) given by 7+ fo7o f=1

Step 2: If g: A — A’ is an isomorphismm of simple artinian algebras, and N € A-Mod and N’ € A’-Mod are

simple, then a -z’ =: g(a) - 2’ gives N’ the structure of an A-module. Since g is an isomorphism, N’ becomes a
simple A-module. 2.3 = N’ = N as A-modules.
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Step 1 = Enda(N) 2 End4g(N’) = End 4/ (N') immediately.

Step 3: D division algebra = D" is a simple module over A := Endp(D")(= M, (D)) and Endy, (pey(D") =
D. '

=
3

Now suppose M,.(Dy) = Ms(Ds3).

HW1 = M(Df) = M,(D1)° = M,(D2)° = M,(D3).

HW1
N = D7 is a simple M, (D¢)-module.
N’ := Dj is a simple M,(D$)-module.

Step 2 = D, (g) Ener(Df)(N) = EndMs(Dg)(N/) (g) Ds.

Step 4: If A:== M, (D) = My(D)=: B then r = {4(As) = {p(B¢) = s. O
rings
Proof of Wedderburn’s Theorem. Combine 2.12 and 2.13. O
Corollary 2.14. i) A simple algebra A is artinian if and only if A° is artinian, in which case £4(4¢) =
0 40(A9).

ii) A is semisimple if and only if A° is semisimple, in which case £4(A¢) = €40 (A?).

Proof. i) A simple artinian = A= M, (D) = A°= M,(D°).
ii) follows from 2.6 and (i).

O

Corollary 2.15. A unital associative algebra A is semisimple if and only if A & M, (D7) x --- x My, (D)
where Dy, --- , D, are division algebras and nq,--- ,n, and the isomorphism classes of D,.,--- , D, are uniquely
determined upto permutation.
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