

Talks

Thanic Nur Samin
Writing about attended talks in Spring 2026

Monday, 1/12/2026

1 Ext Duality in derived category \mathcal{O} and its variants

Let F be any field of char 0. Classically \mathbb{C} .

\underline{G} = split reductive algebraic group. e.g. $\underline{G} = \mathrm{GL}_n, \mathrm{SL}_n, \mathrm{Sp}_{2n}$ etc.

Suppose $\underline{G} \supset \underline{P}$, where \underline{P} is the parabolic subgroup, a group consisting of upper triangular submatrices, e.g.

$$\begin{bmatrix} \mathrm{GL}_{n_1} & & * \\ 0 & \mathrm{GL}_{n_2} & \\ 0 & 0 & \mathrm{GL}_{n_3} \end{bmatrix}$$

$\underline{B} \supset \underline{P}$ where \underline{B} is the Borel subgroup.

$\underline{T} \supset \underline{B}$ where \underline{T} is the maximal split torus. e.g. $\underline{T} \cong \mathbb{G}_m^d$.

We take the successive lie algebras to get $\mathfrak{g} \supset \mathfrak{p} \supset \mathfrak{b} \supset \mathfrak{t}$.

$\mathfrak{t}^* = \mathrm{Hom}_F(\mathfrak{f}, F)$ weight space.

$U = U(\mathfrak{g})$ the universal enveloping algebra. $U\text{-mod}$ is the category of U -left modiules.

1.1 Category \mathcal{O} and its variants

$M \in U\text{-mod}$, M is called t-split if it is a direct sum of generalized weight spaces i.e. $M = \bigoplus_{\lambda \in \mathfrak{t}^*} M_\lambda^\infty$.

$M_\lambda^\infty = \bigcup_{i>0} M_\lambda^i$.

$M_\lambda^i = \{m \in M \mid \forall x \in \mathfrak{t} : (x - \lambda(x))^i \cdot m = 0\}$ generalized weight space.

$\Pi(M) = \{\lambda \in \mathfrak{t}^* \mid M_\lambda^\infty \neq 0\}$ is the set of weights of $M \supset \Pi(M)_{alg}$ = algebraic weights $\exists \lambda$ is algebraic if \exists algebraic char $\underline{T} \xrightarrow{\chi} \mathbb{G}_m$,

$d_\chi = \lambda : \mathfrak{t} = \mathrm{Lie}(\underline{T}) \rightarrow \underline{\mathrm{Lie}}(\mathbb{G}_m) = F$.

Definition. $M \in U\text{-mod}$ belongs to $\mathcal{O}^{p,\infty}$ if:

- 1) M is f.g. as U -module.
- 2) M is t-split
- 3) \mathfrak{p} acts locally finite, i.e. $\forall m \in M, \dim_F(U(\mathfrak{p}) \cdot m) < \infty$.

If 4) $\Pi(M) = \Pi(M)_{alg}$ then $M \in \mathcal{O}_{alg}^{\mathfrak{p},\infty}$.

If 5) $M = \bigoplus_{\lambda \in \Pi(M)} M_\lambda^i$ then $M \in \mathcal{O}_{alg}^{\mathfrak{p},i}$

Classically (meaning in the work of Bernstein-Gelfand-Gelfand, which is why it is often called the BGG category \mathcal{O}): \mathfrak{g} is a semisimple complex lie algebra. Then $\mathfrak{p} = \mathfrak{b}$, the borel subalgebra. Also, the i in the definition of generalized eigenspace is always 1, meaning we just have regular eigenspaces.

Note that, all finite dimensional modules trivially satisfy this definition.

There are \mathfrak{sl}_2 modules satisfying the definition that are not even weight modules!

We consider the examples:

1) Finite dimensional modules: $\mathcal{O}^{\mathfrak{g}}$ [here $\mathfrak{p} = \mathfrak{g}$] $\subseteq \mathcal{O}^{\mathfrak{p},\infty} \subseteq \mathcal{O}^{\mathfrak{b},\infty} = \mathcal{O}^\infty$.

2) Verma modules: consider the linear form $\mathfrak{t} \xrightarrow[\text{weight}]{\lambda} F = F_\lambda$. We have $\mathfrak{b} \rightarrow \mathfrak{t}$ and $\mathfrak{b} \rightarrow F$. We can consider F_λ as a \mathfrak{b} -module, i.e a $U(\mathfrak{b})$ -module $\rightsquigarrow M(\lambda) = U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} F_\lambda \in \mathcal{O}^{\mathfrak{b},1} \subset \mathcal{O}^{\mathfrak{b},i}$. This is the so-called universal highest weight module. There are analogues of highest weight modules for others. Note that this is an abelian category. Quotients of Verma modules is allowed.

For example, $\mathfrak{g} = \mathfrak{sl}_2$, $\lambda_n \left(h = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \right) = n \in \mathbb{Z}_{\geq 0} \rightsquigarrow 0 \rightarrow M(\lambda_{-n-2}) \hookrightarrow M(\lambda_n) \rightarrow \underbrace{V_n}_{\text{irrep of } \dim n+1} \rightarrow 0$.

Remark: Category $\mathcal{O} = \mathcal{O}^{\mathfrak{b},1}$ is not closed under extensions in $U\text{-mod}$.

e.g. $\mathfrak{g} = \mathfrak{sl}_2$, $\mathfrak{t} \rightarrow \mathfrak{gl}(\mathbb{F}^{\oplus 2})$, $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \mapsto \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$

$$0 \rightarrow M(\lambda_0) \rightarrow [\mathcal{O}^{\mathfrak{b},2} \in, \mathcal{O}^{\mathfrak{b},1} \notin] U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} F^{\oplus 2} \rightarrow U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} F_0 = M(\lambda_0) \rightarrow 0$$

1.2 Motivation

Let F/\mathbb{Q}_p be a finite extension, $G = \underline{G}(F)$. e.g. $G = \text{GL}_n(\mathbb{Q}_p)$.

We would like to have a commutative diagram:

$$\begin{array}{ccc} D_{\mathcal{C}_G}^{\mathfrak{b}}(\mathcal{M}_G) & \xrightarrow{\mathbb{D}_G} & D_{\mathcal{C}_G}^{\mathfrak{b}}(\mathcal{M}_G) \\ \mathcal{F}_P^G \uparrow & & \mathcal{F}_P^G \uparrow \\ D^{\mathfrak{b}}(\mathcal{O}^{\mathfrak{p},\infty})_{alg} & \xrightarrow{\mathbb{D}_{\mathfrak{g}}} & D^{\mathfrak{b}}(\mathcal{O}_{alg}^{\mathfrak{p},\infty}) \end{array}$$

Here, $\mathcal{M}_G = D(G)\text{-mod}$, where $D(G)$ is the locally analytic distribution algebra.

We have $\mathbb{Q}_p[G] \xrightarrow{\text{dense}} D(G)$, $U(\mathfrak{g}) \hookrightarrow D(G)$.

$\mathcal{M}_G \supset \mathcal{C}_G = \text{coadmissible modules (finiteness condition).}$

$$\underbrace{D_{\mathcal{C}_G}^{\mathfrak{b}}(\mathcal{M}_G)}_{\text{triangulated}} = \{M^\bullet \in D^{\mathfrak{b}}(\mathcal{M}_G) \mid H^\bullet(M^\bullet) \text{ is coadmissible}\}.$$

Theorem 1 (Schneider-Teitelbaum 2005). $\mathbb{D}_G(M^\bullet) = \text{RHom}_{D(G)}(M; D_c(G))$.

$D_c(G)$ = dual space of locally analytic functions with compact support. Dualizing objects.

$\mathbb{D}_G \circ \mathbb{D}_G = \text{id}$. It's a right module \rightsquigarrow left module using $g \mapsto g^{-1}$.

Functors $\mathcal{F}_P^G : \mathcal{O}_{\text{alg}}^{\mathfrak{p}, \infty} \rightarrow \mathcal{C}_G \subset \mathcal{M}_G$, ‘globalization functors’ ‘ \mathfrak{g} -reps $\rightsquigarrow G$ -reps’.

Theorem 2 (Orlib-S (2015), Agarwal-S (2021)). \mathcal{F}_P^G is exact.

For example, if we take a Verma module $M(\lambda)$ where $\lambda = d_\chi$ [a derivative of an algebraic character],

$$\mathcal{F}_B^G(M(\lambda)) = \left(\text{Ind}_B^G(\chi^{-1})^{\text{loc. an.}} \right)'$$

The $'$ here denotes a topological dual space.

If $M \in \mathcal{O}^{\mathfrak{p}, 1}$ is simple and $M \notin \mathcal{O}^{\mathfrak{g}, 1}$, $\mathfrak{g} \supset \mathfrak{p}$ then $\mathcal{F}_P^G(M)$ is a topologically simple module.

1.3 First approach to find the duality $\mathbb{D}_{\mathfrak{g}}$

Theorem 3. $U(\mathfrak{g})$ is a noetherian ring of finite local dimension equal to $\dim((\mathfrak{g}))$.

$U = U(\mathfrak{g})$ is therefore a dualizing object itself. i.e. the functor $\text{RHom}_U(-, U)$ is an involutive anti-isomorphism of $D^b(U\text{-mod})$.

Fact: $\forall M \in \mathcal{O}^{\mathfrak{p}, \infty} : \forall q \geq 0 : \text{Ext}_U^q(M, U) \in \mathcal{O}^{\mathfrak{p}, i}$

Question: If $M \in \mathcal{O}^{\mathfrak{p}, \infty} : \text{is } \text{RHom}_U(M, U) \text{ naturally quasi-isomorphic to a complex of modules in } \mathcal{O}^{\mathfrak{p}, \infty}?$

Answer: Yes, if $\mathfrak{p} = \mathfrak{b}$.

Theorem 4 (Coulembier - Mazorchuk). The category $\mathcal{O}^{\mathfrak{b}, \infty}$ is extension-full in $U\text{-mod}$.

Extension-full means, for all objects $M, N \in \mathcal{O}^{\mathfrak{b}, \infty}$ and $\forall q$: the Yoneda Ext group $\text{Y-Ext}_{\mathcal{O}^{\mathfrak{b}, \infty}}^q(M, N) \xrightarrow{\cong} \text{Ext}_{U\text{-mod}}^q(M, U)$.

We need Yoneda Ext Group since the category doesn't have enough projective and injective objects.

Corollary 5. The natural functor $D^b(\mathcal{O}^{\mathfrak{b}, \infty}) \rightarrow D_{\mathcal{O}^{\mathfrak{b}, \infty}}^b(U\text{-mod})$ is an equivalence of categories. The subscript $\mathcal{O}^{\mathfrak{b}, \infty}$ means the cohomology is in $\mathcal{O}^{\mathfrak{b}, \infty}$.

\mathbb{D} acts on $D^b(\mathcal{O}^{\mathfrak{b}, \infty})$ by transport of structure.

\mathbb{D} acts on $D_{\mathcal{O}^{\mathfrak{b}, \infty}}^b$.

1.4 Second approach

First approach doesn't generalize to general parabolic subalgebras \mathfrak{p} . Take $\mathfrak{p} = \mathfrak{g}$ semisimple $= \mathcal{O}^{\mathfrak{g}, \infty} = \mathcal{O}^{\mathfrak{g}, 1}$ which is the category of all f.g. g -modules.

$$\implies \text{Ext}_{\mathcal{O}^{\mathfrak{g}}}^q(M, N) = 0 \text{ for all } q > 0.$$

Even for $\mathfrak{sl}_2 : H^3(\mathfrak{g}, M) \neq 0$.

Note $H^3(\mathfrak{g}, M) = \text{Ext}_{\mathfrak{g}}^3(\mathbf{1}, M)$.

Solution in general:

$$M \mapsto \mathrm{RHom}_U(M, U)$$

$$M \mapsto \mathrm{Hom}_U(M, U) = 0$$

$$M \mapsto \mathrm{Ext}_U^e(M, U) = E^{\mathfrak{p}}(M) \text{ where } e = \dim \mathfrak{p}.$$

$$\mathrm{Ext}_U^{\dim(\mathfrak{p})} \left(U \otimes_{U(\mathfrak{p})} \underbrace{W}_{\text{f.d.}}, U \right) \cong (W^* \otimes \wedge^{\text{top}} \mathfrak{p}^*) \otimes_{U(\mathfrak{p})} U$$

Theorem 6. $\mathrm{RHom}_U(M, U)$ [here $M \in \mathcal{O}^{\mathfrak{p}, \infty}$] equals $\mathrm{RE}^{\mathfrak{p}}(M)[-e]^{\mathcal{O}^{\mathfrak{p}, \infty}}$

Superscript denotes the cohomology is in $\mathcal{O}^{\mathfrak{p}, \infty}$.